xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 8f393c4ffdc1ff9b46702708781723ca0f17f5ac)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 
32 uint32_t sfc_logtype_driver;
33 
34 static struct sfc_dp_list sfc_dp_head =
35 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36 
37 
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
39 
40 
41 static int
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
43 {
44 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 	efx_nic_fw_info_t enfi;
46 	int ret;
47 	int rc;
48 
49 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
50 	if (rc != 0)
51 		return -rc;
52 
53 	ret = snprintf(fw_version, fw_size,
54 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
55 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
56 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
57 	if (ret < 0)
58 		return ret;
59 
60 	if (enfi.enfi_dpcpu_fw_ids_valid) {
61 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
62 		int ret_extra;
63 
64 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
65 				     fw_size - dpcpu_fw_ids_offset,
66 				     " rx%" PRIx16 " tx%" PRIx16,
67 				     enfi.enfi_rx_dpcpu_fw_id,
68 				     enfi.enfi_tx_dpcpu_fw_id);
69 		if (ret_extra < 0)
70 			return ret_extra;
71 
72 		ret += ret_extra;
73 	}
74 
75 	if (fw_size < (size_t)(++ret))
76 		return ret;
77 	else
78 		return 0;
79 }
80 
81 static int
82 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
83 {
84 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
85 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
86 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
87 	struct sfc_rss *rss = &sas->rss;
88 	struct sfc_mae *mae = &sa->mae;
89 	uint64_t txq_offloads_def = 0;
90 
91 	sfc_log_init(sa, "entry");
92 
93 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
94 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
95 
96 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
97 
98 	dev_info->max_vfs = sa->sriov.num_vfs;
99 
100 	/* Autonegotiation may be disabled */
101 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
102 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
103 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
104 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
105 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
106 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
107 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
108 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
109 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
110 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
111 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
112 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
113 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
114 
115 	dev_info->max_rx_queues = sa->rxq_max;
116 	dev_info->max_tx_queues = sa->txq_max;
117 
118 	/* By default packets are dropped if no descriptors are available */
119 	dev_info->default_rxconf.rx_drop_en = 1;
120 
121 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
122 
123 	/*
124 	 * rx_offload_capa includes both device and queue offloads since
125 	 * the latter may be requested on a per device basis which makes
126 	 * sense when some offloads are needed to be set on all queues.
127 	 */
128 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
129 				    dev_info->rx_queue_offload_capa;
130 
131 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
132 
133 	/*
134 	 * tx_offload_capa includes both device and queue offloads since
135 	 * the latter may be requested on a per device basis which makes
136 	 * sense when some offloads are needed to be set on all queues.
137 	 */
138 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
139 				    dev_info->tx_queue_offload_capa;
140 
141 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
142 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
143 
144 	dev_info->default_txconf.offloads |= txq_offloads_def;
145 
146 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
147 		uint64_t rte_hf = 0;
148 		unsigned int i;
149 
150 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
151 			rte_hf |= rss->hf_map[i].rte;
152 
153 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
154 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
155 		dev_info->flow_type_rss_offloads = rte_hf;
156 	}
157 
158 	/* Initialize to hardware limits */
159 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
160 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
161 	/* The RXQ hardware requires that the descriptor count is a power
162 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
163 	 */
164 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
165 
166 	/* Initialize to hardware limits */
167 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
168 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
169 	/*
170 	 * The TXQ hardware requires that the descriptor count is a power
171 	 * of 2, but tx_desc_lim cannot properly describe that constraint
172 	 */
173 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
174 
175 	if (sap->dp_rx->get_dev_info != NULL)
176 		sap->dp_rx->get_dev_info(dev_info);
177 	if (sap->dp_tx->get_dev_info != NULL)
178 		sap->dp_tx->get_dev_info(dev_info);
179 
180 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
181 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
182 
183 	if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
184 		dev_info->switch_info.name = dev->device->driver->name;
185 		dev_info->switch_info.domain_id = mae->switch_domain_id;
186 		dev_info->switch_info.port_id = mae->switch_port_id;
187 	}
188 
189 	return 0;
190 }
191 
192 static const uint32_t *
193 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
194 {
195 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
196 
197 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
198 }
199 
200 static int
201 sfc_dev_configure(struct rte_eth_dev *dev)
202 {
203 	struct rte_eth_dev_data *dev_data = dev->data;
204 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
205 	int rc;
206 
207 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
208 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
209 
210 	sfc_adapter_lock(sa);
211 	switch (sa->state) {
212 	case SFC_ADAPTER_CONFIGURED:
213 		/* FALLTHROUGH */
214 	case SFC_ADAPTER_INITIALIZED:
215 		rc = sfc_configure(sa);
216 		break;
217 	default:
218 		sfc_err(sa, "unexpected adapter state %u to configure",
219 			sa->state);
220 		rc = EINVAL;
221 		break;
222 	}
223 	sfc_adapter_unlock(sa);
224 
225 	sfc_log_init(sa, "done %d", rc);
226 	SFC_ASSERT(rc >= 0);
227 	return -rc;
228 }
229 
230 static int
231 sfc_dev_start(struct rte_eth_dev *dev)
232 {
233 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
234 	int rc;
235 
236 	sfc_log_init(sa, "entry");
237 
238 	sfc_adapter_lock(sa);
239 	rc = sfc_start(sa);
240 	sfc_adapter_unlock(sa);
241 
242 	sfc_log_init(sa, "done %d", rc);
243 	SFC_ASSERT(rc >= 0);
244 	return -rc;
245 }
246 
247 static int
248 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
249 {
250 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
251 	struct rte_eth_link current_link;
252 	int ret;
253 
254 	sfc_log_init(sa, "entry");
255 
256 	if (sa->state != SFC_ADAPTER_STARTED) {
257 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
258 	} else if (wait_to_complete) {
259 		efx_link_mode_t link_mode;
260 
261 		if (efx_port_poll(sa->nic, &link_mode) != 0)
262 			link_mode = EFX_LINK_UNKNOWN;
263 		sfc_port_link_mode_to_info(link_mode, &current_link);
264 
265 	} else {
266 		sfc_ev_mgmt_qpoll(sa);
267 		rte_eth_linkstatus_get(dev, &current_link);
268 	}
269 
270 	ret = rte_eth_linkstatus_set(dev, &current_link);
271 	if (ret == 0)
272 		sfc_notice(sa, "Link status is %s",
273 			   current_link.link_status ? "UP" : "DOWN");
274 
275 	return ret;
276 }
277 
278 static int
279 sfc_dev_stop(struct rte_eth_dev *dev)
280 {
281 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
282 
283 	sfc_log_init(sa, "entry");
284 
285 	sfc_adapter_lock(sa);
286 	sfc_stop(sa);
287 	sfc_adapter_unlock(sa);
288 
289 	sfc_log_init(sa, "done");
290 
291 	return 0;
292 }
293 
294 static int
295 sfc_dev_set_link_up(struct rte_eth_dev *dev)
296 {
297 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
298 	int rc;
299 
300 	sfc_log_init(sa, "entry");
301 
302 	sfc_adapter_lock(sa);
303 	rc = sfc_start(sa);
304 	sfc_adapter_unlock(sa);
305 
306 	SFC_ASSERT(rc >= 0);
307 	return -rc;
308 }
309 
310 static int
311 sfc_dev_set_link_down(struct rte_eth_dev *dev)
312 {
313 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
314 
315 	sfc_log_init(sa, "entry");
316 
317 	sfc_adapter_lock(sa);
318 	sfc_stop(sa);
319 	sfc_adapter_unlock(sa);
320 
321 	return 0;
322 }
323 
324 static void
325 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
326 {
327 	free(dev->process_private);
328 	rte_eth_dev_release_port(dev);
329 }
330 
331 static int
332 sfc_dev_close(struct rte_eth_dev *dev)
333 {
334 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
335 
336 	sfc_log_init(sa, "entry");
337 
338 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
339 		sfc_eth_dev_secondary_clear_ops(dev);
340 		return 0;
341 	}
342 
343 	sfc_adapter_lock(sa);
344 	switch (sa->state) {
345 	case SFC_ADAPTER_STARTED:
346 		sfc_stop(sa);
347 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
348 		/* FALLTHROUGH */
349 	case SFC_ADAPTER_CONFIGURED:
350 		sfc_close(sa);
351 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
352 		/* FALLTHROUGH */
353 	case SFC_ADAPTER_INITIALIZED:
354 		break;
355 	default:
356 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
357 		break;
358 	}
359 
360 	/*
361 	 * Cleanup all resources.
