xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 945acb4a0d644d194f1823084a234f9c286dcf8c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 
17 #include "efx.h"
18 
19 #include "sfc.h"
20 #include "sfc_debug.h"
21 #include "sfc_log.h"
22 #include "sfc_kvargs.h"
23 #include "sfc_ev.h"
24 #include "sfc_rx.h"
25 #include "sfc_tx.h"
26 #include "sfc_flow.h"
27 #include "sfc_dp.h"
28 #include "sfc_dp_rx.h"
29 
30 static struct sfc_dp_list sfc_dp_head =
31 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
32 
33 static int
34 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
35 {
36 	struct sfc_adapter *sa = dev->data->dev_private;
37 	efx_nic_fw_info_t enfi;
38 	int ret;
39 	int rc;
40 
41 	/*
42 	 * Return value of the callback is likely supposed to be
43 	 * equal to or greater than 0, nevertheless, if an error
44 	 * occurs, it will be desirable to pass it to the caller
45 	 */
46 	if ((fw_version == NULL) || (fw_size == 0))
47 		return -EINVAL;
48 
49 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
50 	if (rc != 0)
51 		return -rc;
52 
53 	ret = snprintf(fw_version, fw_size,
54 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
55 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
56 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
57 	if (ret < 0)
58 		return ret;
59 
60 	if (enfi.enfi_dpcpu_fw_ids_valid) {
61 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
62 		int ret_extra;
63 
64 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
65 				     fw_size - dpcpu_fw_ids_offset,
66 				     " rx%" PRIx16 " tx%" PRIx16,
67 				     enfi.enfi_rx_dpcpu_fw_id,
68 				     enfi.enfi_tx_dpcpu_fw_id);
69 		if (ret_extra < 0)
70 			return ret_extra;
71 
72 		ret += ret_extra;
73 	}
74 
75 	if (fw_size < (size_t)(++ret))
76 		return ret;
77 	else
78 		return 0;
79 }
80 
81 static void
82 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
83 {
84 	struct sfc_adapter *sa = dev->data->dev_private;
85 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
86 
87 	sfc_log_init(sa, "entry");
88 
89 	dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
90 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
91 
92 	/* Autonegotiation may be disabled */
93 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
94 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
95 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
96 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
97 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
98 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
99 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
100 
101 	dev_info->max_rx_queues = sa->rxq_max;
102 	dev_info->max_tx_queues = sa->txq_max;
103 
104 	/* By default packets are dropped if no descriptors are available */
105 	dev_info->default_rxconf.rx_drop_en = 1;
106 
107 	dev_info->rx_offload_capa =
108 		DEV_RX_OFFLOAD_IPV4_CKSUM |
109 		DEV_RX_OFFLOAD_UDP_CKSUM |
110 		DEV_RX_OFFLOAD_TCP_CKSUM;
111 
112 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
113 	    (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
114 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
115 
116 	dev_info->tx_offload_capa =
117 		DEV_TX_OFFLOAD_IPV4_CKSUM |
118 		DEV_TX_OFFLOAD_UDP_CKSUM |
119 		DEV_TX_OFFLOAD_TCP_CKSUM;
120 
121 	if (encp->enc_tunnel_encapsulations_supported != 0)
122 		dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
123 
124 	dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP;
125 	if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) ||
126 	    !encp->enc_hw_tx_insert_vlan_enabled)
127 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL;
128 	else
129 		dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT;
130 
131 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG)
132 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS;
133 
134 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL)
135 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP;
136 
137 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT)
138 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT;
139 
140 #if EFSYS_OPT_RX_SCALE
141 	if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) {
142 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
143 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
144 		dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS;
145 	}
146 #endif
147 
148 	if (sa->tso)
149 		dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO;
150 
151 	/* Initialize to hardware limits */
152 	dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
153 	dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
154 	/* The RXQ hardware requires that the descriptor count is a power
155 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
156 	 */
157 	dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
158 
159 	/* Initialize to hardware limits */
160 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
161 	dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
162 	/*
163 	 * The TXQ hardware requires that the descriptor count is a power
164 	 * of 2, but tx_desc_lim cannot properly describe that constraint
165 	 */
166 	dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
167 
168 	if (sa->dp_rx->get_dev_info != NULL)
169 		sa->dp_rx->get_dev_info(dev_info);
170 	if (sa->dp_tx->get_dev_info != NULL)
171 		sa->dp_tx->get_dev_info(dev_info);
172 }
173 
174 static const uint32_t *
175 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
176 {
177 	struct sfc_adapter *sa = dev->data->dev_private;
178 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
179 	uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported;
180 
181 	return sa->dp_rx->supported_ptypes_get(tunnel_encaps);
182 }
183 
184 static int
185 sfc_dev_configure(struct rte_eth_dev *dev)
186 {
187 	struct rte_eth_dev_data *dev_data = dev->data;
188 	struct sfc_adapter *sa = dev_data->dev_private;
189 	int rc;
190 
191 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
192 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
193 
194 	sfc_adapter_lock(sa);
195 	switch (sa->state) {
196 	case SFC_ADAPTER_CONFIGURED:
197 		/* FALLTHROUGH */
198 	case SFC_ADAPTER_INITIALIZED:
199 		rc = sfc_configure(sa);
200 		break;
201 	default:
202 		sfc_err(sa, "unexpected adapter state %u to configure",
203 			sa->state);
204 		rc = EINVAL;
205 		break;
206 	}
207 	sfc_adapter_unlock(sa);
208 
209 	sfc_log_init(sa, "done %d", rc);
210 	SFC_ASSERT(rc >= 0);
211 	return -rc;
212 }
213 
214 static int
215 sfc_dev_start(struct rte_eth_dev *dev)
216 {
217 	struct sfc_adapter *sa = dev->data->dev_private;
218 	int rc;
219 
220 	sfc_log_init(sa, "entry");
221 
222 	sfc_adapter_lock(sa);
223 	rc = sfc_start(sa);
224 	sfc_adapter_unlock(sa);
225 
226 	sfc_log_init(sa, "done %d", rc);
227 	SFC_ASSERT(rc >= 0);
228 	return -rc;
229 }
230 
231 static int
232 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
233 {
234 	struct sfc_adapter *sa = dev->data->dev_private;
235 	struct rte_eth_link *dev_link = &dev->data->dev_link;
236 	struct rte_eth_link old_link;
237 	struct rte_eth_link current_link;
238 
239 	sfc_log_init(sa, "entry");
240 
241 retry:
242 	EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t));
243 	*(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link);
244 
245 	if (sa->state != SFC_ADAPTER_STARTED) {
246 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
247 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
248 					 *(uint64_t *)&old_link,
249 					 *(uint64_t *)&current_link))
250 			goto retry;
251 	} else if (wait_to_complete) {
252 		efx_link_mode_t link_mode;
253 
254 		if (efx_port_poll(sa->nic, &link_mode) != 0)
255 			link_mode = EFX_LINK_UNKNOWN;
256 		sfc_port_link_mode_to_info(link_mode, &current_link);
257 
258 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
259 					 *(uint64_t *)&old_link,
260 					 *(uint64_t *)&current_link))
261 			goto retry;
262 	} else {
263 		sfc_ev_mgmt_qpoll(sa);
264 		*(int64_t *)&current_link =
265 			rte_atomic64_read((rte_atomic64_t *)dev_link);
266 	}
267 
