1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 /* 50 * Return value of the callback is likely supposed to be 51 * equal to or greater than 0, nevertheless, if an error 52 * occurs, it will be desirable to pass it to the caller 53 */ 54 if ((fw_version == NULL) || (fw_size == 0)) 55 return -EINVAL; 56 57 rc = efx_nic_get_fw_version(sa->nic, &enfi); 58 if (rc != 0) 59 return -rc; 60 61 ret = snprintf(fw_version, fw_size, 62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 65 if (ret < 0) 66 return ret; 67 68 if (enfi.enfi_dpcpu_fw_ids_valid) { 69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 70 int ret_extra; 71 72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 73 fw_size - dpcpu_fw_ids_offset, 74 " rx%" PRIx16 " tx%" PRIx16, 75 enfi.enfi_rx_dpcpu_fw_id, 76 enfi.enfi_tx_dpcpu_fw_id); 77 if (ret_extra < 0) 78 return ret_extra; 79 80 ret += ret_extra; 81 } 82 83 if (fw_size < (size_t)(++ret)) 84 return ret; 85 else 86 return 0; 87 } 88 89 static int 90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 91 { 92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 95 struct sfc_rss *rss = &sas->rss; 96 uint64_t txq_offloads_def = 0; 97 98 sfc_log_init(sa, "entry"); 99 100 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 101 dev_info->max_mtu = EFX_MAC_SDU_MAX; 102 103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 104 105 /* Autonegotiation may be disabled */ 106 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 108 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 116 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 118 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 119 120 dev_info->max_rx_queues = sa->rxq_max; 121 dev_info->max_tx_queues = sa->txq_max; 122 123 /* By default packets are dropped if no descriptors are available */ 124 dev_info->default_rxconf.rx_drop_en = 1; 125 126 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 127 128 /* 129 * rx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 134 dev_info->rx_queue_offload_capa; 135 136 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 137 138 /* 139 * tx_offload_capa includes both device and queue offloads since 140 * the latter may be requested on a per device basis which makes 141 * sense when some offloads are needed to be set on all queues. 142 */ 143 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 144 dev_info->tx_queue_offload_capa; 145 146 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 147 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 148 149 dev_info->default_txconf.offloads |= txq_offloads_def; 150 151 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 152 uint64_t rte_hf = 0; 153 unsigned int i; 154 155 for (i = 0; i < rss->hf_map_nb_entries; ++i) 156 rte_hf |= rss->hf_map[i].rte; 157 158 dev_info->reta_size = EFX_RSS_TBL_SIZE; 159 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 160 dev_info->flow_type_rss_offloads = rte_hf; 161 } 162 163 /* Initialize to hardware limits */ 164 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 165 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 166 /* The RXQ hardware requires that the descriptor count is a power 167 * of 2, but rx_desc_lim cannot properly describe that constraint. 168 */ 169 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 170 171 /* Initialize to hardware limits */ 172 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 173 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 174 /* 175 * The TXQ hardware requires that the descriptor count is a power 176 * of 2, but tx_desc_lim cannot properly describe that constraint 177 */ 178 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 179 180 if (sap->dp_rx->get_dev_info != NULL) 181 sap->dp_rx->get_dev_info(dev_info); 182 if (sap->dp_tx->get_dev_info != NULL) 183 sap->dp_tx->get_dev_info(dev_info); 184 185 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 186 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 187 188 return 0; 189 } 190 191 static const uint32_t * 192 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 193 { 194 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 195 196 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 197 } 198 199 static int 200 sfc_dev_configure(struct rte_eth_dev *dev) 201 { 202 struct rte_eth_dev_data *dev_data = dev->data; 203 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 204 int rc; 205 206 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 207 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 208 209 sfc_adapter_lock(sa); 210 switch (sa->state) { 211 case SFC_ADAPTER_CONFIGURED: 212 /* FALLTHROUGH */ 213 case SFC_ADAPTER_INITIALIZED: 214 rc = sfc_configure(sa); 215 break; 216 default: 217 sfc_err(sa, "unexpected adapter state %u to configure", 218 sa->state); 219 rc = EINVAL; 220 break; 221 } 222 sfc_adapter_unlock(sa); 223 224 sfc_log_init(sa, "done %d", rc); 225 SFC_ASSERT(rc >= 0); 226 return -rc; 227 } 228 229 static int 230 sfc_dev_start(struct rte_eth_dev *dev) 231 { 232 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 233 int rc; 234 235 sfc_log_init(sa, "entry"); 236 237 sfc_adapter_lock(sa); 238 rc = sfc_start(sa); 239 sfc_adapter_unlock(sa); 240 241 sfc_log_init(sa, "done %d", rc); 242 SFC_ASSERT(rc >= 0); 243 return -rc; 244 } 245 246 static int 247 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 248 { 249 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 250 struct rte_eth_link current_link; 251 int ret; 252 253 sfc_log_init(sa, "entry"); 254 255 if (sa->state != SFC_ADAPTER_STARTED) { 256 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 257 } else if (wait_to_complete) { 258 efx_link_mode_t link_mode; 259 260 if (efx_port_poll(sa->nic, &link_mode) != 0) 261 link_mode = EFX_LINK_UNKNOWN; 262 sfc_port_link_mode_to_info(link_mode, ¤t_link); 263 264 } else { 265 sfc_ev_mgmt_qpoll(sa); 266 rte_eth_linkstatus_get(dev, ¤t_link); 267 } 268 269 ret = rte_eth_linkstatus_set(dev, ¤t_link); 270 if (ret == 0) 271 sfc_notice(sa, "Link status is %s", 272 current_link.link_status ? "UP" : "DOWN"); 273 274 return ret; 275 } 276 277 static void 278 sfc_dev_stop(struct rte_eth_dev *dev) 279 { 280 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 281 282 sfc_log_init(sa, "entry"); 283 284 sfc_adapter_lock(sa); 285 sfc_stop(sa); 286 sfc_adapter_unlock(sa); 287 288 sfc_log_init(sa, "done"); 289 } 290 291 static int 292 sfc_dev_set_link_up(struct rte_eth_dev *dev) 293 { 294 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 295 int rc; 296 297 sfc_log_init(sa, "entry"); 298 299 sfc_adapter_lock(sa); 300 rc = sfc_start(sa); 301 sfc_adapter_unlock(sa); 302 303 SFC_ASSERT(rc >= 0); 304 return -rc; 305 } 306 307 static int 308 sfc_dev_set_link_down(struct rte_eth_dev *dev) 309 { 310 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 311 312 sfc_log_init(sa, "entry"); 313 314 sfc_adapter_lock(sa); 315 sfc_stop(sa); 316 sfc_adapter_unlock(sa); 317 318 return 0; 319 } 320 321 static void 322 sfc_dev_close(struct rte_eth_dev *dev) 323 { 324 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 325 326 sfc_log_init(sa, "entry"); 327 328 sfc_adapter_lock(sa); 329 switch (sa->state) { 330 case SFC_ADAPTER_STARTED: 331 sfc_stop(sa); 332 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 333 /* FALLTHROUGH */ 334 case SFC_ADAPTER_CONFIGURED: 335 sfc_close(sa); 336 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 337 /* FALLTHROUGH */ 338 case SFC_ADAPTER_INITIALIZED: 339 break; 340 default: 341 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 342 break; 343 } 344 345 /* 346 * Cleanup all resources in accordance with RTE_ETH_DEV_CLOSE_REMOVE. 347 * Rollback primary process sfc_eth_dev_init() below. 