xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 99f9d799ce21ab22e922ffec8aad51d56e24d04d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 
32 uint32_t sfc_logtype_driver;
33 
34 static struct sfc_dp_list sfc_dp_head =
35 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36 
37 
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
39 
40 
41 static int
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
43 {
44 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 	efx_nic_fw_info_t enfi;
46 	int ret;
47 	int rc;
48 
49 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
50 	if (rc != 0)
51 		return -rc;
52 
53 	ret = snprintf(fw_version, fw_size,
54 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
55 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
56 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
57 	if (ret < 0)
58 		return ret;
59 
60 	if (enfi.enfi_dpcpu_fw_ids_valid) {
61 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
62 		int ret_extra;
63 
64 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
65 				     fw_size - dpcpu_fw_ids_offset,
66 				     " rx%" PRIx16 " tx%" PRIx16,
67 				     enfi.enfi_rx_dpcpu_fw_id,
68 				     enfi.enfi_tx_dpcpu_fw_id);
69 		if (ret_extra < 0)
70 			return ret_extra;
71 
72 		ret += ret_extra;
73 	}
74 
75 	if (fw_size < (size_t)(++ret))
76 		return ret;
77 	else
78 		return 0;
79 }
80 
81 static int
82 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
83 {
84 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
85 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
86 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
87 	struct sfc_rss *rss = &sas->rss;
88 	struct sfc_mae *mae = &sa->mae;
89 	uint64_t txq_offloads_def = 0;
90 
91 	sfc_log_init(sa, "entry");
92 
93 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
94 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
95 
96 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
97 
98 	dev_info->max_vfs = sa->sriov.num_vfs;
99 
100 	/* Autonegotiation may be disabled */
101 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
102 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
103 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
104 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
105 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
106 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
107 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
108 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
109 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
110 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
111 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
112 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
113 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
114 
115 	dev_info->max_rx_queues = sa->rxq_max;
116 	dev_info->max_tx_queues = sa->txq_max;
117 
118 	/* By default packets are dropped if no descriptors are available */
119 	dev_info->default_rxconf.rx_drop_en = 1;
120 
121 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
122 
123 	/*
124 	 * rx_offload_capa includes both device and queue offloads since
125 	 * the latter may be requested on a per device basis which makes
126 	 * sense when some offloads are needed to be set on all queues.
127 	 */
128 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
129 				    dev_info->rx_queue_offload_capa;
130 
131 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
132 
133 	/*
134 	 * tx_offload_capa includes both device and queue offloads since
135 	 * the latter may be requested on a per device basis which makes
136 	 * sense when some offloads are needed to be set on all queues.
137 	 */
138 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
139 				    dev_info->tx_queue_offload_capa;
140 
141 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
142 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
143 
144 	dev_info->default_txconf.offloads |= txq_offloads_def;
145 
146 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
147 		uint64_t rte_hf = 0;
148 		unsigned int i;
149 
150 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
151 			rte_hf |= rss->hf_map[i].rte;
152 
153 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
154 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
155 		dev_info->flow_type_rss_offloads = rte_hf;
156 	}
157 
158 	/* Initialize to hardware limits */
159 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
160 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
161 	/* The RXQ hardware requires that the descriptor count is a power
162 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
163 	 */
164 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
165 
166 	/* Initialize to hardware limits */
167 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
168 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
169 	/*
170 	 * The TXQ hardware requires that the descriptor count is a power
171 	 * of 2, but tx_desc_lim cannot properly describe that constraint
172 	 */
173 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
174 
175 	if (sap->dp_rx->get_dev_info != NULL)
176 		sap->dp_rx->get_dev_info(dev_info);
177 	if (sap->dp_tx->get_dev_info != NULL)
178 		sap->dp_tx->get_dev_info(dev_info);
179 
180 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
181 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
182 
183 	if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
184 		dev_info->switch_info.name = dev->device->driver->name;
185 		dev_info->switch_info.domain_id = mae->switch_domain_id;
186 		dev_info->switch_info.port_id = mae->switch_port_id;
187 	}
188 
189 	return 0;
190 }
191 
192 static const uint32_t *
193 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
194 {
195 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
196 
197 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
198 }
199 
200 static int
201 sfc_dev_configure(struct rte_eth_dev *dev)
202 {
203 	struct rte_eth_dev_data *dev_data = dev->data;
204 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
205 	int rc;
206 
207 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
208 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
209 
210 	sfc_adapter_lock(sa);
211 	switch (sa->state) {
212 	case SFC_ADAPTER_CONFIGURED:
213 		/* FALLTHROUGH */
214 	case SFC_ADAPTER_INITIALIZED:
215 		rc = sfc_configure(sa);
216 		break;
217 	default:
218 		sfc_err(sa, "unexpected adapter state %u to configure",
219 			sa->state);
220 		rc = EINVAL;
221 		break;
222 	}
223 	sfc_adapter_unlock(sa);
224 
225 	sfc_log_init(sa, "done %d", rc);
226 	SFC_ASSERT(rc >= 0);
227 	return -rc;
228 }
229 
230 static int
231 sfc_dev_start(struct rte_eth_dev *dev)
232 {
233 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
234 	int rc;
235 
236 	sfc_log_init(sa, "entry");
237 
238 	sfc_adapter_lock(sa);
239 	rc = sfc_start(sa);
240 	sfc_adapter_unlock(sa);
241 
242 	sfc_log_init(sa, "done %d", rc);
243 	SFC_ASSERT(rc >= 0);
244 	return -rc;
245 }
246 
247 static int
248 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
249 {
250 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
251 	struct rte_eth_link current_link;
252 	int ret;
253 
254 	sfc_log_init(sa, "entry");
255 
256 	if (sa->state != SFC_ADAPTER_STARTED) {
257 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
258 	} else if (wait_to_complete) {
259 		efx_link_mode_t link_mode;
260 
261 		if (efx_port_poll(sa->nic, &link_mode) != 0)
262 			link_mode = EFX_LINK_UNKNOWN;
263 		sfc_port_link_mode_to_info(link_mode, &current_link);
264 
265 	} else {
266 		sfc_ev_mgmt_qpoll(sa);
267 		rte_eth_linkstatus_get(dev, &current_link);
268 	}
269 
270 	ret = rte_eth_linkstatus_set(dev, &current_link);
271 	if (ret == 0)
272 		sfc_notice(sa, "Link status is %s",
273 			   current_link.link_status ? "UP" : "DOWN");
274 
275 	return ret;
276 }
277 
278 static int
279 sfc_dev_stop(struct rte_eth_dev *dev)
280 {
281 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
282 
283 	sfc_log_init(sa, "entry");
284 
285 	sfc_adapter_lock(sa);
286 	sfc_stop(sa);
287 	sfc_adapter_unlock(sa);
288 
289 	sfc_log_init(sa, "done");
290 
291 	return 0;
292 }
293 
294 static int
295 sfc_dev_set_link_up(struct rte_eth_dev *dev)
296 {
297 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
298 	int rc;
299 
300 	sfc_log_init(sa, "entry");
301 
302 	sfc_adapter_lock(sa);
303 	rc = sfc_start(sa);
304 	sfc_adapter_unlock(sa);
305 
306 	SFC_ASSERT(rc >= 0);
307 	return -rc;
308 }
309 
310 static int
311 sfc_dev_set_link_down(struct rte_eth_dev *dev)
312 {
313 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
314 
315 	sfc_log_init(sa, "entry");
316 
317 	sfc_adapter_lock(sa);
318 	sfc_stop(sa);
319 	sfc_adapter_unlock(sa);
320 
321 	return 0;
322 }
323 
324 static void
325 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
326 {
327 	free(dev->process_private);
328 	rte_eth_dev_release_port(dev);
329 }
330 
331 static int
332 sfc_dev_close(struct rte_eth_dev *dev)
333 {
334 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
335 
336 	sfc_log_init(sa, "entry");
337 
338 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
339 		sfc_eth_dev_secondary_clear_ops(dev);
340 		return 0;
341 	}
342 
343 	sfc_adapter_lock(sa);
344 	switch (sa->state) {
345 	case SFC_ADAPTER_STARTED:
346 		sfc_stop(sa);
347 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
348 		/* FALLTHROUGH */
349 	case SFC_ADAPTER_CONFIGURED:
350 		sfc_close(sa);
351 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
352 		/* FALLTHROUGH */
353 	case SFC_ADAPTER_INITIALIZED:
354 		break;
355 	default:
356 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
357 		break;
358 	}
359 
360 	/*
361 	 * Cleanup all resources.