268 	if (old_link.link_status != current_link.link_status)
269 		sfc_info(sa, "Link status is %s",
270 			 current_link.link_status ? "UP" : "DOWN");
271 
272 	return old_link.link_status == current_link.link_status ? 0 : -1;
273 }
274 
275 static void
276 sfc_dev_stop(struct rte_eth_dev *dev)
277 {
278 	struct sfc_adapter *sa = dev->data->dev_private;
279 
280 	sfc_log_init(sa, "entry");
281 
282 	sfc_adapter_lock(sa);
283 	sfc_stop(sa);
284 	sfc_adapter_unlock(sa);
285 
286 	sfc_log_init(sa, "done");
287 }
288 
289 static int
290 sfc_dev_set_link_up(struct rte_eth_dev *dev)
291 {
292 	struct sfc_adapter *sa = dev->data->dev_private;
293 	int rc;
294 
295 	sfc_log_init(sa, "entry");
296 
297 	sfc_adapter_lock(sa);
298 	rc = sfc_start(sa);
299 	sfc_adapter_unlock(sa);
300 
301 	SFC_ASSERT(rc >= 0);
302 	return -rc;
303 }
304 
305 static int
306 sfc_dev_set_link_down(struct rte_eth_dev *dev)
307 {
308 	struct sfc_adapter *sa = dev->data->dev_private;
309 
310 	sfc_log_init(sa, "entry");
311 
312 	sfc_adapter_lock(sa);
313 	sfc_stop(sa);
314 	sfc_adapter_unlock(sa);
315 
316 	return 0;
317 }
318 
319 static void
320 sfc_dev_close(struct rte_eth_dev *dev)
321 {
322 	struct sfc_adapter *sa = dev->data->dev_private;
323 
324 	sfc_log_init(sa, "entry");
325 
326 	sfc_adapter_lock(sa);
327 	switch (sa->state) {
328 	case SFC_ADAPTER_STARTED:
329 		sfc_stop(sa);
330 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
331 		/* FALLTHROUGH */
332 	case SFC_ADAPTER_CONFIGURED:
333 		sfc_close(sa);
334 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
335 		/* FALLTHROUGH */
336 	case SFC_ADAPTER_INITIALIZED:
337 		break;
338 	default:
339 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
340 		break;
341 	}
342 	sfc_adapter_unlock(sa);
343 
344 	sfc_log_init(sa, "done");
345 }
346 
347 static void
348 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
349 		   boolean_t enabled)
350 {
351 	struct sfc_port *port;
352 	boolean_t *toggle;
353 	struct sfc_adapter *sa = dev->data->dev_private;
354 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
355 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
356 
357 	sfc_adapter_lock(sa);
358 
359 	port = &sa->port;
360 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
361 
362 	if (*toggle != enabled) {
363 		*toggle = enabled;
364 
365 		if (port->isolated) {
366 			sfc_warn(sa, "isolated mode is active on the port");
367 			sfc_warn(sa, "the change is to be applied on the next "
368 				     "start provided that isolated mode is "
369 				     "disabled prior the next start");
370 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
371 			   (sfc_set_rx_mode(sa) != 0)) {
372 			*toggle = !(enabled);
373 			sfc_warn(sa, "Failed to %s %s mode",
374 				 ((enabled) ? "enable" : "disable"), desc);
375 		}
376 	}
377 
378 	sfc_adapter_unlock(sa);
379 }
380 
381 static void
382 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
383 {
384 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
385 }
386 
387 static void
388 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
389 {
390 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
391 }
392 
393 static void
394 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
395 {
396 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
397 }
398 
399 static void
400 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
401 {
402 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
403 }
404 
405 static int
406 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
407 		   uint16_t nb_rx_desc, unsigned int socket_id,
408 		   const struct rte_eth_rxconf *rx_conf,
409 		   struct rte_mempool *mb_pool)
410 {
411 	struct sfc_adapter *sa = dev->data->dev_private;
412 	int rc;
413 
414 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
415 		     rx_queue_id, nb_rx_desc, socket_id);
416 
417 	sfc_adapter_lock(sa);
418 
419 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
420 			  rx_conf, mb_pool);
421 	if (rc != 0)
422 		goto fail_rx_qinit;
423 
424 	dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp;
425 
426 	sfc_adapter_unlock(sa);
427 
428 	return 0;
429 
430 fail_rx_qinit:
431 	sfc_adapter_unlock(sa);
432 	SFC_ASSERT(rc > 0);
433 	return -rc;
434 }
435 
436 static void
437 sfc_rx_queue_release(void *queue)
438 {
439 	struct sfc_dp_rxq *dp_rxq = queue;
440 	struct sfc_rxq *rxq;
441 	struct sfc_adapter *sa;
442 	unsigned int sw_index;
443 
444 	if (dp_rxq == NULL)
445 		return;
446 
447 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
448 	sa = rxq->evq->sa;
449 	sfc_adapter_lock(sa);
450 
451 	sw_index = sfc_rxq_sw_index(rxq);
452 
453 	sfc_log_init(sa, "RxQ=%u", sw_index);
454 
455 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
456 
457 	sfc_rx_qfini(sa, sw_index);
458 
459 	sfc_adapter_unlock(sa);
460 }
461 
462 static int
463 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
464 		   uint16_t nb_tx_desc, unsigned int socket_id,
465 		   const struct rte_eth_txconf *tx_conf)
466 {
467 	struct sfc_adapter *sa = dev->data->dev_private;
468 	int rc;
469 
470 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
471 		     tx_queue_id, nb_tx_desc, socket_id);
472 
473 	sfc_adapter_lock(sa);
474 
475 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
476 	if (rc != 0)
477 		goto fail_tx_qinit;
478 
479 	dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp;
480 
481 	sfc_adapter_unlock(sa);
482 	return 0;
483 
484 fail_tx_qinit:
485 	sfc_adapter_unlock(sa);
486 	SFC_ASSERT(rc > 0);
487 	return -rc;
488 }
489 
490 static void
491 sfc_tx_queue_release(void *queue)
492 {
493 	struct sfc_dp_txq *dp_txq = queue;
494 	struct sfc_txq *txq;
495 	unsigned int sw_index;
496 	struct sfc_adapter *sa;
497 
498 	if (dp_txq == NULL)
499 		return;
500 
501 	txq = sfc_txq_by_dp_txq(dp_txq);
502 	sw_index = sfc_txq_sw_index(txq);
503 
504 	SFC_ASSERT(txq->evq != NULL);
505 	sa = txq->evq->sa;
506 
507 	sfc_log_init(sa, "TxQ = %u", sw_index);
508 
509 	sfc_adapter_lock(sa);
510 
511 	SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues);
512 	sa->eth_dev->data->tx_queues[sw_index] = NULL;
513 
514 	sfc_tx_qfini(sa, sw_index);
515 
516 	sfc_adapter_unlock(sa);
517 }
518 
519 static int
520 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
521 {
522 	struct sfc_adapter *sa = dev->data->dev_private;
523 	struct sfc_port *port = &sa->port;
524 	uint64_t *mac_stats;
525 	int ret;
526 
527 	rte_spinlock_lock(&port->mac_stats_lock);
528 
529 	ret = sfc_port_update_mac_stats(sa);
530 	if (ret != 0)
531 		goto unlock;
532 
533 	mac_stats = port->mac_stats_buf;
534 
535 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
536 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
537 		stats->ipackets =
538 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
539 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
540 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
541 		stats->opackets =
542 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
543 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
544 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
545 		stats->ibytes =
546 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
547 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
548 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
549 		stats->obytes =
550 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
551 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
552 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
553 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW];
554 		stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
555 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
556 	} else {
557 		stats->ipackets = mac_stats[EFX_MAC_RX_PKTS];
558 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
559 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
560 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
561 		/*
562 		 * Take into account stats which are whenever supported
563 		 * on EF10. If some stat is not supported by current
564 		 * firmware variant or HW revision, it is guaranteed
565 		 * to be zero in mac_stats.