348 */ 349 350 sfc_eth_dev_clear_ops(dev); 351 352 sfc_detach(sa); 353 sfc_unprobe(sa); 354 355 sfc_kvargs_cleanup(sa); 356 357 sfc_adapter_unlock(sa); 358 sfc_adapter_lock_fini(sa); 359 360 sfc_log_init(sa, "done"); 361 362 /* Required for logging, so cleanup last */ 363 sa->eth_dev = NULL; 364 365 dev->process_private = NULL; 366 free(sa); 367 } 368 369 static int 370 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 371 boolean_t enabled) 372 { 373 struct sfc_port *port; 374 boolean_t *toggle; 375 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 376 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 377 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 378 int rc = 0; 379 380 sfc_adapter_lock(sa); 381 382 port = &sa->port; 383 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 384 385 if (*toggle != enabled) { 386 *toggle = enabled; 387 388 if (sfc_sa2shared(sa)->isolated) { 389 sfc_warn(sa, "isolated mode is active on the port"); 390 sfc_warn(sa, "the change is to be applied on the next " 391 "start provided that isolated mode is " 392 "disabled prior the next start"); 393 } else if ((sa->state == SFC_ADAPTER_STARTED) && 394 ((rc = sfc_set_rx_mode(sa)) != 0)) { 395 *toggle = !(enabled); 396 sfc_warn(sa, "Failed to %s %s mode", 397 ((enabled) ? "enable" : "disable"), desc); 398 } 399 } 400 401 sfc_adapter_unlock(sa); 402 return rc; 403 } 404 405 static int 406 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 407 { 408 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 409 410 SFC_ASSERT(rc >= 0); 411 return -rc; 412 } 413 414 static int 415 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 416 { 417 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 418 419 SFC_ASSERT(rc >= 0); 420 return -rc; 421 } 422 423 static int 424 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 425 { 426 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 427 428 SFC_ASSERT(rc >= 0); 429 return -rc; 430 } 431 432 static int 433 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 434 { 435 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 436 437 SFC_ASSERT(rc >= 0); 438 return -rc; 439 } 440 441 static int 442 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 443 uint16_t nb_rx_desc, unsigned int socket_id, 444 const struct rte_eth_rxconf *rx_conf, 445 struct rte_mempool *mb_pool) 446 { 447 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 448 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 449 int rc; 450 451 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 452 rx_queue_id, nb_rx_desc, socket_id); 453 454 sfc_adapter_lock(sa); 455 456 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 457 rx_conf, mb_pool); 458 if (rc != 0) 459 goto fail_rx_qinit; 460 461 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 462 463 sfc_adapter_unlock(sa); 464 465 return 0; 466 467 fail_rx_qinit: 468 sfc_adapter_unlock(sa); 469 SFC_ASSERT(rc > 0); 470 return -rc; 471 } 472 473 static void 474 sfc_rx_queue_release(void *queue) 475 { 476 struct sfc_dp_rxq *dp_rxq = queue; 477 struct sfc_rxq *rxq; 478 struct sfc_adapter *sa; 479 unsigned int sw_index; 480 481 if (dp_rxq == NULL) 482 return; 483 484 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 485 sa = rxq->evq->sa; 486 sfc_adapter_lock(sa); 487 488 sw_index = dp_rxq->dpq.queue_id; 489 490 sfc_log_init(sa, "RxQ=%u", sw_index); 491 492 sfc_rx_qfini(sa, sw_index); 493 494 sfc_adapter_unlock(sa); 495 } 496 497 static int 498 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 499 uint16_t nb_tx_desc, unsigned int socket_id, 500 const struct rte_eth_txconf *tx_conf) 501 { 502 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 503 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 504 int rc; 505 506 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 507 tx_queue_id, nb_tx_desc, socket_id); 508 509 sfc_adapter_lock(sa); 510 511 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 512 if (rc != 0) 513 goto fail_tx_qinit; 514 515 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 516 517 sfc_adapter_unlock(sa); 518 return 0; 519 520 fail_tx_qinit: 521 sfc_adapter_unlock(sa); 522 SFC_ASSERT(rc > 0); 523 return -rc; 524 } 525 526 static void 527 sfc_tx_queue_release(void *queue) 528 { 529 struct sfc_dp_txq *dp_txq = queue; 530 struct sfc_txq *txq; 531 unsigned int sw_index; 532 struct sfc_adapter *sa; 533 534 if (dp_txq == NULL) 535 return; 536 537 txq = sfc_txq_by_dp_txq(dp_txq); 538 sw_index = dp_txq->dpq.queue_id; 539 540 SFC_ASSERT(txq->evq != NULL); 541 sa = txq->evq->sa; 542 543 sfc_log_init(sa, "TxQ = %u", sw_index); 544 545 sfc_adapter_lock(sa); 546 547 sfc_tx_qfini(sa, sw_index); 548 549 sfc_adapter_unlock(sa); 550 } 551 552 /* 553 * Some statistics are computed as A - B where A and B each increase 554 * monotonically with some hardware counter(s) and the counters are read 555 * asynchronously. 556 * 557 * If packet X is counted in A, but not counted in B yet, computed value is 558 * greater than real. 559 * 560 * If packet X is not counted in A at the moment of reading the counter, 561 * but counted in B at the moment of reading the counter, computed value 562 * is less than real. 563 * 564 * However, counter which grows backward is worse evil than slightly wrong 565 * value. So, let's try to guarantee that it never happens except may be 566 * the case when the MAC stats are zeroed as a result of a NIC reset. 567 */ 568 static void 569 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 570 { 571 if ((int64_t)(newval - *stat) > 0 || newval == 0) 572 *stat = newval; 573 } 574 575 static int 576 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 577 { 578 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 579 struct sfc_port *port = &sa->port; 580 uint64_t *mac_stats; 581 int ret; 582 583 rte_spinlock_lock(&port->mac_stats_lock); 584 585 ret = sfc_port_update_mac_stats(sa); 586 if (ret != 0) 587 goto unlock; 588 589 mac_stats = port->mac_stats_buf; 590 591 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 592 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 593 stats->ipackets = 594 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 595 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 596 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 597 stats->opackets = 598 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 599 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 600 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 601 stats->ibytes = 602 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 603 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 604 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 605 stats->obytes = 606 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 607 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 608 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 609 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 610 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 611 } else { 612 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 613 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 614 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 615 /* 616 * Take into account stats which are whenever supported 617 * on EF10. If some stat is not supported by current 618 * firmware variant or HW revision, it is guaranteed 619 * to be zero in mac_stats. 