362 	 * Rollback primary process sfc_eth_dev_init() below.
363 	 */
364 
365 	sfc_eth_dev_clear_ops(dev);
366 
367 	sfc_detach(sa);
368 	sfc_unprobe(sa);
369 
370 	sfc_kvargs_cleanup(sa);
371 
372 	sfc_adapter_unlock(sa);
373 	sfc_adapter_lock_fini(sa);
374 
375 	sfc_log_init(sa, "done");
376 
377 	/* Required for logging, so cleanup last */
378 	sa->eth_dev = NULL;
379 
380 	free(sa);
381 
382 	return 0;
383 }
384 
385 static int
386 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
387 		   boolean_t enabled)
388 {
389 	struct sfc_port *port;
390 	boolean_t *toggle;
391 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
392 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
393 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
394 	int rc = 0;
395 
396 	sfc_adapter_lock(sa);
397 
398 	port = &sa->port;
399 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
400 
401 	if (*toggle != enabled) {
402 		*toggle = enabled;
403 
404 		if (sfc_sa2shared(sa)->isolated) {
405 			sfc_warn(sa, "isolated mode is active on the port");
406 			sfc_warn(sa, "the change is to be applied on the next "
407 				     "start provided that isolated mode is "
408 				     "disabled prior the next start");
409 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
410 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
411 			*toggle = !(enabled);
412 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
413 				 ((enabled) ? "enable" : "disable"), desc, rc);
414 
415 			/*
416 			 * For promiscuous and all-multicast filters a
417 			 * permission failure should be reported as an
418 			 * unsupported filter.
419 			 */
420 			if (rc == EPERM)
421 				rc = ENOTSUP;
422 		}
423 	}
424 
425 	sfc_adapter_unlock(sa);
426 	return rc;
427 }
428 
429 static int
430 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
431 {
432 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
433 
434 	SFC_ASSERT(rc >= 0);
435 	return -rc;
436 }
437 
438 static int
439 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
440 {
441 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
442 
443 	SFC_ASSERT(rc >= 0);
444 	return -rc;
445 }
446 
447 static int
448 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
449 {
450 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
451 
452 	SFC_ASSERT(rc >= 0);
453 	return -rc;
454 }
455 
456 static int
457 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
458 {
459 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
460 
461 	SFC_ASSERT(rc >= 0);
462 	return -rc;
463 }
464 
465 static int
466 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
467 		   uint16_t nb_rx_desc, unsigned int socket_id,
468 		   const struct rte_eth_rxconf *rx_conf,
469 		   struct rte_mempool *mb_pool)
470 {
471 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
472 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
473 	int rc;
474 
475 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
476 		     rx_queue_id, nb_rx_desc, socket_id);
477 
478 	sfc_adapter_lock(sa);
479 
480 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
481 			  rx_conf, mb_pool);
482 	if (rc != 0)
483 		goto fail_rx_qinit;
484 
485 	dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
486 
487 	sfc_adapter_unlock(sa);
488 
489 	return 0;
490 
491 fail_rx_qinit:
492 	sfc_adapter_unlock(sa);
493 	SFC_ASSERT(rc > 0);
494 	return -rc;
495 }
496 
497 static void
498 sfc_rx_queue_release(void *queue)
499 {
500 	struct sfc_dp_rxq *dp_rxq = queue;
501 	struct sfc_rxq *rxq;
502 	struct sfc_adapter *sa;
503 	unsigned int sw_index;
504 
505 	if (dp_rxq == NULL)
506 		return;
507 
508 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
509 	sa = rxq->evq->sa;
510 	sfc_adapter_lock(sa);
511 
512 	sw_index = dp_rxq->dpq.queue_id;
513 
514 	sfc_log_init(sa, "RxQ=%u", sw_index);
515 
516 	sfc_rx_qfini(sa, sw_index);
517 
518 	sfc_adapter_unlock(sa);
519 }
520 
521 static int
522 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
523 		   uint16_t nb_tx_desc, unsigned int socket_id,
524 		   const struct rte_eth_txconf *tx_conf)
525 {
526 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
527 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
528 	int rc;
529 
530 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
531 		     tx_queue_id, nb_tx_desc, socket_id);
532 
533 	sfc_adapter_lock(sa);
534 
535 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
536 	if (rc != 0)
537 		goto fail_tx_qinit;
538 
539 	dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
540 
541 	sfc_adapter_unlock(sa);
542 	return 0;
543 
544 fail_tx_qinit:
545 	sfc_adapter_unlock(sa);
546 	SFC_ASSERT(rc > 0);
547 	return -rc;
548 }
549 
550 static void
551 sfc_tx_queue_release(void *queue)
552 {
553 	struct sfc_dp_txq *dp_txq = queue;
554 	struct sfc_txq *txq;
555 	unsigned int sw_index;
556 	struct sfc_adapter *sa;
557 
558 	if (dp_txq == NULL)
559 		return;
560 
561 	txq = sfc_txq_by_dp_txq(dp_txq);
562 	sw_index = dp_txq->dpq.queue_id;
563 
564 	SFC_ASSERT(txq->evq != NULL);
565 	sa = txq->evq->sa;
566 
567 	sfc_log_init(sa, "TxQ = %u", sw_index);
568 
569 	sfc_adapter_lock(sa);
570 
571 	sfc_tx_qfini(sa, sw_index);
572 
573 	sfc_adapter_unlock(sa);
574 }
575 
576 /*
577  * Some statistics are computed as A - B where A and B each increase
578  * monotonically with some hardware counter(s) and the counters are read
579  * asynchronously.
580  *
581  * If packet X is counted in A, but not counted in B yet, computed value is
582  * greater than real.
583  *
584  * If packet X is not counted in A at the moment of reading the counter,
585  * but counted in B at the moment of reading the counter, computed value
586  * is less than real.
587  *
588  * However, counter which grows backward is worse evil than slightly wrong
589  * value. So, let's try to guarantee that it never happens except may be
590  * the case when the MAC stats are zeroed as a result of a NIC reset.
591  */
592 static void
593 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
594 {
595 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
596 		*stat = newval;
597 }
598 
599 static int
600 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
601 {
602 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
603 	struct sfc_port *port = &sa->port;
604 	uint64_t *mac_stats;
605 	int ret;
606 
607 	rte_spinlock_lock(&port->mac_stats_lock);
608 
609 	ret = sfc_port_update_mac_stats(sa);
610 	if (ret != 0)
611 		goto unlock;
612 
613 	mac_stats = port->mac_stats_buf;
614 
615 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
616 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
617 		stats->ipackets =
618 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
619 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
620 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
621 		stats->opackets =
622 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
623 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
624 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
625 		stats->ibytes =
626 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
627 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
628 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
629 		stats->obytes =
630 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
631 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
632 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
633 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
634 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
635 
636 		/* CRC is included in these stats, but shouldn't be */
637 		stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
638 		stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
639 	} else {
640 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
641 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
642 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
643 
644 		/* CRC is included in these stats, but shouldn't be */
645 		stats->ibytes -= mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
646 		stats->obytes -= mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
647 
648 		/*
649 		 * Take into account stats which are whenever supported
650 		 * on EF10. If some stat is not supported by current
651 		 * firmware variant or HW revision, it is guaranteed
652 		 * to be zero in mac_stats.