362 	 * Rollback primary process sfc_eth_dev_init() below.
363 	 */
364 
365 	sfc_eth_dev_clear_ops(dev);
366 
367 	sfc_detach(sa);
368 	sfc_unprobe(sa);
369 
370 	sfc_kvargs_cleanup(sa);
371 
372 	sfc_adapter_unlock(sa);
373 	sfc_adapter_lock_fini(sa);
374 
375 	sfc_log_init(sa, "done");
376 
377 	/* Required for logging, so cleanup last */
378 	sa->eth_dev = NULL;
379 
380 	free(sa);
381 
382 	return 0;
383 }
384 
385 static int
386 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
387 		   boolean_t enabled)
388 {
389 	struct sfc_port *port;
390 	boolean_t *toggle;
391 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
392 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
393 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
394 	int rc = 0;
395 
396 	sfc_adapter_lock(sa);
397 
398 	port = &sa->port;
399 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
400 
401 	if (*toggle != enabled) {
402 		*toggle = enabled;
403 
404 		if (sfc_sa2shared(sa)->isolated) {
405 			sfc_warn(sa, "isolated mode is active on the port");
406 			sfc_warn(sa, "the change is to be applied on the next "
407 				     "start provided that isolated mode is "
408 				     "disabled prior the next start");
409 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
410 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
411 			*toggle = !(enabled);
412 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
413 				 ((enabled) ? "enable" : "disable"), desc, rc);
414 
415 			/*
416 			 * For promiscuous and all-multicast filters a
417 			 * permission failure should be reported as an
418 			 * unsupported filter.
419 			 */
420 			if (rc == EPERM)
421 				rc = ENOTSUP;
422 		}
423 	}
424 
425 	sfc_adapter_unlock(sa);
426 	return rc;
427 }
428 
429 static int
430 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
431 {
432 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
433 
434 	SFC_ASSERT(rc >= 0);
435 	return -rc;
436 }
437 
438 static int
439 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
440 {
441 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
442 
443 	SFC_ASSERT(rc >= 0);
444 	return -rc;
445 }
446 
447 static int
448 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
449 {
450 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
451 
452 	SFC_ASSERT(rc >= 0);
453 	return -rc;
454 }
455 
456 static int
457 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
458 {
459 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
460 
461 	SFC_ASSERT(rc >= 0);
462 	return -rc;
463 }
464 
465 static int
466 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
467 		   uint16_t nb_rx_desc, unsigned int socket_id,
468 		   const struct rte_eth_rxconf *rx_conf,
469 		   struct rte_mempool *mb_pool)
470 {
471 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
472 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
473 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
474 	struct sfc_rxq_info *rxq_info;
475 	sfc_sw_index_t sw_index;
476 	int rc;
477 
478 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
479 		     ethdev_qid, nb_rx_desc, socket_id);
480 
481 	sfc_adapter_lock(sa);
482 
483 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
484 	rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
485 			  rx_conf, mb_pool);
486 	if (rc != 0)
487 		goto fail_rx_qinit;
488 
489 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
490 	dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
491 
492 	sfc_adapter_unlock(sa);
493 
494 	return 0;
495 
496 fail_rx_qinit:
497 	sfc_adapter_unlock(sa);
498 	SFC_ASSERT(rc > 0);
499 	return -rc;
500 }
501 
502 static void
503 sfc_rx_queue_release(void *queue)
504 {
505 	struct sfc_dp_rxq *dp_rxq = queue;
506 	struct sfc_rxq *rxq;
507 	struct sfc_adapter *sa;
508 	sfc_sw_index_t sw_index;
509 
510 	if (dp_rxq == NULL)
511 		return;
512 
513 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
514 	sa = rxq->evq->sa;
515 	sfc_adapter_lock(sa);
516 
517 	sw_index = dp_rxq->dpq.queue_id;
518 
519 	sfc_log_init(sa, "RxQ=%u", sw_index);
520 
521 	sfc_rx_qfini(sa, sw_index);
522 
523 	sfc_adapter_unlock(sa);
524 }
525 
526 static int
527 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
528 		   uint16_t nb_tx_desc, unsigned int socket_id,
529 		   const struct rte_eth_txconf *tx_conf)
530 {
531 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
532 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
533 	struct sfc_txq_info *txq_info;
534 	sfc_sw_index_t sw_index;
535 	int rc;
536 
537 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
538 		     ethdev_qid, nb_tx_desc, socket_id);
539 
540 	sfc_adapter_lock(sa);
541 
542 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
543 	rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
544 	if (rc != 0)
545 		goto fail_tx_qinit;
546 
547 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
548 	dev->data->tx_queues[ethdev_qid] = txq_info->dp;
549 
550 	sfc_adapter_unlock(sa);
551 	return 0;
552 
553 fail_tx_qinit:
554 	sfc_adapter_unlock(sa);
555 	SFC_ASSERT(rc > 0);
556 	return -rc;
557 }
558 
559 static void
560 sfc_tx_queue_release(void *queue)
561 {
562 	struct sfc_dp_txq *dp_txq = queue;
563 	struct sfc_txq *txq;
564 	sfc_sw_index_t sw_index;
565 	struct sfc_adapter *sa;
566 
567 	if (dp_txq == NULL)
568 		return;
569 
570 	txq = sfc_txq_by_dp_txq(dp_txq);
571 	sw_index = dp_txq->dpq.queue_id;
572 
573 	SFC_ASSERT(txq->evq != NULL);
574 	sa = txq->evq->sa;
575 
576 	sfc_log_init(sa, "TxQ = %u", sw_index);
577 
578 	sfc_adapter_lock(sa);
579 
580 	sfc_tx_qfini(sa, sw_index);
581 
582 	sfc_adapter_unlock(sa);
583 }
584 
585 /*
586  * Some statistics are computed as A - B where A and B each increase
587  * monotonically with some hardware counter(s) and the counters are read
588  * asynchronously.
589  *
590  * If packet X is counted in A, but not counted in B yet, computed value is
591  * greater than real.
592  *
593  * If packet X is not counted in A at the moment of reading the counter,
594  * but counted in B at the moment of reading the counter, computed value
595  * is less than real.
596  *
597  * However, counter which grows backward is worse evil than slightly wrong
598  * value. So, let's try to guarantee that it never happens except may be
599  * the case when the MAC stats are zeroed as a result of a NIC reset.
600  */
601 static void
602 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
603 {
604 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
605 		*stat = newval;
606 }
607 
608 static int
609 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
610 {
611 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
612 	struct sfc_port *port = &sa->port;
613 	uint64_t *mac_stats;
614 	int ret;
615 
616 	rte_spinlock_lock(&port->mac_stats_lock);
617 
618 	ret = sfc_port_update_mac_stats(sa);
619 	if (ret != 0)
620 		goto unlock;
621 
622 	mac_stats = port->mac_stats_buf;
623 
624 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
625 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
626 		stats->ipackets =
627 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
628 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
629 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
630 		stats->opackets =
631 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
632 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
633 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
634 		stats->ibytes =
635 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
636 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
637 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
638 		stats->obytes =
639 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
640 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
641 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
642 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
643 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
644 
645 		/* CRC is included in these stats, but shouldn't be */
646 		stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
647 		stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
648 	} else {
649 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
650 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
651 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
652 
653 		/* CRC is included in these stats, but shouldn't be */
654 		stats->ibytes -= mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
655 		stats->obytes -= mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
656 
657 		/*
658 		 * Take into account stats which are whenever supported
659 		 * on EF10. If some stat is not supported by current
660 		 * firmware variant or HW revision, it is guaranteed
661 		 * to be zero in mac_stats.
