xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 
32 uint32_t sfc_logtype_driver;
33 
34 static struct sfc_dp_list sfc_dp_head =
35 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36 
37 
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
39 
40 
41 static int
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
43 {
44 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 	efx_nic_fw_info_t enfi;
46 	int ret;
47 	int rc;
48 
49 	/*
50 	 * Return value of the callback is likely supposed to be
51 	 * equal to or greater than 0, nevertheless, if an error
52 	 * occurs, it will be desirable to pass it to the caller
53 	 */
54 	if ((fw_version == NULL) || (fw_size == 0))
55 		return -EINVAL;
56 
57 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
58 	if (rc != 0)
59 		return -rc;
60 
61 	ret = snprintf(fw_version, fw_size,
62 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
65 	if (ret < 0)
66 		return ret;
67 
68 	if (enfi.enfi_dpcpu_fw_ids_valid) {
69 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
70 		int ret_extra;
71 
72 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 				     fw_size - dpcpu_fw_ids_offset,
74 				     " rx%" PRIx16 " tx%" PRIx16,
75 				     enfi.enfi_rx_dpcpu_fw_id,
76 				     enfi.enfi_tx_dpcpu_fw_id);
77 		if (ret_extra < 0)
78 			return ret_extra;
79 
80 		ret += ret_extra;
81 	}
82 
83 	if (fw_size < (size_t)(++ret))
84 		return ret;
85 	else
86 		return 0;
87 }
88 
89 static int
90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
91 {
92 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 	struct sfc_rss *rss = &sas->rss;
96 	uint64_t txq_offloads_def = 0;
97 
98 	sfc_log_init(sa, "entry");
99 
100 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
102 
103 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
104 
105 	dev_info->max_vfs = sa->sriov.num_vfs;
106 
107 	/* Autonegotiation may be disabled */
108 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
109 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
110 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
111 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
112 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
113 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
114 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
115 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
116 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
117 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
118 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
119 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
120 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
121 
122 	dev_info->max_rx_queues = sa->rxq_max;
123 	dev_info->max_tx_queues = sa->txq_max;
124 
125 	/* By default packets are dropped if no descriptors are available */
126 	dev_info->default_rxconf.rx_drop_en = 1;
127 
128 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
129 
130 	/*
131 	 * rx_offload_capa includes both device and queue offloads since
132 	 * the latter may be requested on a per device basis which makes
133 	 * sense when some offloads are needed to be set on all queues.
134 	 */
135 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
136 				    dev_info->rx_queue_offload_capa;
137 
138 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
139 
140 	/*
141 	 * tx_offload_capa includes both device and queue offloads since
142 	 * the latter may be requested on a per device basis which makes
143 	 * sense when some offloads are needed to be set on all queues.
144 	 */
145 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
146 				    dev_info->tx_queue_offload_capa;
147 
148 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
149 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
150 
151 	dev_info->default_txconf.offloads |= txq_offloads_def;
152 
153 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
154 		uint64_t rte_hf = 0;
155 		unsigned int i;
156 
157 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
158 			rte_hf |= rss->hf_map[i].rte;
159 
160 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
161 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
162 		dev_info->flow_type_rss_offloads = rte_hf;
163 	}
164 
165 	/* Initialize to hardware limits */
166 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
167 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
168 	/* The RXQ hardware requires that the descriptor count is a power
169 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
170 	 */
171 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
172 
173 	/* Initialize to hardware limits */
174 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