566 		 */
567 		stats->imissed =
568 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
569 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
570 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
571 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
572 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
573 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
574 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
575 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
576 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
577 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
578 		stats->ierrors =
579 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
580 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
581 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
582 		/* no oerrors counters supported on EF10 */
583 	}
584 
585 unlock:
586 	rte_spinlock_unlock(&port->mac_stats_lock);
587 	SFC_ASSERT(ret >= 0);
588 	return -ret;
589 }
590 
591 static void
592 sfc_stats_reset(struct rte_eth_dev *dev)
593 {
594 	struct sfc_adapter *sa = dev->data->dev_private;
595 	struct sfc_port *port = &sa->port;
596 	int rc;
597 
598 	if (sa->state != SFC_ADAPTER_STARTED) {
599 		/*
600 		 * The operation cannot be done if port is not started; it
601 		 * will be scheduled to be done during the next port start
602 		 */
603 		port->mac_stats_reset_pending = B_TRUE;
604 		return;
605 	}
606 
607 	rc = sfc_port_reset_mac_stats(sa);
608 	if (rc != 0)
609 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
610 }
611 
612 static int
613 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
614 	       unsigned int xstats_count)
615 {
616 	struct sfc_adapter *sa = dev->data->dev_private;
617 	struct sfc_port *port = &sa->port;
618 	uint64_t *mac_stats;
619 	int rc;
620 	unsigned int i;
621 	int nstats = 0;
622 
623 	rte_spinlock_lock(&port->mac_stats_lock);
624 
625 	rc = sfc_port_update_mac_stats(sa);
626 	if (rc != 0) {
627 		SFC_ASSERT(rc > 0);
628 		nstats = -rc;
629 		goto unlock;
630 	}
631 
632 	mac_stats = port->mac_stats_buf;
633 
634 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
635 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
636 			if (xstats != NULL && nstats < (int)xstats_count) {
637 				xstats[nstats].id = nstats;
638 				xstats[nstats].value = mac_stats[i];
639 			}
640 			nstats++;
641 		}
642 	}
643 
644 unlock:
645 	rte_spinlock_unlock(&port->mac_stats_lock);
646 
647 	return nstats;
648 }
649 
650 static int
651 sfc_xstats_get_names(struct rte_eth_dev *dev,
652 		     struct rte_eth_xstat_name *xstats_names,
653 		     unsigned int xstats_count)
654 {
655 	struct sfc_adapter *sa = dev->data->dev_private;
656 	struct sfc_port *port = &sa->port;
657 	unsigned int i;
658 	unsigned int nstats = 0;
659 
660 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
661 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
662 			if (xstats_names != NULL && nstats < xstats_count)
663 				strncpy(xstats_names[nstats].name,
664 					efx_mac_stat_name(sa->nic, i),
665 					sizeof(xstats_names[0].name));
666 			nstats++;
667 		}
668 	}
669 
670 	return nstats;
671 }
672 
673 static int
674 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
675 		     uint64_t *values, unsigned int n)
676 {
677 	struct sfc_adapter *sa = dev->data->dev_private;
678 	struct sfc_port *port = &sa->port;
679 	uint64_t *mac_stats;
680 	unsigned int nb_supported = 0;
681 	unsigned int nb_written = 0;
682 	unsigned int i;
683 	int ret;
684 	int rc;
685 
686 	if (unlikely(values == NULL) ||
687 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
688 		return port->mac_stats_nb_supported;
689 
690 	rte_spinlock_lock(&port->mac_stats_lock);
691 
692 	rc = sfc_port_update_mac_stats(sa);
693 	if (rc != 0) {
694 		SFC_ASSERT(rc > 0);
695 		ret = -rc;
696 		goto unlock;
697 	}
698 
699 	mac_stats = port->mac_stats_buf;
700 
701 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
702 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
703 			continue;
704 
705 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
706 			values[nb_written++] = mac_stats[i];
707 
708 		++nb_supported;
709 	}
710 
711 	ret = nb_written;
712 
713 unlock:
714 	rte_spinlock_unlock(&port->mac_stats_lock);
715 
716 	return ret;
717 }
718 
719 static int
720 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
721 			   struct rte_eth_xstat_name *xstats_names,
722 			   const uint64_t *ids, unsigned int size)
723 {
724 	struct sfc_adapter *sa = dev->data->dev_private;
725 	struct sfc_port *port = &sa->port;
726 	unsigned int nb_supported = 0;
727 	unsigned int nb_written = 0;
728 	unsigned int i;
729 
730 	if (unlikely(xstats_names == NULL) ||
731 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
732 		return port->mac_stats_nb_supported;
733 
734 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
735 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
736 			continue;
737 
738 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
739 			char *name = xstats_names[nb_written++].name;
740 
741 			strncpy(name, efx_mac_stat_name(sa->nic, i),
742 				sizeof(xstats_names[0].name));
743 			name[sizeof(xstats_names[0].name) - 1] = '\0';
744 		}
745 
746 		++nb_supported;
747 	}
748 
749 	return nb_written;
750 }
751 
752 static int
753 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
754 {
755 	struct sfc_adapter *sa = dev->data->dev_private;
756 	unsigned int wanted_fc, link_fc;
757 
758 	memset(fc_conf, 0, sizeof(*fc_conf));
759 
760 	sfc_adapter_lock(sa);
761 
762 	if (sa->state == SFC_ADAPTER_STARTED)
763 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
764 	else
765 		link_fc = sa->port.flow_ctrl;
766 
767 	switch (link_fc) {
768 	case 0:
769 		fc_conf->mode = RTE_FC_NONE;
770 		break;
771 	case EFX_FCNTL_RESPOND:
772 		fc_conf->mode = RTE_FC_RX_PAUSE;
773 		break;
774 	case EFX_FCNTL_GENERATE:
775 		fc_conf->mode = RTE_FC_TX_PAUSE;
776 		break;
777 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
778 		fc_conf->mode = RTE_FC_FULL;
779 		break;
780 	default:
781 		sfc_err(sa, "%s: unexpected flow control value %#x",
782 			__func__, link_fc);
783 	}
784 
785 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
786 
787 	sfc_adapter_unlock(sa);
788 
789 	return 0;
790 }
791 
792 static int
793 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
794 {
795 	struct sfc_adapter *sa = dev->data->dev_private;
796 	struct sfc_port *port = &sa->port;
797 	unsigned int fcntl;
798 	int rc;
799 
800 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
801 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
802 	    fc_conf->mac_ctrl_frame_fwd != 0) {
803 		sfc_err(sa, "unsupported flow control settings specified");
804 		rc = EINVAL;
805 		goto fail_inval;
806 	}
807 
808 	switch (fc_conf->mode) {
809 	case RTE_FC_NONE:
810 		fcntl = 0;
811 		break;
812 	case RTE_FC_RX_PAUSE:
813 		fcntl = EFX_FCNTL_RESPOND;
814 		break;
815 	case RTE_FC_TX_PAUSE:
816 		fcntl = EFX_FCNTL_GENERATE;
817 		break;
818 	case RTE_FC_FULL:
819 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
820 		break;
821 	default:
822 		rc = EINVAL;
823 		goto fail_inval;
824 	}
825 
826 	sfc_adapter_lock(sa);
827 
828 	if (sa->state == SFC_ADAPTER_STARTED) {
829 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
830 		if (rc != 0)
831 			goto fail_mac_fcntl_set;
832 	}
833 
834 	port->flow_ctrl = fcntl;
835 	port->flow_ctrl_autoneg = fc_conf->autoneg;
836 
837 	sfc_adapter_unlock(sa);
838 
839 	return 0;
840 
841 fail_mac_fcntl_set:
842 	sfc_adapter_unlock(sa);
843 fail_inval:
844 	SFC_ASSERT(rc > 0);
845 	return -rc;
846 }
847 
848 static int
849 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
850 {
851 	struct sfc_adapter *sa = dev->data->dev_private;
852 	size_t pdu = EFX_MAC_PDU(mtu);
853 	size_t old_pdu;
854 	int rc;
855 
856 	sfc_log_init(sa, "mtu=%u", mtu);
857 
858 	rc = EINVAL;
859 	if (pdu < EFX_MAC_PDU_MIN) {
860 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
861 			(unsigned int)mtu, (unsigned int)pdu,
862 			EFX_MAC_PDU_MIN);
863 		goto fail_inval;
864 	}
865 	if (pdu > EFX_MAC_PDU_MAX) {
866 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
867 			(unsigned int)mtu, (unsigned int)pdu,
868 			EFX_MAC_PDU_MAX);
869 		goto fail_inval;
870 	}
871 
872 	sfc_adapter_lock(sa);
873 
874 	if (pdu != sa->port.pdu) {
875 		if (sa->state == SFC_ADAPTER_STARTED) {
876 			sfc_stop(sa);
877 
878 			old_pdu = sa->port.pdu;
879 			sa->port.pdu = pdu;
880 			rc = sfc_start(sa);
881 			if (rc != 0)
882 				goto fail_start;
883 		} else {
884 			sa->port.pdu = pdu;
885 		}
886 	}
887 
888 	/*
889 	 * The driver does not use it, but other PMDs update jumbo_frame
890 	 * flag and max_rx_pkt_len when MTU is set.
