1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2021 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <ethdev_driver.h> 12 #include <ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 rc = efx_nic_get_fw_version(sa->nic, &enfi); 50 if (rc != 0) 51 return -rc; 52 53 ret = snprintf(fw_version, fw_size, 54 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 55 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 56 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 57 if (ret < 0) 58 return ret; 59 60 if (enfi.enfi_dpcpu_fw_ids_valid) { 61 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 62 int ret_extra; 63 64 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 65 fw_size - dpcpu_fw_ids_offset, 66 " rx%" PRIx16 " tx%" PRIx16, 67 enfi.enfi_rx_dpcpu_fw_id, 68 enfi.enfi_tx_dpcpu_fw_id); 69 if (ret_extra < 0) 70 return ret_extra; 71 72 ret += ret_extra; 73 } 74 75 if (fw_size < (size_t)(++ret)) 76 return ret; 77 else 78 return 0; 79 } 80 81 static int 82 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 83 { 84 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 85 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 86 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 87 struct sfc_rss *rss = &sas->rss; 88 struct sfc_mae *mae = &sa->mae; 89 uint64_t txq_offloads_def = 0; 90 91 sfc_log_init(sa, "entry"); 92 93 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 94 dev_info->max_mtu = EFX_MAC_SDU_MAX; 95 96 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 97 98 dev_info->max_vfs = sa->sriov.num_vfs; 99 100 /* Autonegotiation may be disabled */ 101 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 102 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 103 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 104 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 105 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 106 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 107 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 108 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 109 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 110 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 111 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 112 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 113 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 114 115 dev_info->max_rx_queues = sa->rxq_max; 116 dev_info->max_tx_queues = sa->txq_max; 117 118 /* By default packets are dropped if no descriptors are available */ 119 dev_info->default_rxconf.rx_drop_en = 1; 120 121 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 122 123 /* 124 * rx_offload_capa includes both device and queue offloads since 125 * the latter may be requested on a per device basis which makes 126 * sense when some offloads are needed to be set on all queues. 127 */ 128 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 129 dev_info->rx_queue_offload_capa; 130 131 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 132 133 /* 134 * tx_offload_capa includes both device and queue offloads since 135 * the latter may be requested on a per device basis which makes 136 * sense when some offloads are needed to be set on all queues. 137 */ 138 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 139 dev_info->tx_queue_offload_capa; 140 141 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 142 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 143 144 dev_info->default_txconf.offloads |= txq_offloads_def; 145 146 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 147 uint64_t rte_hf = 0; 148 unsigned int i; 149 150 for (i = 0; i < rss->hf_map_nb_entries; ++i) 151 rte_hf |= rss->hf_map[i].rte; 152 153 dev_info->reta_size = EFX_RSS_TBL_SIZE; 154 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 155 dev_info->flow_type_rss_offloads = rte_hf; 156 } 157 158 /* Initialize to hardware limits */ 159 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 160 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 161 /* The RXQ hardware requires that the descriptor count is a power 162 * of 2, but rx_desc_lim cannot properly describe that constraint. 163 */ 164 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 165 166 /* Initialize to hardware limits */ 167 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 168 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 169 /* 170 * The TXQ hardware requires that the descriptor count is a power 171 * of 2, but tx_desc_lim cannot properly describe that constraint 172 */ 173 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 174 175 if (sap->dp_rx->get_dev_info != NULL) 176 sap->dp_rx->get_dev_info(dev_info); 177 if (sap->dp_tx->get_dev_info != NULL) 178 sap->dp_tx->get_dev_info(dev_info); 179 180 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 181 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 182 183 if (mae->status == SFC_MAE_STATUS_SUPPORTED) { 184 dev_info->switch_info.name = dev->device->driver->name; 185 dev_info->switch_info.domain_id = mae->switch_domain_id; 186 dev_info->switch_info.port_id = mae->switch_port_id; 187 } 188 189 return 0; 190 } 191 192 static const uint32_t * 193 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 194 { 195 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 196 197 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 198 } 199 200 static int 201 sfc_dev_configure(struct rte_eth_dev *dev) 202 { 203 struct rte_eth_dev_data *dev_data = dev->data; 204 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 205 int rc; 206 207 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 208 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 209 210 sfc_adapter_lock(sa); 211 switch (sa->state) { 212 case SFC_ADAPTER_CONFIGURED: 213 /* FALLTHROUGH */ 214 case SFC_ADAPTER_INITIALIZED: 215 rc = sfc_configure(sa); 216 break; 217 default: 218 sfc_err(sa, "unexpected adapter state %u to configure", 219 sa->state); 220 rc = EINVAL; 221 break; 222 } 223 sfc_adapter_unlock(sa); 224 225 sfc_log_init(sa, "done %d", rc); 226 SFC_ASSERT(rc >= 0); 227 return -rc; 228 } 229 230 static int 231 sfc_dev_start(struct rte_eth_dev *dev) 232 { 233 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 234 int rc; 235 236 sfc_log_init(sa, "entry"); 237 238 sfc_adapter_lock(sa); 239 rc = sfc_start(sa); 240 sfc_adapter_unlock(sa); 241 242 sfc_log_init(sa, "done %d", rc); 243 SFC_ASSERT(rc >= 0); 244 return -rc; 245 } 246 247 static int 248 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 249 { 250 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 251 struct rte_eth_link current_link; 252 int ret; 253 254 sfc_log_init(sa, "entry"); 255 256 if (sa->state != SFC_ADAPTER_STARTED) { 257 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 258 } else if (wait_to_complete) { 259 efx_link_mode_t link_mode; 260 261 if (efx_port_poll(sa->nic, &link_mode) != 0) 262 link_mode = EFX_LINK_UNKNOWN; 263 sfc_port_link_mode_to_info(link_mode, ¤t_link); 264 265 } else { 266 sfc_ev_mgmt_qpoll(sa); 267 rte_eth_linkstatus_get(dev, ¤t_link); 268 } 269 270 ret = rte_eth_linkstatus_set(dev, ¤t_link); 271 if (ret == 0) 272 sfc_notice(sa, "Link status is %s", 273 current_link.link_status ? "UP" : "DOWN"); 274 275 return ret; 276 } 277 278 static int 279 sfc_dev_stop(struct rte_eth_dev *dev) 280 { 281 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 282 283 sfc_log_init(sa, "entry"); 284 285 sfc_adapter_lock(sa); 286 sfc_stop(sa); 287 sfc_adapter_unlock(sa); 288 289 sfc_log_init(sa, "done"); 290 291 return 0; 292 } 293 294 static int 295 sfc_dev_set_link_up(struct rte_eth_dev *dev) 296 { 297 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 298 int rc; 299 300 sfc_log_init(sa, "entry"); 301 302 sfc_adapter_lock(sa); 303 rc = sfc_start(sa); 304 sfc_adapter_unlock(sa); 305 306 SFC_ASSERT(rc >= 0); 307 return -rc; 308 } 309 310 static int 311 sfc_dev_set_link_down(struct rte_eth_dev *dev) 312 { 313 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 314 315 sfc_log_init(sa, "entry"); 316 317 sfc_adapter_lock(sa); 318 sfc_stop(sa); 319 sfc_adapter_unlock(sa); 320 321 return 0; 322 } 323 324 static void 325 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 326 { 327 free(dev->process_private); 328 rte_eth_dev_release_port(dev); 329 } 330 331 static int 332 sfc_dev_close(struct rte_eth_dev *dev) 333 { 334 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 335 336 sfc_log_init(sa, "entry"); 337 338 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 339 sfc_eth_dev_secondary_clear_ops(dev); 340 return 0; 341 } 342 343 sfc_adapter_lock(sa); 344 switch (sa->state) { 345 case SFC_ADAPTER_STARTED: 346 sfc_stop(sa); 347 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 348 /* FALLTHROUGH */ 349 case SFC_ADAPTER_CONFIGURED: 350 sfc_close(sa); 351 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 352 /* FALLTHROUGH */ 353 case SFC_ADAPTER_INITIALIZED: 354 break; 355 default: 356 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 357 break; 358 } 359 360 /* 361 * Cleanup all resources. 