620 */ 621 stats->imissed = 622 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 623 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 624 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 625 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 626 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 627 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 628 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 629 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 630 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 631 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 632 stats->ierrors = 633 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 634 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 635 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 636 /* no oerrors counters supported on EF10 */ 637 638 /* Exclude missed, errors and pauses from Rx packets */ 639 sfc_update_diff_stat(&port->ipackets, 640 mac_stats[EFX_MAC_RX_PKTS] - 641 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 642 stats->imissed - stats->ierrors); 643 stats->ipackets = port->ipackets; 644 } 645 646 unlock: 647 rte_spinlock_unlock(&port->mac_stats_lock); 648 SFC_ASSERT(ret >= 0); 649 return -ret; 650 } 651 652 static int 653 sfc_stats_reset(struct rte_eth_dev *dev) 654 { 655 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 656 struct sfc_port *port = &sa->port; 657 int rc; 658 659 if (sa->state != SFC_ADAPTER_STARTED) { 660 /* 661 * The operation cannot be done if port is not started; it 662 * will be scheduled to be done during the next port start 663 */ 664 port->mac_stats_reset_pending = B_TRUE; 665 return 0; 666 } 667 668 rc = sfc_port_reset_mac_stats(sa); 669 if (rc != 0) 670 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 671 672 SFC_ASSERT(rc >= 0); 673 return -rc; 674 } 675 676 static int 677 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 678 unsigned int xstats_count) 679 { 680 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 681 struct sfc_port *port = &sa->port; 682 uint64_t *mac_stats; 683 int rc; 684 unsigned int i; 685 int nstats = 0; 686 687 rte_spinlock_lock(&port->mac_stats_lock); 688 689 rc = sfc_port_update_mac_stats(sa); 690 if (rc != 0) { 691 SFC_ASSERT(rc > 0); 692 nstats = -rc; 693 goto unlock; 694 } 695 696 mac_stats = port->mac_stats_buf; 697 698 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 699 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 700 if (xstats != NULL && nstats < (int)xstats_count) { 701 xstats[nstats].id = nstats; 702 xstats[nstats].value = mac_stats[i]; 703 } 704 nstats++; 705 } 706 } 707 708 unlock: 709 rte_spinlock_unlock(&port->mac_stats_lock); 710 711 return nstats; 712 } 713 714 static int 715 sfc_xstats_get_names(struct rte_eth_dev *dev, 716 struct rte_eth_xstat_name *xstats_names, 717 unsigned int xstats_count) 718 { 719 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 720 struct sfc_port *port = &sa->port; 721 unsigned int i; 722 unsigned int nstats = 0; 723 724 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 725 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 726 if (xstats_names != NULL && nstats < xstats_count) 727 strlcpy(xstats_names[nstats].name, 728 efx_mac_stat_name(sa->nic, i), 729 sizeof(xstats_names[0].name)); 730 nstats++; 731 } 732 } 733 734 return nstats; 735 } 736 737 static int 738 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 739 uint64_t *values, unsigned int n) 740 { 741 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 742 struct sfc_port *port = &sa->port; 743 uint64_t *mac_stats; 744 unsigned int nb_supported = 0; 745 unsigned int nb_written = 0; 746 unsigned int i; 747 int ret; 748 int rc; 749 750 if (unlikely(values == NULL) || 751 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 752 return port->mac_stats_nb_supported; 753 754 rte_spinlock_lock(&port->mac_stats_lock); 755 756 rc = sfc_port_update_mac_stats(sa); 757 if (rc != 0) { 758 SFC_ASSERT(rc > 0); 759 ret = -rc; 760 goto unlock; 761 } 762 763 mac_stats = port->mac_stats_buf; 764 765 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 766 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 767 continue; 768 769 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 770 values[nb_written++] = mac_stats[i]; 771 772 ++nb_supported; 773 } 774 775 ret = nb_written; 776 777 unlock: 778 rte_spinlock_unlock(&port->mac_stats_lock); 779 780 return ret; 781 } 782 783 static int 784 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 785 struct rte_eth_xstat_name *xstats_names, 786 const uint64_t *ids, unsigned int size) 787 { 788 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 789 struct sfc_port *port = &sa->port; 790 unsigned int nb_supported = 0; 791 unsigned int nb_written = 0; 792 unsigned int i; 793 794 if (unlikely(xstats_names == NULL) || 795 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 796 return port->mac_stats_nb_supported; 797 798 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 799 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 800 continue; 801 802 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 803 char *name = xstats_names[nb_written++].name; 804 805 strlcpy(name, efx_mac_stat_name(sa->nic, i), 806 sizeof(xstats_names[0].name)); 807 } 808 809 ++nb_supported; 810 } 811 812 return nb_written; 813 } 814 815 static int 816 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 817 { 818 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 819 unsigned int wanted_fc, link_fc; 820 821 memset(fc_conf, 0, sizeof(*fc_conf)); 822 823 sfc_adapter_lock(sa); 824 825 if (sa->state == SFC_ADAPTER_STARTED) 826 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 827 else 828 link_fc = sa->port.flow_ctrl; 829 830 switch (link_fc) { 831 case 0: 832 fc_conf->mode = RTE_FC_NONE; 833 break; 834 case EFX_FCNTL_RESPOND: 835 fc_conf->mode = RTE_FC_RX_PAUSE; 836 break; 837 case EFX_FCNTL_GENERATE: 838 fc_conf->mode = RTE_FC_TX_PAUSE; 839 break; 840 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 841 fc_conf->mode = RTE_FC_FULL; 842 break; 843 default: 844 sfc_err(sa, "%s: unexpected flow control value %#x", 845 __func__, link_fc); 846 } 847 848 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 849 850 sfc_adapter_unlock(sa); 851 852 return 0; 853 } 854 855 static int 856 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 857 { 858 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 859 struct sfc_port *port = &sa->port; 860 unsigned int fcntl; 861 int rc; 862 863 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 864 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 865 fc_conf->mac_ctrl_frame_fwd != 0) { 866 sfc_err(sa, "unsupported flow control settings specified"); 867 rc = EINVAL; 868 goto fail_inval; 869 } 870 871 switch (fc_conf->mode) { 872 case RTE_FC_NONE: 873 fcntl = 0; 874 break; 875 case RTE_FC_RX_PAUSE: 876 fcntl = EFX_FCNTL_RESPOND; 877 break; 878 case RTE_FC_TX_PAUSE: 879 fcntl = EFX_FCNTL_GENERATE; 880 break; 881 case RTE_FC_FULL: 882 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 883 break; 884 default: 885 rc = EINVAL; 886 goto fail_inval; 887 } 888 889 sfc_adapter_lock(sa); 890 891 if (sa->state == SFC_ADAPTER_STARTED) { 892 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 893 if (rc != 0) 894 goto fail_mac_fcntl_set; 895 } 896 897 port->flow_ctrl = fcntl; 898 port->flow_ctrl_autoneg = fc_conf->autoneg; 899 900 sfc_adapter_unlock(sa); 901 902 return 0; 903 904 fail_mac_fcntl_set: 905 sfc_adapter_unlock(sa); 906 fail_inval: 907 SFC_ASSERT(rc > 0); 908 return -rc; 909 } 910 911 static int 912 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 913 { 914 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 915 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 916 boolean_t scatter_enabled; 917 const char *error; 918 unsigned int i; 919 920 for (i = 0; i < sas->rxq_count; i++) { 921 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 922 continue; 923 924 scatter_enabled = (sas->rxq_info[i].type_flags & 925 EFX_RXQ_FLAG_SCATTER); 926 927 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 928 