175 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
176 	/*
177 	 * The TXQ hardware requires that the descriptor count is a power
178 	 * of 2, but tx_desc_lim cannot properly describe that constraint
179 	 */
180 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
181 
182 	if (sap->dp_rx->get_dev_info != NULL)
183 		sap->dp_rx->get_dev_info(dev_info);
184 	if (sap->dp_tx->get_dev_info != NULL)
185 		sap->dp_tx->get_dev_info(dev_info);
186 
187 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
188 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
189 
190 	return 0;
191 }
192 
193 static const uint32_t *
194 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
195 {
196 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
197 
198 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
199 }
200 
201 static int
202 sfc_dev_configure(struct rte_eth_dev *dev)
203 {
204 	struct rte_eth_dev_data *dev_data = dev->data;
205 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
206 	int rc;
207 
208 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
209 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
210 
211 	sfc_adapter_lock(sa);
212 	switch (sa->state) {
213 	case SFC_ADAPTER_CONFIGURED:
214 		/* FALLTHROUGH */
215 	case SFC_ADAPTER_INITIALIZED:
216 		rc = sfc_configure(sa);
217 		break;
218 	default:
219 		sfc_err(sa, "unexpected adapter state %u to configure",
220 			sa->state);
221 		rc = EINVAL;
222 		break;
223 	}
224 	sfc_adapter_unlock(sa);
225 
226 	sfc_log_init(sa, "done %d", rc);
227 	SFC_ASSERT(rc >= 0);
228 	return -rc;
229 }
230 
231 static int
232 sfc_dev_start(struct rte_eth_dev *dev)
233 {
234 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
235 	int rc;
236 
237 	sfc_log_init(sa, "entry");
238 
239 	sfc_adapter_lock(sa);
240 	rc = sfc_start(sa);
241 	sfc_adapter_unlock(sa);
242 
243 	sfc_log_init(sa, "done %d", rc);
244 	SFC_ASSERT(rc >= 0);
245 	return -rc;
246 }
247 
248 static int
249 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
250 {
251 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
252 	struct rte_eth_link current_link;
253 	int ret;
254 
255 	sfc_log_init(sa, "entry");
256 
257 	if (sa->state != SFC_ADAPTER_STARTED) {
258 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
259 	} else if (wait_to_complete) {
260 		efx_link_mode_t link_mode;
261 
262 		if (efx_port_poll(sa->nic, &link_mode) != 0)
263 			link_mode = EFX_LINK_UNKNOWN;
264 		sfc_port_link_mode_to_info(link_mode, &current_link);
265 
266 	} else {
267 		sfc_ev_mgmt_qpoll(sa);
268 		rte_eth_linkstatus_get(dev, &current_link);
269 	}
270 
271 	ret = rte_eth_linkstatus_set(dev, &current_link);
272 	if (ret == 0)
273 		sfc_notice(sa, "Link status is %s",
274 			   current_link.link_status ? "UP" : "DOWN");
275 
276 	return ret;
277 }
278 
279 static int
280 sfc_dev_stop(struct rte_eth_dev *dev)
281 {
282 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
283 
284 	sfc_log_init(sa, "entry");
285 
286 	sfc_adapter_lock(sa);
287 	sfc_stop(sa);
288 	sfc_adapter_unlock(sa);
289 
290 	sfc_log_init(sa, "done");
291 
292 	return 0;
293 }
294 
295 static int
296 sfc_dev_set_link_up(struct rte_eth_dev *dev)
297 {
298 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
299 	int rc;
300 
301 	sfc_log_init(sa, "entry");
302 
303 	sfc_adapter_lock(sa);
304 	rc = sfc_start(sa);
305 	sfc_adapter_unlock(sa);
306 
307 	SFC_ASSERT(rc >= 0);
308 	return -rc;
309 }
310 
311 static int
312 sfc_dev_set_link_down(struct rte_eth_dev *dev)
313 {
314 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
315 
316 	sfc_log_init(sa, "entry");
317 
318 	sfc_adapter_lock(sa);
319 	sfc_stop(sa);
320 	sfc_adapter_unlock(sa);
321 
322 	return 0;
323 }
324 
325 static void
326 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
327 {
328 	free(dev->process_private);
329 	rte_eth_dev_release_port(dev);
330 }
331 
332 static int
333 sfc_dev_close(struct rte_eth_dev *dev)
334 {
335 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
336 
337 	sfc_log_init(sa, "entry");
338 
339 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
340 		sfc_eth_dev_secondary_clear_ops(dev);
341 		return 0;
342 	}
343 
344 	sfc_adapter_lock(sa);
345 	switch (sa->state) {
346 	case SFC_ADAPTER_STARTED:
347 		sfc_stop(sa);
348 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
349 		/* FALLTHROUGH */
350 	case SFC_ADAPTER_CONFIGURED:
351 		sfc_close(sa);
352 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
353 		/* FALLTHROUGH */
354 	case SFC_ADAPTER_INITIALIZED:
355 		break;
356 	default:
357 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
358 		break;
359 	}
360 
361 	/*
362 	 * Cleanup all resources.