653 		 */
654 		stats->imissed =
655 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
656 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
657 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
658 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
659 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
660 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
661 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
662 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
663 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
664 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
665 		stats->ierrors =
666 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
667 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
668 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
669 		/* no oerrors counters supported on EF10 */
670 
671 		/* Exclude missed, errors and pauses from Rx packets */
672 		sfc_update_diff_stat(&port->ipackets,
673 			mac_stats[EFX_MAC_RX_PKTS] -
674 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
675 			stats->imissed - stats->ierrors);
676 		stats->ipackets = port->ipackets;
677 	}
678 
679 unlock:
680 	rte_spinlock_unlock(&port->mac_stats_lock);
681 	SFC_ASSERT(ret >= 0);
682 	return -ret;
683 }
684 
685 static int
686 sfc_stats_reset(struct rte_eth_dev *dev)
687 {
688 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
689 	struct sfc_port *port = &sa->port;
690 	int rc;
691 
692 	if (sa->state != SFC_ADAPTER_STARTED) {
693 		/*
694 		 * The operation cannot be done if port is not started; it
695 		 * will be scheduled to be done during the next port start
696 		 */
697 		port->mac_stats_reset_pending = B_TRUE;
698 		return 0;
699 	}
700 
701 	rc = sfc_port_reset_mac_stats(sa);
702 	if (rc != 0)
703 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
704 
705 	SFC_ASSERT(rc >= 0);
706 	return -rc;
707 }
708 
709 static int
710 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
711 	       unsigned int xstats_count)
712 {
713 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
714 	struct sfc_port *port = &sa->port;
715 	uint64_t *mac_stats;
716 	int rc;
717 	unsigned int i;
718 	int nstats = 0;
719 
720 	rte_spinlock_lock(&port->mac_stats_lock);
721 
722 	rc = sfc_port_update_mac_stats(sa);
723 	if (rc != 0) {
724 		SFC_ASSERT(rc > 0);
725 		nstats = -rc;
726 		goto unlock;
727 	}
728 
729 	mac_stats = port->mac_stats_buf;
730 
731 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
732 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
733 			if (xstats != NULL && nstats < (int)xstats_count) {
734 				xstats[nstats].id = nstats;
735 				xstats[nstats].value = mac_stats[i];
736 			}
737 			nstats++;
738 		}
739 	}
740 
741 unlock:
742 	rte_spinlock_unlock(&port->mac_stats_lock);
743 
744 	return nstats;
745 }
746 
747 static int
748 sfc_xstats_get_names(struct rte_eth_dev *dev,
749 		     struct rte_eth_xstat_name *xstats_names,
750 		     unsigned int xstats_count)
751 {
752 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
753 	struct sfc_port *port = &sa->port;
754 	unsigned int i;
755 	unsigned int nstats = 0;
756 
757 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
758 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
759 			if (xstats_names != NULL && nstats < xstats_count)
760 				strlcpy(xstats_names[nstats].name,
761 					efx_mac_stat_name(sa->nic, i),
762 					sizeof(xstats_names[0].name));
763 			nstats++;
764 		}
765 	}
766 
767 	return nstats;
768 }
769 
770 static int
771 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
772 		     uint64_t *values, unsigned int n)
773 {
774 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
775 	struct sfc_port *port = &sa->port;
776 	uint64_t *mac_stats;
777 	unsigned int nb_supported = 0;
778 	unsigned int nb_written = 0;
779 	unsigned int i;
780 	int ret;
781 	int rc;
782 
783 	if (unlikely(values == NULL) ||
784 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
785 		return port->mac_stats_nb_supported;
786 
787 	rte_spinlock_lock(&port->mac_stats_lock);
788 
789 	rc = sfc_port_update_mac_stats(sa);
790 	if (rc != 0) {
791 		SFC_ASSERT(rc > 0);
792 		ret = -rc;
793 		goto unlock;
794 	}
795 
796 	mac_stats = port->mac_stats_buf;
797 
798 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
799 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
800 			continue;
801 
802 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
803 			values[nb_written++] = mac_stats[i];
804 
805 		++nb_supported;
806 	}
807 
808 	ret = nb_written;
809 
810 unlock:
811 	rte_spinlock_unlock(&port->mac_stats_lock);
812 
813 	return ret;
814 }
815 
816 static int
817 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
818 			   struct rte_eth_xstat_name *xstats_names,
819 			   const uint64_t *ids, unsigned int size)
820 {
821 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
822 	struct sfc_port *port = &sa->port;
823 	unsigned int nb_supported = 0;
824 	unsigned int nb_written = 0;
825 	unsigned int i;
826 
827 	if (unlikely(xstats_names == NULL) ||
828 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
829 		return port->mac_stats_nb_supported;
830 
831 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
832 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
833 			continue;
834 
835 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
836 			char *name = xstats_names[nb_written++].name;
837 
838 			strlcpy(name, efx_mac_stat_name(sa->nic, i),
839 				sizeof(xstats_names[0].name));
840 		}
841 
842 		++nb_supported;
843 	}
844 
845 	return nb_written;
846 }
847 
848 static int
849 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
850 {
851 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
852 	unsigned int wanted_fc, link_fc;
853 
854 	memset(fc_conf, 0, sizeof(*fc_conf));
855 
856 	sfc_adapter_lock(sa);
857 
858 	if (sa->state == SFC_ADAPTER_STARTED)
859 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
860 	else
861 		link_fc = sa->port.flow_ctrl;
862 
863 	switch (link_fc) {
864 	case 0:
865 		fc_conf->mode = RTE_FC_NONE;
866 		break;
867 	case EFX_FCNTL_RESPOND:
868 		fc_conf->mode = RTE_FC_RX_PAUSE;
869 		break;
870 	case EFX_FCNTL_GENERATE:
871 		fc_conf->mode = RTE_FC_TX_PAUSE;
872 		break;
873 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
874 		fc_conf->mode = RTE_FC_FULL;
875 		break;
876 	default:
877 		sfc_err(sa, "%s: unexpected flow control value %#x",
878 			__func__, link_fc);
879 	}
880 
881 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
882 
883 	sfc_adapter_unlock(sa);
884 
885 	return 0;
886 }
887 
888 static int
889 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
890 {
891 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
892 	struct sfc_port *port = &sa->port;
893 	unsigned int fcntl;
894 	int rc;
895 
896 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
897 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
898 	    fc_conf->mac_ctrl_frame_fwd != 0) {
899 		sfc_err(sa, "unsupported flow control settings specified");
900 		rc = EINVAL;
901 		goto fail_inval;
902 	}
903 
904 	switch (fc_conf->mode) {
905 	case RTE_FC_NONE:
906 		fcntl = 0;
907 		break;
908 	case RTE_FC_RX_PAUSE:
909 		fcntl = EFX_FCNTL_RESPOND;
910 		break;
911 	case RTE_FC_TX_PAUSE:
912 		fcntl = EFX_FCNTL_GENERATE;
913 		break;
914 	case RTE_FC_FULL:
915 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
916 		break;
917 	default:
918 		rc = EINVAL;
919 		goto fail_inval;
920 	}
921 
922 	sfc_adapter_lock(sa);
923 
924 	if (sa->state == SFC_ADAPTER_STARTED) {
925 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
926 		if (rc != 0)
927 			goto fail_mac_fcntl_set;
928 	}
929 
930 	port->flow_ctrl = fcntl;
931 	port->flow_ctrl_autoneg = fc_conf->autoneg;
932 
933 	sfc_adapter_unlock(sa);
934 
935 	return 0;
936 
937 fail_mac_fcntl_set:
938 	sfc_adapter_unlock(sa);
939 fail_inval:
940 	SFC_ASSERT(rc > 0);
941 	return -rc;
942 }
943 
944 static int
945 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
946 {
947 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
948 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
949 	boolean_t scatter_enabled;
950 	const char *error;
951 	unsigned int i;
952 
953 	for (i = 0; i < sas->rxq_count; i++) {
954 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
955 			continue;
956 
957 		scatter_enabled = (sas->rxq_info[i].type_flags &
958 				   EFX_RXQ_FLAG_SCATTER);
959 
960 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
961 					  encp->enc_rx_prefix_size,
962 					  scatter_enabled,
963 					  encp->enc_rx_scatter_max, &error)) {
964 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
965 				error);
966 			return EINVAL;
967 		}
968 	}
969 
970 	return 0;
971 }
972 
973 static int
974 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
975 {
976 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
977 	size_t pdu = EFX_MAC_PDU(mtu);
978 	size_t old_pdu;
979 	int rc;
980 
981 	sfc_log_init(sa, "mtu=%u", mtu);
982 
983 	rc = EINVAL;
984 	if (pdu < EFX_MAC_PDU_MIN) {
985 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
986 			(unsigned int)mtu, (unsigned int)pdu,
987 			EFX_MAC_PDU_MIN);
988 		goto fail_inval;
989 	}
990 	if (pdu > EFX_MAC_PDU_MAX) {
991 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
992 			(unsigned int)mtu, (unsigned int)pdu,
993 			(unsigned int)EFX_MAC_PDU_MAX);
994 		goto fail_inval;
995 	}
996 
997 	sfc_adapter_lock(sa);
998 
999 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1000 	if (rc != 0)
1001 		goto fail_check_scatter;
1002 
1003 	if (pdu != sa->port.pdu) {
1004 		if (sa->state == SFC_ADAPTER_STARTED) {
1005 			sfc_stop(sa);
1006 
1007 			old_pdu = sa->port.pdu;
1008 			sa->port.pdu = pdu;
1009 			rc = sfc_start(sa);
1010 			if (rc != 0)
1011 				goto fail_start;
1012 		} else {
1013 			sa->port.pdu = pdu;
1014 		}
1015 	}
1016 
1017 	/*
1018 	 * The driver does not use it, but other PMDs update jumbo frame
1019 	 * flag and max_rx_pkt_len when MTU is set.