662 		 */
663 		stats->imissed =
664 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
665 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
666 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
667 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
668 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
669 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
670 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
671 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
672 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
673 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
674 		stats->ierrors =
675 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
676 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
677 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
678 		/* no oerrors counters supported on EF10 */
679 
680 		/* Exclude missed, errors and pauses from Rx packets */
681 		sfc_update_diff_stat(&port->ipackets,
682 			mac_stats[EFX_MAC_RX_PKTS] -
683 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
684 			stats->imissed - stats->ierrors);
685 		stats->ipackets = port->ipackets;
686 	}
687 
688 unlock:
689 	rte_spinlock_unlock(&port->mac_stats_lock);
690 	SFC_ASSERT(ret >= 0);
691 	return -ret;
692 }
693 
694 static int
695 sfc_stats_reset(struct rte_eth_dev *dev)
696 {
697 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
698 	struct sfc_port *port = &sa->port;
699 	int rc;
700 
701 	if (sa->state != SFC_ADAPTER_STARTED) {
702 		/*
703 		 * The operation cannot be done if port is not started; it
704 		 * will be scheduled to be done during the next port start
705 		 */
706 		port->mac_stats_reset_pending = B_TRUE;
707 		return 0;
708 	}
709 
710 	rc = sfc_port_reset_mac_stats(sa);
711 	if (rc != 0)
712 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
713 
714 	SFC_ASSERT(rc >= 0);
715 	return -rc;
716 }
717 
718 static int
719 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
720 	       unsigned int xstats_count)
721 {
722 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
723 	struct sfc_port *port = &sa->port;
724 	uint64_t *mac_stats;
725 	int rc;
726 	unsigned int i;
727 	int nstats = 0;
728 
729 	rte_spinlock_lock(&port->mac_stats_lock);
730 
731 	rc = sfc_port_update_mac_stats(sa);
732 	if (rc != 0) {
733 		SFC_ASSERT(rc > 0);
734 		nstats = -rc;
735 		goto unlock;
736 	}
737 
738 	mac_stats = port->mac_stats_buf;
739 
740 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
741 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
742 			if (xstats != NULL && nstats < (int)xstats_count) {
743 				xstats[nstats].id = nstats;
744 				xstats[nstats].value = mac_stats[i];
745 			}
746 			nstats++;
747 		}
748 	}
749 
750 unlock:
751 	rte_spinlock_unlock(&port->mac_stats_lock);
752 
753 	return nstats;
754 }
755 
756 static int
757 sfc_xstats_get_names(struct rte_eth_dev *dev,
758 		     struct rte_eth_xstat_name *xstats_names,
759 		     unsigned int xstats_count)
760 {
761 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
762 	struct sfc_port *port = &sa->port;
763 	unsigned int i;
764 	unsigned int nstats = 0;
765 
766 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
767 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
768 			if (xstats_names != NULL && nstats < xstats_count)
769 				strlcpy(xstats_names[nstats].name,
770 					efx_mac_stat_name(sa->nic, i),
771 					sizeof(xstats_names[0].name));
772 			nstats++;
773 		}
774 	}
775 
776 	return nstats;
777 }
778 
779 static int
780 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
781 		     uint64_t *values, unsigned int n)
782 {
783 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
784 	struct sfc_port *port = &sa->port;
785 	uint64_t *mac_stats;
786 	unsigned int nb_supported = 0;
787 	unsigned int nb_written = 0;
788 	unsigned int i;
789 	int ret;
790 	int rc;
791 
792 	if (unlikely(values == NULL) ||
793 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
794 		return port->mac_stats_nb_supported;
795 
796 	rte_spinlock_lock(&port->mac_stats_lock);
797 
798 	rc = sfc_port_update_mac_stats(sa);
799 	if (rc != 0) {
800 		SFC_ASSERT(rc > 0);
801 		ret = -rc;
802 		goto unlock;
803 	}
804 
805 	mac_stats = port->mac_stats_buf;
806 
807 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
808 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
809 			continue;
810 
811 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
812 			values[nb_written++] = mac_stats[i];
813 
814 		++nb_supported;
815 	}
816 
817 	ret = nb_written;
818 
819 unlock:
820 	rte_spinlock_unlock(&port->mac_stats_lock);
821 
822 	return ret;
823 }
824 
825 static int
826 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
827 			   struct rte_eth_xstat_name *xstats_names,
828 			   const uint64_t *ids, unsigned int size)
829 {
830 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
831 	struct sfc_port *port = &sa->port;
832 	unsigned int nb_supported = 0;
833 	unsigned int nb_written = 0;
834 	unsigned int i;
835 
836 	if (unlikely(xstats_names == NULL) ||
837 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
838 		return port->mac_stats_nb_supported;
839 
840 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
841 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
842 			continue;
843 
844 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
845 			char *name = xstats_names[nb_written++].name;
846 
847 			strlcpy(name, efx_mac_stat_name(sa->nic, i),
848 				sizeof(xstats_names[0].name));
849 		}
850 
851 		++nb_supported;
852 	}
853 
854 	return nb_written;
855 }
856 
857 static int
858 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
859 {
860 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
861 	unsigned int wanted_fc, link_fc;
862 
863 	memset(fc_conf, 0, sizeof(*fc_conf));
864 
865 	sfc_adapter_lock(sa);
866 
867 	if (sa->state == SFC_ADAPTER_STARTED)
868 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
869 	else
870 		link_fc = sa->port.flow_ctrl;
871 
872 	switch (link_fc) {
873 	case 0:
874 		fc_conf->mode = RTE_FC_NONE;
875 		break;
876 	case EFX_FCNTL_RESPOND:
877 		fc_conf->mode = RTE_FC_RX_PAUSE;
878 		break;
879 	case EFX_FCNTL_GENERATE:
880 		fc_conf->mode = RTE_FC_TX_PAUSE;
881 		break;
882 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
883 		fc_conf->mode = RTE_FC_FULL;
884 		break;
885 	default:
886 		sfc_err(sa, "%s: unexpected flow control value %#x",
887 			__func__, link_fc);
888 	}
889 
890 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
891 
892 	sfc_adapter_unlock(sa);
893 
894 	return 0;
895 }
896 
897 static int
898 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
899 {
900 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
901 	struct sfc_port *port = &sa->port;
902 	unsigned int fcntl;
903 	int rc;
904 
905 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
906 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
907 	    fc_conf->mac_ctrl_frame_fwd != 0) {
908 		sfc_err(sa, "unsupported flow control settings specified");
909 		rc = EINVAL;
910 		goto fail_inval;
911 	}
912 
913 	switch (fc_conf->mode) {
914 	case RTE_FC_NONE:
915 		fcntl = 0;
916 		break;
917 	case RTE_FC_RX_PAUSE:
918 		fcntl = EFX_FCNTL_RESPOND;
919 		break;
920 	case RTE_FC_TX_PAUSE:
921 		fcntl = EFX_FCNTL_GENERATE;
922 		break;
923 	case RTE_FC_FULL:
924 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
925 		break;
926 	default:
927 		rc = EINVAL;
928 		goto fail_inval;
929 	}
930 
931 	sfc_adapter_lock(sa);
932 
933 	if (sa->state == SFC_ADAPTER_STARTED) {
934 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
935 		if (rc != 0)
936 			goto fail_mac_fcntl_set;
937 	}
938 
939 	port->flow_ctrl = fcntl;
940 	port->flow_ctrl_autoneg = fc_conf->autoneg;
941 
942 	sfc_adapter_unlock(sa);
943 
944 	return 0;
945 
946 fail_mac_fcntl_set:
947 	sfc_adapter_unlock(sa);
948 fail_inval:
949 	SFC_ASSERT(rc > 0);
950 	return -rc;
951 }
952 
953 static int
954 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
955 {
956 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
957 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
958 	boolean_t scatter_enabled;
959 	const char *error;
960 	unsigned int i;
961 
962 	for (i = 0; i < sas->rxq_count; i++) {
963 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
964 			continue;
965 
966 		scatter_enabled = (sas->rxq_info[i].type_flags &
967 				   EFX_RXQ_FLAG_SCATTER);
968 
969 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
970 					  encp->enc_rx_prefix_size,
971 					  scatter_enabled,
972 					  encp->enc_rx_scatter_max, &error)) {
973 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
974 				error);
975 			return EINVAL;
976 		}
977 	}
978 
979 	return 0;
980 }
981 
982 static int
983 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
984 {
985 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
986 	size_t pdu = EFX_MAC_PDU(mtu);
987 	size_t old_pdu;
988 	int rc;
989 
990 	sfc_log_init(sa, "mtu=%u", mtu);
991 
992 	rc = EINVAL;
993 	if (pdu < EFX_MAC_PDU_MIN) {
994 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
995 			(unsigned int)mtu, (unsigned int)pdu,
996 			EFX_MAC_PDU_MIN);
997 		goto fail_inval;
998 	}
999 	if (pdu > EFX_MAC_PDU_MAX) {
1000 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1001 			(unsigned int)mtu, (unsigned int)pdu,
1002 			(unsigned int)EFX_MAC_PDU_MAX);
1003 		goto fail_inval;
1004 	}
1005 
1006 	sfc_adapter_lock(sa);
1007 
1008 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1009 	if (rc != 0)
1010 		goto fail_check_scatter;
1011 
1012 	if (pdu != sa->port.pdu) {
1013 		if (sa->state == SFC_ADAPTER_STARTED) {
1014 			sfc_stop(sa);
1015 
1016 			old_pdu = sa->port.pdu;
1017 			sa->port.pdu = pdu;
1018 			rc = sfc_start(sa);
1019 			if (rc != 0)
1020 				goto fail_start;
1021 		} else {
1022 			sa->port.pdu = pdu;
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * The driver does not use it, but other PMDs update jumbo frame
1028 	 * flag and max_rx_pkt_len when MTU is set.