363 	 * Rollback primary process sfc_eth_dev_init() below.
364 	 */
365 
366 	sfc_eth_dev_clear_ops(dev);
367 
368 	sfc_detach(sa);
369 	sfc_unprobe(sa);
370 
371 	sfc_kvargs_cleanup(sa);
372 
373 	sfc_adapter_unlock(sa);
374 	sfc_adapter_lock_fini(sa);
375 
376 	sfc_log_init(sa, "done");
377 
378 	/* Required for logging, so cleanup last */
379 	sa->eth_dev = NULL;
380 
381 	free(sa);
382 
383 	return 0;
384 }
385 
386 static int
387 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
388 		   boolean_t enabled)
389 {
390 	struct sfc_port *port;
391 	boolean_t *toggle;
392 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
393 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
394 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
395 	int rc = 0;
396 
397 	sfc_adapter_lock(sa);
398 
399 	port = &sa->port;
400 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
401 
402 	if (*toggle != enabled) {
403 		*toggle = enabled;
404 
405 		if (sfc_sa2shared(sa)->isolated) {
406 			sfc_warn(sa, "isolated mode is active on the port");
407 			sfc_warn(sa, "the change is to be applied on the next "
408 				     "start provided that isolated mode is "
409 				     "disabled prior the next start");
410 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
411 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
412 			*toggle = !(enabled);
413 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
414 				 ((enabled) ? "enable" : "disable"), desc, rc);
415 
416 			/*
417 			 * For promiscuous and all-multicast filters a
418 			 * permission failure should be reported as an
419 			 * unsupported filter.
420 			 */
421 			if (rc == EPERM)
422 				rc = ENOTSUP;
423 		}
424 	}
425 
426 	sfc_adapter_unlock(sa);
427 	return rc;
428 }
429 
430 static int
431 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
432 {
433 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
434 
435 	SFC_ASSERT(rc >= 0);
436 	return -rc;
437 }
438 
439 static int
440 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
441 {
442 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
443 
444 	SFC_ASSERT(rc >= 0);
445 	return -rc;
446 }
447 
448 static int
449 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
450 {
451 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
452 
453 	SFC_ASSERT(rc >= 0);
454 	return -rc;
455 }
456 
457 static int
458 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
459 {
460 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
461 
462 	SFC_ASSERT(rc >= 0);
463 	return -rc;
464 }
465 
466 static int
467 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
468 		   uint16_t nb_rx_desc, unsigned int socket_id,
469 		   const struct rte_eth_rxconf *rx_conf,
470 		   struct rte_mempool *mb_pool)
471 {
472 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
473 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
474 	int rc;
475 
476 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
477 		     rx_queue_id, nb_rx_desc, socket_id);
478 
479 	sfc_adapter_lock(sa);
480 
481 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
482 			  rx_conf, mb_pool);
483 	if (rc != 0)
484 		goto fail_rx_qinit;
485 
486 	dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
487 
488 	sfc_adapter_unlock(sa);
489 
490 	return 0;
491 
492 fail_rx_qinit:
493 	sfc_adapter_unlock(sa);
494 	SFC_ASSERT(rc > 0);
495 	return -rc;
496 }
497 
498 static void
499 sfc_rx_queue_release(void *queue)
500 {
501 	struct sfc_dp_rxq *dp_rxq = queue;
502 	struct sfc_rxq *rxq;
503 	struct sfc_adapter *sa;
504 	unsigned int sw_index;
505 
506 	if (dp_rxq == NULL)
507 		return;
508 
509 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
510 	sa = rxq->evq->sa;
511 	sfc_adapter_lock(sa);
512 
513 	sw_index = dp_rxq->dpq.queue_id;
514 
515 	sfc_log_init(sa, "RxQ=%u", sw_index);
516 
517 	sfc_rx_qfini(sa, sw_index);
518 
519 	sfc_adapter_unlock(sa);
520 }
521 
522 static int
523 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