encp->enc_rx_prefix_size, 929 scatter_enabled, &error)) { 930 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 931 error); 932 return EINVAL; 933 } 934 } 935 936 return 0; 937 } 938 939 static int 940 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 941 { 942 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 943 size_t pdu = EFX_MAC_PDU(mtu); 944 size_t old_pdu; 945 int rc; 946 947 sfc_log_init(sa, "mtu=%u", mtu); 948 949 rc = EINVAL; 950 if (pdu < EFX_MAC_PDU_MIN) { 951 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 952 (unsigned int)mtu, (unsigned int)pdu, 953 EFX_MAC_PDU_MIN); 954 goto fail_inval; 955 } 956 if (pdu > EFX_MAC_PDU_MAX) { 957 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 958 (unsigned int)mtu, (unsigned int)pdu, 959 (unsigned int)EFX_MAC_PDU_MAX); 960 goto fail_inval; 961 } 962 963 sfc_adapter_lock(sa); 964 965 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 966 if (rc != 0) 967 goto fail_check_scatter; 968 969 if (pdu != sa->port.pdu) { 970 if (sa->state == SFC_ADAPTER_STARTED) { 971 sfc_stop(sa); 972 973 old_pdu = sa->port.pdu; 974 sa->port.pdu = pdu; 975 rc = sfc_start(sa); 976 if (rc != 0) 977 goto fail_start; 978 } else { 979 sa->port.pdu = pdu; 980 } 981 } 982 983 /* 984 * The driver does not use it, but other PMDs update jumbo frame 985 * flag and max_rx_pkt_len when MTU is set. 986 */ 987 if (mtu > RTE_ETHER_MAX_LEN) { 988 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 989 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 990 } 991 992 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 993 994 sfc_adapter_unlock(sa); 995 996 sfc_log_init(sa, "done"); 997 return 0; 998 999 fail_start: 1000 sa->port.pdu = old_pdu; 1001 if (sfc_start(sa) != 0) 1002 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1003 "PDU max size - port is stopped", 1004 (unsigned int)pdu, (unsigned int)old_pdu); 1005 1006 fail_check_scatter: 1007 sfc_adapter_unlock(sa); 1008 1009 fail_inval: 1010 sfc_log_init(sa, "failed %d", rc); 1011 SFC_ASSERT(rc > 0); 1012 return -rc; 1013 } 1014 static int 1015 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1016 { 1017 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1018 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1019 struct sfc_port *port = &sa->port; 1020 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1021 int rc = 0; 1022 1023 sfc_adapter_lock(sa); 1024 1025 /* 1026 * Copy the address to the device private data so that 1027 * it could be recalled in the case of adapter restart. 1028 */ 1029 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1030 1031 /* 1032 * Neither of the two following checks can return 1033 * an error. The new MAC address is preserved in 1034 * the device private data and can be activated 1035 * on the next port start if the user prevents 1036 * isolated mode from being enabled. 1037 */ 1038 if (sfc_sa2shared(sa)->isolated) { 1039 sfc_warn(sa, "isolated mode is active on the port"); 1040 sfc_warn(sa, "will not set MAC address"); 1041 goto unlock; 1042 } 1043 1044 if (sa->state != SFC_ADAPTER_STARTED) { 1045 sfc_notice(sa, "the port is not started"); 1046 sfc_notice(sa, "the new MAC address will be set on port start"); 1047 1048 goto unlock; 1049 } 1050 1051 if (encp->enc_allow_set_mac_with_installed_filters) { 1052 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1053 if (rc != 0) { 1054 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1055 goto unlock; 1056 } 1057 1058 /* 1059 * Changing the MAC address by means of MCDI request 1060 * has no effect on received traffic, therefore 1061 * we also need to update unicast filters 1062 */ 1063 rc = sfc_set_rx_mode(sa); 1064 if (rc != 0) { 1065 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1066 /* Rollback the old address */ 1067 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1068 (void)sfc_set_rx_mode(sa); 1069 } 1070 } else { 1071 sfc_warn(sa, "cannot set MAC address with filters installed"); 1072 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1073 sfc_warn(sa, "(some traffic may be dropped)"); 1074 1075 /* 1076 * Since setting MAC address with filters installed is not 1077 * allowed on the adapter, the new MAC address will be set 1078 * by means of adapter restart. sfc_start() shall retrieve 1079 * the new address from the device private data and set it. 1080 */ 1081 sfc_stop(sa); 1082 rc = sfc_start(sa); 1083 if (rc != 0) 1084 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1085 } 1086 1087 unlock: 1088 if (rc != 0) 1089 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1090 1091 sfc_adapter_unlock(sa); 1092 1093 SFC_ASSERT(rc >= 0); 1094 return -rc; 1095 } 1096 1097 1098 static int 1099 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1100 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1101 { 1102 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1103 struct sfc_port *port = &sa->port; 1104 uint8_t *mc_addrs = port->mcast_addrs; 1105 int rc; 1106 unsigned int i; 1107 1108 if (sfc_sa2shared(sa)->isolated) { 1109 sfc_err(sa, "isolated mode is active on the port"); 1110 sfc_err(sa, "will not set multicast address list"); 1111 return -ENOTSUP; 1112 } 1113 1114 if (mc_addrs == NULL) 1115 return -ENOBUFS; 1116 1117 if (nb_mc_addr > port->max_mcast_addrs) { 1118 sfc_err(sa, "too many multicast addresses: %u > %u", 1119 nb_mc_addr, port->max_mcast_addrs); 1120 return -EINVAL; 1121 } 1122 1123 for (i = 0; i < nb_mc_addr; ++i) { 1124 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1125 EFX_MAC_ADDR_LEN); 1126 mc_addrs += EFX_MAC_ADDR_LEN; 1127 } 1128 1129 port->nb_mcast_addrs = nb_mc_addr; 1130 1131 if (sa->state != SFC_ADAPTER_STARTED) 1132 return 0; 1133 1134 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1135 port->nb_mcast_addrs); 1136 if (rc != 0) 1137 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1138 1139 SFC_ASSERT(rc >= 0); 1140 return -rc; 1141 } 1142 1143 /* 1144 * The function is used by the secondary process as well. It must not 1145 * use any process-local pointers from the adapter data. 1146 */ 1147 static void 1148 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1149 struct rte_eth_rxq_info *qinfo) 1150 { 1151 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1152 struct sfc_rxq_info *rxq_info; 1153 1154 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1155 1156 rxq_info = &sas->rxq_info[rx_queue_id]; 1157 1158 qinfo->mp = rxq_info->refill_mb_pool; 1159 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1160 qinfo->conf.rx_drop_en = 1; 1161 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1162 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1163 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1164 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1165 qinfo->scattered_rx = 1; 1166 } 1167 qinfo->nb_desc = rxq_info->entries; 1168 } 1169 1170 /* 1171 * The function is used by the secondary process as well. It must not 1172 * use any process-local pointers from the adapter data. 1173 */ 1174 static void 1175 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1176 struct rte_eth_txq_info *qinfo) 1177 { 1178 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1179 struct sfc_txq_info *txq_info; 1180 1181 SFC_ASSERT(tx_queue_id < sas->txq_count); 1182 1183 txq_info = &sas->txq_info[tx_queue_id]; 1184 1185 memset(qinfo, 0, sizeof(*qinfo)); 1186 1187 qinfo->conf.offloads = txq_info->offloads; 1188 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1189 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1190 qinfo->nb_desc = txq_info->entries; 1191 } 1192 1193 /* 1194 * The function is used by the secondary process as well. It must not 1195 * use any process-local pointers from the adapter data. 1196 */ 1197 static uint32_t 1198 