362 * Rollback primary process sfc_eth_dev_init() below. 363 */ 364 365 sfc_eth_dev_clear_ops(dev); 366 367 sfc_detach(sa); 368 sfc_unprobe(sa); 369 370 sfc_kvargs_cleanup(sa); 371 372 sfc_adapter_unlock(sa); 373 sfc_adapter_lock_fini(sa); 374 375 sfc_log_init(sa, "done"); 376 377 /* Required for logging, so cleanup last */ 378 sa->eth_dev = NULL; 379 380 free(sa); 381 382 return 0; 383 } 384 385 static int 386 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 387 boolean_t enabled) 388 { 389 struct sfc_port *port; 390 boolean_t *toggle; 391 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 392 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 393 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 394 int rc = 0; 395 396 sfc_adapter_lock(sa); 397 398 port = &sa->port; 399 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 400 401 if (*toggle != enabled) { 402 *toggle = enabled; 403 404 if (sfc_sa2shared(sa)->isolated) { 405 sfc_warn(sa, "isolated mode is active on the port"); 406 sfc_warn(sa, "the change is to be applied on the next " 407 "start provided that isolated mode is " 408 "disabled prior the next start"); 409 } else if ((sa->state == SFC_ADAPTER_STARTED) && 410 ((rc = sfc_set_rx_mode(sa)) != 0)) { 411 *toggle = !(enabled); 412 sfc_warn(sa, "Failed to %s %s mode, rc = %d", 413 ((enabled) ? "enable" : "disable"), desc, rc); 414 415 /* 416 * For promiscuous and all-multicast filters a 417 * permission failure should be reported as an 418 * unsupported filter. 419 */ 420 if (rc == EPERM) 421 rc = ENOTSUP; 422 } 423 } 424 425 sfc_adapter_unlock(sa); 426 return rc; 427 } 428 429 static int 430 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 431 { 432 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 433 434 SFC_ASSERT(rc >= 0); 435 return -rc; 436 } 437 438 static int 439 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 440 { 441 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 442 443 SFC_ASSERT(rc >= 0); 444 return -rc; 445 } 446 447 static int 448 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 449 { 450 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 451 452 SFC_ASSERT(rc >= 0); 453 return -rc; 454 } 455 456 static int 457 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 458 { 459 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 460 461 SFC_ASSERT(rc >= 0); 462 return -rc; 463 } 464 465 static int 466 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 467 uint16_t nb_rx_desc, unsigned int socket_id, 468 const struct rte_eth_rxconf *rx_conf, 469 struct rte_mempool *mb_pool) 470 { 471 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 472 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 473 int rc; 474 475 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 476 rx_queue_id, nb_rx_desc, socket_id); 477 478 sfc_adapter_lock(sa); 479 480 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 481 rx_conf, mb_pool); 482 if (rc != 0) 483 goto fail_rx_qinit; 484 485 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 486 487 sfc_adapter_unlock(sa); 488 489 return 0; 490 491 fail_rx_qinit: 492 sfc_adapter_unlock(sa); 493 SFC_ASSERT(rc > 0); 494 return -rc; 495 } 496 497 static void 498 sfc_rx_queue_release(void *queue) 499 { 500 struct sfc_dp_rxq *dp_rxq = queue; 501 struct sfc_rxq *rxq; 502 struct sfc_adapter *sa; 503 unsigned int sw_index; 504 505 if (dp_rxq == NULL) 506 return; 507 508 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 509 sa = rxq->evq->sa; 510 sfc_adapter_lock(sa); 511 512 sw_index = dp_rxq->dpq.queue_id; 513 514 sfc_log_init(sa, "RxQ=%u", sw_index); 515 516 sfc_rx_qfini(sa, sw_index); 517 518 sfc_adapter_unlock(sa); 519 } 520 521 static int 522 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 523 uint16_t nb_tx_desc, unsigned int socket_id, 524 const struct rte_eth_txconf *tx_conf) 525 { 526 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 527 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 528 int rc; 529 530 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 531 tx_queue_id, nb_tx_desc, socket_id); 532 533 sfc_adapter_lock(sa); 534 535 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 536 if (rc != 0) 537 goto fail_tx_qinit; 538 539 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 540 541 sfc_adapter_unlock(sa); 542 return 0; 543 544 fail_tx_qinit: 545 sfc_adapter_unlock(sa); 546 SFC_ASSERT(rc > 0); 547 return -rc; 548 } 549 550 static void 551 sfc_tx_queue_release(void *queue) 552 { 553 struct sfc_dp_txq *dp_txq = queue; 554 struct sfc_txq *txq; 555 unsigned int sw_index; 556 struct sfc_adapter *sa; 557 558 if (dp_txq == NULL) 559 return; 560 561 txq = sfc_txq_by_dp_txq(dp_txq); 562 sw_index = dp_txq->dpq.queue_id; 563 564 SFC_ASSERT(txq->evq != NULL); 565 sa = txq->evq->sa; 566 567 sfc_log_init(sa, "TxQ = %u", sw_index); 568 569 sfc_adapter_lock(sa); 570 571 sfc_tx_qfini(sa, sw_index); 572 573 sfc_adapter_unlock(sa); 574 } 575 576 /* 577 * Some statistics are computed as A - B where A and B each increase 578 * monotonically with some hardware counter(s) and the counters are read 579 * asynchronously. 580 * 581 * If packet X is counted in A, but not counted in B yet, computed value is 582 * greater than real. 583 * 584 * If packet X is not counted in A at the moment of reading the counter, 585 * but counted in B at the moment of reading the counter, computed value 586 * is less than real. 587 * 588 * However, counter which grows backward is worse evil than slightly wrong 589 * value. So, let's try to guarantee that it never happens except may be 590 * the case when the MAC stats are zeroed as a result of a NIC reset. 591 */ 592 static void 593 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 594 { 595 if ((int64_t)(newval - *stat) > 0 || newval == 0) 596 *stat = newval; 597 } 598 599 static int 600 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 601 { 602 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 603 struct sfc_port *port = &sa->port; 604 uint64_t *mac_stats; 605 int ret; 606 607 rte_spinlock_lock(&port->mac_stats_lock); 608 609 ret = sfc_port_update_mac_stats(sa); 610 if (ret != 0) 611 goto unlock; 612 613 mac_stats = port->mac_stats_buf; 614 615 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 616 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 617 stats->ipackets = 618 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 619 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 620 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 621 stats->opackets = 622 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 623 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 624 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 625 stats->ibytes = 626 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 627 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 628 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 629 stats->obytes = 630 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 631 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 632 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 633 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 634 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 635 636 /* CRC is included in these stats, but shouldn't be */ 637 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN; 638 stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN; 639 } else { 640 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 641 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 642 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 643 644 /* CRC is included in these stats, but shouldn't be */ 645 stats->ibytes -= mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN; 646 stats->obytes -= mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN; 647 648 /* 649 * Take into account stats which are whenever supported 650 * on EF10. If some stat is not supported by current 651 * firmware variant or HW revision, it is guaranteed 652 * to be zero in mac_stats. 