1029 	 */
1030 	if (mtu > RTE_ETHER_MTU) {
1031 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1032 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1033 	}
1034 
1035 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1036 
1037 	sfc_adapter_unlock(sa);
1038 
1039 	sfc_log_init(sa, "done");
1040 	return 0;
1041 
1042 fail_start:
1043 	sa->port.pdu = old_pdu;
1044 	if (sfc_start(sa) != 0)
1045 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1046 			"PDU max size - port is stopped",
1047 			(unsigned int)pdu, (unsigned int)old_pdu);
1048 
1049 fail_check_scatter:
1050 	sfc_adapter_unlock(sa);
1051 
1052 fail_inval:
1053 	sfc_log_init(sa, "failed %d", rc);
1054 	SFC_ASSERT(rc > 0);
1055 	return -rc;
1056 }
1057 static int
1058 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1059 {
1060 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1061 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1062 	struct sfc_port *port = &sa->port;
1063 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1064 	int rc = 0;
1065 
1066 	sfc_adapter_lock(sa);
1067 
1068 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1069 		goto unlock;
1070 
1071 	/*
1072 	 * Copy the address to the device private data so that
1073 	 * it could be recalled in the case of adapter restart.
1074 	 */
1075 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1076 
1077 	/*
1078 	 * Neither of the two following checks can return
1079 	 * an error. The new MAC address is preserved in
1080 	 * the device private data and can be activated
1081 	 * on the next port start if the user prevents
1082 	 * isolated mode from being enabled.
1083 	 */
1084 	if (sfc_sa2shared(sa)->isolated) {
1085 		sfc_warn(sa, "isolated mode is active on the port");
1086 		sfc_warn(sa, "will not set MAC address");
1087 		goto unlock;
1088 	}
1089 
1090 	if (sa->state != SFC_ADAPTER_STARTED) {
1091 		sfc_notice(sa, "the port is not started");
1092 		sfc_notice(sa, "the new MAC address will be set on port start");
1093 
1094 		goto unlock;
1095 	}
1096 
1097 	if (encp->enc_allow_set_mac_with_installed_filters) {
1098 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1099 		if (rc != 0) {
1100 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1101 			goto unlock;
1102 		}
1103 
1104 		/*
1105 		 * Changing the MAC address by means of MCDI request
1106 		 * has no effect on received traffic, therefore
1107 		 * we also need to update unicast filters
1108 		 */
1109 		rc = sfc_set_rx_mode_unchecked(sa);
1110 		if (rc != 0) {
1111 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1112 			/* Rollback the old address */
1113 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1114 			(void)sfc_set_rx_mode_unchecked(sa);
1115 		}
1116 	} else {
1117 		sfc_warn(sa, "cannot set MAC address with filters installed");
1118 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1119 		sfc_warn(sa, "(some traffic may be dropped)");
1120 
1121 		/*
1122 		 * Since setting MAC address with filters installed is not
1123 		 * allowed on the adapter, the new MAC address will be set
1124 		 * by means of adapter restart. sfc_start() shall retrieve
1125 		 * the new address from the device private data and set it.
1126 		 */
1127 		sfc_stop(sa);
1128 		rc = sfc_start(sa);
1129 		if (rc != 0)
1130 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1131 	}
1132 
1133 unlock:
1134 	if (rc != 0)
1135 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1136 
1137 	sfc_adapter_unlock(sa);
1138 
1139 	SFC_ASSERT(rc >= 0);
1140 	return -rc;
1141 }
1142 
1143 
1144 static int
1145 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1146 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1147 {
1148 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1149 	struct sfc_port *port = &sa->port;
1150 	uint8_t *mc_addrs = port->mcast_addrs;
1151 	int rc;
1152 	unsigned int i;
1153 
1154 	if (sfc_sa2shared(sa)->isolated) {
1155 		sfc_err(sa, "isolated mode is active on the port");
1156 		sfc_err(sa, "will not set multicast address list");
1157 		return -ENOTSUP;
1158 	}
1159 
1160 	if (mc_addrs == NULL)
1161 		return -ENOBUFS;
1162 
1163 	if (nb_mc_addr > port->max_mcast_addrs) {
1164 		sfc_err(sa, "too many multicast addresses: %u > %u",
1165 			 nb_mc_addr, port->max_mcast_addrs);
1166 		return -EINVAL;
1167 	}
1168 
1169 	for (i = 0; i < nb_mc_addr; ++i) {
1170 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1171 				 EFX_MAC_ADDR_LEN);
1172 		mc_addrs += EFX_MAC_ADDR_LEN;
1173 	}
1174 
1175 	port->nb_mcast_addrs = nb_mc_addr;
1176 
1177 	if (sa->state != SFC_ADAPTER_STARTED)
1178 		return 0;
1179 
1180 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1181 					port->nb_mcast_addrs);
1182 	if (rc != 0)
1183 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1184 
1185 	SFC_ASSERT(rc >= 0);
1186 	return -rc;
1187 }
1188 
1189 /*
1190  * The function is used by the secondary process as well. It must not
1191  * use any process-local pointers from the adapter data.
1192  */
1193 static void
1194 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1195 		      struct rte_eth_rxq_info *qinfo)
1196 {
1197 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1198 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1199 	struct sfc_rxq_info *rxq_info;
1200 
1201 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1202 
1203 	qinfo->mp = rxq_info->refill_mb_pool;
1204 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1205 	qinfo->conf.rx_drop_en = 1;
1206 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1207 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1208 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1209 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1210 		qinfo->scattered_rx = 1;
1211 	}
1212 	qinfo->nb_desc = rxq_info->entries;
1213 }
1214 
1215 /*
1216  * The function is used by the secondary process as well. It must not
1217  * use any process-local pointers from the adapter data.