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1199 { 1200 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1201 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1202 struct sfc_rxq_info *rxq_info; 1203 1204 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1205 rxq_info = &sas->rxq_info[rx_queue_id]; 1206 1207 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1208 return 0; 1209 1210 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1211 } 1212 1213 /* 1214 * The function is used by the secondary process as well. It must not 1215 * use any process-local pointers from the adapter data. 1216 */ 1217 static int 1218 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1219 { 1220 struct sfc_dp_rxq *dp_rxq = queue; 1221 const struct sfc_dp_rx *dp_rx; 1222 1223 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1224 1225 return offset < dp_rx->qdesc_npending(dp_rxq); 1226 } 1227 1228 /* 1229 * The function is used by the secondary process as well. It must not 1230 * use any process-local pointers from the adapter data. 1231 */ 1232 static int 1233 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1234 { 1235 struct sfc_dp_rxq *dp_rxq = queue; 1236 const struct sfc_dp_rx *dp_rx; 1237 1238 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1239 1240 return dp_rx->qdesc_status(dp_rxq, offset); 1241 } 1242 1243 /* 1244 * The function is used by the secondary process as well. It must not 1245 * use any process-local pointers from the adapter data. 1246 */ 1247 static int 1248 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1249 { 1250 struct sfc_dp_txq *dp_txq = queue; 1251 const struct sfc_dp_tx *dp_tx; 1252 1253 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1254 1255 return dp_tx->qdesc_status(dp_txq, offset); 1256 } 1257 1258 static int 1259 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1260 { 1261 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1262 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1263 int rc; 1264 1265 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1266 1267 sfc_adapter_lock(sa); 1268 1269 rc = EINVAL; 1270 if (sa->state != SFC_ADAPTER_STARTED) 1271 goto fail_not_started; 1272 1273 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1274 goto fail_not_setup; 1275 1276 rc = sfc_rx_qstart(sa, rx_queue_id); 1277 if (rc != 0) 1278 goto fail_rx_qstart; 1279 1280 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1281 1282 sfc_adapter_unlock(sa); 1283 1284 return 0; 1285 1286 fail_rx_qstart: 1287 fail_not_setup: 1288 fail_not_started: 1289 sfc_adapter_unlock(sa); 1290 SFC_ASSERT(rc > 0); 1291 return -rc; 1292 } 1293 1294 static int 1295 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1296 { 1297 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1298 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1299 1300 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1301 1302 sfc_adapter_lock(sa); 1303 sfc_rx_qstop(sa, rx_queue_id); 1304 1305 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1306 1307 sfc_adapter_unlock(sa); 1308 1309 return 0; 1310 } 1311 1312 static int 1313 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1314 { 1315 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1316 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1317 int rc; 1318 1319 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1320 1321 sfc_adapter_lock(sa); 1322 1323 rc = EINVAL; 1324 if (sa->state != SFC_ADAPTER_STARTED) 1325 goto fail_not_started; 1326 1327 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1328 goto fail_not_setup; 1329 1330 rc = sfc_tx_qstart(sa, tx_queue_id); 1331 if (rc != 0) 1332 goto fail_tx_qstart; 1333 1334 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1335 1336 sfc_adapter_unlock(sa); 1337 return 0; 1338 1339 fail_tx_qstart: 1340 1341 fail_not_setup: 1342 fail_not_started: 1343 sfc_adapter_unlock(sa); 1344 SFC_ASSERT(rc > 0); 1345 return -rc; 1346 } 1347 1348 static int 1349 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1350 { 1351 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1352 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1353 1354 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1355 1356 sfc_adapter_lock(sa); 1357 1358 sfc_tx_qstop(sa, tx_queue_id); 1359 1360 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1361 1362 sfc_adapter_unlock(sa); 1363 return 0; 1364 } 1365 1366 static efx_tunnel_protocol_t 1367 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1368 { 1369 switch (rte_type) { 1370 case RTE_TUNNEL_TYPE_VXLAN: 1371 return EFX_TUNNEL_PROTOCOL_VXLAN; 1372 case RTE_TUNNEL_TYPE_GENEVE: 1373 return EFX_TUNNEL_PROTOCOL_GENEVE; 1374 default: 1375 return EFX_TUNNEL_NPROTOS; 1376 } 1377 } 1378 1379 enum sfc_udp_tunnel_op_e { 1380 SFC_UDP_TUNNEL_ADD_PORT, 1381 SFC_UDP_TUNNEL_DEL_PORT, 1382 }; 1383 1384 static int 1385 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1386 struct rte_eth_udp_tunnel *tunnel_udp, 1387 enum sfc_udp_tunnel_op_e op) 1388 { 1389 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1390 efx_tunnel_protocol_t tunnel_proto; 1391 int rc; 1392 1393 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1394 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1395 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1396 tunnel_udp->udp_port, tunnel_udp->prot_type); 1397 1398 tunnel_proto = 1399 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1400 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1401 rc = ENOTSUP; 1402 goto fail_bad_proto; 1403 } 1404 1405 sfc_adapter_lock(sa); 1406 1407 switch (op) { 1408 case SFC_UDP_TUNNEL_ADD_PORT: 1409 rc = efx_tunnel_config_udp_add(sa->nic, 1410 tunnel_udp->udp_port, 1411 tunnel_proto); 1412 break; 1413 case SFC_UDP_TUNNEL_DEL_PORT: 1414 rc = efx_tunnel_config_udp_remove(sa->nic, 1415 tunnel_udp->udp_port, 1416 tunnel_proto); 1417 break; 1418 default: 1419 rc = EINVAL; 1420 goto fail_bad_op; 1421 } 1422 1423 if (rc != 0) 1424 goto fail_op; 1425 1426 if (sa->state == SFC_ADAPTER_STARTED) { 1427 rc = efx_tunnel_reconfigure(sa->nic); 1428 if (rc == EAGAIN) { 1429 /* 1430 * Configuration is accepted by FW and MC reboot 1431 * is initiated to apply the changes. MC reboot 1432 * will be handled in a usual way (MC reboot 1433 * event on management event queue and adapter 1434 * restart). 1435 */ 1436 rc = 0; 1437 } else if (rc != 0) { 1438 goto fail_reconfigure; 1439 } 1440 } 1441 1442 sfc_adapter_unlock(sa); 1443 return 0; 1444 1445 fail_reconfigure: 1446 /* Remove/restore entry since the change makes the trouble */ 1447 switch (op) { 1448 case SFC_UDP_TUNNEL_ADD_PORT: 1449 (void)efx_tunnel_config_udp_remove(sa->nic, 1450 tunnel_udp->udp_port, 1451 tunnel_proto); 1452 break; 1453 case SFC_UDP_TUNNEL_DEL_PORT: 1454 (void)efx_tunnel_config_udp_add(sa->nic, 1455 tunnel_udp->udp_port, 1456 tunnel_proto); 1457 break; 1458 } 1459 1460 fail_op: 1461 fail_bad_op: 1462 sfc_adapter_unlock(sa); 1463 1464 fail_bad_proto: 1465 SFC_ASSERT(rc > 0); 1466 return -rc; 1467 } 1468 1469 static int 1470 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1471 struct rte_eth_udp_tunnel *tunnel_udp) 1472 { 1473 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1474 } 1475 1476 static int 1477 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1478 struct rte_eth_udp_tunnel *tunnel_udp) 1479 { 1480 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1481 } 1482 1483 /* 1484 * The function is used by the secondary process as well. It must not 1485 * use any process-local pointers from the adapter data. 1486 */ 1487 static int 1488 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1489 struct rte_eth_rss_conf *rss_conf) 1490 { 1491 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1492 struct sfc_rss *rss = &sas->rss; 1493 1494 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1495 return -ENOTSUP; 1496 1497 /* 1498 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1499 * hence, conversion is done here to derive a correct set of ETH_RSS 1500 * flags which corresponds to the active EFX configuration stored 1501 * locally in 'sfc_adapter' and kept up-to-date 1502 */ 1503 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1504 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1505 if (rss_conf->rss_key != NULL) 1506 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1507 1508 return 0; 1509 } 1510 1511 static int 1512 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1513 struct rte_eth_rss_conf *rss_conf) 1514 { 1515 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1516 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1517 unsigned int efx_hash_types; 1518 int rc = 0; 1519 1520 if (sfc_sa2shared(sa)->isolated) 1521 return -ENOTSUP; 1522 1523 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1524 sfc_err(sa, "RSS is not available"); 1525 return -ENOTSUP; 1526 } 1527 1528 if (rss->channels == 0) { 1529 sfc_err(sa, "RSS is not configured"); 1530 return -EINVAL; 1531 } 1532 1533 if ((rss_conf->rss_key != NULL) && 1534 (rss_conf->rss_key_len != sizeof(rss->key))) { 1535 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1536 sizeof(rss->key)); 1537 return -EINVAL; 1538 } 1539 1540 sfc_adapter_lock(sa); 1541 1542 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1543 if (rc != 0) 1544 goto fail_rx_hf_rte_to_efx; 1545 1546 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1547 rss->hash_alg, efx_hash_types, B_TRUE); 1548 if (rc != 0) 1549 goto fail_scale_mode_set; 1550 1551 if (rss_conf->rss_key != NULL) { 1552 if (sa->state == SFC_ADAPTER_STARTED) { 1553 rc = efx_rx_scale_key_set(sa->nic, 1554 EFX_RSS_CONTEXT_DEFAULT, 1555 rss_conf->rss_key, 1556 sizeof(rss->key)); 1557 if (rc != 0) 1558 goto fail_scale_key_set; 1559 } 1560 1561 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1562 } 1563 1564 rss->hash_types = efx_hash_types; 1565 1566 sfc_adapter_unlock(sa); 1567 1568 return 0; 1569 1570 fail_scale_key_set: 1571 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1572 EFX_RX_HASHALG_TOEPLITZ, 1573 rss->hash_types, B_TRUE) != 0) 1574 sfc_err(sa, "failed to restore RSS mode"); 1575 1576 fail_scale_mode_set: 1577 fail_rx_hf_rte_to_efx: 1578 sfc_adapter_unlock(sa); 1579 return -rc; 1580 } 1581 1582 /* 1583 * The function is used by the secondary process as well. It must not 1584 * use any process-local pointers from the adapter data. 1585 */ 1586 static int 1587 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1588 struct rte_eth_rss_reta_entry64 *reta_conf, 1589 uint16_t reta_size) 1590 { 1591 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1592 struct sfc_rss *rss = &sas->rss; 1593 int entry; 1594 1595 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1596 return -ENOTSUP; 1597 1598 if (rss->channels == 0) 1599 return -EINVAL; 1600 1601 if (reta_size != EFX_RSS_TBL_SIZE) 1602 return -EINVAL; 1603 1604 for (entry = 0; entry < reta_size; entry++) { 1605 int grp = entry / RTE_RETA_GROUP_SIZE; 1606 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1607 1608 if ((reta_conf[grp].mask >> grp_idx) & 1) 1609 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1610 } 1611 1612 return 0; 1613 } 1614 1615 static int 1616 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1617 struct rte_eth_rss_reta_entry64 *reta_conf, 1618 uint16_t reta_size) 1619 { 1620 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1621 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1622 unsigned int *rss_tbl_new; 1623 uint16_t entry; 1624 int rc = 0; 1625 1626 1627 if (sfc_sa2shared(sa)->isolated) 1628 return -ENOTSUP; 1629 1630 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1631 sfc_err(sa, "RSS is not available"); 1632 return -ENOTSUP; 1633 } 1634 1635 if (rss->channels == 0) { 1636 sfc_err(sa, "RSS is not configured"); 1637 return -EINVAL; 1638 } 1639 1640 if (reta_size != EFX_RSS_TBL_SIZE) { 1641 sfc_err(sa, "RETA size is wrong (should be %u)", 1642 EFX_RSS_TBL_SIZE); 1643 return -EINVAL; 1644 } 1645 1646 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1647 if (rss_tbl_new == NULL) 1648 return -ENOMEM; 1649 1650 sfc_adapter_lock(sa); 1651 1652 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1653 1654 for (entry = 0; entry < reta_size; entry++) { 1655 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1656 struct rte_eth_rss_reta_entry64 *grp; 1657 1658 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1659 1660 if (grp->mask & (1ull << grp_idx)) { 1661 if (grp->reta[grp_idx] >= rss->channels) { 1662 rc = EINVAL; 1663 goto bad_reta_entry; 1664 } 1665 rss_tbl_new[entry] = grp->reta[grp_idx]; 1666 } 1667 } 1668 1669 if (sa->state == SFC_ADAPTER_STARTED) { 1670 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1671 rss_tbl_new, EFX_RSS_TBL_SIZE); 1672 if (rc != 0) 1673 goto fail_scale_tbl_set; 1674 } 1675 1676 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1677 1678 fail_scale_tbl_set: 1679 bad_reta_entry: 1680 sfc_adapter_unlock(sa); 1681 1682 rte_free(rss_tbl_new); 1683 1684 SFC_ASSERT(rc >= 0); 1685 return -rc; 1686 } 1687 1688 static int 1689 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1690 enum rte_filter_op filter_op, 1691 void *arg) 1692 { 1693 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1694 int rc = ENOTSUP; 1695 1696 sfc_log_init(sa, "entry"); 1697 1698 switch (filter_type) { 1699 case RTE_ETH_FILTER_NONE: 1700 sfc_err(sa, "Global filters configuration not supported"); 1701 break; 1702 case RTE_ETH_FILTER_MACVLAN: 1703 sfc_err(sa, "MACVLAN filters not supported"); 1704 break; 1705 case RTE_ETH_FILTER_ETHERTYPE: 1706 sfc_err(sa, "EtherType filters not supported"); 1707 break; 1708 case RTE_ETH_FILTER_FLEXIBLE: 1709 sfc_err(sa, "Flexible filters not supported"); 1710 break; 1711 case RTE_ETH_FILTER_SYN: 1712 sfc_err(sa, "SYN filters not supported"); 1713 break; 1714 case RTE_ETH_FILTER_NTUPLE: 1715 sfc_err(sa, "NTUPLE filters not supported"); 1716 break; 1717 case RTE_ETH_FILTER_TUNNEL: 1718 sfc_err(sa, "Tunnel filters not supported"); 1719 break; 1720 case RTE_ETH_FILTER_FDIR: 1721 sfc_err(sa, "Flow Director filters not supported"); 1722 break; 1723 case RTE_ETH_FILTER_HASH: 1724 sfc_err(sa, "Hash filters not supported"); 1725 break; 1726 case RTE_ETH_FILTER_GENERIC: 1727 if (filter_op != RTE_ETH_FILTER_GET) { 1728 rc = EINVAL; 1729 } else { 1730 *(const void **)arg = &sfc_flow_ops; 1731 rc = 0; 1732 } 1733 break; 1734 default: 1735 sfc_err(sa, "Unknown filter type %u", filter_type); 1736 break; 1737 } 1738 1739 sfc_log_init(sa, "exit: %d", -rc); 1740 SFC_ASSERT(rc >= 0); 1741 return -rc; 1742 } 1743 1744 static int 1745 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1746 { 1747 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1748 1749 /* 1750 * If Rx datapath does not provide callback to check mempool, 1751 * all pools are supported. 