653 */ 654 stats->imissed = 655 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 656 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 657 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 658 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 659 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 660 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 661 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 662 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 663 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 664 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 665 stats->ierrors = 666 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 667 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 668 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 669 /* no oerrors counters supported on EF10 */ 670 671 /* Exclude missed, errors and pauses from Rx packets */ 672 sfc_update_diff_stat(&port->ipackets, 673 mac_stats[EFX_MAC_RX_PKTS] - 674 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 675 stats->imissed - stats->ierrors); 676 stats->ipackets = port->ipackets; 677 } 678 679 unlock: 680 rte_spinlock_unlock(&port->mac_stats_lock); 681 SFC_ASSERT(ret >= 0); 682 return -ret; 683 } 684 685 static int 686 sfc_stats_reset(struct rte_eth_dev *dev) 687 { 688 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 689 struct sfc_port *port = &sa->port; 690 int rc; 691 692 if (sa->state != SFC_ADAPTER_STARTED) { 693 /* 694 * The operation cannot be done if port is not started; it 695 * will be scheduled to be done during the next port start 696 */ 697 port->mac_stats_reset_pending = B_TRUE; 698 return 0; 699 } 700 701 rc = sfc_port_reset_mac_stats(sa); 702 if (rc != 0) 703 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 704 705 SFC_ASSERT(rc >= 0); 706 return -rc; 707 } 708 709 static int 710 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 711 unsigned int xstats_count) 712 { 713 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 714 struct sfc_port *port = &sa->port; 715 uint64_t *mac_stats; 716 int rc; 717 unsigned int i; 718 int nstats = 0; 719 720 rte_spinlock_lock(&port->mac_stats_lock); 721 722 rc = sfc_port_update_mac_stats(sa); 723 if (rc != 0) { 724 SFC_ASSERT(rc > 0); 725 nstats = -rc; 726 goto unlock; 727 } 728 729 mac_stats = port->mac_stats_buf; 730 731 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 732 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 733 if (xstats != NULL && nstats < (int)xstats_count) { 734 xstats[nstats].id = nstats; 735 xstats[nstats].value = mac_stats[i]; 736 } 737 nstats++; 738 } 739 } 740 741 unlock: 742 rte_spinlock_unlock(&port->mac_stats_lock); 743 744 return nstats; 745 } 746 747 static int 748 sfc_xstats_get_names(struct rte_eth_dev *dev, 749 struct rte_eth_xstat_name *xstats_names, 750 unsigned int xstats_count) 751 { 752 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 753 struct sfc_port *port = &sa->port; 754 unsigned int i; 755 unsigned int nstats = 0; 756 757 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 758 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 759 if (xstats_names != NULL && nstats < xstats_count) 760 strlcpy(xstats_names[nstats].name, 761 efx_mac_stat_name(sa->nic, i), 762 sizeof(xstats_names[0].name)); 763 nstats++; 764 } 765 } 766 767 return nstats; 768 } 769 770 static int 771 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 772 uint64_t *values, unsigned int n) 773 { 774 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 775 struct sfc_port *port = &sa->port; 776 uint64_t *mac_stats; 777 unsigned int nb_supported = 0; 778 unsigned int nb_written = 0; 779 unsigned int i; 780 int ret; 781 int rc; 782 783 if (unlikely(values == NULL) || 784 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 785 return port->mac_stats_nb_supported; 786 787 rte_spinlock_lock(&port->mac_stats_lock); 788 789 rc = sfc_port_update_mac_stats(sa); 790 if (rc != 0) { 791 SFC_ASSERT(rc > 0); 792 ret = -rc; 793 goto unlock; 794 } 795 796 mac_stats = port->mac_stats_buf; 797 798 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 799 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 800 continue; 801 802 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 803 values[nb_written++] = mac_stats[i]; 804 805 ++nb_supported; 806 } 807 808 ret = nb_written; 809 810 unlock: 811 rte_spinlock_unlock(&port->mac_stats_lock); 812 813 return ret; 814 } 815 816 static int 817 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 818 struct rte_eth_xstat_name *xstats_names, 819 const uint64_t *ids, unsigned int size) 820 { 821 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 822 struct sfc_port *port = &sa->port; 823 unsigned int nb_supported = 0; 824 unsigned int nb_written = 0; 825 unsigned int i; 826 827 if (unlikely(xstats_names == NULL) || 828 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 829 return port->mac_stats_nb_supported; 830 831 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 832 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 833 continue; 834 835 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 836 char *name = xstats_names[nb_written++].name; 837 838 strlcpy(name, efx_mac_stat_name(sa->nic, i), 839 sizeof(xstats_names[0].name)); 840 } 841 842 ++nb_supported; 843 } 844 845 return nb_written; 846 } 847 848 static int 849 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 850 { 851 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 852 unsigned int wanted_fc, link_fc; 853 854 memset(fc_conf, 0, sizeof(*fc_conf)); 855 856 sfc_adapter_lock(sa); 857 858 if (sa->state == SFC_ADAPTER_STARTED) 859 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 860 else 861 link_fc = sa->port.flow_ctrl; 862 863 switch (link_fc) { 864 case 0: 865 fc_conf->mode = RTE_FC_NONE; 866 break; 867 case EFX_FCNTL_RESPOND: 868 fc_conf->mode = RTE_FC_RX_PAUSE; 869 break; 870 case EFX_FCNTL_GENERATE: 871 fc_conf->mode = RTE_FC_TX_PAUSE; 872 break; 873 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 874 fc_conf->mode = RTE_FC_FULL; 875 break; 876 default: 877 sfc_err(sa, "%s: unexpected flow control value %#x", 878 __func__, link_fc); 879 } 880 881 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 882 883 sfc_adapter_unlock(sa); 884 885 return 0; 886 } 887 888 static int 889 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 890 { 891 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 892 struct sfc_port *port = &sa->port; 893 unsigned int fcntl; 894 int rc; 895 896 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 897 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 898 fc_conf->mac_ctrl_frame_fwd != 0) { 899 sfc_err(sa, "unsupported flow control settings specified"); 900 rc = EINVAL; 901 goto fail_inval; 902 } 903 904 switch (fc_conf->mode) { 905 case RTE_FC_NONE: 906 fcntl = 0; 907 break; 908 case RTE_FC_RX_PAUSE: 909 fcntl = EFX_FCNTL_RESPOND; 910 break; 911 case RTE_FC_TX_PAUSE: 912 fcntl = EFX_FCNTL_GENERATE; 913 break; 914 case RTE_FC_FULL: 915 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 916 break; 917 default: 918 rc = EINVAL; 919 goto fail_inval; 920 } 921 922 sfc_adapter_lock(sa); 923 924 if (sa->state == SFC_ADAPTER_STARTED) { 925 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 926 if (rc != 0) 927 goto fail_mac_fcntl_set; 928 } 929 930 port->flow_ctrl = fcntl; 931 port->flow_ctrl_autoneg = fc_conf->autoneg; 932 933 sfc_adapter_unlock(sa); 934 935 return 0; 936 937 fail_mac_fcntl_set: 938 sfc_adapter_unlock(sa); 939 fail_inval: 940 SFC_ASSERT(rc > 0); 941 return -rc; 942 } 943 944 static int 945 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 946 { 947 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 948 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 949 boolean_t scatter_enabled; 950 const char *error; 951 unsigned int i; 952 953 for (i = 0; i < sas->rxq_count; i++) { 954 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 955 continue; 956 957 scatter_enabled = (sas->rxq_info[i].type_flags & 958 EFX_RXQ_FLAG_SCATTER); 959 960 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 961 encp->enc_rx_prefix_size, 962 scatter_enabled, 963 encp->enc_rx_scatter_max, &error)) { 964 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 965 error); 966 return EINVAL; 967 } 968 } 969 970 return 0; 971 } 972 973 static int 974 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 975 { 976 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 977 size_t pdu = EFX_MAC_PDU(mtu); 978 size_t old_pdu; 979 int rc; 980 981 sfc_log_init(sa, "mtu=%u", mtu); 982 983 rc = EINVAL; 984 if (pdu < EFX_MAC_PDU_MIN) { 985 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 986 (unsigned int)mtu, (unsigned int)pdu, 987 EFX_MAC_PDU_MIN); 988 goto fail_inval; 989 } 990 if (pdu > EFX_MAC_PDU_MAX) { 991 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 992 (unsigned int)mtu, (unsigned int)pdu, 993 (unsigned int)EFX_MAC_PDU_MAX); 994 goto fail_inval; 995 } 996 997 sfc_adapter_lock(sa); 998 999 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 1000 if (rc != 0) 1001 goto fail_check_scatter; 1002 1003 if (pdu != sa->port.pdu) { 1004 if (sa->state == SFC_ADAPTER_STARTED) { 1005 sfc_stop(sa); 1006 1007 old_pdu = sa->port.pdu; 1008 sa->port.pdu = pdu; 1009 rc = sfc_start(sa); 1010 if (rc != 0) 1011 goto fail_start; 1012 } else { 1013 sa->port.pdu = pdu; 1014 } 1015 } 1016 1017 /* 1018 * The driver does not use it, but other PMDs update jumbo frame 1019 * flag and max_rx_pkt_len when MTU is set. 1020 */ 1021 if (mtu > RTE_ETHER_MTU) { 1022 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 1023 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1024 } 1025 1026 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 1027 1028 sfc_adapter_unlock(sa); 1029 1030 sfc_log_init(sa, "done"); 1031 return 0; 1032 1033 fail_start: 1034 sa->port.pdu = old_pdu; 1035 if (sfc_start(sa) != 0) 1036 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1037 "PDU max size - port is stopped", 1038 (unsigned int)pdu, (unsigned int)old_pdu); 1039 1040 fail_check_scatter: 1041 sfc_adapter_unlock(sa); 1042 1043 fail_inval: 1044 sfc_log_init(sa, "failed %d", rc); 1045 SFC_ASSERT(rc > 0); 1046 return -rc; 1047 } 1048 static int 1049 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1050 { 1051 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1052 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1053 struct sfc_port *port = &sa->port; 1054 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1055 int rc = 0; 1056 1057 sfc_adapter_lock(sa); 1058 1059 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr)) 1060 goto unlock; 1061 1062 /* 1063 * Copy the address to the device private data so that 1064 * it could be recalled in the case of adapter restart. 1065 */ 1066 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1067 1068 /* 1069 * Neither of the two following checks can return 1070 * an error. The new MAC address is preserved in 1071 * the device private data and can be activated 1072 * on the next port start if the user prevents 1073 * isolated mode from being enabled. 1074 */ 1075 if (sfc_sa2shared(sa)->isolated) { 1076 sfc_warn(sa, "isolated mode is active on the port"); 1077 sfc_warn(sa, "will not set MAC address"); 1078 goto unlock; 1079 } 1080 1081 if (sa->state != SFC_ADAPTER_STARTED) { 1082 sfc_notice(sa, "the port is not started"); 1083 sfc_notice(sa, "the new MAC address will be set on port start"); 1084 1085 goto unlock; 1086 } 1087 1088 if (encp->enc_allow_set_mac_with_installed_filters) { 1089 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1090 if (rc != 0) { 1091 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1092 goto unlock; 1093 } 1094 1095 /* 1096 * Changing the MAC address by means of MCDI request 1097 * has no effect on received traffic, therefore 1098 * we also need to update unicast filters 1099 */ 1100 rc = sfc_set_rx_mode_unchecked(sa); 1101 if (rc != 0) { 1102 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1103 /* Rollback the old address */ 1104 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1105 (void)sfc_set_rx_mode_unchecked(sa); 1106 } 1107 } else { 1108 sfc_warn(sa, "cannot set MAC address with filters installed"); 1109 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1110 sfc_warn(sa, "(some traffic may be dropped)"); 1111 1112 /* 1113 * Since setting MAC address with filters installed is not 1114 * allowed on the adapter, the new MAC address will be set 1115 * by means of adapter restart. sfc_start() shall retrieve 1116 * the new address from the device private data and set it. 1117 */ 1118 sfc_stop(sa); 1119 rc = sfc_start(sa); 1120 if (rc != 0) 1121 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1122 } 1123 1124 unlock: 1125 if (rc != 0) 1126 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1127 1128 sfc_adapter_unlock(sa); 1129 1130 SFC_ASSERT(rc >= 0); 1131 return -rc; 1132 } 1133 1134 1135 static int 1136 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1137 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1138 { 1139 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1140 struct sfc_port *port = &sa->port; 1141 uint8_t *mc_addrs = port->mcast_addrs; 1142 int rc; 1143 unsigned int i; 1144 1145 if (sfc_sa2shared(sa)->isolated) { 1146 sfc_err(sa, "isolated mode is active on the port"); 1147 sfc_err(sa, "will not set multicast address list"); 1148 return -ENOTSUP; 1149 } 1150 1151 if (mc_addrs == NULL) 1152 return -ENOBUFS; 1153 1154 if (nb_mc_addr > port->max_mcast_addrs) { 1155 sfc_err(sa, "too many multicast addresses: %u > %u", 1156 nb_mc_addr, port->max_mcast_addrs); 1157 return -EINVAL; 1158 } 1159 1160 for (i = 0; i < nb_mc_addr; ++i) { 1161 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1162 EFX_MAC_ADDR_LEN); 1163 mc_addrs += EFX_MAC_ADDR_LEN; 1164 } 1165 1166 port->nb_mcast_addrs = nb_mc_addr; 1167 1168 if (sa->state != SFC_ADAPTER_STARTED) 1169 return 0; 1170 1171 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1172 port->nb_mcast_addrs); 1173 if (rc != 0) 1174 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1175 1176 SFC_ASSERT(rc >= 0); 1177 return -rc; 1178 } 1179 1180 /* 1181 * The function is used by the secondary process as well. It must not 1182 * use any process-local pointers from the adapter data. 1183 */ 1184 static void 1185 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1186 struct rte_eth_rxq_info *qinfo) 1187 { 1188 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1189 struct sfc_rxq_info *rxq_info; 1190 1191 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1192 1193 rxq_info = &sas->rxq_info[rx_queue_id]; 1194 1195 qinfo->mp = rxq_info->refill_mb_pool; 1196 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1197 qinfo->conf.rx_drop_en = 1; 1198 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1199 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1200 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1201 