1020 	 */
1021 	if (mtu > RTE_ETHER_MTU) {
1022 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1023 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1024 	}
1025 
1026 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1027 
1028 	sfc_adapter_unlock(sa);
1029 
1030 	sfc_log_init(sa, "done");
1031 	return 0;
1032 
1033 fail_start:
1034 	sa->port.pdu = old_pdu;
1035 	if (sfc_start(sa) != 0)
1036 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1037 			"PDU max size - port is stopped",
1038 			(unsigned int)pdu, (unsigned int)old_pdu);
1039 
1040 fail_check_scatter:
1041 	sfc_adapter_unlock(sa);
1042 
1043 fail_inval:
1044 	sfc_log_init(sa, "failed %d", rc);
1045 	SFC_ASSERT(rc > 0);
1046 	return -rc;
1047 }
1048 static int
1049 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1050 {
1051 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1052 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1053 	struct sfc_port *port = &sa->port;
1054 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1055 	int rc = 0;
1056 
1057 	sfc_adapter_lock(sa);
1058 
1059 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1060 		goto unlock;
1061 
1062 	/*
1063 	 * Copy the address to the device private data so that
1064 	 * it could be recalled in the case of adapter restart.
1065 	 */
1066 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1067 
1068 	/*
1069 	 * Neither of the two following checks can return
1070 	 * an error. The new MAC address is preserved in
1071 	 * the device private data and can be activated
1072 	 * on the next port start if the user prevents
1073 	 * isolated mode from being enabled.
1074 	 */
1075 	if (sfc_sa2shared(sa)->isolated) {
1076 		sfc_warn(sa, "isolated mode is active on the port");
1077 		sfc_warn(sa, "will not set MAC address");
1078 		goto unlock;
1079 	}
1080 
1081 	if (sa->state != SFC_ADAPTER_STARTED) {
1082 		sfc_notice(sa, "the port is not started");
1083 		sfc_notice(sa, "the new MAC address will be set on port start");
1084 
1085 		goto unlock;
1086 	}
1087 
1088 	if (encp->enc_allow_set_mac_with_installed_filters) {
1089 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1090 		if (rc != 0) {
1091 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1092 			goto unlock;
1093 		}
1094 
1095 		/*
1096 		 * Changing the MAC address by means of MCDI request
1097 		 * has no effect on received traffic, therefore
1098 		 * we also need to update unicast filters
1099 		 */
1100 		rc = sfc_set_rx_mode_unchecked(sa);
1101 		if (rc != 0) {
1102 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1103 			/* Rollback the old address */
1104 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1105 			(void)sfc_set_rx_mode_unchecked(sa);
1106 		}
1107 	} else {
1108 		sfc_warn(sa, "cannot set MAC address with filters installed");
1109 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1110 		sfc_warn(sa, "(some traffic may be dropped)");
1111 
1112 		/*
1113 		 * Since setting MAC address with filters installed is not
1114 		 * allowed on the adapter, the new MAC address will be set
1115 		 * by means of adapter restart. sfc_start() shall retrieve
1116 		 * the new address from the device private data and set it.
1117 		 */
1118 		sfc_stop(sa);
1119 		rc = sfc_start(sa);
1120 		if (rc != 0)
1121 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1122 	}
1123 
1124 unlock:
1125 	if (rc != 0)
1126 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1127 
1128 	sfc_adapter_unlock(sa);
1129 
1130 	SFC_ASSERT(rc >= 0);
1131 	return -rc;
1132 }
1133 
1134 
1135 static int
1136 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1137 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1138 {
1139 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1140 	struct sfc_port *port = &sa->port;
1141 	uint8_t *mc_addrs = port->mcast_addrs;
1142 	int rc;
1143 	unsigned int i;
1144 
1145 	if (sfc_sa2shared(sa)->isolated) {
1146 		sfc_err(sa, "isolated mode is active on the port");
1147 		sfc_err(sa, "will not set multicast address list");
1148 		return -ENOTSUP;
1149 	}
1150 
1151 	if (mc_addrs == NULL)
1152 		return -ENOBUFS;
1153 
1154 	if (nb_mc_addr > port->max_mcast_addrs) {
1155 		sfc_err(sa, "too many multicast addresses: %u > %u",
1156 			 nb_mc_addr, port->max_mcast_addrs);
1157 		return -EINVAL;
1158 	}
1159 
1160 	for (i = 0; i < nb_mc_addr; ++i) {
1161 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1162 				 EFX_MAC_ADDR_LEN);
1163 		mc_addrs += EFX_MAC_ADDR_LEN;
1164 	}
1165 
1166 	port->nb_mcast_addrs = nb_mc_addr;
1167 
1168 	if (sa->state != SFC_ADAPTER_STARTED)
1169 		return 0;
1170 
1171 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1172 					port->nb_mcast_addrs);
1173 	if (rc != 0)
1174 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1175 
1176 	SFC_ASSERT(rc >= 0);
1177 	return -rc;
1178 }
1179 
1180 /*
1181  * The function is used by the secondary process as well. It must not
1182  * use any process-local pointers from the adapter data.
1183  */
1184 static void
1185 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1186 		      struct rte_eth_rxq_info *qinfo)
1187 {
1188 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1189 	struct sfc_rxq_info *rxq_info;
1190 
1191 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1192 
1193 	rxq_info = &sas->rxq_info[rx_queue_id];
1194 
1195 	qinfo->mp = rxq_info->refill_mb_pool;
1196 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1197 	qinfo->conf.rx_drop_en = 1;
1198 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1199 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1200 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1201 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1202 		qinfo->scattered_rx = 1;
1203 	}
1204 	qinfo->nb_desc = rxq_info->entries;
1205 }
1206 
1207 /*
1208  * The function is used by the secondary process as well. It must not
1209  * use any process-local pointers from the adapter data.