891 	 */
892 	dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN);
893 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
894 
895 	sfc_adapter_unlock(sa);
896 
897 	sfc_log_init(sa, "done");
898 	return 0;
899 
900 fail_start:
901 	sa->port.pdu = old_pdu;
902 	if (sfc_start(sa) != 0)
903 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
904 			"PDU max size - port is stopped",
905 			(unsigned int)pdu, (unsigned int)old_pdu);
906 	sfc_adapter_unlock(sa);
907 
908 fail_inval:
909 	sfc_log_init(sa, "failed %d", rc);
910 	SFC_ASSERT(rc > 0);
911 	return -rc;
912 }
913 static void
914 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
915 {
916 	struct sfc_adapter *sa = dev->data->dev_private;
917 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
918 	struct sfc_port *port = &sa->port;
919 	int rc;
920 
921 	sfc_adapter_lock(sa);
922 
923 	/*
924 	 * Copy the address to the device private data so that
925 	 * it could be recalled in the case of adapter restart.
926 	 */
927 	ether_addr_copy(mac_addr, &port->default_mac_addr);
928 
929 	if (port->isolated) {
930 		sfc_err(sa, "isolated mode is active on the port");
931 		sfc_err(sa, "will not set MAC address");
932 		goto unlock;
933 	}
934 
935 	if (sa->state != SFC_ADAPTER_STARTED) {
936 		sfc_info(sa, "the port is not started");
937 		sfc_info(sa, "the new MAC address will be set on port start");
938 
939 		goto unlock;
940 	}
941 
942 	if (encp->enc_allow_set_mac_with_installed_filters) {
943 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
944 		if (rc != 0) {
945 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
946 			goto unlock;
947 		}
948 
949 		/*
950 		 * Changing the MAC address by means of MCDI request
951 		 * has no effect on received traffic, therefore
952 		 * we also need to update unicast filters
953 		 */
954 		rc = sfc_set_rx_mode(sa);
955 		if (rc != 0)
956 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
957 	} else {
958 		sfc_warn(sa, "cannot set MAC address with filters installed");
959 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
960 		sfc_warn(sa, "(some traffic may be dropped)");
961 
962 		/*
963 		 * Since setting MAC address with filters installed is not
964 		 * allowed on the adapter, the new MAC address will be set
965 		 * by means of adapter restart. sfc_start() shall retrieve
966 		 * the new address from the device private data and set it.
967 		 */
968 		sfc_stop(sa);
969 		rc = sfc_start(sa);
970 		if (rc != 0)
971 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
972 	}
973 
974 unlock:
975 	/*
976 	 * In the case of failure sa->port->default_mac_addr does not
977 	 * need rollback since no error code is returned, and the upper
978 	 * API will anyway update the external MAC address storage.
979 	 * To be consistent with that new value it is better to keep
980 	 * the device private value the same.
981 	 */
982 	sfc_adapter_unlock(sa);
983 }
984 
985 
986 static int
987 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
988 		     uint32_t nb_mc_addr)
989 {
990 	struct sfc_adapter *sa = dev->data->dev_private;
991 	struct sfc_port *port = &sa->port;
992 	uint8_t *mc_addrs = port->mcast_addrs;
993 	int rc;
994 	unsigned int i;
995 
996 	if (port->isolated) {
997 		sfc_err(sa, "isolated mode is active on the port");
998 		sfc_err(sa, "will not set multicast address list");
999 		return -ENOTSUP;
1000 	}
1001 
1002 	if (mc_addrs == NULL)
1003 		return -ENOBUFS;
1004 
1005 	if (nb_mc_addr > port->max_mcast_addrs) {
1006 		sfc_err(sa, "too many multicast addresses: %u > %u",
1007 			 nb_mc_addr, port->max_mcast_addrs);
1008 		return -EINVAL;
1009 	}
1010 
1011 	for (i = 0; i < nb_mc_addr; ++i) {
1012 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1013 				 EFX_MAC_ADDR_LEN);
1014 		mc_addrs += EFX_MAC_ADDR_LEN;
1015 	}
1016 
1017 	port->nb_mcast_addrs = nb_mc_addr;
1018 
1019 	if (sa->state != SFC_ADAPTER_STARTED)
1020 		return 0;
1021 
1022 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1023 					port->nb_mcast_addrs);
1024 	if (rc != 0)
1025 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1026 
1027 	SFC_ASSERT(rc > 0);
1028 	return -rc;
1029 }
1030 
1031 /*
1032  * The function is used by the secondary process as well. It must not
1033  * use any process-local pointers from the adapter data.
1034  */
1035 static void
1036 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1037 		      struct rte_eth_rxq_info *qinfo)
1038 {
1039 	struct sfc_adapter *sa = dev->data->dev_private;
1040 	struct sfc_rxq_info *rxq_info;
1041 	struct sfc_rxq *rxq;
1042 
1043 	sfc_adapter_lock(sa);
1044 
1045 	SFC_ASSERT(rx_queue_id < sa->rxq_count);
1046 
1047 	rxq_info = &sa->rxq_info[rx_queue_id];
1048 	rxq = rxq_info->rxq;
1049 	SFC_ASSERT(rxq != NULL);
1050 
1051 	qinfo->mp = rxq->refill_mb_pool;
1052 	qinfo->conf.rx_free_thresh = rxq->refill_threshold;
1053 	qinfo->conf.rx_drop_en = 1;
1054 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1055 	qinfo->scattered_rx =
1056 		((rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) != 0);
1057 	qinfo->nb_desc = rxq_info->entries;
1058 
1059 	sfc_adapter_unlock(sa);
1060 }
1061 
1062 /*
1063  * The function is used by the secondary process as well. It must not
1064  * use any process-local pointers from the adapter data.