1218  */
1219 static void
1220 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1221 		      struct rte_eth_txq_info *qinfo)
1222 {
1223 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1224 	struct sfc_txq_info *txq_info;
1225 
1226 	SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1227 
1228 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1229 
1230 	memset(qinfo, 0, sizeof(*qinfo));
1231 
1232 	qinfo->conf.offloads = txq_info->offloads;
1233 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1234 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1235 	qinfo->nb_desc = txq_info->entries;
1236 }
1237 
1238 /*
1239  * The function is used by the secondary process as well. It must not
1240  * use any process-local pointers from the adapter data.
1241  */
1242 static uint32_t
1243 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1244 {
1245 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1246 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1247 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1248 	struct sfc_rxq_info *rxq_info;
1249 
1250 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1251 
1252 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1253 		return 0;
1254 
1255 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1256 }
1257 
1258 /*
1259  * The function is used by the secondary process as well. It must not
1260  * use any process-local pointers from the adapter data.
1261  */
1262 static int
1263 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1264 {
1265 	struct sfc_dp_rxq *dp_rxq = queue;
1266 	const struct sfc_dp_rx *dp_rx;
1267 
1268 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1269 
1270 	return offset < dp_rx->qdesc_npending(dp_rxq);
1271 }
1272 
1273 /*
1274  * The function is used by the secondary process as well. It must not
1275  * use any process-local pointers from the adapter data.
1276  */
1277 static int
1278 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1279 {
1280 	struct sfc_dp_rxq *dp_rxq = queue;
1281 	const struct sfc_dp_rx *dp_rx;
1282 
1283 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1284 
1285 	return dp_rx->qdesc_status(dp_rxq, offset);
1286 }
1287 
1288 /*
1289  * The function is used by the secondary process as well. It must not
1290  * use any process-local pointers from the adapter data.
1291  */
1292 static int
1293 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1294 {
1295 	struct sfc_dp_txq *dp_txq = queue;
1296 	const struct sfc_dp_tx *dp_tx;
1297 
1298 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1299 
1300 	return dp_tx->qdesc_status(dp_txq, offset);
1301 }
1302 
1303 static int
1304 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1305 {
1306 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1307 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1308 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1309 	struct sfc_rxq_info *rxq_info;
1310 	sfc_sw_index_t sw_index;
1311 	int rc;
1312 
1313 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1314 
1315 	sfc_adapter_lock(sa);
1316 
1317 	rc = EINVAL;
1318 	if (sa->state != SFC_ADAPTER_STARTED)
1319 		goto fail_not_started;
1320 
1321 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1322 	if (rxq_info->state != SFC_RXQ_INITIALIZED)
1323 		goto fail_not_setup;
1324 
1325 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1326 	rc = sfc_rx_qstart(sa, sw_index);
1327 	if (rc != 0)
1328 		goto fail_rx_qstart;
1329 
1330 	rxq_info->deferred_started = B_TRUE;
1331 
1332 	sfc_adapter_unlock(sa);
1333 
1334 	return 0;
1335 
1336 fail_rx_qstart:
1337 fail_not_setup:
1338 fail_not_started:
1339 	sfc_adapter_unlock(sa);
1340 	SFC_ASSERT(rc > 0);
1341 	return -rc;
1342 }
1343 
1344 static int
1345 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1346 {
1347 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1348 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1349 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1350 	struct sfc_rxq_info *rxq_info;
1351 	sfc_sw_index_t sw_index;
1352 
1353 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1354 
1355 	sfc_adapter_lock(sa);
1356 
1357 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1358 	sfc_rx_qstop(sa, sw_index);
1359 
1360 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1361 	rxq_info->deferred_started = B_FALSE;
1362 
1363 	sfc_adapter_unlock(sa);
1364 
1365 	return 0;
1366 }
1367 
1368 static int
1369 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1370 {
1371 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1372 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1373 	struct sfc_txq_info *txq_info;
1374 	sfc_sw_index_t sw_index;
1375 	int rc;
1376 
1377 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1378 
1379 	sfc_adapter_lock(sa);
1380 
1381 	rc = EINVAL;
1382 	if (sa->state != SFC_ADAPTER_STARTED)
1383 		goto fail_not_started;
1384 
1385 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1386 	if (txq_info->state != SFC_TXQ_INITIALIZED)
1387 		goto fail_not_setup;
1388 
1389 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1390 	rc = sfc_tx_qstart(sa, sw_index);
1391 	if (rc != 0)
1392 		goto fail_tx_qstart;
1393 
1394 	txq_info->deferred_started = B_TRUE;
1395 
1396 	sfc_adapter_unlock(sa);
1397 	return 0;
1398 
1399 fail_tx_qstart:
1400 
1401 fail_not_setup:
1402 fail_not_started:
1403 	sfc_adapter_unlock(sa);
1404 	SFC_ASSERT(rc > 0);
1405 	return -rc;
1406 }
1407 
1408 static int
1409 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1410 {
1411 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1412 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1413 	struct sfc_txq_info *txq_info;
1414 	sfc_sw_index_t sw_index;
1415 
1416 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1417 
1418 	sfc_adapter_lock(sa);
1419 
1420 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1421 	sfc_tx_qstop(sa, sw_index);
1422 
1423 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1424 	txq_info->deferred_started = B_FALSE;
1425 
1426 	sfc_adapter_unlock(sa);
1427 	return 0;
1428 }
1429 
1430 static efx_tunnel_protocol_t
1431 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1432 {
1433 	switch (rte_type) {
1434 	case RTE_TUNNEL_TYPE_VXLAN:
1435 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1436 	case RTE_TUNNEL_TYPE_GENEVE:
1437 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1438 	default:
1439 		return EFX_TUNNEL_NPROTOS;
1440 	}
1441 }
1442 
1443 enum sfc_udp_tunnel_op_e {
1444 	SFC_UDP_TUNNEL_ADD_PORT,
1445 	SFC_UDP_TUNNEL_DEL_PORT,
1446 };
1447 
1448 static int
1449 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1450 		      struct rte_eth_udp_tunnel *tunnel_udp,
1451 		      enum sfc_udp_tunnel_op_e op)
1452 {
1453 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1454 	efx_tunnel_protocol_t tunnel_proto;
1455 	int rc;
1456 
1457 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1458 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1459 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1460 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1461 
1462 	tunnel_proto =
1463 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1464 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1465 		rc = ENOTSUP;
1466 		goto fail_bad_proto;
1467 	}
1468 
1469 	sfc_adapter_lock(sa);
1470 
1471 	switch (op) {
1472 	case SFC_UDP_TUNNEL_ADD_PORT:
1473 		rc = efx_tunnel_config_udp_add(sa->nic,
1474 					       tunnel_udp->udp_port,
1475 					       tunnel_proto);
1476 		break;
1477 	case SFC_UDP_TUNNEL_DEL_PORT:
1478 		rc = efx_tunnel_config_udp_remove(sa->nic,
1479 						  tunnel_udp->udp_port,
1480 						  tunnel_proto);
1481 		break;
1482 	default:
1483 		rc = EINVAL;
1484 		goto fail_bad_op;
1485 	}
1486 
1487 	if (rc != 0)
1488 		goto fail_op;
1489 
1490 	if (sa->state == SFC_ADAPTER_STARTED) {
1491 		rc = efx_tunnel_reconfigure(sa->nic);
1492 		if (rc == EAGAIN) {
1493 			/*
1494 			 * Configuration is accepted by FW and MC reboot
1495 			 * is initiated to apply the changes. MC reboot
1496 			 * will be handled in a usual way (MC reboot
1497 			 * event on management event queue and adapter
1498 			 * restart).