1210  */
1211 static void
1212 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1213 		      struct rte_eth_txq_info *qinfo)
1214 {
1215 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1216 	struct sfc_txq_info *txq_info;
1217 
1218 	SFC_ASSERT(tx_queue_id < sas->txq_count);
1219 
1220 	txq_info = &sas->txq_info[tx_queue_id];
1221 
1222 	memset(qinfo, 0, sizeof(*qinfo));
1223 
1224 	qinfo->conf.offloads = txq_info->offloads;
1225 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1226 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1227 	qinfo->nb_desc = txq_info->entries;
1228 }
1229 
1230 /*
1231  * The function is used by the secondary process as well. It must not
1232  * use any process-local pointers from the adapter data.
1233  */
1234 static uint32_t
1235 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1236 {
1237 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1238 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1239 	struct sfc_rxq_info *rxq_info;
1240 
1241 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1242 	rxq_info = &sas->rxq_info[rx_queue_id];
1243 
1244 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1245 		return 0;
1246 
1247 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1248 }
1249 
1250 /*
1251  * The function is used by the secondary process as well. It must not
1252  * use any process-local pointers from the adapter data.
1253  */
1254 static int
1255 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1256 {
1257 	struct sfc_dp_rxq *dp_rxq = queue;
1258 	const struct sfc_dp_rx *dp_rx;
1259 
1260 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1261 
1262 	return offset < dp_rx->qdesc_npending(dp_rxq);
1263 }
1264 
1265 /*
1266  * The function is used by the secondary process as well. It must not
1267  * use any process-local pointers from the adapter data.
1268  */
1269 static int
1270 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1271 {
1272 	struct sfc_dp_rxq *dp_rxq = queue;
1273 	const struct sfc_dp_rx *dp_rx;
1274 
1275 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1276 
1277 	return dp_rx->qdesc_status(dp_rxq, offset);
1278 }
1279 
1280 /*
1281  * The function is used by the secondary process as well. It must not
1282  * use any process-local pointers from the adapter data.
1283  */
1284 static int
1285 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1286 {
1287 	struct sfc_dp_txq *dp_txq = queue;
1288 	const struct sfc_dp_tx *dp_tx;
1289 
1290 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1291 
1292 	return dp_tx->qdesc_status(dp_txq, offset);
1293 }
1294 
1295 static int
1296 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1297 {
1298 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1299 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1300 	int rc;
1301 
1302 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1303 
1304 	sfc_adapter_lock(sa);
1305 
1306 	rc = EINVAL;
1307 	if (sa->state != SFC_ADAPTER_STARTED)
1308 		goto fail_not_started;
1309 
1310 	if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1311 		goto fail_not_setup;
1312 
1313 	rc = sfc_rx_qstart(sa, rx_queue_id);
1314 	if (rc != 0)
1315 		goto fail_rx_qstart;
1316 
1317 	sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1318 
1319 	sfc_adapter_unlock(sa);
1320 
1321 	return 0;
1322 
1323 fail_rx_qstart:
1324 fail_not_setup:
1325 fail_not_started:
1326 	sfc_adapter_unlock(sa);
1327 	SFC_ASSERT(rc > 0);
1328 	return -rc;
1329 }
1330 
1331 static int
1332 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1333 {
1334 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1335 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1336 
1337 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1338 
1339 	sfc_adapter_lock(sa);
1340 	sfc_rx_qstop(sa, rx_queue_id);
1341 
1342 	sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1343 
1344 	sfc_adapter_unlock(sa);
1345 
1346 	return 0;
1347 }
1348 
1349 static int
1350 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1351 {
1352 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1353 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1354 	int rc;
1355 
1356 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1357 
1358 	sfc_adapter_lock(sa);
1359 
1360 	rc = EINVAL;
1361 	if (sa->state != SFC_ADAPTER_STARTED)
1362 		goto fail_not_started;
1363 
1364 	if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1365 		goto fail_not_setup;
1366 
1367 	rc = sfc_tx_qstart(sa, tx_queue_id);
1368 	if (rc != 0)
1369 		goto fail_tx_qstart;
1370 
1371 	sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1372 
1373 	sfc_adapter_unlock(sa);
1374 	return 0;
1375 
1376 fail_tx_qstart:
1377 
1378 fail_not_setup:
1379 fail_not_started:
1380 	sfc_adapter_unlock(sa);
1381 	SFC_ASSERT(rc > 0);
1382 	return -rc;
1383 }
1384 
1385 static int
1386 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1387 {
1388 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1389 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1390 
1391 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1392 
1393 	sfc_adapter_lock(sa);
1394 
1395 	sfc_tx_qstop(sa, tx_queue_id);
1396 
1397 	sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1398 
1399 	sfc_adapter_unlock(sa);
1400 	return 0;
1401 }
1402 
1403 static efx_tunnel_protocol_t
1404 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1405 {
1406 	switch (rte_type) {
1407 	case RTE_TUNNEL_TYPE_VXLAN:
1408 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1409 	case RTE_TUNNEL_TYPE_GENEVE:
1410 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1411 	default:
1412 		return EFX_TUNNEL_NPROTOS;
1413 	}
1414 }
1415 
1416 enum sfc_udp_tunnel_op_e {
1417 	SFC_UDP_TUNNEL_ADD_PORT,
1418 	SFC_UDP_TUNNEL_DEL_PORT,
1419 };
1420 
1421 static int
1422 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1423 		      struct rte_eth_udp_tunnel *tunnel_udp,
1424 		      enum sfc_udp_tunnel_op_e op)
1425 {
1426 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1427 	efx_tunnel_protocol_t tunnel_proto;
1428 	int rc;
1429 
1430 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1431 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1432 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1433 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1434 
1435 	tunnel_proto =
1436 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1437 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1438 		rc = ENOTSUP;
1439 		goto fail_bad_proto;
1440 	}
1441 
1442 	sfc_adapter_lock(sa);
1443 
1444 	switch (op) {
1445 	case SFC_UDP_TUNNEL_ADD_PORT:
1446 		rc = efx_tunnel_config_udp_add(sa->nic,
1447 					       tunnel_udp->udp_port,
1448 					       tunnel_proto);
1449 		break;
1450 	case SFC_UDP_TUNNEL_DEL_PORT:
1451 		rc = efx_tunnel_config_udp_remove(sa->nic,
1452 						  tunnel_udp->udp_port,
1453 						  tunnel_proto);
1454 		break;
1455 	default:
1456 		rc = EINVAL;
1457 		goto fail_bad_op;
1458 	}
1459 
1460 	if (rc != 0)
1461 		goto fail_op;
1462 
1463 	if (sa->state == SFC_ADAPTER_STARTED) {
1464 		rc = efx_tunnel_reconfigure(sa->nic);
1465 		if (rc == EAGAIN) {
1466 			/*
1467 			 * Configuration is accepted by FW and MC reboot
1468 			 * is initiated to apply the changes. MC reboot
1469 			 * will be handled in a usual way (MC reboot
1470 			 * event on management event queue and adapter
1471 			 * restart).
1472 			 */
1473 			rc = 0;
1474 		} else if (rc != 0) {
1475 			goto fail_reconfigure;
1476 		}
1477 	}
1478 
1479 	sfc_adapter_unlock(sa);
1480 	return 0;
1481 
1482 fail_reconfigure:
1483 	/* Remove/restore entry since the change makes the trouble */
1484 	switch (op) {
1485 	case SFC_UDP_TUNNEL_ADD_PORT:
1486 		(void)efx_tunnel_config_udp_remove(sa->nic,
1487 						   tunnel_udp->udp_port,
1488 						   tunnel_proto);
1489 		break;
1490 	case SFC_UDP_TUNNEL_DEL_PORT:
1491 		(void)efx_tunnel_config_udp_add(sa->nic,
1492 						tunnel_udp->udp_port,
1493 						tunnel_proto);
1494 		break;
1495 	}
1496 
1497 fail_op:
1498 fail_bad_op:
1499 	sfc_adapter_unlock(sa);
1500 
1501 fail_bad_proto:
1502 	SFC_ASSERT(rc > 0);
1503 	return -rc;
1504 }
1505 
1506 static int
1507 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1508 			    struct rte_eth_udp_tunnel *tunnel_udp)
1509 {
1510 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1511 }
1512 
1513 static int
1514 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1515 			    struct rte_eth_udp_tunnel *tunnel_udp)
1516 {
1517 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1518 }
1519 
1520 /*
1521  * The function is used by the secondary process as well. It must not
1522  * use any process-local pointers from the adapter data.