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1202 qinfo->scattered_rx = 1; 1203 } 1204 qinfo->nb_desc = rxq_info->entries; 1205 } 1206 1207 /* 1208 * The function is used by the secondary process as well. It must not 1209 * use any process-local pointers from the adapter data. 1210 */ 1211 static void 1212 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1213 struct rte_eth_txq_info *qinfo) 1214 { 1215 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1216 struct sfc_txq_info *txq_info; 1217 1218 SFC_ASSERT(tx_queue_id < sas->txq_count); 1219 1220 txq_info = &sas->txq_info[tx_queue_id]; 1221 1222 memset(qinfo, 0, sizeof(*qinfo)); 1223 1224 qinfo->conf.offloads = txq_info->offloads; 1225 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1226 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1227 qinfo->nb_desc = txq_info->entries; 1228 } 1229 1230 /* 1231 * The function is used by the secondary process as well. It must not 1232 * use any process-local pointers from the adapter data. 1233 */ 1234 static uint32_t 1235 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1236 { 1237 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1238 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1239 struct sfc_rxq_info *rxq_info; 1240 1241 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1242 rxq_info = &sas->rxq_info[rx_queue_id]; 1243 1244 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1245 return 0; 1246 1247 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1248 } 1249 1250 /* 1251 * The function is used by the secondary process as well. It must not 1252 * use any process-local pointers from the adapter data. 1253 */ 1254 static int 1255 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1256 { 1257 struct sfc_dp_rxq *dp_rxq = queue; 1258 const struct sfc_dp_rx *dp_rx; 1259 1260 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1261 1262 return offset < dp_rx->qdesc_npending(dp_rxq); 1263 } 1264 1265 /* 1266 * The function is used by the secondary process as well. It must not 1267 * use any process-local pointers from the adapter data. 1268 */ 1269 static int 1270 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1271 { 1272 struct sfc_dp_rxq *dp_rxq = queue; 1273 const struct sfc_dp_rx *dp_rx; 1274 1275 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1276 1277 return dp_rx->qdesc_status(dp_rxq, offset); 1278 } 1279 1280 /* 1281 * The function is used by the secondary process as well. It must not 1282 * use any process-local pointers from the adapter data. 1283 */ 1284 static int 1285 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1286 { 1287 struct sfc_dp_txq *dp_txq = queue; 1288 const struct sfc_dp_tx *dp_tx; 1289 1290 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1291 1292 return dp_tx->qdesc_status(dp_txq, offset); 1293 } 1294 1295 static int 1296 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1297 { 1298 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1299 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1300 int rc; 1301 1302 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1303 1304 sfc_adapter_lock(sa); 1305 1306 rc = EINVAL; 1307 if (sa->state != SFC_ADAPTER_STARTED) 1308 goto fail_not_started; 1309 1310 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1311 goto fail_not_setup; 1312 1313 rc = sfc_rx_qstart(sa, rx_queue_id); 1314 if (rc != 0) 1315 goto fail_rx_qstart; 1316 1317 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1318 1319 sfc_adapter_unlock(sa); 1320 1321 return 0; 1322 1323 fail_rx_qstart: 1324 fail_not_setup: 1325 fail_not_started: 1326 sfc_adapter_unlock(sa); 1327 SFC_ASSERT(rc > 0); 1328 return -rc; 1329 } 1330 1331 static int 1332 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1333 { 1334 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1335 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1336 1337 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1338 1339 sfc_adapter_lock(sa); 1340 sfc_rx_qstop(sa, rx_queue_id); 1341 1342 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1343 1344 sfc_adapter_unlock(sa); 1345 1346 return 0; 1347 } 1348 1349 static int 1350 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1351 { 1352 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1353 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1354 int rc; 1355 1356 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1357 1358 sfc_adapter_lock(sa); 1359 1360 rc = EINVAL; 1361 if (sa->state != SFC_ADAPTER_STARTED) 1362 goto fail_not_started; 1363 1364 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1365 goto fail_not_setup; 1366 1367 rc = sfc_tx_qstart(sa, tx_queue_id); 1368 if (rc != 0) 1369 goto fail_tx_qstart; 1370 1371 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1372 1373 sfc_adapter_unlock(sa); 1374 return 0; 1375 1376 fail_tx_qstart: 1377 1378 fail_not_setup: 1379 fail_not_started: 1380 sfc_adapter_unlock(sa); 1381 SFC_ASSERT(rc > 0); 1382 return -rc; 1383 } 1384 1385 static int 1386 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1387 { 1388 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1389 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1390 1391 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1392 1393 sfc_adapter_lock(sa); 1394 1395 sfc_tx_qstop(sa, tx_queue_id); 1396 1397 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1398 1399 sfc_adapter_unlock(sa); 1400 return 0; 1401 } 1402 1403 static efx_tunnel_protocol_t 1404 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1405 { 1406 switch (rte_type) { 1407 case RTE_TUNNEL_TYPE_VXLAN: 1408 return EFX_TUNNEL_PROTOCOL_VXLAN; 1409 case RTE_TUNNEL_TYPE_GENEVE: 1410 return EFX_TUNNEL_PROTOCOL_GENEVE; 1411 default: 1412 return EFX_TUNNEL_NPROTOS; 1413 } 1414 } 1415 1416 enum sfc_udp_tunnel_op_e { 1417 SFC_UDP_TUNNEL_ADD_PORT, 1418 SFC_UDP_TUNNEL_DEL_PORT, 1419 }; 1420 1421 static int 1422 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1423 struct rte_eth_udp_tunnel *tunnel_udp, 1424 enum sfc_udp_tunnel_op_e op) 1425 { 1426 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1427 efx_tunnel_protocol_t tunnel_proto; 1428 int rc; 1429 1430 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1431 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1432 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1433 tunnel_udp->udp_port, tunnel_udp->prot_type); 1434 1435 tunnel_proto = 1436 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1437 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1438 rc = ENOTSUP; 1439 goto fail_bad_proto; 1440 } 1441 1442 sfc_adapter_lock(sa); 1443 1444 switch (op) { 1445 case SFC_UDP_TUNNEL_ADD_PORT: 1446 rc = efx_tunnel_config_udp_add(sa->nic, 1447 tunnel_udp->udp_port, 1448 tunnel_proto); 1449 break; 1450 case SFC_UDP_TUNNEL_DEL_PORT: 1451 rc = efx_tunnel_config_udp_remove(sa->nic, 1452 tunnel_udp->udp_port, 1453 tunnel_proto); 1454 break; 1455 default: 1456 rc = EINVAL; 1457 goto fail_bad_op; 1458 } 1459 1460 if (rc != 0) 1461 goto fail_op; 1462 1463 if (sa->state == SFC_ADAPTER_STARTED) { 1464 rc = efx_tunnel_reconfigure(sa->nic); 1465 if (rc == EAGAIN) { 1466 /* 1467 * Configuration is accepted by FW and MC reboot 1468 * is initiated to apply the changes. MC reboot 1469 * will be handled in a usual way (MC reboot 1470 * event on management event queue and adapter 1471 * restart). 