1065  */
1066 static void
1067 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1068 		      struct rte_eth_txq_info *qinfo)
1069 {
1070 	struct sfc_adapter *sa = dev->data->dev_private;
1071 	struct sfc_txq_info *txq_info;
1072 
1073 	sfc_adapter_lock(sa);
1074 
1075 	SFC_ASSERT(tx_queue_id < sa->txq_count);
1076 
1077 	txq_info = &sa->txq_info[tx_queue_id];
1078 	SFC_ASSERT(txq_info->txq != NULL);
1079 
1080 	memset(qinfo, 0, sizeof(*qinfo));
1081 
1082 	qinfo->conf.txq_flags = txq_info->txq->flags;
1083 	qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
1084 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1085 	qinfo->nb_desc = txq_info->entries;
1086 
1087 	sfc_adapter_unlock(sa);
1088 }
1089 
1090 static uint32_t
1091 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1092 {
1093 	struct sfc_adapter *sa = dev->data->dev_private;
1094 
1095 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1096 
1097 	return sfc_rx_qdesc_npending(sa, rx_queue_id);
1098 }
1099 
1100 static int
1101 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1102 {
1103 	struct sfc_dp_rxq *dp_rxq = queue;
1104 
1105 	return sfc_rx_qdesc_done(dp_rxq, offset);
1106 }
1107 
1108 static int
1109 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1110 {
1111 	struct sfc_dp_rxq *dp_rxq = queue;
1112 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
1113 
1114 	return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset);
1115 }
1116 
1117 static int
1118 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1119 {
1120 	struct sfc_dp_txq *dp_txq = queue;
1121 	struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
1122 
1123 	return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset);
1124 }
1125 
1126 static int
1127 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1128 {
1129 	struct sfc_adapter *sa = dev->data->dev_private;
1130 	int rc;
1131 
1132 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1133 
1134 	sfc_adapter_lock(sa);
1135 
1136 	rc = EINVAL;
1137 	if (sa->state != SFC_ADAPTER_STARTED)
1138 		goto fail_not_started;
1139 
1140 	rc = sfc_rx_qstart(sa, rx_queue_id);
1141 	if (rc != 0)
1142 		goto fail_rx_qstart;
1143 
1144 	sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1145 
1146 	sfc_adapter_unlock(sa);
1147 
1148 	return 0;
1149 
1150 fail_rx_qstart:
1151 fail_not_started:
1152 	sfc_adapter_unlock(sa);
1153 	SFC_ASSERT(rc > 0);
1154 	return -rc;
1155 }
1156 
1157 static int
1158 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1159 {
1160 	struct sfc_adapter *sa = dev->data->dev_private;
1161 
1162 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1163 
1164 	sfc_adapter_lock(sa);
1165 	sfc_rx_qstop(sa, rx_queue_id);
1166 
1167 	sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1168 
1169 	sfc_adapter_unlock(sa);
1170 
1171 	return 0;
1172 }
1173 
1174 static int
1175 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1176 {
1177 	struct sfc_adapter *sa = dev->data->dev_private;
1178 	int rc;
1179 
1180 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1181 
1182 	sfc_adapter_lock(sa);
1183 
1184 	rc = EINVAL;
1185 	if (sa->state != SFC_ADAPTER_STARTED)
1186 		goto fail_not_started;
1187 
1188 	rc = sfc_tx_qstart(sa, tx_queue_id);
1189 	if (rc != 0)
1190 		goto fail_tx_qstart;
1191 
1192 	sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
1193 
1194 	sfc_adapter_unlock(sa);
1195 	return 0;
1196 
1197 fail_tx_qstart:
1198 
1199 fail_not_started:
1200 	sfc_adapter_unlock(sa);
1201 	SFC_ASSERT(rc > 0);
1202 	return -rc;
1203 }
1204 
1205 static int
1206 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1207 {
1208 	struct sfc_adapter *sa = dev->data->dev_private;
1209 
1210 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1211 
1212 	sfc_adapter_lock(sa);
1213 
1214 	sfc_tx_qstop(sa, tx_queue_id);
1215 
1216 	sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1217 
1218 	sfc_adapter_unlock(sa);
1219 	return 0;
1220 }
1221 
1222 static efx_tunnel_protocol_t
1223 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1224 {
1225 	switch (rte_type) {
1226 	case RTE_TUNNEL_TYPE_VXLAN:
1227 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1228 	case RTE_TUNNEL_TYPE_GENEVE:
1229 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1230 	default:
1231 		return EFX_TUNNEL_NPROTOS;
1232 	}
1233 }
1234 
1235 enum sfc_udp_tunnel_op_e {
1236 	SFC_UDP_TUNNEL_ADD_PORT,
1237 	SFC_UDP_TUNNEL_DEL_PORT,
1238 };
1239 
1240 static int
1241 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1242 		      struct rte_eth_udp_tunnel *tunnel_udp,
1243 		      enum sfc_udp_tunnel_op_e op)
1244 {
1245 	struct sfc_adapter *sa = dev->data->dev_private;
1246 	efx_tunnel_protocol_t tunnel_proto;
1247 	int rc;
1248 
1249 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1250 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1251 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1252 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1253 
1254 	tunnel_proto =
1255 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1256 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1257 		rc = ENOTSUP;
1258 		goto fail_bad_proto;
1259 	}
1260 
1261 	sfc_adapter_lock(sa);
1262 
1263 	switch (op) {
1264 	case SFC_UDP_TUNNEL_ADD_PORT:
1265 		rc = efx_tunnel_config_udp_add(sa->nic,
1266 					       tunnel_udp->udp_port,
1267 					       tunnel_proto);
1268 		break;
1269 	case SFC_UDP_TUNNEL_DEL_PORT:
1270 		rc = efx_tunnel_config_udp_remove(sa->nic,
1271 						  tunnel_udp->udp_port,
1272 						  tunnel_proto);
1273 		break;
1274 	default:
1275 		rc = EINVAL;
1276 		goto fail_bad_op;
1277 	}
1278 
1279 	if (rc != 0)
1280 		goto fail_op;
1281 
1282 	if (sa->state == SFC_ADAPTER_STARTED) {
1283 		rc = efx_tunnel_reconfigure(sa->nic);
1284 		if (rc == EAGAIN) {
1285 			/*
1286 			 * Configuration is accepted by FW and MC reboot
1287 			 * is initiated to apply the changes. MC reboot
1288 			 * will be handled in a usual way (MC reboot
1289 			 * event on management event queue and adapter
1290 			 * restart).