1523  */
1524 static int
1525 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1526 			  struct rte_eth_rss_conf *rss_conf)
1527 {
1528 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1529 	struct sfc_rss *rss = &sas->rss;
1530 
1531 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1532 		return -ENOTSUP;
1533 
1534 	/*
1535 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1536 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1537 	 * flags which corresponds to the active EFX configuration stored
1538 	 * locally in 'sfc_adapter' and kept up-to-date
1539 	 */
1540 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1541 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1542 	if (rss_conf->rss_key != NULL)
1543 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1544 
1545 	return 0;
1546 }
1547 
1548 static int
1549 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1550 			struct rte_eth_rss_conf *rss_conf)
1551 {
1552 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1553 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1554 	unsigned int efx_hash_types;
1555 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1556 	unsigned int n_contexts;
1557 	unsigned int mode_i = 0;
1558 	unsigned int key_i = 0;
1559 	unsigned int i = 0;
1560 	int rc = 0;
1561 
1562 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1563 
1564 	if (sfc_sa2shared(sa)->isolated)
1565 		return -ENOTSUP;
1566 
1567 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1568 		sfc_err(sa, "RSS is not available");
1569 		return -ENOTSUP;
1570 	}
1571 
1572 	if (rss->channels == 0) {
1573 		sfc_err(sa, "RSS is not configured");
1574 		return -EINVAL;
1575 	}
1576 
1577 	if ((rss_conf->rss_key != NULL) &&
1578 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1579 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1580 			sizeof(rss->key));
1581 		return -EINVAL;
1582 	}
1583 
1584 	sfc_adapter_lock(sa);
1585 
1586 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1587 	if (rc != 0)
1588 		goto fail_rx_hf_rte_to_efx;
1589 
1590 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1591 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1592 					   rss->hash_alg, efx_hash_types,
1593 					   B_TRUE);
1594 		if (rc != 0)
1595 			goto fail_scale_mode_set;
1596 	}
1597 
1598 	if (rss_conf->rss_key != NULL) {
1599 		if (sa->state == SFC_ADAPTER_STARTED) {
1600 			for (key_i = 0; key_i < n_contexts; key_i++) {
1601 				rc = efx_rx_scale_key_set(sa->nic,
1602 							  contexts[key_i],
1603 							  rss_conf->rss_key,
1604 							  sizeof(rss->key));
1605 				if (rc != 0)
1606 					goto fail_scale_key_set;
1607 			}
1608 		}
1609 
1610 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1611 	}
1612 
1613 	rss->hash_types = efx_hash_types;
1614 
1615 	sfc_adapter_unlock(sa);
1616 
1617 	return 0;
1618 
1619 fail_scale_key_set:
1620 	for (i = 0; i < key_i; i++) {
1621 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1622 					 sizeof(rss->key)) != 0)
1623 			sfc_err(sa, "failed to restore RSS key");
1624 	}
1625 
1626 fail_scale_mode_set:
1627 	for (i = 0; i < mode_i; i++) {
1628 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1629 					  EFX_RX_HASHALG_TOEPLITZ,
1630 					  rss->hash_types, B_TRUE) != 0)
1631 			sfc_err(sa, "failed to restore RSS mode");
1632 	}
1633 
1634 fail_rx_hf_rte_to_efx:
1635 	sfc_adapter_unlock(sa);
1636 	return -rc;
1637 }
1638 
1639 /*
1640  * The function is used by the secondary process as well. It must not
1641  * use any process-local pointers from the adapter data.
1642  */
1643 static int
1644 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1645 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1646 		       uint16_t reta_size)
1647 {
1648 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1649 	struct sfc_rss *rss = &sas->rss;
1650 	int entry;
1651 
1652 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1653 		return -ENOTSUP;
1654 
1655 	if (rss->channels == 0)
1656 		return -EINVAL;
1657 
1658 	if (reta_size != EFX_RSS_TBL_SIZE)
1659 		return -EINVAL;
1660 
1661 	for (entry = 0; entry < reta_size; entry++) {
1662 		int grp = entry / RTE_RETA_GROUP_SIZE;
1663 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1664 
1665 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1666 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 static int
1673 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1674 			struct rte_eth_rss_reta_entry64 *reta_conf,
1675 			uint16_t reta_size)
1676 {
1677 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1678 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1679 	unsigned int *rss_tbl_new;
1680 	uint16_t entry;
1681 	int rc = 0;
1682 
1683 
1684 	if (sfc_sa2shared(sa)->isolated)
1685 		return -ENOTSUP;
1686 
1687 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1688 		sfc_err(sa, "RSS is not available");
1689 		return -ENOTSUP;
1690 	}
1691 
1692 	if (rss->channels == 0) {
1693 		sfc_err(sa, "RSS is not configured");
1694 		return -EINVAL;
1695 	}
1696 
1697 	if (reta_size != EFX_RSS_TBL_SIZE) {
1698 		sfc_err(sa, "RETA size is wrong (should be %u)",
1699 			EFX_RSS_TBL_SIZE);
1700 		return -EINVAL;
1701 	}
1702 
1703 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1704 	if (rss_tbl_new == NULL)
1705 		return -ENOMEM;
1706 
1707 	sfc_adapter_lock(sa);
1708 
1709 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1710 
1711 	for (entry = 0; entry < reta_size; entry++) {
1712 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1713 		struct rte_eth_rss_reta_entry64 *grp;
1714 
1715 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1716 
1717 		if (grp->mask & (1ull << grp_idx)) {
1718 			if (grp->reta[grp_idx] >= rss->channels) {
1719 				rc = EINVAL;
1720 				goto bad_reta_entry;
1721 			}
1722 			rss_tbl_new[entry] = grp->reta[grp_idx];
1723 		}
1724 	}
1725 
1726 	if (sa->state == SFC_ADAPTER_STARTED) {
1727 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1728 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1729 		if (rc != 0)
1730 			goto fail_scale_tbl_set;
1731 	}
1732 
1733 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1734 
1735 fail_scale_tbl_set:
1736 bad_reta_entry:
1737 	sfc_adapter_unlock(sa);
1738 
1739 	rte_free(rss_tbl_new);
1740 
1741 	SFC_ASSERT(rc >= 0);
1742 	return -rc;
1743 }
1744 
1745 static int
1746 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1747 		     const struct rte_flow_ops **ops)
1748 {
1749 	*ops = &sfc_flow_ops;
1750 	return 0;
1751 }
1752 
1753 static int
1754 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1755 {
1756 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1757 
1758 	/*
1759 	 * If Rx datapath does not provide callback to check mempool,
1760 	 * all pools are supported.