1499 			 */
1500 			rc = 0;
1501 		} else if (rc != 0) {
1502 			goto fail_reconfigure;
1503 		}
1504 	}
1505 
1506 	sfc_adapter_unlock(sa);
1507 	return 0;
1508 
1509 fail_reconfigure:
1510 	/* Remove/restore entry since the change makes the trouble */
1511 	switch (op) {
1512 	case SFC_UDP_TUNNEL_ADD_PORT:
1513 		(void)efx_tunnel_config_udp_remove(sa->nic,
1514 						   tunnel_udp->udp_port,
1515 						   tunnel_proto);
1516 		break;
1517 	case SFC_UDP_TUNNEL_DEL_PORT:
1518 		(void)efx_tunnel_config_udp_add(sa->nic,
1519 						tunnel_udp->udp_port,
1520 						tunnel_proto);
1521 		break;
1522 	}
1523 
1524 fail_op:
1525 fail_bad_op:
1526 	sfc_adapter_unlock(sa);
1527 
1528 fail_bad_proto:
1529 	SFC_ASSERT(rc > 0);
1530 	return -rc;
1531 }
1532 
1533 static int
1534 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1535 			    struct rte_eth_udp_tunnel *tunnel_udp)
1536 {
1537 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1538 }
1539 
1540 static int
1541 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1542 			    struct rte_eth_udp_tunnel *tunnel_udp)
1543 {
1544 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1545 }
1546 
1547 /*
1548  * The function is used by the secondary process as well. It must not
1549  * use any process-local pointers from the adapter data.
1550  */
1551 static int
1552 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1553 			  struct rte_eth_rss_conf *rss_conf)
1554 {
1555 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1556 	struct sfc_rss *rss = &sas->rss;
1557 
1558 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1559 		return -ENOTSUP;
1560 
1561 	/*
1562 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1563 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1564 	 * flags which corresponds to the active EFX configuration stored
1565 	 * locally in 'sfc_adapter' and kept up-to-date
1566 	 */
1567 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1568 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1569 	if (rss_conf->rss_key != NULL)
1570 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1571 
1572 	return 0;
1573 }
1574 
1575 static int
1576 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1577 			struct rte_eth_rss_conf *rss_conf)
1578 {
1579 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1580 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1581 	unsigned int efx_hash_types;
1582 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1583 	unsigned int n_contexts;
1584 	unsigned int mode_i = 0;
1585 	unsigned int key_i = 0;
1586 	unsigned int i = 0;
1587 	int rc = 0;
1588 
1589 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1590 
1591 	if (sfc_sa2shared(sa)->isolated)
1592 		return -ENOTSUP;
1593 
1594 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1595 		sfc_err(sa, "RSS is not available");
1596 		return -ENOTSUP;
1597 	}
1598 
1599 	if (rss->channels == 0) {
1600 		sfc_err(sa, "RSS is not configured");
1601 		return -EINVAL;
1602 	}
1603 
1604 	if ((rss_conf->rss_key != NULL) &&
1605 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1606 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1607 			sizeof(rss->key));
1608 		return -EINVAL;
1609 	}
1610 
1611 	sfc_adapter_lock(sa);
1612 
1613 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1614 	if (rc != 0)
1615 		goto fail_rx_hf_rte_to_efx;
1616 
1617 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1618 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1619 					   rss->hash_alg, efx_hash_types,
1620 					   B_TRUE);
1621 		if (rc != 0)
1622 			goto fail_scale_mode_set;
1623 	}
1624 
1625 	if (rss_conf->rss_key != NULL) {
1626 		if (sa->state == SFC_ADAPTER_STARTED) {
1627 			for (key_i = 0; key_i < n_contexts; key_i++) {
1628 				rc = efx_rx_scale_key_set(sa->nic,
1629 							  contexts[key_i],
1630 							  rss_conf->rss_key,
1631 							  sizeof(rss->key));
1632 				if (rc != 0)
1633 					goto fail_scale_key_set;
1634 			}
1635 		}
1636 
1637 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1638 	}
1639 
1640 	rss->hash_types = efx_hash_types;
1641 
1642 	sfc_adapter_unlock(sa);
1643 
1644 	return 0;
1645 
1646 fail_scale_key_set:
1647 	for (i = 0; i < key_i; i++) {
1648 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1649 					 sizeof(rss->key)) != 0)
1650 			sfc_err(sa, "failed to restore RSS key");
1651 	}
1652 
1653 fail_scale_mode_set:
1654 	for (i = 0; i < mode_i; i++) {
1655 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1656 					  EFX_RX_HASHALG_TOEPLITZ,
1657 					  rss->hash_types, B_TRUE) != 0)
1658 			sfc_err(sa, "failed to restore RSS mode");
1659 	}
1660 
1661 fail_rx_hf_rte_to_efx:
1662 	sfc_adapter_unlock(sa);
1663 	return -rc;
1664 }
1665 
1666 /*
1667  * The function is used by the secondary process as well. It must not
1668  * use any process-local pointers from the adapter data.
1669  */
1670 static int
1671 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1672 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1673 		       uint16_t reta_size)
1674 {
1675 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1676 	struct sfc_rss *rss = &sas->rss;
1677 	int entry;
1678 
1679 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1680 		return -ENOTSUP;
1681 
1682 	if (rss->channels == 0)
1683 		return -EINVAL;
1684 
1685 	if (reta_size != EFX_RSS_TBL_SIZE)
1686 		return -EINVAL;
1687 
1688 	for (entry = 0; entry < reta_size; entry++) {
1689 		int grp = entry / RTE_RETA_GROUP_SIZE;
1690 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1691 
1692 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1693 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 static int
1700 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1701 			struct rte_eth_rss_reta_entry64 *reta_conf,
1702 			uint16_t reta_size)
1703 {
1704 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1705 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1706 	unsigned int *rss_tbl_new;
1707 	uint16_t entry;
1708 	int rc = 0;
1709 
1710 
1711 	if (sfc_sa2shared(sa)->isolated)
1712 		return -ENOTSUP;
1713 
1714 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1715 		sfc_err(sa, "RSS is not available");
1716 		return -ENOTSUP;
1717 	}
1718 
1719 	if (rss->channels == 0) {
1720 		sfc_err(sa, "RSS is not configured");
1721 		return -EINVAL;
1722 	}
1723 
1724 	if (reta_size != EFX_RSS_TBL_SIZE) {
1725 		sfc_err(sa, "RETA size is wrong (should be %u)",
1726 			EFX_RSS_TBL_SIZE);
1727 		return -EINVAL;
1728 	}
1729 
1730 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1731 	if (rss_tbl_new == NULL)
1732 		return -ENOMEM;
1733 
1734 	sfc_adapter_lock(sa);
1735 
1736 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1737 
1738 	for (entry = 0; entry < reta_size; entry++) {
1739 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1740 		struct rte_eth_rss_reta_entry64 *grp;
1741 
1742 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1743 
1744 		if (grp->mask & (1ull << grp_idx)) {
1745 			if (grp->reta[grp_idx] >= rss->channels) {
1746 				rc = EINVAL;
1747 				goto bad_reta_entry;
1748 			}
1749 			rss_tbl_new[entry] = grp->reta[grp_idx];
1750 		}
1751 	}
1752 
1753 	if (sa->state == SFC_ADAPTER_STARTED) {
1754 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1755 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1756 		if (rc != 0)
1757 			goto fail_scale_tbl_set;
1758 	}
1759 
1760 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1761 
1762 fail_scale_tbl_set:
1763 bad_reta_entry:
1764 	sfc_adapter_unlock(sa);
1765 
1766 	rte_free(rss_tbl_new);
1767 
1768 	SFC_ASSERT(rc >= 0);
1769 	return -rc;
1770 }
1771 
1772 static int
1773 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1774 		     const struct rte_flow_ops **ops)
1775 {
1776 	*ops = &sfc_flow_ops;
1777 	return 0;
1778 }
1779 
1780 static int
1781 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1782 {
1783 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1784 
1785 	/*
1786 	 * If Rx datapath does not provide callback to check mempool,
1787 	 * all pools are supported.