1472 */ 1473 rc = 0; 1474 } else if (rc != 0) { 1475 goto fail_reconfigure; 1476 } 1477 } 1478 1479 sfc_adapter_unlock(sa); 1480 return 0; 1481 1482 fail_reconfigure: 1483 /* Remove/restore entry since the change makes the trouble */ 1484 switch (op) { 1485 case SFC_UDP_TUNNEL_ADD_PORT: 1486 (void)efx_tunnel_config_udp_remove(sa->nic, 1487 tunnel_udp->udp_port, 1488 tunnel_proto); 1489 break; 1490 case SFC_UDP_TUNNEL_DEL_PORT: 1491 (void)efx_tunnel_config_udp_add(sa->nic, 1492 tunnel_udp->udp_port, 1493 tunnel_proto); 1494 break; 1495 } 1496 1497 fail_op: 1498 fail_bad_op: 1499 sfc_adapter_unlock(sa); 1500 1501 fail_bad_proto: 1502 SFC_ASSERT(rc > 0); 1503 return -rc; 1504 } 1505 1506 static int 1507 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1508 struct rte_eth_udp_tunnel *tunnel_udp) 1509 { 1510 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1511 } 1512 1513 static int 1514 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1515 struct rte_eth_udp_tunnel *tunnel_udp) 1516 { 1517 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1518 } 1519 1520 /* 1521 * The function is used by the secondary process as well. It must not 1522 * use any process-local pointers from the adapter data. 1523 */ 1524 static int 1525 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1526 struct rte_eth_rss_conf *rss_conf) 1527 { 1528 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1529 struct sfc_rss *rss = &sas->rss; 1530 1531 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1532 return -ENOTSUP; 1533 1534 /* 1535 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1536 * hence, conversion is done here to derive a correct set of ETH_RSS 1537 * flags which corresponds to the active EFX configuration stored 1538 * locally in 'sfc_adapter' and kept up-to-date 1539 */ 1540 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1541 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1542 if (rss_conf->rss_key != NULL) 1543 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1544 1545 return 0; 1546 } 1547 1548 static int 1549 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1550 struct rte_eth_rss_conf *rss_conf) 1551 { 1552 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1553 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1554 unsigned int efx_hash_types; 1555 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context}; 1556 unsigned int n_contexts; 1557 unsigned int mode_i = 0; 1558 unsigned int key_i = 0; 1559 unsigned int i = 0; 1560 int rc = 0; 1561 1562 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2; 1563 1564 if (sfc_sa2shared(sa)->isolated) 1565 return -ENOTSUP; 1566 1567 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1568 sfc_err(sa, "RSS is not available"); 1569 return -ENOTSUP; 1570 } 1571 1572 if (rss->channels == 0) { 1573 sfc_err(sa, "RSS is not configured"); 1574 return -EINVAL; 1575 } 1576 1577 if ((rss_conf->rss_key != NULL) && 1578 (rss_conf->rss_key_len != sizeof(rss->key))) { 1579 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1580 sizeof(rss->key)); 1581 return -EINVAL; 1582 } 1583 1584 sfc_adapter_lock(sa); 1585 1586 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1587 if (rc != 0) 1588 goto fail_rx_hf_rte_to_efx; 1589 1590 for (mode_i = 0; mode_i < n_contexts; mode_i++) { 1591 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i], 1592 rss->hash_alg, efx_hash_types, 1593 B_TRUE); 1594 if (rc != 0) 1595 goto fail_scale_mode_set; 1596 } 1597 1598 if (rss_conf->rss_key != NULL) { 1599 if (sa->state == SFC_ADAPTER_STARTED) { 1600 for (key_i = 0; key_i < n_contexts; key_i++) { 1601 rc = efx_rx_scale_key_set(sa->nic, 1602 contexts[key_i], 1603 rss_conf->rss_key, 1604 sizeof(rss->key)); 1605 if (rc != 0) 1606 goto fail_scale_key_set; 1607 } 1608 } 1609 1610 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1611 } 1612 1613 rss->hash_types = efx_hash_types; 1614 1615 sfc_adapter_unlock(sa); 1616 1617 return 0; 1618 1619 fail_scale_key_set: 1620 for (i = 0; i < key_i; i++) { 1621 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key, 1622 sizeof(rss->key)) != 0) 1623 sfc_err(sa, "failed to restore RSS key"); 1624 } 1625 1626 fail_scale_mode_set: 1627 for (i = 0; i < mode_i; i++) { 1628 if (efx_rx_scale_mode_set(sa->nic, contexts[i], 1629 EFX_RX_HASHALG_TOEPLITZ, 1630 rss->hash_types, B_TRUE) != 0) 1631 sfc_err(sa, "failed to restore RSS mode"); 1632 } 1633 1634 fail_rx_hf_rte_to_efx: 1635 sfc_adapter_unlock(sa); 1636 return -rc; 1637 } 1638 1639 /* 1640 * The function is used by the secondary process as well. It must not 1641 * use any process-local pointers from the adapter data. 1642 */ 1643 static int 1644 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1645 struct rte_eth_rss_reta_entry64 *reta_conf, 1646 uint16_t reta_size) 1647 { 1648 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1649 struct sfc_rss *rss = &sas->rss; 1650 int entry; 1651 1652 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1653 return -ENOTSUP; 1654 1655 if (rss->channels == 0) 1656 return -EINVAL; 1657 1658 if (reta_size != EFX_RSS_TBL_SIZE) 1659 return -EINVAL; 1660 1661 for (entry = 0; entry < reta_size; entry++) { 1662 int grp = entry / RTE_RETA_GROUP_SIZE; 1663 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1664 1665 if ((reta_conf[grp].mask >> grp_idx) & 1) 1666 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1667 } 1668 1669 return 0; 1670 } 1671 1672 static int 1673 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1674 struct rte_eth_rss_reta_entry64 *reta_conf, 1675 uint16_t reta_size) 1676 { 1677 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1678 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1679 unsigned int *rss_tbl_new; 1680 uint16_t entry; 1681 int rc = 0; 1682 1683 1684 if (sfc_sa2shared(sa)->isolated) 1685 return -ENOTSUP; 1686 1687 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1688 sfc_err(sa, "RSS is not available"); 1689 return -ENOTSUP; 1690 } 1691 1692 if (rss->channels == 0) { 1693 sfc_err(sa, "RSS is not configured"); 1694 return -EINVAL; 1695 } 1696 1697 if (reta_size != EFX_RSS_TBL_SIZE) { 1698 sfc_err(sa, "RETA size is wrong (should be %u)", 1699 EFX_RSS_TBL_SIZE); 1700 return -EINVAL; 1701 } 1702 1703 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1704 if (rss_tbl_new == NULL) 1705 return -ENOMEM; 1706 1707 sfc_adapter_lock(sa); 1708 1709 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1710 1711 for (entry = 0; entry < reta_size; entry++) { 1712 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1713 struct rte_eth_rss_reta_entry64 *grp; 1714 1715 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1716 1717 if (grp->mask & (1ull << grp_idx)) { 1718 if (grp->reta[grp_idx] >= rss->channels) { 1719 rc = EINVAL; 1720 goto bad_reta_entry; 1721 } 1722 rss_tbl_new[entry] = grp->reta[grp_idx]; 1723 } 1724 } 1725 1726 if (sa->state == SFC_ADAPTER_STARTED) { 1727 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1728 rss_tbl_new, EFX_RSS_TBL_SIZE); 1729 if (rc != 0) 1730 goto fail_scale_tbl_set; 1731 } 1732 1733 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1734 1735 fail_scale_tbl_set: 1736 bad_reta_entry: 1737 sfc_adapter_unlock(sa); 1738 1739 rte_free(rss_tbl_new); 1740 1741 SFC_ASSERT(rc >= 0); 1742 return -rc; 1743 } 1744 1745 static int 1746 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused, 1747 const struct rte_flow_ops **ops) 1748 { 1749 *ops = &sfc_flow_ops; 1750 return 0; 1751 } 1752 1753 static int 1754 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1755 { 1756 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1757 1758 /* 1759 * If Rx datapath does not provide callback to check mempool, 1760 * all pools are supported. 