1761 	 */
1762 	if (sap->dp_rx->pool_ops_supported == NULL)
1763 		return 1;
1764 
1765 	return sap->dp_rx->pool_ops_supported(pool);
1766 }
1767 
1768 static int
1769 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1770 {
1771 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1772 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1773 	struct sfc_rxq_info *rxq_info;
1774 
1775 	SFC_ASSERT(queue_id < sas->rxq_count);
1776 	rxq_info = &sas->rxq_info[queue_id];
1777 
1778 	return sap->dp_rx->intr_enable(rxq_info->dp);
1779 }
1780 
1781 static int
1782 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1783 {
1784 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1785 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1786 	struct sfc_rxq_info *rxq_info;
1787 
1788 	SFC_ASSERT(queue_id < sas->rxq_count);
1789 	rxq_info = &sas->rxq_info[queue_id];
1790 
1791 	return sap->dp_rx->intr_disable(rxq_info->dp);
1792 }
1793 
1794 static const struct eth_dev_ops sfc_eth_dev_ops = {
1795 	.dev_configure			= sfc_dev_configure,
1796 	.dev_start			= sfc_dev_start,
1797 	.dev_stop			= sfc_dev_stop,
1798 	.dev_set_link_up		= sfc_dev_set_link_up,
1799 	.dev_set_link_down		= sfc_dev_set_link_down,
1800 	.dev_close			= sfc_dev_close,
1801 	.promiscuous_enable		= sfc_dev_promisc_enable,
1802 	.promiscuous_disable		= sfc_dev_promisc_disable,
1803 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1804 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1805 	.link_update			= sfc_dev_link_update,
1806 	.stats_get			= sfc_stats_get,
1807 	.stats_reset			= sfc_stats_reset,
1808 	.xstats_get			= sfc_xstats_get,
1809 	.xstats_reset			= sfc_stats_reset,
1810 	.xstats_get_names		= sfc_xstats_get_names,
1811 	.dev_infos_get			= sfc_dev_infos_get,
1812 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1813 	.mtu_set			= sfc_dev_set_mtu,
1814 	.rx_queue_start			= sfc_rx_queue_start,
1815 	.rx_queue_stop			= sfc_rx_queue_stop,
1816 	.tx_queue_start			= sfc_tx_queue_start,
1817 	.tx_queue_stop			= sfc_tx_queue_stop,
1818 	.rx_queue_setup			= sfc_rx_queue_setup,
1819 	.rx_queue_release		= sfc_rx_queue_release,
1820 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1821 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1822 	.tx_queue_setup			= sfc_tx_queue_setup,
1823 	.tx_queue_release		= sfc_tx_queue_release,
1824 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1825 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1826 	.mac_addr_set			= sfc_mac_addr_set,
1827 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1828 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1829 	.reta_update			= sfc_dev_rss_reta_update,
1830 	.reta_query			= sfc_dev_rss_reta_query,
1831 	.rss_hash_update		= sfc_dev_rss_hash_update,
1832 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1833 	.flow_ops_get			= sfc_dev_flow_ops_get,
1834 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1835 	.rxq_info_get			= sfc_rx_queue_info_get,
1836 	.txq_info_get			= sfc_tx_queue_info_get,
1837 	.fw_version_get			= sfc_fw_version_get,
1838 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1839 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1840 	.pool_ops_supported		= sfc_pool_ops_supported,
1841 };
1842 
1843 /**
1844  * Duplicate a string in potentially shared memory required for
1845  * multi-process support.
1846  *
1847  * strdup() allocates from process-local heap/memory.
1848  */
1849 static char *
1850 sfc_strdup(const char *str)
1851 {
1852 	size_t size;
1853 	char *copy;
1854 
1855 	if (str == NULL)
1856 		return NULL;
1857 
1858 	size = strlen(str) + 1;
1859 	copy = rte_malloc(__func__, size, 0);
1860 	if (copy != NULL)
1861 		rte_memcpy(copy, str, size);
1862 
1863 	return copy;
1864 }
1865 
1866 static int
1867 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1868 {
1869 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1870 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1871 	const struct sfc_dp_rx *dp_rx;
1872 	const struct sfc_dp_tx *dp_tx;
1873 	const efx_nic_cfg_t *encp;
1874 	unsigned int avail_caps = 0;
1875 	const char *rx_name = NULL;
1876 	const char *tx_name = NULL;
1877 	int rc;
1878 
1879 	switch (sa->family) {
1880 	case EFX_FAMILY_HUNTINGTON:
1881 	case EFX_FAMILY_MEDFORD:
1882 	case EFX_FAMILY_MEDFORD2:
1883 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1884 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
1885 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
1886 		break;
1887 	case EFX_FAMILY_RIVERHEAD:
1888 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
1889 		break;
1890 	default:
1891 		break;
1892 	}
1893 
1894 	encp = efx_nic_cfg_get(sa->nic);
1895 	if (encp->enc_rx_es_super_buffer_supported)
1896 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1897 
1898 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1899 				sfc_kvarg_string_handler, &rx_name);
1900 	if (rc != 0)
1901 		goto fail_kvarg_rx_datapath;
1902 
1903 	if (rx_name != NULL) {
1904 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1905 		if (dp_rx == NULL) {
1906 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1907 			rc = ENOENT;
1908 			goto fail_dp_rx;
1909 		}
1910 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1911 			sfc_err(sa,
1912 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1913 				rx_name);
1914 			rc = EINVAL;
1915 			goto fail_dp_rx_caps;
1916 		}
1917 	} else {
1918 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1919 		if (dp_rx == NULL) {
1920 			sfc_err(sa, "Rx datapath by caps %#x not found",
1921 				avail_caps);
1922 			rc = ENOENT;
1923 			goto fail_dp_rx;
1924 		}
1925 	}
1926 
1927 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1928 	if (sas->dp_rx_name == NULL) {
1929 		rc = ENOMEM;
1930 		goto fail_dp_rx_name;
1931 	}
1932 
1933 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1934 
1935 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1936 				sfc_kvarg_string_handler, &tx_name);
1937 	if (rc != 0)
1938 		goto fail_kvarg_tx_datapath;
1939 
1940 	if (tx_name != NULL) {
1941 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1942 		if (dp_tx == NULL) {
1943 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1944 			rc = ENOENT;
1945 			goto fail_dp_tx;
1946 		}
1947 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1948 			sfc_err(sa,
1949 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1950 				tx_name);
1951 			rc = EINVAL;
1952 			goto fail_dp_tx_caps;
1953 		}
1954 	} else {
1955 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1956 		if (dp_tx == NULL) {
1957 			sfc_err(sa, "Tx datapath by caps %#x not found",
1958 				avail_caps);
1959 			rc = ENOENT;
1960 			goto fail_dp_tx;
1961 		}
1962 	}
1963 
1964 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
1965 	if (sas->dp_tx_name == NULL) {
1966 		rc = ENOMEM;
1967 		goto fail_dp_tx_name;
1968 	}
1969 
1970 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
1971 
1972 	sa->priv.dp_rx = dp_rx;
1973 	sa->priv.dp_tx = dp_tx;
1974 
1975 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1976 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
1977 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1978 
1979 	dev->rx_queue_count = sfc_rx_queue_count;
1980 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
1981 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
1982 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
1983 	dev->dev_ops = &sfc_eth_dev_ops;
1984 
1985 	return 0;
1986 
1987 fail_dp_tx_name:
1988 fail_dp_tx_caps:
1989 fail_dp_tx:
1990 fail_kvarg_tx_datapath:
1991 	rte_free(sas->dp_rx_name);
1992 	sas->dp_rx_name = NULL;
1993 
1994 fail_dp_rx_name:
1995 fail_dp_rx_caps:
1996 fail_dp_rx:
1997 fail_kvarg_rx_datapath:
1998 	return rc;
1999 }
2000 
2001 static void
2002 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2003 {
2004 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2005 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2006 
2007 	dev->dev_ops = NULL;
2008 	dev->tx_pkt_prepare = NULL;
2009 	dev->rx_pkt_burst = NULL;
2010 	dev->tx_pkt_burst = NULL;
2011 
2012 	rte_free(sas->dp_tx_name);
2013 	sas->dp_tx_name = NULL;
2014 	sa->priv.dp_tx = NULL;
2015 
2016 	rte_free(sas->dp_rx_name);
2017 	sas->dp_rx_name = NULL;
2018 	sa->priv.dp_rx = NULL;
2019 }
2020 
2021 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2022 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2023 	.reta_query			= sfc_dev_rss_reta_query,
2024 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2025 	.rxq_info_get			= sfc_rx_queue_info_get,
2026 	.txq_info_get			= sfc_tx_queue_info_get,
2027 };
2028 
2029 static int
2030 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2031 {
2032 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2033 	struct sfc_adapter_priv *sap;
2034 	const struct sfc_dp_rx *dp_rx;
2035 	const struct sfc_dp_tx *dp_tx;
2036 	int rc;
2037 
2038 	/*
2039 	 * Allocate process private data from heap, since it should not
2040 	 * be located in shared memory allocated using rte_malloc() API.