524 		   uint16_t nb_tx_desc, unsigned int socket_id,
525 		   const struct rte_eth_txconf *tx_conf)
526 {
527 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
528 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
529 	int rc;
530 
531 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
532 		     tx_queue_id, nb_tx_desc, socket_id);
533 
534 	sfc_adapter_lock(sa);
535 
536 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
537 	if (rc != 0)
538 		goto fail_tx_qinit;
539 
540 	dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
541 
542 	sfc_adapter_unlock(sa);
543 	return 0;
544 
545 fail_tx_qinit:
546 	sfc_adapter_unlock(sa);
547 	SFC_ASSERT(rc > 0);
548 	return -rc;
549 }
550 
551 static void
552 sfc_tx_queue_release(void *queue)
553 {
554 	struct sfc_dp_txq *dp_txq = queue;
555 	struct sfc_txq *txq;
556 	unsigned int sw_index;
557 	struct sfc_adapter *sa;
558 
559 	if (dp_txq == NULL)
560 		return;
561 
562 	txq = sfc_txq_by_dp_txq(dp_txq);
563 	sw_index = dp_txq->dpq.queue_id;
564 
565 	SFC_ASSERT(txq->evq != NULL);
566 	sa = txq->evq->sa;
567 
568 	sfc_log_init(sa, "TxQ = %u", sw_index);
569 
570 	sfc_adapter_lock(sa);
571 
572 	sfc_tx_qfini(sa, sw_index);
573 
574 	sfc_adapter_unlock(sa);
575 }
576 
577 /*
578  * Some statistics are computed as A - B where A and B each increase
579  * monotonically with some hardware counter(s) and the counters are read
580  * asynchronously.
581  *
582  * If packet X is counted in A, but not counted in B yet, computed value is
583  * greater than real.
584  *
585  * If packet X is not counted in A at the moment of reading the counter,
586  * but counted in B at the moment of reading the counter, computed value
587  * is less than real.
588  *
589  * However, counter which grows backward is worse evil than slightly wrong
590  * value. So, let's try to guarantee that it never happens except may be
591  * the case when the MAC stats are zeroed as a result of a NIC reset.
592  */
593 static void
594 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
595 {
596 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
597 		*stat = newval;
598 }
599 
600 static int
601 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
602 {
603 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
604 	struct sfc_port *port = &sa->port;
605 	uint64_t *mac_stats;
606 	int ret;
607 
608 	rte_spinlock_lock(&port->mac_stats_lock);
609 
610 	ret = sfc_port_update_mac_stats(sa);
611 	if (ret != 0)
612 		goto unlock;
613 
614 	mac_stats = port->mac_stats_buf;
615 
616 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
617 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
618 		stats->ipackets =
619 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
620 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
621 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
622 		stats->opackets =
623 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
624 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
625 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
626 		stats->ibytes =
627 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
628 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
629 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
630 		stats->obytes =
631 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
632 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
633 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
634 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
635 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
636 	} else {
637 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
638 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
639 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
640 		/*
641 		 * Take into account stats which are whenever supported
642 		 * on EF10. If some stat is not supported by current
643 		 * firmware variant or HW revision, it is guaranteed
644 		 * to be zero in mac_stats.