1761 */ 1762 if (sap->dp_rx->pool_ops_supported == NULL) 1763 return 1; 1764 1765 return sap->dp_rx->pool_ops_supported(pool); 1766 } 1767 1768 static int 1769 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1770 { 1771 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1772 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1773 struct sfc_rxq_info *rxq_info; 1774 1775 SFC_ASSERT(queue_id < sas->rxq_count); 1776 rxq_info = &sas->rxq_info[queue_id]; 1777 1778 return sap->dp_rx->intr_enable(rxq_info->dp); 1779 } 1780 1781 static int 1782 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1783 { 1784 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1785 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1786 struct sfc_rxq_info *rxq_info; 1787 1788 SFC_ASSERT(queue_id < sas->rxq_count); 1789 rxq_info = &sas->rxq_info[queue_id]; 1790 1791 return sap->dp_rx->intr_disable(rxq_info->dp); 1792 } 1793 1794 static const struct eth_dev_ops sfc_eth_dev_ops = { 1795 .dev_configure = sfc_dev_configure, 1796 .dev_start = sfc_dev_start, 1797 .dev_stop = sfc_dev_stop, 1798 .dev_set_link_up = sfc_dev_set_link_up, 1799 .dev_set_link_down = sfc_dev_set_link_down, 1800 .dev_close = sfc_dev_close, 1801 .promiscuous_enable = sfc_dev_promisc_enable, 1802 .promiscuous_disable = sfc_dev_promisc_disable, 1803 .allmulticast_enable = sfc_dev_allmulti_enable, 1804 .allmulticast_disable = sfc_dev_allmulti_disable, 1805 .link_update = sfc_dev_link_update, 1806 .stats_get = sfc_stats_get, 1807 .stats_reset = sfc_stats_reset, 1808 .xstats_get = sfc_xstats_get, 1809 .xstats_reset = sfc_stats_reset, 1810 .xstats_get_names = sfc_xstats_get_names, 1811 .dev_infos_get = sfc_dev_infos_get, 1812 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1813 .mtu_set = sfc_dev_set_mtu, 1814 .rx_queue_start = sfc_rx_queue_start, 1815 .rx_queue_stop = sfc_rx_queue_stop, 1816 .tx_queue_start = sfc_tx_queue_start, 1817 .tx_queue_stop = sfc_tx_queue_stop, 1818 .rx_queue_setup = sfc_rx_queue_setup, 1819 .rx_queue_release = sfc_rx_queue_release, 1820 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1821 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1822 .tx_queue_setup = sfc_tx_queue_setup, 1823 .tx_queue_release = sfc_tx_queue_release, 1824 .flow_ctrl_get = sfc_flow_ctrl_get, 1825 .flow_ctrl_set = sfc_flow_ctrl_set, 1826 .mac_addr_set = sfc_mac_addr_set, 1827 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1828 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1829 .reta_update = sfc_dev_rss_reta_update, 1830 .reta_query = sfc_dev_rss_reta_query, 1831 .rss_hash_update = sfc_dev_rss_hash_update, 1832 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1833 .flow_ops_get = sfc_dev_flow_ops_get, 1834 .set_mc_addr_list = sfc_set_mc_addr_list, 1835 .rxq_info_get = sfc_rx_queue_info_get, 1836 .txq_info_get = sfc_tx_queue_info_get, 1837 .fw_version_get = sfc_fw_version_get, 1838 .xstats_get_by_id = sfc_xstats_get_by_id, 1839 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1840 .pool_ops_supported = sfc_pool_ops_supported, 1841 }; 1842 1843 /** 1844 * Duplicate a string in potentially shared memory required for 1845 * multi-process support. 1846 * 1847 * strdup() allocates from process-local heap/memory. 1848 */ 1849 static char * 1850 sfc_strdup(const char *str) 1851 { 1852 size_t size; 1853 char *copy; 1854 1855 if (str == NULL) 1856 return NULL; 1857 1858 size = strlen(str) + 1; 1859 copy = rte_malloc(__func__, size, 0); 1860 if (copy != NULL) 1861 rte_memcpy(copy, str, size); 1862 1863 return copy; 1864 } 1865 1866 static int 1867 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1868 { 1869 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1870 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1871 const struct sfc_dp_rx *dp_rx; 1872 const struct sfc_dp_tx *dp_tx; 1873 const efx_nic_cfg_t *encp; 1874 unsigned int avail_caps = 0; 1875 const char *rx_name = NULL; 1876 const char *tx_name = NULL; 1877 int rc; 1878 1879 switch (sa->family) { 1880 case EFX_FAMILY_HUNTINGTON: 1881 case EFX_FAMILY_MEDFORD: 1882 case EFX_FAMILY_MEDFORD2: 1883 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1884 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX; 1885 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX; 1886 break; 1887 case EFX_FAMILY_RIVERHEAD: 1888 avail_caps |= SFC_DP_HW_FW_CAP_EF100; 1889 break; 1890 default: 1891 break; 1892 } 1893 1894 encp = efx_nic_cfg_get(sa->nic); 1895 if (encp->enc_rx_es_super_buffer_supported) 1896 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1897 1898 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1899 sfc_kvarg_string_handler, &rx_name); 1900 if (rc != 0) 1901 goto fail_kvarg_rx_datapath; 1902 1903 if (rx_name != NULL) { 1904 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1905 if (dp_rx == NULL) { 1906 sfc_err(sa, "Rx datapath %s not found", rx_name); 1907 rc = ENOENT; 1908 goto fail_dp_rx; 1909 } 1910 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1911 sfc_err(sa, 1912 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1913 rx_name); 1914 rc = EINVAL; 1915 goto fail_dp_rx_caps; 1916 } 1917 } else { 1918 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1919 if (dp_rx == NULL) { 1920 sfc_err(sa, "Rx datapath by caps %#x not found", 1921 avail_caps); 1922 rc = ENOENT; 1923 goto fail_dp_rx; 1924 } 1925 } 1926 1927 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1928 if (sas->dp_rx_name == NULL) { 1929 rc = ENOMEM; 1930 goto fail_dp_rx_name; 1931 } 1932 1933 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1934 1935 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1936 sfc_kvarg_string_handler, &tx_name); 1937 if (rc != 0) 1938 goto fail_kvarg_tx_datapath; 1939 1940 if (tx_name != NULL) { 1941 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1942 if (dp_tx == NULL) { 1943 sfc_err(sa, "Tx datapath %s not found", tx_name); 1944 rc = ENOENT; 1945 goto fail_dp_tx; 1946 } 1947 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1948 sfc_err(sa, 1949 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1950 tx_name); 1951 rc = EINVAL; 1952 goto fail_dp_tx_caps; 1953 } 1954 } else { 1955 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1956 if (dp_tx == NULL) { 1957 sfc_err(sa, "Tx datapath by caps %#x not found", 1958 avail_caps); 1959 rc = ENOENT; 1960 goto fail_dp_tx; 1961 } 1962 } 1963 1964 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1965 if (sas->dp_tx_name == NULL) { 1966 rc = ENOMEM; 1967 goto fail_dp_tx_name; 1968 } 1969 1970 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1971 1972 sa->priv.dp_rx = dp_rx; 1973 sa->priv.dp_tx = dp_tx; 1974 1975 dev->rx_pkt_burst = dp_rx->pkt_burst; 1976 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 1977 dev->tx_pkt_burst = dp_tx->pkt_burst; 1978 1979 dev->rx_queue_count = sfc_rx_queue_count; 1980 dev->rx_descriptor_done = sfc_rx_descriptor_done; 1981 dev->rx_descriptor_status = sfc_rx_descriptor_status; 1982 dev->tx_descriptor_status = sfc_tx_descriptor_status; 1983 dev->dev_ops = &sfc_eth_dev_ops; 1984 1985 return 0; 1986 1987 fail_dp_tx_name: 1988 fail_dp_tx_caps: 1989 fail_dp_tx: 1990 fail_kvarg_tx_datapath: 1991 rte_free(sas->dp_rx_name); 1992 sas->dp_rx_name = NULL; 1993 1994 fail_dp_rx_name: 1995 fail_dp_rx_caps: 1996 fail_dp_rx: 1997 fail_kvarg_rx_datapath: 1998 return rc; 1999 } 2000 2001 static void 2002 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 2003 { 2004 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2005 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2006 2007 dev->dev_ops = NULL; 2008 dev->tx_pkt_prepare = NULL; 2009 dev->rx_pkt_burst = NULL; 2010 dev->tx_pkt_burst = NULL; 2011 2012 rte_free(sas->dp_tx_name); 2013 sas->dp_tx_name = NULL; 2014 sa->priv.dp_tx = NULL; 2015 2016 rte_free(sas->dp_rx_name); 2017 sas->dp_rx_name = NULL; 2018 sa->priv.dp_rx = NULL; 2019 } 2020 2021 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2022 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2023 .reta_query = sfc_dev_rss_reta_query, 2024 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2025 .rxq_info_get = sfc_rx_queue_info_get, 2026 .txq_info_get = sfc_tx_queue_info_get, 2027 }; 2028 2029 static int 2030 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2031 { 2032 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2033 struct sfc_adapter_priv *sap; 2034 const struct sfc_dp_rx *dp_rx; 2035 const struct sfc_dp_tx *dp_tx; 2036 int rc; 2037 2038 /* 2039 * Allocate process private data from heap, since it should not 2040 * be located in shared memory allocated using rte_malloc() API. 2041 */ 2042 sap = calloc(1, sizeof(*sap)); 2043 if (sap == NULL) { 2044 rc = ENOMEM; 2045 goto fail_alloc_priv; 2046 } 2047 2048 sap->logtype_main = logtype_main; 2049 2050 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2051 if (dp_rx == NULL) { 2052 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2053 "cannot find %s Rx datapath", sas->dp_rx_name); 2054 rc = ENOENT; 