1788 	 */
1789 	if (sap->dp_rx->pool_ops_supported == NULL)
1790 		return 1;
1791 
1792 	return sap->dp_rx->pool_ops_supported(pool);
1793 }
1794 
1795 static int
1796 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1797 {
1798 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1799 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1800 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1801 	struct sfc_rxq_info *rxq_info;
1802 
1803 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1804 
1805 	return sap->dp_rx->intr_enable(rxq_info->dp);
1806 }
1807 
1808 static int
1809 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1810 {
1811 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1812 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1813 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1814 	struct sfc_rxq_info *rxq_info;
1815 
1816 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1817 
1818 	return sap->dp_rx->intr_disable(rxq_info->dp);
1819 }
1820 
1821 static const struct eth_dev_ops sfc_eth_dev_ops = {
1822 	.dev_configure			= sfc_dev_configure,
1823 	.dev_start			= sfc_dev_start,
1824 	.dev_stop			= sfc_dev_stop,
1825 	.dev_set_link_up		= sfc_dev_set_link_up,
1826 	.dev_set_link_down		= sfc_dev_set_link_down,
1827 	.dev_close			= sfc_dev_close,
1828 	.promiscuous_enable		= sfc_dev_promisc_enable,
1829 	.promiscuous_disable		= sfc_dev_promisc_disable,
1830 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1831 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1832 	.link_update			= sfc_dev_link_update,
1833 	.stats_get			= sfc_stats_get,
1834 	.stats_reset			= sfc_stats_reset,
1835 	.xstats_get			= sfc_xstats_get,
1836 	.xstats_reset			= sfc_stats_reset,
1837 	.xstats_get_names		= sfc_xstats_get_names,
1838 	.dev_infos_get			= sfc_dev_infos_get,
1839 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1840 	.mtu_set			= sfc_dev_set_mtu,
1841 	.rx_queue_start			= sfc_rx_queue_start,
1842 	.rx_queue_stop			= sfc_rx_queue_stop,
1843 	.tx_queue_start			= sfc_tx_queue_start,
1844 	.tx_queue_stop			= sfc_tx_queue_stop,
1845 	.rx_queue_setup			= sfc_rx_queue_setup,
1846 	.rx_queue_release		= sfc_rx_queue_release,
1847 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1848 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1849 	.tx_queue_setup			= sfc_tx_queue_setup,
1850 	.tx_queue_release		= sfc_tx_queue_release,
1851 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1852 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1853 	.mac_addr_set			= sfc_mac_addr_set,
1854 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1855 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1856 	.reta_update			= sfc_dev_rss_reta_update,
1857 	.reta_query			= sfc_dev_rss_reta_query,
1858 	.rss_hash_update		= sfc_dev_rss_hash_update,
1859 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1860 	.flow_ops_get			= sfc_dev_flow_ops_get,
1861 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1862 	.rxq_info_get			= sfc_rx_queue_info_get,
1863 	.txq_info_get			= sfc_tx_queue_info_get,
1864 	.fw_version_get			= sfc_fw_version_get,
1865 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1866 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1867 	.pool_ops_supported		= sfc_pool_ops_supported,
1868 };
1869 
1870 /**
1871  * Duplicate a string in potentially shared memory required for
1872  * multi-process support.
1873  *
1874  * strdup() allocates from process-local heap/memory.
1875  */
1876 static char *
1877 sfc_strdup(const char *str)
1878 {
1879 	size_t size;
1880 	char *copy;
1881 
1882 	if (str == NULL)
1883 		return NULL;
1884 
1885 	size = strlen(str) + 1;
1886 	copy = rte_malloc(__func__, size, 0);
1887 	if (copy != NULL)
1888 		rte_memcpy(copy, str, size);
1889 
1890 	return copy;
1891 }
1892 
1893 static int
1894 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1895 {
1896 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1897 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1898 	const struct sfc_dp_rx *dp_rx;
1899 	const struct sfc_dp_tx *dp_tx;
1900 	const efx_nic_cfg_t *encp;
1901 	unsigned int avail_caps = 0;
1902 	const char *rx_name = NULL;
1903 	const char *tx_name = NULL;
1904 	int rc;
1905 
1906 	switch (sa->family) {
1907 	case EFX_FAMILY_HUNTINGTON:
1908 	case EFX_FAMILY_MEDFORD:
1909 	case EFX_FAMILY_MEDFORD2:
1910 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1911 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
1912 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
1913 		break;
1914 	case EFX_FAMILY_RIVERHEAD:
1915 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
1916 		break;
1917 	default:
1918 		break;
1919 	}
1920 
1921 	encp = efx_nic_cfg_get(sa->nic);
1922 	if (encp->enc_rx_es_super_buffer_supported)
1923 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1924 
1925 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1926 				sfc_kvarg_string_handler, &rx_name);
1927 	if (rc != 0)
1928 		goto fail_kvarg_rx_datapath;
1929 
1930 	if (rx_name != NULL) {
1931 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1932 		if (dp_rx == NULL) {
1933 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1934 			rc = ENOENT;
1935 			goto fail_dp_rx;
1936 		}
1937 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1938 			sfc_err(sa,
1939 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1940 				rx_name);
1941 			rc = EINVAL;
1942 			goto fail_dp_rx_caps;
1943 		}
1944 	} else {
1945 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1946 		if (dp_rx == NULL) {
1947 			sfc_err(sa, "Rx datapath by caps %#x not found",
1948 				avail_caps);
1949 			rc = ENOENT;
1950 			goto fail_dp_rx;
1951 		}
1952 	}
1953 
1954 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1955 	if (sas->dp_rx_name == NULL) {
1956 		rc = ENOMEM;
1957 		goto fail_dp_rx_name;
1958 	}
1959 
1960 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1961 
1962 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1963 				sfc_kvarg_string_handler, &tx_name);
1964 	if (rc != 0)
1965 		goto fail_kvarg_tx_datapath;
1966 
1967 	if (tx_name != NULL) {
1968 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1969 		if (dp_tx == NULL) {
1970 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1971 			rc = ENOENT;
1972 			goto fail_dp_tx;
1973 		}
1974 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1975 			sfc_err(sa,
1976 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1977 				tx_name);
1978 			rc = EINVAL;
1979 			goto fail_dp_tx_caps;
1980 		}
1981 	} else {
1982 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1983 		if (dp_tx == NULL) {
1984 			sfc_err(sa, "Tx datapath by caps %#x not found",
1985 				avail_caps);
1986 			rc = ENOENT;
1987 			goto fail_dp_tx;
1988 		}
1989 	}
1990 
1991 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
1992 	if (sas->dp_tx_name == NULL) {
1993 		rc = ENOMEM;
1994 		goto fail_dp_tx_name;
1995 	}
1996 
1997 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
1998 
1999 	sa->priv.dp_rx = dp_rx;
2000 	sa->priv.dp_tx = dp_tx;
2001 
2002 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2003 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2004 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2005 
2006 	dev->rx_queue_count = sfc_rx_queue_count;
2007 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2008 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2009 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2010 	dev->dev_ops = &sfc_eth_dev_ops;
2011 
2012 	return 0;
2013 
2014 fail_dp_tx_name:
2015 fail_dp_tx_caps:
2016 fail_dp_tx:
2017 fail_kvarg_tx_datapath:
2018 	rte_free(sas->dp_rx_name);
2019 	sas->dp_rx_name = NULL;
2020 
2021 fail_dp_rx_name:
2022 fail_dp_rx_caps:
2023 fail_dp_rx:
2024 fail_kvarg_rx_datapath:
2025 	return rc;
2026 }
2027 
2028 static void
2029 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2030 {
2031 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2032 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2033 
2034 	dev->dev_ops = NULL;
2035 	dev->tx_pkt_prepare = NULL;
2036 	dev->rx_pkt_burst = NULL;
2037 	dev->tx_pkt_burst = NULL;
2038 
2039 	rte_free(sas->dp_tx_name);
2040 	sas->dp_tx_name = NULL;
2041 	sa->priv.dp_tx = NULL;
2042 
2043 	rte_free(sas->dp_rx_name);
2044 	sas->dp_rx_name = NULL;
2045 	sa->priv.dp_rx = NULL;
2046 }
2047 
2048 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2049 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2050 	.reta_query			= sfc_dev_rss_reta_query,
2051 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2052 	.rxq_info_get			= sfc_rx_queue_info_get,
2053 	.txq_info_get			= sfc_tx_queue_info_get,
2054 };
2055 
2056 static int
2057 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2058 {
2059 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2060 	struct sfc_adapter_priv *sap;
2061 	const struct sfc_dp_rx *dp_rx;
2062 	const struct sfc_dp_tx *dp_tx;
2063 	int rc;
2064 
2065 	/*
2066 	 * Allocate process private data from heap, since it should not
2067 	 * be located in shared memory allocated using rte_malloc() API.