2041 	 */
2042 	sap = calloc(1, sizeof(*sap));
2043 	if (sap == NULL) {
2044 		rc = ENOMEM;
2045 		goto fail_alloc_priv;
2046 	}
2047 
2048 	sap->logtype_main = logtype_main;
2049 
2050 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2051 	if (dp_rx == NULL) {
2052 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2053 			"cannot find %s Rx datapath", sas->dp_rx_name);
2054 		rc = ENOENT;
2055 		goto fail_dp_rx;
2056 	}
2057 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2058 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2059 			"%s Rx datapath does not support multi-process",
2060 			sas->dp_rx_name);
2061 		rc = EINVAL;
2062 		goto fail_dp_rx_multi_process;
2063 	}
2064 
2065 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2066 	if (dp_tx == NULL) {
2067 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2068 			"cannot find %s Tx datapath", sas->dp_tx_name);
2069 		rc = ENOENT;
2070 		goto fail_dp_tx;
2071 	}
2072 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2073 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2074 			"%s Tx datapath does not support multi-process",
2075 			sas->dp_tx_name);
2076 		rc = EINVAL;
2077 		goto fail_dp_tx_multi_process;
2078 	}
2079 
2080 	sap->dp_rx = dp_rx;
2081 	sap->dp_tx = dp_tx;
2082 
2083 	dev->process_private = sap;
2084 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2085 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2086 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2087 	dev->rx_queue_count = sfc_rx_queue_count;
2088 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2089 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2090 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2091 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2092 
2093 	return 0;
2094 
2095 fail_dp_tx_multi_process:
2096 fail_dp_tx:
2097 fail_dp_rx_multi_process:
2098 fail_dp_rx:
2099 	free(sap);
2100 
2101 fail_alloc_priv:
2102 	return rc;
2103 }
2104 
2105 static void
2106 sfc_register_dp(void)
2107 {
2108 	/* Register once */
2109 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2110 		/* Prefer EF10 datapath */
2111 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2112 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2113 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2114 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2115 
2116 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2117 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2118 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2119 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2120 	}
2121 }
2122 
2123 static int
2124 sfc_eth_dev_init(struct rte_eth_dev *dev)
2125 {
2126 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2127 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2128 	uint32_t logtype_main;
2129 	struct sfc_adapter *sa;
2130 	int rc;
2131 	const efx_nic_cfg_t *encp;
2132 	const struct rte_ether_addr *from;
2133 	int ret;
2134 
2135 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2136 			SFC_EFX_DEV_CLASS_NET) {
2137 		SFC_GENERIC_LOG(DEBUG,
2138 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2139 		return 1;
2140 	}
2141 
2142 	sfc_register_dp();
2143 
2144 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2145 					    SFC_LOGTYPE_MAIN_STR,
2146 					    RTE_LOG_NOTICE);
2147 
2148 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2149 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2150 
2151 	/* Required for logging */
2152 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2153 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2154 			pci_dev->addr.domain, pci_dev->addr.bus,
2155 			pci_dev->addr.devid, pci_dev->addr.function,
2156 			dev->data->port_id);
2157 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2158 		SFC_GENERIC_LOG(ERR,
2159 			"reserved log prefix is too short for " PCI_PRI_FMT,
2160 			pci_dev->addr.domain, pci_dev->addr.bus,
2161 			pci_dev->addr.devid, pci_dev->addr.function);
2162 		return -EINVAL;
2163 	}
2164 	sas->pci_addr = pci_dev->addr;
2165 	sas->port_id = dev->data->port_id;
2166 
2167 	/*
2168 	 * Allocate process private data from heap, since it should not
2169 	 * be located in shared memory allocated using rte_malloc() API.
2170 	 */
2171 	sa = calloc(1, sizeof(*sa));
2172 	if (sa == NULL) {
2173 		rc = ENOMEM;
2174 		goto fail_alloc_sa;
2175 	}
2176 
2177 	dev->process_private = sa;
2178 
2179 	/* Required for logging */
2180 	sa->priv.shared = sas;
2181 	sa->priv.logtype_main = logtype_main;
2182 
2183 	sa->eth_dev = dev;
2184 
2185 	/* Copy PCI device info to the dev->data */
2186 	rte_eth_copy_pci_info(dev, pci_dev);
2187 	dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2188 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2189 
2190 	rc = sfc_kvargs_parse(sa);
2191 	if (rc != 0)
2192 		goto fail_kvargs_parse;
2193 
2194 	sfc_log_init(sa, "entry");
2195 
2196 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2197 	if (dev->data->mac_addrs == NULL) {
2198 		rc = ENOMEM;
2199 		goto fail_mac_addrs;
2200 	}
2201 
2202 	sfc_adapter_lock_init(sa);
2203 	sfc_adapter_lock(sa);
2204 
2205 	sfc_log_init(sa, "probing");
2206 	rc = sfc_probe(sa);
2207 	if (rc != 0)
2208 		goto fail_probe;
2209 
2210 	sfc_log_init(sa, "set device ops");
2211 	rc = sfc_eth_dev_set_ops(dev);
2212 	if (rc != 0)
2213 		goto fail_set_ops;
2214 
2215 	sfc_log_init(sa, "attaching");
2216 	rc = sfc_attach(sa);
2217 	if (rc != 0)
2218 		goto fail_attach;
2219 
2220 	encp = efx_nic_cfg_get(sa->nic);
2221 
2222 	/*
2223 	 * The arguments are really reverse order in comparison to
2224 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2225 	 */
2226 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2227 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2228 
2229 	sfc_adapter_unlock(sa);
2230 
2231 	sfc_log_init(sa, "done");
2232 	return 0;
2233 
2234 fail_attach:
2235 	sfc_eth_dev_clear_ops(dev);
2236 
2237 fail_set_ops:
2238 	sfc_unprobe(sa);
2239 
2240 fail_probe:
2241 	sfc_adapter_unlock(sa);
2242 	sfc_adapter_lock_fini(sa);
2243 	rte_free(dev->data->mac_addrs);
2244 	dev->data->mac_addrs = NULL;
2245 
2246 fail_mac_addrs:
2247 	sfc_kvargs_cleanup(sa);
2248 
2249 fail_kvargs_parse:
2250 	sfc_log_init(sa, "failed %d", rc);
2251 	dev->process_private = NULL;
2252 	free(sa);
2253 
2254 fail_alloc_sa:
2255 	SFC_ASSERT(rc > 0);
2256 	return -rc;
2257 }
2258 
2259 static int
2260 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2261 {
2262 	sfc_dev_close(dev);
2263 
2264 	return 0;
2265 }
2266 
2267 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2268 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2269 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2270 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2271 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2272 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2273 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2274 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2275 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2276 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2277 	{ .vendor_id = 0 /* sentinel */ }
2278 };
2279 
2280 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2281 	struct rte_pci_device *pci_dev)
2282 {
2283 	return rte_eth_dev_pci_generic_probe(pci_dev,
2284 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2285 }
2286 
2287 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2288 {
2289 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2290 }
2291 
2292 static struct rte_pci_driver sfc_efx_pmd = {
2293 	.id_table = pci_id_sfc_efx_map,
2294 	.drv_flags =
2295 		RTE_PCI_DRV_INTR_LSC |
2296 		RTE_PCI_DRV_NEED_MAPPING,
2297 	.probe = sfc_eth_dev_pci_probe,
2298 	.remove = sfc_eth_dev_pci_remove,
2299 };
2300 
2301 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2302 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2303 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2304 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2305 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2306 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2307 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2308 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2309 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2310 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2311 
2312 RTE_INIT(sfc_driver_register_logtype)
2313 {
2314 	int ret;
2315 
2316 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2317 						   RTE_LOG_NOTICE);
2318 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2319 }
2320