1291 			 */
1292 			rc = 0;
1293 		} else if (rc != 0) {
1294 			goto fail_reconfigure;
1295 		}
1296 	}
1297 
1298 	sfc_adapter_unlock(sa);
1299 	return 0;
1300 
1301 fail_reconfigure:
1302 	/* Remove/restore entry since the change makes the trouble */
1303 	switch (op) {
1304 	case SFC_UDP_TUNNEL_ADD_PORT:
1305 		(void)efx_tunnel_config_udp_remove(sa->nic,
1306 						   tunnel_udp->udp_port,
1307 						   tunnel_proto);
1308 		break;
1309 	case SFC_UDP_TUNNEL_DEL_PORT:
1310 		(void)efx_tunnel_config_udp_add(sa->nic,
1311 						tunnel_udp->udp_port,
1312 						tunnel_proto);
1313 		break;
1314 	}
1315 
1316 fail_op:
1317 fail_bad_op:
1318 	sfc_adapter_unlock(sa);
1319 
1320 fail_bad_proto:
1321 	SFC_ASSERT(rc > 0);
1322 	return -rc;
1323 }
1324 
1325 static int
1326 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1327 			    struct rte_eth_udp_tunnel *tunnel_udp)
1328 {
1329 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1330 }
1331 
1332 static int
1333 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1334 			    struct rte_eth_udp_tunnel *tunnel_udp)
1335 {
1336 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1337 }
1338 
1339 #if EFSYS_OPT_RX_SCALE
1340 static int
1341 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1342 			  struct rte_eth_rss_conf *rss_conf)
1343 {
1344 	struct sfc_adapter *sa = dev->data->dev_private;
1345 	struct sfc_port *port = &sa->port;
1346 
1347 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1348 		return -ENOTSUP;
1349 
1350 	if (sa->rss_channels == 0)
1351 		return -EINVAL;
1352 
1353 	sfc_adapter_lock(sa);
1354 
1355 	/*
1356 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1357 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1358 	 * flags which corresponds to the active EFX configuration stored
1359 	 * locally in 'sfc_adapter' and kept up-to-date
1360 	 */
1361 	rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types);
1362 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1363 	if (rss_conf->rss_key != NULL)
1364 		rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE);
1365 
1366 	sfc_adapter_unlock(sa);
1367 
1368 	return 0;
1369 }
1370 
1371 static int
1372 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1373 			struct rte_eth_rss_conf *rss_conf)
1374 {
1375 	struct sfc_adapter *sa = dev->data->dev_private;
1376 	struct sfc_port *port = &sa->port;
1377 	unsigned int efx_hash_types;
1378 	int rc = 0;
1379 
1380 	if (port->isolated)
1381 		return -ENOTSUP;
1382 
1383 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1384 		sfc_err(sa, "RSS is not available");
1385 		return -ENOTSUP;
1386 	}
1387 
1388 	if (sa->rss_channels == 0) {
1389 		sfc_err(sa, "RSS is not configured");
1390 		return -EINVAL;
1391 	}
1392 
1393 	if ((rss_conf->rss_key != NULL) &&
1394 	    (rss_conf->rss_key_len != sizeof(sa->rss_key))) {
1395 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1396 			sizeof(sa->rss_key));
1397 		return -EINVAL;
1398 	}
1399 
1400 	if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) {
1401 		sfc_err(sa, "unsupported hash functions requested");
1402 		return -EINVAL;
1403 	}
1404 
1405 	sfc_adapter_lock(sa);
1406 
1407 	efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf);
1408 
1409 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1410 				   EFX_RX_HASHALG_TOEPLITZ,
1411 				   efx_hash_types, B_TRUE);
1412 	if (rc != 0)
1413 		goto fail_scale_mode_set;
1414 
1415 	if (rss_conf->rss_key != NULL) {
1416 		if (sa->state == SFC_ADAPTER_STARTED) {
1417 			rc = efx_rx_scale_key_set(sa->nic,
1418 						  EFX_RSS_CONTEXT_DEFAULT,
1419 						  rss_conf->rss_key,
1420 						  sizeof(sa->rss_key));
1421 			if (rc != 0)
1422 				goto fail_scale_key_set;
1423 		}
1424 
1425 		rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key));
1426 	}
1427 
1428 	sa->rss_hash_types = efx_hash_types;
1429 
1430 	sfc_adapter_unlock(sa);
1431 
1432 	return 0;
1433 
1434 fail_scale_key_set:
1435 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1436 				  EFX_RX_HASHALG_TOEPLITZ,
1437 				  sa->rss_hash_types, B_TRUE) != 0)
1438 		sfc_err(sa, "failed to restore RSS mode");
1439 
1440 fail_scale_mode_set:
1441 	sfc_adapter_unlock(sa);
1442 	return -rc;
1443 }
1444 
1445 static int
1446 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1447 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1448 		       uint16_t reta_size)
1449 {
1450 	struct sfc_adapter *sa = dev->data->dev_private;
1451 	struct sfc_port *port = &sa->port;
1452 	int entry;
1453 
1454 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1455 		return -ENOTSUP;
1456 
1457 	if (sa->rss_channels == 0)
1458 		return -EINVAL;
1459 
1460 	if (reta_size != EFX_RSS_TBL_SIZE)
1461 		return -EINVAL;
1462 
1463 	sfc_adapter_lock(sa);
1464 
1465 	for (entry = 0; entry < reta_size; entry++) {
1466 		int grp = entry / RTE_RETA_GROUP_SIZE;
1467 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1468 
1469 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1470 			reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry];
1471 	}
1472 
1473 	sfc_adapter_unlock(sa);
1474 
1475 	return 0;
1476 }
1477 
1478 static int
1479 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1480 			struct rte_eth_rss_reta_entry64 *reta_conf,
1481 			uint16_t reta_size)
1482 {
1483 	struct sfc_adapter *sa = dev->data->dev_private;
1484 	struct sfc_port *port = &sa->port;
1485 	unsigned int *rss_tbl_new;
1486 	uint16_t entry;
1487 	int rc = 0;
1488 
1489 
1490 	if (port->isolated)
1491 		return -ENOTSUP;
1492 
1493 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1494 		sfc_err(sa, "RSS is not available");
1495 		return -ENOTSUP;
1496 	}
1497 
1498 	if (sa->rss_channels == 0) {
1499 		sfc_err(sa, "RSS is not configured");
1500 		return -EINVAL;
1501 	}
1502 
1503 	if (reta_size != EFX_RSS_TBL_SIZE) {
1504 		sfc_err(sa, "RETA size is wrong (should be %u)",
1505 			EFX_RSS_TBL_SIZE);
1506 		return -EINVAL;
1507 	}
1508 
1509 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0);
1510 	if (rss_tbl_new == NULL)
1511 		return -ENOMEM;
1512 
1513 	sfc_adapter_lock(sa);
1514 
1515 	rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl));
1516 
1517 	for (entry = 0; entry < reta_size; entry++) {
1518 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1519 		struct rte_eth_rss_reta_entry64 *grp;
1520 
1521 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1522 
1523 		if (grp->mask & (1ull << grp_idx)) {
1524 			if (grp->reta[grp_idx] >= sa->rss_channels) {
1525 				rc = EINVAL;
1526 				goto bad_reta_entry;
1527 			}
1528 			rss_tbl_new[entry] = grp->reta[grp_idx];
1529 		}
1530 	}
1531 
1532 	if (sa->state == SFC_ADAPTER_STARTED) {
1533 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1534 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1535 		if (rc != 0)
1536 			goto fail_scale_tbl_set;
1537 	}
1538 
1539 	rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl));
1540 
1541 fail_scale_tbl_set:
1542 bad_reta_entry:
1543 	sfc_adapter_unlock(sa);
1544 
1545 	rte_free(rss_tbl_new);
1546 
1547 	SFC_ASSERT(rc >= 0);
1548 	return -rc;
1549 }
1550 #endif
1551 
1552 static int
1553 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1554 		    enum rte_filter_op filter_op,
1555 		    void *arg)
1556 {
1557 	struct sfc_adapter *sa = dev->data->dev_private;
1558 	int rc = ENOTSUP;
1559 
1560 	sfc_log_init(sa, "entry");
1561 
1562 	switch (filter_type) {
1563 	case RTE_ETH_FILTER_NONE:
1564 		sfc_err(sa, "Global filters configuration not supported");
1565 		break;
1566 	case RTE_ETH_FILTER_MACVLAN:
1567 		sfc_err(sa, "MACVLAN filters not supported");
1568 		break;
1569 	case RTE_ETH_FILTER_ETHERTYPE:
1570 		sfc_err(sa, "EtherType filters not supported");
1571 		break;
1572 	case RTE_ETH_FILTER_FLEXIBLE:
1573 		sfc_err(sa, "Flexible filters not supported");
1574 		break;
1575 	case RTE_ETH_FILTER_SYN:
1576 		sfc_err(sa, "SYN filters not supported");
1577 		break;
1578 	case RTE_ETH_FILTER_NTUPLE:
1579 		sfc_err(sa, "NTUPLE filters not supported");
1580 		break;
1581 	case RTE_ETH_FILTER_TUNNEL:
1582 		sfc_err(sa, "Tunnel filters not supported");
1583 		break;
1584 	case RTE_ETH_FILTER_FDIR:
1585 		sfc_err(sa, "Flow Director filters not supported");
1586 		break;
1587 	case RTE_ETH_FILTER_HASH:
1588 		sfc_err(sa, "Hash filters not supported");
1589 		break;
1590 	case RTE_ETH_FILTER_GENERIC:
1591 		if (filter_op != RTE_ETH_FILTER_GET) {
1592 			rc = EINVAL;
1593 		} else {
1594 			*(const void **)arg = &sfc_flow_ops;
1595 			rc = 0;
1596 		}
1597 		break;
1598 	default:
1599 		sfc_err(sa, "Unknown filter type %u", filter_type);
1600 		break;
1601 	}
1602 
1603 	sfc_log_init(sa, "exit: %d", -rc);
1604 	SFC_ASSERT(rc >= 0);
1605 	return -rc;
1606 }
1607 
1608 static const struct eth_dev_ops sfc_eth_dev_ops = {
1609 	.dev_configure			= sfc_dev_configure,
1610 	.dev_start			= sfc_dev_start,
1611 	.dev_stop			= sfc_dev_stop,
1612 	.dev_set_link_up		= sfc_dev_set_link_up,
1613 	.dev_set_link_down		= sfc_dev_set_link_down,
1614 	.dev_close			= sfc_dev_close,
1615 	.promiscuous_enable		= sfc_dev_promisc_enable,
1616 	.promiscuous_disable		= sfc_dev_promisc_disable,
1617 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1618 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1619 	.link_update			= sfc_dev_link_update,
1620 	.stats_get			= sfc_stats_get,
1621 	.stats_reset			= sfc_stats_reset,
1622 	.xstats_get			= sfc_xstats_get,
1623 	.xstats_reset			= sfc_stats_reset,
1624 	.xstats_get_names		= sfc_xstats_get_names,
1625 	.dev_infos_get			= sfc_dev_infos_get,
1626 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1627 	.mtu_set			= sfc_dev_set_mtu,
1628 	.rx_queue_start			= sfc_rx_queue_start,
1629 	.rx_queue_stop			= sfc_rx_queue_stop,
1630 	.tx_queue_start			= sfc_tx_queue_start,
1631 	.tx_queue_stop			= sfc_tx_queue_stop,
1632 	.rx_queue_setup			= sfc_rx_queue_setup,
1633 	.rx_queue_release		= sfc_rx_queue_release,
1634 	.rx_queue_count			= sfc_rx_queue_count,
1635 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1636 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1637 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1638 	.tx_queue_setup			= sfc_tx_queue_setup,
1639 	.tx_queue_release		= sfc_tx_queue_release,
1640 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1641 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1642 	.mac_addr_set			= sfc_mac_addr_set,
1643 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1644 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1645 #if EFSYS_OPT_RX_SCALE
1646 	.reta_update			= sfc_dev_rss_reta_update,
1647 	.reta_query			= sfc_dev_rss_reta_query,
1648 	.rss_hash_update		= sfc_dev_rss_hash_update,
1649 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1650 #endif
1651 	.filter_ctrl			= sfc_dev_filter_ctrl,
1652 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1653 	.rxq_info_get			= sfc_rx_queue_info_get,
1654 	.txq_info_get			= sfc_tx_queue_info_get,
1655 	.fw_version_get			= sfc_fw_version_get,
1656 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1657 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1658 };
1659 
1660 /**
1661  * Duplicate a string in potentially shared memory required for
1662  * multi-process support.
1663  *
1664  * strdup() allocates from process-local heap/memory.
1665  */
1666 static char *
1667 sfc_strdup(const char *str)
1668 {
1669 	size_t size;
1670 	char *copy;
1671 
1672 	if (str == NULL)
1673 		return NULL;
1674 
1675 	size = strlen(str) + 1;
1676 	copy = rte_malloc(__func__, size, 0);
1677 	if (copy != NULL)
1678 		rte_memcpy(copy, str, size);
1679 
1680 	return copy;
1681 }
1682 
1683 static int
1684 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1685 {
1686 	struct sfc_adapter *sa = dev->data->dev_private;
1687 	unsigned int avail_caps = 0;
1688 	const char *rx_name = NULL;
1689 	const char *tx_name = NULL;
1690 	int rc;
1691 
1692 	switch (sa->family) {
1693 	case EFX_FAMILY_HUNTINGTON:
1694 	case EFX_FAMILY_MEDFORD:
1695 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1696 		break;
1697 	default:
1698 		break;
1699 	}
1700 
1701 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1702 				sfc_kvarg_string_handler, &rx_name);
1703 	if (rc != 0)
1704 		goto fail_kvarg_rx_datapath;
1705 
1706 	if (rx_name != NULL) {
1707 		sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1708 		if (sa->dp_rx == NULL) {
1709 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1710 			rc = ENOENT;
1711 			goto fail_dp_rx;
1712 		}
1713 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) {
1714 			sfc_err(sa,
1715 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1716 				rx_name);
1717 			rc = EINVAL;
1718 			goto fail_dp_rx_caps;
1719 		}
1720 	} else {
1721 		sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1722 		if (sa->dp_rx == NULL) {
1723 			sfc_err(sa, "Rx datapath by caps %#x not found",
1724 				avail_caps);
1725 			rc = ENOENT;
1726 			goto fail_dp_rx;
1727 		}
1728 	}
1729 
1730 	sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name);
1731 	if (sa->dp_rx_name == NULL) {
1732 		rc = ENOMEM;
1733 		goto fail_dp_rx_name;
1734 	}
1735 
1736 	sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name);
1737 
1738 	dev->rx_pkt_burst = sa->dp_rx->pkt_burst;
1739 
1740 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1741 				sfc_kvarg_string_handler, &tx_name);
1742 	if (rc != 0)
1743 		goto fail_kvarg_tx_datapath;
1744 
1745 	if (tx_name != NULL) {
1746 		sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1747 		if (sa->dp_tx == NULL) {
1748 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1749 			rc = ENOENT;
1750 			goto fail_dp_tx;
1751 		}
1752 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) {
1753 			sfc_err(sa,
1754 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1755 				tx_name);
1756 			rc = EINVAL;
1757 			goto fail_dp_tx_caps;
1758 		}
1759 	} else {
1760 		sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1761 		if (sa->dp_tx == NULL) {
1762 			sfc_err(sa, "Tx datapath by caps %#x not found",
1763 				avail_caps);
1764 			rc = ENOENT;
1765 			goto fail_dp_tx;
1766 		}
1767 	}
1768 
1769 	sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name);
1770 	if (sa->dp_tx_name == NULL) {
1771 		rc = ENOMEM;
1772 		goto fail_dp_tx_name;
1773 	}
1774 
1775 	sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name);
1776 
1777 	dev->tx_pkt_burst = sa->dp_tx->pkt_burst;
1778 
1779 	dev->dev_ops = &sfc_eth_dev_ops;
1780 
1781 	return 0;
1782 
1783 fail_dp_tx_name:
1784 fail_dp_tx_caps:
1785 	sa->dp_tx = NULL;
1786 
1787 fail_dp_tx:
1788 fail_kvarg_tx_datapath:
1789 	rte_free(sa->dp_rx_name);
1790 	sa->dp_rx_name = NULL;
1791 
1792 fail_dp_rx_name:
1793 fail_dp_rx_caps:
1794 	sa->dp_rx = NULL;
1795 
1796 fail_dp_rx:
1797 fail_kvarg_rx_datapath:
1798 	return rc;
1799 }
1800 
1801 static void
1802 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1803 {
1804 	struct sfc_adapter *sa = dev->data->dev_private;
1805 
1806 	dev->dev_ops = NULL;
1807 	dev->rx_pkt_burst = NULL;
1808 	dev->tx_pkt_burst = NULL;
1809 
1810 	rte_free(sa->dp_tx_name);
1811 	sa->dp_tx_name = NULL;
1812 	sa->dp_tx = NULL;
1813 
1814 	rte_free(sa->dp_rx_name);
1815 	sa->dp_rx_name = NULL;
1816 	sa->dp_rx = NULL;
1817 }
1818 
1819 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1820 	.rxq_info_get			= sfc_rx_queue_info_get,
1821 	.txq_info_get			= sfc_tx_queue_info_get,
1822 };
1823 
1824 static int
1825 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev)
1826 {
1827 	/*
1828 	 * Device private data has really many process-local pointers.