645 		 */
646 		stats->imissed =
647 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
648 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
649 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
650 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
651 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
652 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
653 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
654 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
655 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
656 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
657 		stats->ierrors =
658 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
659 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
660 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
661 		/* no oerrors counters supported on EF10 */
662 
663 		/* Exclude missed, errors and pauses from Rx packets */
664 		sfc_update_diff_stat(&port->ipackets,
665 			mac_stats[EFX_MAC_RX_PKTS] -
666 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
667 			stats->imissed - stats->ierrors);
668 		stats->ipackets = port->ipackets;
669 	}
670 
671 unlock:
672 	rte_spinlock_unlock(&port->mac_stats_lock);
673 	SFC_ASSERT(ret >= 0);
674 	return -ret;
675 }
676 
677 static int
678 sfc_stats_reset(struct rte_eth_dev *dev)
679 {
680 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
681 	struct sfc_port *port = &sa->port;
682 	int rc;
683 
684 	if (sa->state != SFC_ADAPTER_STARTED) {
685 		/*
686 		 * The operation cannot be done if port is not started; it
687 		 * will be scheduled to be done during the next port start
688 		 */
689 		port->mac_stats_reset_pending = B_TRUE;
690 		return 0;
691 	}
692 
693 	rc = sfc_port_reset_mac_stats(sa);
694 	if (rc != 0)
695 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
696 
697 	SFC_ASSERT(rc >= 0);
698 	return -rc;
699 }
700 
701 static int
702 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
703 	       unsigned int xstats_count)
704 {
705 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
706 	struct sfc_port *port = &sa->port;
707 	uint64_t *mac_stats;
708 	int rc;
709 	unsigned int i;
710 	int nstats = 0;
711 
712 	rte_spinlock_lock(&port->mac_stats_lock);
713 
714 	rc = sfc_port_update_mac_stats(sa);
715 	if (rc != 0) {
716 		SFC_ASSERT(rc > 0);
717 		nstats = -rc;
718 		goto unlock;
719 	}
720 
721 	mac_stats = port->mac_stats_buf;
722 
723 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
724 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
725 			if (xstats != NULL && nstats < (int)xstats_count) {
726 				xstats[nstats].id = nstats;
727 				xstats[nstats].value = mac_stats[i];
728 			}
729 			nstats++;
730 		}
731 	}
732 
733 unlock:
734 	rte_spinlock_unlock(&port->mac_stats_lock);
735 
736 	return nstats;
737 }
738 
739 static int
740 sfc_xstats_get_names(struct rte_eth_dev *dev,
741 		     struct rte_eth_xstat_name *xstats_names,
742 		     unsigned int xstats_count)
743 {
744 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
745 	struct sfc_port *port = &sa->port;
746 	unsigned int i;
747 	unsigned int nstats = 0;
748 
749 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
750 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
751 			if (xstats_names != NULL && nstats < xstats_count)
752 				strlcpy(xstats_names[nstats].name,
753 					efx_mac_stat_name(sa->nic, i),
754 					sizeof(xstats_names[0].name));
755 			nstats++;
756 		}
757 	}
758 
759 	return nstats;
760 }
761 
762 static int
763 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
764 		     uint64_t *values, unsigned int n)
765 {
766 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
767 	struct sfc_port *port = &sa->port;
768 	uint64_t *mac_stats;
769 	unsigned int nb_supported = 0;
770 	unsigned int nb_written = 0;
771 	unsigned int i;
772 	int ret;
773 	int rc;
774 
775 	if (unlikely(values == NULL) ||
776 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
777 		return port->mac_stats_nb_supported;
778 
779 	rte_spinlock_lock(&port->mac_stats_lock);
780 
781 	rc = sfc_port_update_mac_stats(sa);
782 	if (rc != 0) {
783 		SFC_ASSERT(rc > 0);