1752 */ 1753 if (sap->dp_rx->pool_ops_supported == NULL) 1754 return 1; 1755 1756 return sap->dp_rx->pool_ops_supported(pool); 1757 } 1758 1759 static int 1760 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1761 { 1762 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1763 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1764 struct sfc_rxq_info *rxq_info; 1765 1766 SFC_ASSERT(queue_id < sas->rxq_count); 1767 rxq_info = &sas->rxq_info[queue_id]; 1768 1769 return sap->dp_rx->intr_enable(rxq_info->dp); 1770 } 1771 1772 static int 1773 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1774 { 1775 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1776 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1777 struct sfc_rxq_info *rxq_info; 1778 1779 SFC_ASSERT(queue_id < sas->rxq_count); 1780 rxq_info = &sas->rxq_info[queue_id]; 1781 1782 return sap->dp_rx->intr_disable(rxq_info->dp); 1783 } 1784 1785 static const struct eth_dev_ops sfc_eth_dev_ops = { 1786 .dev_configure = sfc_dev_configure, 1787 .dev_start = sfc_dev_start, 1788 .dev_stop = sfc_dev_stop, 1789 .dev_set_link_up = sfc_dev_set_link_up, 1790 .dev_set_link_down = sfc_dev_set_link_down, 1791 .dev_close = sfc_dev_close, 1792 .promiscuous_enable = sfc_dev_promisc_enable, 1793 .promiscuous_disable = sfc_dev_promisc_disable, 1794 .allmulticast_enable = sfc_dev_allmulti_enable, 1795 .allmulticast_disable = sfc_dev_allmulti_disable, 1796 .link_update = sfc_dev_link_update, 1797 .stats_get = sfc_stats_get, 1798 .stats_reset = sfc_stats_reset, 1799 .xstats_get = sfc_xstats_get, 1800 .xstats_reset = sfc_stats_reset, 1801 .xstats_get_names = sfc_xstats_get_names, 1802 .dev_infos_get = sfc_dev_infos_get, 1803 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1804 .mtu_set = sfc_dev_set_mtu, 1805 .rx_queue_start = sfc_rx_queue_start, 1806 .rx_queue_stop = sfc_rx_queue_stop, 1807 .tx_queue_start = sfc_tx_queue_start, 1808 .tx_queue_stop = sfc_tx_queue_stop, 1809 .rx_queue_setup = sfc_rx_queue_setup, 1810 .rx_queue_release = sfc_rx_queue_release, 1811 .rx_queue_count = sfc_rx_queue_count, 1812 .rx_descriptor_done = sfc_rx_descriptor_done, 1813 .rx_descriptor_status = sfc_rx_descriptor_status, 1814 .tx_descriptor_status = sfc_tx_descriptor_status, 1815 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1816 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1817 .tx_queue_setup = sfc_tx_queue_setup, 1818 .tx_queue_release = sfc_tx_queue_release, 1819 .flow_ctrl_get = sfc_flow_ctrl_get, 1820 .flow_ctrl_set = sfc_flow_ctrl_set, 1821 .mac_addr_set = sfc_mac_addr_set, 1822 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1823 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1824 .reta_update = sfc_dev_rss_reta_update, 1825 .reta_query = sfc_dev_rss_reta_query, 1826 .rss_hash_update = sfc_dev_rss_hash_update, 1827 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1828 .filter_ctrl = sfc_dev_filter_ctrl, 1829 .set_mc_addr_list = sfc_set_mc_addr_list, 1830 .rxq_info_get = sfc_rx_queue_info_get, 1831 .txq_info_get = sfc_tx_queue_info_get, 1832 .fw_version_get = sfc_fw_version_get, 1833 .xstats_get_by_id = sfc_xstats_get_by_id, 1834 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1835 .pool_ops_supported = sfc_pool_ops_supported, 1836 }; 1837 1838 /** 1839 * Duplicate a string in potentially shared memory required for 1840 * multi-process support. 1841 * 1842 * strdup() allocates from process-local heap/memory. 1843 */ 1844 static char * 1845 sfc_strdup(const char *str) 1846 { 1847 size_t size; 1848 char *copy; 1849 1850 if (str == NULL) 1851 return NULL; 1852 1853 size = strlen(str) + 1; 1854 copy = rte_malloc(__func__, size, 0); 1855 if (copy != NULL) 1856 rte_memcpy(copy, str, size); 1857 1858 return copy; 1859 } 1860 1861 static int 1862 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1863 { 1864 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1865 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1866 const struct sfc_dp_rx *dp_rx; 1867 const struct sfc_dp_tx *dp_tx; 1868 const efx_nic_cfg_t *encp; 1869 unsigned int avail_caps = 0; 1870 const char *rx_name = NULL; 1871 const char *tx_name = NULL; 1872 int rc; 1873 1874 switch (sa->family) { 1875 case EFX_FAMILY_HUNTINGTON: 1876 case EFX_FAMILY_MEDFORD: 1877 case EFX_FAMILY_MEDFORD2: 1878 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1879 break; 1880 default: 1881 break; 1882 } 1883 1884 encp = efx_nic_cfg_get(sa->nic); 1885 if (encp->enc_rx_es_super_buffer_supported) 1886 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1887 1888 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1889 sfc_kvarg_string_handler, &rx_name); 1890 if (rc != 0) 1891 goto fail_kvarg_rx_datapath; 1892 1893 if (rx_name != NULL) { 1894 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1895 if (dp_rx == NULL) { 1896 sfc_err(sa, "Rx datapath %s not found", rx_name); 1897 rc = ENOENT; 1898 goto fail_dp_rx; 1899 } 1900 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1901 sfc_err(sa, 1902 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1903 rx_name); 1904 rc = EINVAL; 1905 goto fail_dp_rx_caps; 1906 } 1907 } else { 1908 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1909 if (dp_rx == NULL) { 1910 sfc_err(sa, "Rx datapath by caps %#x not found", 1911 avail_caps); 1912 rc = ENOENT; 1913 goto fail_dp_rx; 1914 } 1915 } 1916 1917 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1918 if (sas->dp_rx_name == NULL) { 1919 rc = ENOMEM; 1920 goto fail_dp_rx_name; 1921 } 1922 1923 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1924 1925 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1926 sfc_kvarg_string_handler, &tx_name); 1927 if (rc != 0) 1928 goto fail_kvarg_tx_datapath; 1929 1930 if (tx_name != NULL) { 1931 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1932 if (dp_tx == NULL) { 1933 sfc_err(sa, "Tx datapath %s not found", tx_name); 1934 rc = ENOENT; 1935 goto fail_dp_tx; 1936 } 1937 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1938 sfc_err(sa, 1939 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1940 tx_name); 1941 rc = EINVAL; 1942 goto fail_dp_tx_caps; 1943 } 1944 } else { 1945 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1946 if (dp_tx == NULL) { 1947 sfc_err(sa, "Tx datapath by caps %#x not found", 1948 avail_caps); 1949 rc = ENOENT; 1950 goto fail_dp_tx; 1951 } 1952 } 1953 1954 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1955 if (sas->dp_tx_name == NULL) { 1956 rc = ENOMEM; 1957 goto fail_dp_tx_name; 1958 } 1959 1960 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1961 1962 sa->priv.dp_rx = dp_rx; 1963 sa->priv.dp_tx = dp_tx; 1964 1965 dev->rx_pkt_burst = dp_rx->pkt_burst; 1966 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 1967 dev->tx_pkt_burst = dp_tx->pkt_burst; 1968 1969 dev->dev_ops = &sfc_eth_dev_ops; 1970 1971 return 0; 1972 1973 fail_dp_tx_name: 1974 fail_dp_tx_caps: 1975 fail_dp_tx: 1976 fail_kvarg_tx_datapath: 1977 rte_free(sas->dp_rx_name); 1978 sas->dp_rx_name = NULL; 1979 1980 fail_dp_rx_name: 1981 fail_dp_rx_caps: 1982 fail_dp_rx: 1983 fail_kvarg_rx_datapath: 1984 return rc; 1985 } 1986 1987 static void 1988 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1989 { 1990 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1991 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1992 1993 dev->dev_ops = NULL; 1994 dev->tx_pkt_prepare = NULL; 1995 dev->rx_pkt_burst = NULL; 1996 dev->tx_pkt_burst = NULL; 1997 1998 rte_free(sas->dp_tx_name); 1999 sas->dp_tx_name = NULL; 2000 sa->priv.dp_tx = NULL; 2001 2002 rte_free(sas->dp_rx_name); 2003 sas->dp_rx_name = NULL; 2004 sa->priv.dp_rx = NULL; 2005 } 2006 2007 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2008 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2009 .rx_queue_count = sfc_rx_queue_count, 2010 .rx_descriptor_done = sfc_rx_descriptor_done, 2011 .rx_descriptor_status = sfc_rx_descriptor_status, 2012 .tx_descriptor_status = sfc_tx_descriptor_status, 2013 .reta_query = sfc_dev_rss_reta_query, 2014 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2015 .rxq_info_get = sfc_rx_queue_info_get, 2016 .txq_info_get = sfc_tx_queue_info_get, 2017 }; 2018 2019 static int 2020 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2021 { 2022 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2023 struct sfc_adapter_priv *sap; 2024 const struct sfc_dp_rx *dp_rx; 2025 const struct sfc_dp_tx *dp_tx; 2026 