1829 	 * Below code should be extremely careful to use data located
1830 	 * in shared memory only.
1831 	 */
1832 	struct sfc_adapter *sa = dev->data->dev_private;
1833 	const struct sfc_dp_rx *dp_rx;
1834 	const struct sfc_dp_tx *dp_tx;
1835 	int rc;
1836 
1837 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
1838 	if (dp_rx == NULL) {
1839 		sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name);
1840 		rc = ENOENT;
1841 		goto fail_dp_rx;
1842 	}
1843 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1844 		sfc_err(sa, "%s Rx datapath does not support multi-process",
1845 			sa->dp_tx_name);
1846 		rc = EINVAL;
1847 		goto fail_dp_rx_multi_process;
1848 	}
1849 
1850 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
1851 	if (dp_tx == NULL) {
1852 		sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name);
1853 		rc = ENOENT;
1854 		goto fail_dp_tx;
1855 	}
1856 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1857 		sfc_err(sa, "%s Tx datapath does not support multi-process",
1858 			sa->dp_tx_name);
1859 		rc = EINVAL;
1860 		goto fail_dp_tx_multi_process;
1861 	}
1862 
1863 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1864 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1865 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
1866 
1867 	return 0;
1868 
1869 fail_dp_tx_multi_process:
1870 fail_dp_tx:
1871 fail_dp_rx_multi_process:
1872 fail_dp_rx:
1873 	return rc;
1874 }
1875 
1876 static void
1877 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
1878 {
1879 	dev->dev_ops = NULL;
1880 	dev->tx_pkt_burst = NULL;
1881 	dev->rx_pkt_burst = NULL;
1882 }
1883 
1884 static void
1885 sfc_register_dp(void)
1886 {
1887 	/* Register once */
1888 	if (TAILQ_EMPTY(&sfc_dp_head)) {
1889 		/* Prefer EF10 datapath */
1890 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
1891 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
1892 
1893 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
1894 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
1895 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
1896 	}
1897 }
1898 
1899 static int
1900 sfc_eth_dev_init(struct rte_eth_dev *dev)
1901 {
1902 	struct sfc_adapter *sa = dev->data->dev_private;
1903 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1904 	int rc;
1905 	const efx_nic_cfg_t *encp;
1906 	const struct ether_addr *from;
1907 
1908 	sfc_register_dp();
1909 
1910 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1911 		return -sfc_eth_dev_secondary_set_ops(dev);
1912 
1913 	/* Required for logging */
1914 	sa->pci_addr = pci_dev->addr;
1915 	sa->port_id = dev->data->port_id;
1916 
1917 	sa->eth_dev = dev;
1918 
1919 	/* Copy PCI device info to the dev->data */
1920 	rte_eth_copy_pci_info(dev, pci_dev);
1921 
1922 	rc = sfc_kvargs_parse(sa);
1923 	if (rc != 0)
1924 		goto fail_kvargs_parse;
1925 
1926 	rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT,
1927 				sfc_kvarg_bool_handler, &sa->debug_init);
1928 	if (rc != 0)
1929 		goto fail_kvarg_debug_init;
1930 
1931 	sfc_log_init(sa, "entry");
1932 
1933 	dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
1934 	if (dev->data->mac_addrs == NULL) {
1935 		rc = ENOMEM;
1936 		goto fail_mac_addrs;
1937 	}
1938 
1939 	sfc_adapter_lock_init(sa);
1940 	sfc_adapter_lock(sa);
1941 
1942 	sfc_log_init(sa, "probing");
1943 	rc = sfc_probe(sa);
1944 	if (rc != 0)
1945 		goto fail_probe;
1946 
1947 	sfc_log_init(sa, "set device ops");
1948 	rc = sfc_eth_dev_set_ops(dev);
1949 	if (rc != 0)
1950 		goto fail_set_ops;
1951 
1952 	sfc_log_init(sa, "attaching");
1953 	rc = sfc_attach(sa);
1954 	if (rc != 0)
1955 		goto fail_attach;
1956 
1957 	encp = efx_nic_cfg_get(sa->nic);
1958 
1959 	/*
1960 	 * The arguments are really reverse order in comparison to
1961 	 * Linux kernel. Copy from NIC config to Ethernet device data.
1962 	 */
1963 	from = (const struct ether_addr *)(encp->enc_mac_addr);
1964 	ether_addr_copy(from, &dev->data->mac_addrs[0]);
1965 
1966 	sfc_adapter_unlock(sa);
1967 
1968 	sfc_log_init(sa, "done");
1969 	return 0;
1970 
1971 fail_attach:
1972 	sfc_eth_dev_clear_ops(dev);
1973 
1974 fail_set_ops:
1975 	sfc_unprobe(sa);
1976 
1977 fail_probe:
1978 	sfc_adapter_unlock(sa);
1979 	sfc_adapter_lock_fini(sa);
1980 	rte_free(dev->data->mac_addrs);
1981 	dev->data->mac_addrs = NULL;
1982 
1983 fail_mac_addrs:
1984 fail_kvarg_debug_init:
1985 	sfc_kvargs_cleanup(sa);
1986 
1987 fail_kvargs_parse:
1988 	sfc_log_init(sa, "failed %d", rc);
1989 	SFC_ASSERT(rc > 0);
1990 	return -rc;
1991 }
1992 
1993 static int
1994 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
1995 {
1996 	struct sfc_adapter *sa;
1997 
1998 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1999 		sfc_eth_dev_secondary_clear_ops(dev);
2000 		return 0;
2001 	}
2002 
2003 	sa = dev->data->dev_private;
2004 	sfc_log_init(sa, "entry");
2005 
2006 	sfc_adapter_lock(sa);
2007 
2008 	sfc_eth_dev_clear_ops(dev);
2009 
2010 	sfc_detach(sa);
2011 	sfc_unprobe(sa);
2012 
2013 	rte_free(dev->data->mac_addrs);
2014 	dev->data->mac_addrs = NULL;
2015 
2016 	sfc_kvargs_cleanup(sa);
2017 
2018 	sfc_adapter_unlock(sa);
2019 	sfc_adapter_lock_fini(sa);
2020 
2021 	sfc_log_init(sa, "done");
2022 
2023 	/* Required for logging, so cleanup last */
2024 	sa->eth_dev = NULL;
2025 	return 0;
2026 }
2027 
2028 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2029 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2030 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2031 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2032 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2033 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2034 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2035 	{ .vendor_id = 0 /* sentinel */ }
2036 };
2037 
2038 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2039 	struct rte_pci_device *pci_dev)
2040 {
2041 	return rte_eth_dev_pci_generic_probe(pci_dev,
2042 		sizeof(struct sfc_adapter), sfc_eth_dev_init);
2043 }
2044 
2045 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2046 {
2047 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2048 }
2049 
2050 static struct rte_pci_driver sfc_efx_pmd = {
2051 	.id_table = pci_id_sfc_efx_map,
2052 	.drv_flags =
2053 		RTE_PCI_DRV_INTR_LSC |
2054 		RTE_PCI_DRV_NEED_MAPPING,
2055 	.probe = sfc_eth_dev_pci_probe,
2056 	.remove = sfc_eth_dev_pci_remove,
2057 };
2058 
2059 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2060 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2061 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2062 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2063 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2064 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2065 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2066 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> "
2067 	SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " "
2068 	SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL);
2069