2055 goto fail_dp_rx; 2056 } 2057 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2058 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2059 "%s Rx datapath does not support multi-process", 2060 sas->dp_rx_name); 2061 rc = EINVAL; 2062 goto fail_dp_rx_multi_process; 2063 } 2064 2065 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2066 if (dp_tx == NULL) { 2067 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2068 "cannot find %s Tx datapath", sas->dp_tx_name); 2069 rc = ENOENT; 2070 goto fail_dp_tx; 2071 } 2072 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2073 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2074 "%s Tx datapath does not support multi-process", 2075 sas->dp_tx_name); 2076 rc = EINVAL; 2077 goto fail_dp_tx_multi_process; 2078 } 2079 2080 sap->dp_rx = dp_rx; 2081 sap->dp_tx = dp_tx; 2082 2083 dev->process_private = sap; 2084 dev->rx_pkt_burst = dp_rx->pkt_burst; 2085 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2086 dev->tx_pkt_burst = dp_tx->pkt_burst; 2087 dev->rx_queue_count = sfc_rx_queue_count; 2088 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2089 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2090 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2091 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2092 2093 return 0; 2094 2095 fail_dp_tx_multi_process: 2096 fail_dp_tx: 2097 fail_dp_rx_multi_process: 2098 fail_dp_rx: 2099 free(sap); 2100 2101 fail_alloc_priv: 2102 return rc; 2103 } 2104 2105 static void 2106 sfc_register_dp(void) 2107 { 2108 /* Register once */ 2109 if (TAILQ_EMPTY(&sfc_dp_head)) { 2110 /* Prefer EF10 datapath */ 2111 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp); 2112 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2113 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2114 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2115 2116 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp); 2117 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2118 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2119 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2120 } 2121 } 2122 2123 static int 2124 sfc_eth_dev_init(struct rte_eth_dev *dev) 2125 { 2126 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2127 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2128 uint32_t logtype_main; 2129 struct sfc_adapter *sa; 2130 int rc; 2131 const efx_nic_cfg_t *encp; 2132 const struct rte_ether_addr *from; 2133 int ret; 2134 2135 if (sfc_efx_dev_class_get(pci_dev->device.devargs) != 2136 SFC_EFX_DEV_CLASS_NET) { 2137 SFC_GENERIC_LOG(DEBUG, 2138 "Incompatible device class: skip probing, should be probed by other sfc driver."); 2139 return 1; 2140 } 2141 2142 sfc_register_dp(); 2143 2144 logtype_main = sfc_register_logtype(&pci_dev->addr, 2145 SFC_LOGTYPE_MAIN_STR, 2146 RTE_LOG_NOTICE); 2147 2148 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2149 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2150 2151 /* Required for logging */ 2152 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix), 2153 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ", 2154 pci_dev->addr.domain, pci_dev->addr.bus, 2155 pci_dev->addr.devid, pci_dev->addr.function, 2156 dev->data->port_id); 2157 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) { 2158 SFC_GENERIC_LOG(ERR, 2159 "reserved log prefix is too short for " PCI_PRI_FMT, 2160 pci_dev->addr.domain, pci_dev->addr.bus, 2161 pci_dev->addr.devid, pci_dev->addr.function); 2162 return -EINVAL; 2163 } 2164 sas->pci_addr = pci_dev->addr; 2165 sas->port_id = dev->data->port_id; 2166 2167 /* 2168 * Allocate process private data from heap, since it should not 2169 * be located in shared memory allocated using rte_malloc() API. 2170 */ 2171 sa = calloc(1, sizeof(*sa)); 2172 if (sa == NULL) { 2173 rc = ENOMEM; 2174 goto fail_alloc_sa; 2175 } 2176 2177 dev->process_private = sa; 2178 2179 /* Required for logging */ 2180 sa->priv.shared = sas; 2181 sa->priv.logtype_main = logtype_main; 2182 2183 sa->eth_dev = dev; 2184 2185 /* Copy PCI device info to the dev->data */ 2186 rte_eth_copy_pci_info(dev, pci_dev); 2187 dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 2188 dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE; 2189 2190 rc = sfc_kvargs_parse(sa); 2191 if (rc != 0) 2192 goto fail_kvargs_parse; 2193 2194 sfc_log_init(sa, "entry"); 2195 2196 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2197 if (dev->data->mac_addrs == NULL) { 2198 rc = ENOMEM; 2199 goto fail_mac_addrs; 2200 } 2201 2202 sfc_adapter_lock_init(sa); 2203 sfc_adapter_lock(sa); 2204 2205 sfc_log_init(sa, "probing"); 2206 rc = sfc_probe(sa); 2207 if (rc != 0) 2208 goto fail_probe; 2209 2210 sfc_log_init(sa, "set device ops"); 2211 rc = sfc_eth_dev_set_ops(dev); 2212 if (rc != 0) 2213 goto fail_set_ops; 2214 2215 sfc_log_init(sa, "attaching"); 2216 rc = sfc_attach(sa); 2217 if (rc != 0) 2218 goto fail_attach; 2219 2220 encp = efx_nic_cfg_get(sa->nic); 2221 2222 /* 2223 * The arguments are really reverse order in comparison to 2224 * Linux kernel. Copy from NIC config to Ethernet device data. 2225 */ 2226 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2227 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2228 2229 sfc_adapter_unlock(sa); 2230 2231 sfc_log_init(sa, "done"); 2232 return 0; 2233 2234 fail_attach: 2235 sfc_eth_dev_clear_ops(dev); 2236 2237 fail_set_ops: 2238 sfc_unprobe(sa); 2239 2240 fail_probe: 2241 sfc_adapter_unlock(sa); 2242 sfc_adapter_lock_fini(sa); 2243 rte_free(dev->data->mac_addrs); 2244 dev->data->mac_addrs = NULL; 2245 2246 fail_mac_addrs: 2247 sfc_kvargs_cleanup(sa); 2248 2249 fail_kvargs_parse: 2250 sfc_log_init(sa, "failed %d", rc); 2251 dev->process_private = NULL; 2252 free(sa); 2253 2254 fail_alloc_sa: 2255 SFC_ASSERT(rc > 0); 2256 return -rc; 2257 } 2258 2259 static int 2260 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2261 { 2262 sfc_dev_close(dev); 2263 2264 return 0; 2265 } 2266 2267 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2268 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2269 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2270 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2271 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2272 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2273 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2274 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2275 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2276 { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) }, 2277 { .vendor_id = 0 /* sentinel */ } 2278 }; 2279 2280 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2281 struct rte_pci_device *pci_dev) 2282 { 2283 return rte_eth_dev_pci_generic_probe(pci_dev, 2284 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2285 } 2286 2287 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2288 { 2289 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2290 } 2291 2292 static struct rte_pci_driver sfc_efx_pmd = { 2293 .id_table = pci_id_sfc_efx_map, 2294 .drv_flags = 2295 RTE_PCI_DRV_INTR_LSC | 2296 RTE_PCI_DRV_NEED_MAPPING, 2297 .probe = sfc_eth_dev_pci_probe, 2298 .remove = sfc_eth_dev_pci_remove, 2299 }; 2300 2301 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2302 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2303 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2304 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2305 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2306 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2307 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2308 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2309 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2310 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2311 2312 RTE_INIT(sfc_driver_register_logtype) 2313 { 2314 int ret; 2315 2316 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2317 RTE_LOG_NOTICE); 2318 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2319 } 2320