2068 	 */
2069 	sap = calloc(1, sizeof(*sap));
2070 	if (sap == NULL) {
2071 		rc = ENOMEM;
2072 		goto fail_alloc_priv;
2073 	}
2074 
2075 	sap->logtype_main = logtype_main;
2076 
2077 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2078 	if (dp_rx == NULL) {
2079 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2080 			"cannot find %s Rx datapath", sas->dp_rx_name);
2081 		rc = ENOENT;
2082 		goto fail_dp_rx;
2083 	}
2084 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2085 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2086 			"%s Rx datapath does not support multi-process",
2087 			sas->dp_rx_name);
2088 		rc = EINVAL;
2089 		goto fail_dp_rx_multi_process;
2090 	}
2091 
2092 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2093 	if (dp_tx == NULL) {
2094 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2095 			"cannot find %s Tx datapath", sas->dp_tx_name);
2096 		rc = ENOENT;
2097 		goto fail_dp_tx;
2098 	}
2099 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2100 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2101 			"%s Tx datapath does not support multi-process",
2102 			sas->dp_tx_name);
2103 		rc = EINVAL;
2104 		goto fail_dp_tx_multi_process;
2105 	}
2106 
2107 	sap->dp_rx = dp_rx;
2108 	sap->dp_tx = dp_tx;
2109 
2110 	dev->process_private = sap;
2111 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2112 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2113 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2114 	dev->rx_queue_count = sfc_rx_queue_count;
2115 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2116 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2117 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2118 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2119 
2120 	return 0;
2121 
2122 fail_dp_tx_multi_process:
2123 fail_dp_tx:
2124 fail_dp_rx_multi_process:
2125 fail_dp_rx:
2126 	free(sap);
2127 
2128 fail_alloc_priv:
2129 	return rc;
2130 }
2131 
2132 static void
2133 sfc_register_dp(void)
2134 {
2135 	/* Register once */
2136 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2137 		/* Prefer EF10 datapath */
2138 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2139 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2140 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2141 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2142 
2143 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2144 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2145 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2146 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2147 	}
2148 }
2149 
2150 static int
2151 sfc_eth_dev_init(struct rte_eth_dev *dev)
2152 {
2153 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2154 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2155 	uint32_t logtype_main;
2156 	struct sfc_adapter *sa;
2157 	int rc;
2158 	const efx_nic_cfg_t *encp;
2159 	const struct rte_ether_addr *from;
2160 	int ret;
2161 
2162 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2163 			SFC_EFX_DEV_CLASS_NET) {
2164 		SFC_GENERIC_LOG(DEBUG,
2165 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2166 		return 1;
2167 	}
2168 
2169 	sfc_register_dp();
2170 
2171 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2172 					    SFC_LOGTYPE_MAIN_STR,
2173 					    RTE_LOG_NOTICE);
2174 
2175 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2176 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2177 
2178 	/* Required for logging */
2179 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2180 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2181 			pci_dev->addr.domain, pci_dev->addr.bus,
2182 			pci_dev->addr.devid, pci_dev->addr.function,
2183 			dev->data->port_id);
2184 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2185 		SFC_GENERIC_LOG(ERR,
2186 			"reserved log prefix is too short for " PCI_PRI_FMT,
2187 			pci_dev->addr.domain, pci_dev->addr.bus,
2188 			pci_dev->addr.devid, pci_dev->addr.function);
2189 		return -EINVAL;
2190 	}
2191 	sas->pci_addr = pci_dev->addr;
2192 	sas->port_id = dev->data->port_id;
2193 
2194 	/*
2195 	 * Allocate process private data from heap, since it should not
2196 	 * be located in shared memory allocated using rte_malloc() API.
2197 	 */
2198 	sa = calloc(1, sizeof(*sa));
2199 	if (sa == NULL) {
2200 		rc = ENOMEM;
2201 		goto fail_alloc_sa;
2202 	}
2203 
2204 	dev->process_private = sa;
2205 
2206 	/* Required for logging */
2207 	sa->priv.shared = sas;
2208 	sa->priv.logtype_main = logtype_main;
2209 
2210 	sa->eth_dev = dev;
2211 
2212 	/* Copy PCI device info to the dev->data */
2213 	rte_eth_copy_pci_info(dev, pci_dev);
2214 	dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2215 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2216 
2217 	rc = sfc_kvargs_parse(sa);
2218 	if (rc != 0)
2219 		goto fail_kvargs_parse;
2220 
2221 	sfc_log_init(sa, "entry");
2222 
2223 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2224 	if (dev->data->mac_addrs == NULL) {
2225 		rc = ENOMEM;
2226 		goto fail_mac_addrs;
2227 	}
2228 
2229 	sfc_adapter_lock_init(sa);
2230 	sfc_adapter_lock(sa);
2231 
2232 	sfc_log_init(sa, "probing");
2233 	rc = sfc_probe(sa);
2234 	if (rc != 0)
2235 		goto fail_probe;
2236 
2237 	sfc_log_init(sa, "set device ops");
2238 	rc = sfc_eth_dev_set_ops(dev);
2239 	if (rc != 0)
2240 		goto fail_set_ops;
2241 
2242 	sfc_log_init(sa, "attaching");
2243 	rc = sfc_attach(sa);
2244 	if (rc != 0)
2245 		goto fail_attach;
2246 
2247 	encp = efx_nic_cfg_get(sa->nic);
2248 
2249 	/*
2250 	 * The arguments are really reverse order in comparison to
2251 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2252 	 */
2253 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2254 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2255 
2256 	sfc_adapter_unlock(sa);
2257 
2258 	sfc_log_init(sa, "done");
2259 	return 0;
2260 
2261 fail_attach:
2262 	sfc_eth_dev_clear_ops(dev);
2263 
2264 fail_set_ops:
2265 	sfc_unprobe(sa);
2266 
2267 fail_probe:
2268 	sfc_adapter_unlock(sa);
2269 	sfc_adapter_lock_fini(sa);
2270 	rte_free(dev->data->mac_addrs);
2271 	dev->data->mac_addrs = NULL;
2272 
2273 fail_mac_addrs:
2274 	sfc_kvargs_cleanup(sa);
2275 
2276 fail_kvargs_parse:
2277 	sfc_log_init(sa, "failed %d", rc);
2278 	dev->process_private = NULL;
2279 	free(sa);
2280 
2281 fail_alloc_sa:
2282 	SFC_ASSERT(rc > 0);
2283 	return -rc;
2284 }
2285 
2286 static int
2287 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2288 {
2289 	sfc_dev_close(dev);
2290 
2291 	return 0;
2292 }
2293 
2294 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2295 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2296 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2297 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2298 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2299 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2300 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2301 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2302 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2303 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2304 	{ .vendor_id = 0 /* sentinel */ }
2305 };
2306 
2307 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2308 	struct rte_pci_device *pci_dev)
2309 {
2310 	return rte_eth_dev_pci_generic_probe(pci_dev,
2311 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2312 }
2313 
2314 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2315 {
2316 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2317 }
2318 
2319 static struct rte_pci_driver sfc_efx_pmd = {
2320 	.id_table = pci_id_sfc_efx_map,
2321 	.drv_flags =
2322 		RTE_PCI_DRV_INTR_LSC |
2323 		RTE_PCI_DRV_NEED_MAPPING,
2324 	.probe = sfc_eth_dev_pci_probe,
2325 	.remove = sfc_eth_dev_pci_remove,
2326 };
2327 
2328 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2329 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2330 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2331 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2332 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2333 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2334 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2335 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2336 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2337 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2338 
2339 RTE_INIT(sfc_driver_register_logtype)
2340 {
2341 	int ret;
2342 
2343 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2344 						   RTE_LOG_NOTICE);
2345 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2346 }
2347