784 		ret = -rc;
785 		goto unlock;
786 	}
787 
788 	mac_stats = port->mac_stats_buf;
789 
790 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
791 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
792 			continue;
793 
794 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
795 			values[nb_written++] = mac_stats[i];
796 
797 		++nb_supported;
798 	}
799 
800 	ret = nb_written;
801 
802 unlock:
803 	rte_spinlock_unlock(&port->mac_stats_lock);
804 
805 	return ret;
806 }
807 
808 static int
809 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
810 			   struct rte_eth_xstat_name *xstats_names,
811 			   const uint64_t *ids, unsigned int size)
812 {
813 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
814 	struct sfc_port *port = &sa->port;
815 	unsigned int nb_supported = 0;
816 	unsigned int nb_written = 0;
817 	unsigned int i;
818 
819 	if (unlikely(xstats_names == NULL) ||
820 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
821 		return port->mac_stats_nb_supported;
822 
823 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
824 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
825 			continue;
826 
827 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
828 			char *name = xstats_names[nb_written++].name;
829 
830 			strlcpy(name, efx_mac_stat_name(sa->nic, i),
831 				sizeof(xstats_names[0].name));
832 		}
833 
834 		++nb_supported;
835 	}
836 
837 	return nb_written;
838 }
839 
840 static int
841 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
842 {
843 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
844 	unsigned int wanted_fc, link_fc;
845 
846 	memset(fc_conf, 0, sizeof(*fc_conf));
847 
848 	sfc_adapter_lock(sa);
849 
850 	if (sa->state == SFC_ADAPTER_STARTED)
851 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
852 	else
853 		link_fc = sa->port.flow_ctrl;
854 
855 	switch (link_fc) {
856 	case 0:
857 		fc_conf->mode = RTE_FC_NONE;
858 		break;
859 	case EFX_FCNTL_RESPOND:
860 		fc_conf->mode = RTE_FC_RX_PAUSE;
861 		break;
862 	case EFX_FCNTL_GENERATE:
863 		fc_conf->mode = RTE_FC_TX_PAUSE;
864 		break;
865 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
866 		fc_conf->mode = RTE_FC_FULL;
867 		break;
868 	default:
869 		sfc_err(sa, "%s: unexpected flow control value %#x",
870 			__func__, link_fc);
871 	}
872 
873 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
874 
875 	sfc_adapter_unlock(sa);
876 
877 	return 0;
878 }
879 
880 static int
881 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
882 {
883 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
884 	struct sfc_port *port = &sa->port;
885 	unsigned int fcntl;
886 	int rc;
887 
888 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
889 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
890 	    fc_conf->mac_ctrl_frame_fwd != 0) {
891 		sfc_err(sa, "unsupported flow control settings specified");
892 		rc = EINVAL;
893 		goto fail_inval;
894 	}
895 
896 	switch (fc_conf->mode) {
897 	case RTE_FC_NONE:
898 		fcntl = 0;
899 		break;
900 	case RTE_FC_RX_PAUSE:
901 		fcntl = EFX_FCNTL_RESPOND;
902 		break;
903 	case RTE_FC_TX_PAUSE:
904 		fcntl = EFX_FCNTL_GENERATE;
905 		break;
906 	case RTE_FC_FULL:
907 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
908 		break;
909 	default:
910 		rc = EINVAL;
911 		goto fail_inval;
912 	}
913 
914 	sfc_adapter_lock(sa);
915 
916 	if (sa->state == SFC_ADAPTER_STARTED) {
917 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
918 		if (rc != 0)
919 			goto fail_mac_fcntl_set;
920 	}
921 
922 	port->flow_ctrl = fcntl;
923 	port->flow_ctrl_autoneg = fc_conf->autoneg;
924 
925 	sfc_adapter_unlock(sa);
926 
927 	return 0;
928 
929 fail_mac_fcntl_set:
930 	sfc_adapter_unlock(sa);
931 fail_inval:
932 	SFC_ASSERT(rc > 0);
933 	return -rc;
934 }
935 
936 static int
937 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
938 {
939 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
940 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
941 	boolean_t scatter_enabled;
942 	const char *error;
943 	unsigned int i;
944 
945 	for (i = 0; i < sas->rxq_count; i++) {
946 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