int rc; 2027 2028 /* 2029 * Allocate process private data from heap, since it should not 2030 * be located in shared memory allocated using rte_malloc() API. 2031 */ 2032 sap = calloc(1, sizeof(*sap)); 2033 if (sap == NULL) { 2034 rc = ENOMEM; 2035 goto fail_alloc_priv; 2036 } 2037 2038 sap->logtype_main = logtype_main; 2039 2040 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2041 if (dp_rx == NULL) { 2042 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2043 "cannot find %s Rx datapath", sas->dp_rx_name); 2044 rc = ENOENT; 2045 goto fail_dp_rx; 2046 } 2047 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2048 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2049 "%s Rx datapath does not support multi-process", 2050 sas->dp_rx_name); 2051 rc = EINVAL; 2052 goto fail_dp_rx_multi_process; 2053 } 2054 2055 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2056 if (dp_tx == NULL) { 2057 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2058 "cannot find %s Tx datapath", sas->dp_tx_name); 2059 rc = ENOENT; 2060 goto fail_dp_tx; 2061 } 2062 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2063 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2064 "%s Tx datapath does not support multi-process", 2065 sas->dp_tx_name); 2066 rc = EINVAL; 2067 goto fail_dp_tx_multi_process; 2068 } 2069 2070 sap->dp_rx = dp_rx; 2071 sap->dp_tx = dp_tx; 2072 2073 dev->process_private = sap; 2074 dev->rx_pkt_burst = dp_rx->pkt_burst; 2075 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2076 dev->tx_pkt_burst = dp_tx->pkt_burst; 2077 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2078 2079 return 0; 2080 2081 fail_dp_tx_multi_process: 2082 fail_dp_tx: 2083 fail_dp_rx_multi_process: 2084 fail_dp_rx: 2085 free(sap); 2086 2087 fail_alloc_priv: 2088 return rc; 2089 } 2090 2091 static void 2092 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 2093 { 2094 free(dev->process_private); 2095 dev->process_private = NULL; 2096 dev->dev_ops = NULL; 2097 dev->tx_pkt_prepare = NULL; 2098 dev->tx_pkt_burst = NULL; 2099 dev->rx_pkt_burst = NULL; 2100 } 2101 2102 static void 2103 sfc_register_dp(void) 2104 { 2105 /* Register once */ 2106 if (TAILQ_EMPTY(&sfc_dp_head)) { 2107 /* Prefer EF10 datapath */ 2108 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2109 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2110 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2111 2112 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2113 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2114 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2115 } 2116 } 2117 2118 static int 2119 sfc_eth_dev_init(struct rte_eth_dev *dev) 2120 { 2121 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2122 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2123 uint32_t logtype_main; 2124 struct sfc_adapter *sa; 2125 int rc; 2126 const efx_nic_cfg_t *encp; 2127 const struct rte_ether_addr *from; 2128 2129 sfc_register_dp(); 2130 2131 logtype_main = sfc_register_logtype(&pci_dev->addr, 2132 SFC_LOGTYPE_MAIN_STR, 2133 RTE_LOG_NOTICE); 2134 2135 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2136 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2137 2138 /* Required for logging */ 2139 sas->pci_addr = pci_dev->addr; 2140 sas->port_id = dev->data->port_id; 2141 2142 /* 2143 * Allocate process private data from heap, since it should not 2144 * be located in shared memory allocated using rte_malloc() API. 2145 */ 2146 sa = calloc(1, sizeof(*sa)); 2147 if (sa == NULL) { 2148 rc = ENOMEM; 2149 goto fail_alloc_sa; 2150 } 2151 2152 dev->process_private = sa; 2153 2154 /* Required for logging */ 2155 sa->priv.shared = sas; 2156 sa->priv.logtype_main = logtype_main; 2157 2158 sa->eth_dev = dev; 2159 2160 /* Copy PCI device info to the dev->data */ 2161 rte_eth_copy_pci_info(dev, pci_dev); 2162 2163 rc = sfc_kvargs_parse(sa); 2164 if (rc != 0) 2165 goto fail_kvargs_parse; 2166 2167 sfc_log_init(sa, "entry"); 2168 2169 dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE; 2170 2171 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2172 if (dev->data->mac_addrs == NULL) { 2173 rc = ENOMEM; 2174 goto fail_mac_addrs; 2175 } 2176 2177 sfc_adapter_lock_init(sa); 2178 sfc_adapter_lock(sa); 2179 2180 sfc_log_init(sa, "probing"); 2181 rc = sfc_probe(sa); 2182 if (rc != 0) 2183 goto fail_probe; 2184 2185 sfc_log_init(sa, "set device ops"); 2186 rc = sfc_eth_dev_set_ops(dev); 2187 if (rc != 0) 2188 goto fail_set_ops; 2189 2190 sfc_log_init(sa, "attaching"); 2191 rc = sfc_attach(sa); 2192 if (rc != 0) 2193 goto fail_attach; 2194 2195 encp = efx_nic_cfg_get(sa->nic); 2196 2197 /* 2198 * The arguments are really reverse order in comparison to 2199 * Linux kernel. Copy from NIC config to Ethernet device data. 2200 */ 2201 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2202 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2203 2204 sfc_adapter_unlock(sa); 2205 2206 sfc_log_init(sa, "done"); 2207 return 0; 2208 2209 fail_attach: 2210 sfc_eth_dev_clear_ops(dev); 2211 2212 fail_set_ops: 2213 sfc_unprobe(sa); 2214 2215 fail_probe: 2216 sfc_adapter_unlock(sa); 2217 sfc_adapter_lock_fini(sa); 2218 rte_free(dev->data->mac_addrs); 2219 dev->data->mac_addrs = NULL; 2220 2221 fail_mac_addrs: 2222 sfc_kvargs_cleanup(sa); 2223 2224 fail_kvargs_parse: 2225 sfc_log_init(sa, "failed %d", rc); 2226 dev->process_private = NULL; 2227 free(sa); 2228 2229 fail_alloc_sa: 2230 SFC_ASSERT(rc > 0); 2231 return -rc; 2232 } 2233 2234 static int 2235 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2236 { 2237 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2238 sfc_eth_dev_secondary_clear_ops(dev); 2239 return 0; 2240 } 2241 2242 sfc_dev_close(dev); 2243 2244 return 0; 2245 } 2246 2247 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2248 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2249 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2250 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2251 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2252 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2253 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2254 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2255 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2256 { .vendor_id = 0 /* sentinel */ } 2257 }; 2258 2259 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2260 struct rte_pci_device *pci_dev) 2261 { 2262 return rte_eth_dev_pci_generic_probe(pci_dev, 2263 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2264 } 2265 2266 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2267 { 2268 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2269 } 2270 2271 static struct rte_pci_driver sfc_efx_pmd = { 2272 .id_table = pci_id_sfc_efx_map, 2273 .drv_flags = 2274 RTE_PCI_DRV_INTR_LSC | 2275 RTE_PCI_DRV_NEED_MAPPING, 2276 .probe = sfc_eth_dev_pci_probe, 2277 .remove = sfc_eth_dev_pci_remove, 2278 }; 2279 2280 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2281 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2282 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2283 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2284 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2285 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2286 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2287 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2288 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2289 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2290 2291 RTE_INIT(sfc_driver_register_logtype) 2292 { 2293 int ret; 2294 2295 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2296 RTE_LOG_NOTICE); 2297 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2298 } 2299