947 			continue;
948 
949 		scatter_enabled = (sas->rxq_info[i].type_flags &
950 				   EFX_RXQ_FLAG_SCATTER);
951 
952 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
953 					  encp->enc_rx_prefix_size,
954 					  scatter_enabled,
955 					  encp->enc_rx_scatter_max, &error)) {
956 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
957 				error);
958 			return EINVAL;
959 		}
960 	}
961 
962 	return 0;
963 }
964 
965 static int
966 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
967 {
968 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
969 	size_t pdu = EFX_MAC_PDU(mtu);
970 	size_t old_pdu;
971 	int rc;
972 
973 	sfc_log_init(sa, "mtu=%u", mtu);
974 
975 	rc = EINVAL;
976 	if (pdu < EFX_MAC_PDU_MIN) {
977 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
978 			(unsigned int)mtu, (unsigned int)pdu,
979 			EFX_MAC_PDU_MIN);
980 		goto fail_inval;
981 	}
982 	if (pdu > EFX_MAC_PDU_MAX) {
983 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
984 			(unsigned int)mtu, (unsigned int)pdu,
985 			(unsigned int)EFX_MAC_PDU_MAX);
986 		goto fail_inval;
987 	}
988 
989 	sfc_adapter_lock(sa);
990 
991 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
992 	if (rc != 0)
993 		goto fail_check_scatter;
994 
995 	if (pdu != sa->port.pdu) {
996 		if (sa->state == SFC_ADAPTER_STARTED) {
997 			sfc_stop(sa);
998 
999 			old_pdu = sa->port.pdu;
1000 			sa->port.pdu = pdu;
1001 			rc = sfc_start(sa);
1002 			if (rc != 0)
1003 				goto fail_start;
1004 		} else {
1005 			sa->port.pdu = pdu;
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * The driver does not use it, but other PMDs update jumbo frame
1011 	 * flag and max_rx_pkt_len when MTU is set.
1012 	 */
1013 	if (mtu > RTE_ETHER_MAX_LEN) {
1014 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1015 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1016 	}
1017 
1018 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1019 
1020 	sfc_adapter_unlock(sa);
1021 
1022 	sfc_log_init(sa, "done");
1023 	return 0;
1024 
1025 fail_start:
1026 	sa->port.pdu = old_pdu;
1027 	if (sfc_start(sa) != 0)
1028 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1029 			"PDU max size - port is stopped",
1030 			(unsigned int)pdu, (unsigned int)old_pdu);
1031 
1032 fail_check_scatter:
1033 	sfc_adapter_unlock(sa);
1034 
1035 fail_inval:
1036 	sfc_log_init(sa, "failed %d", rc);
1037 	SFC_ASSERT(rc > 0);
1038 	return -rc;
1039 }
1040 static int
1041 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1042 {
1043 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1044 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1045 	struct sfc_port *port = &sa->port;
1046 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1047 	int rc = 0;
1048 
1049 	sfc_adapter_lock(sa);
1050 
1051 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1052 		goto unlock;
1053 
1054 	/*
1055 	 * Copy the address to the device private data so that
1056 	 * it could be recalled in the case of adapter restart.
1057 	 */
1058 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1059 
1060 	/*
1061 	 * Neither of the two following checks can return
1062 	 * an error. The new MAC address is preserved in
1063 	 * the device private data and can be activated
1064 	 * on the next port start if the user prevents
1065 	 * isolated mode from being enabled.
1066 	 */
1067 	if (sfc_sa2shared(sa)->isolated) {
1068 		sfc_warn(sa, "isolated mode is active on the port");
1069 		sfc_warn(sa, "will not set MAC address");
1070 		goto unlock;
1071 	}
1072 
1073 	if (sa->state != SFC_ADAPTER_STARTED) {
1074 		sfc_notice(sa, "the port is not started");
1075 		sfc_notice(sa, "the new MAC address will be set on port start");
1076 
1077 		goto unlock;
1078 	}
1079 
1080 	if (encp->enc_allow_set_mac_with_installed_filters) {
1081 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1082 		if (rc != 0) {
1083 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1084 			goto unlock;
1085 		}
1086 
1087 		/*
1088 		 * Changing the MAC address by means of MCDI request
1089 		 * has no effect on received traffic, therefore
1090 		 * we also need to update unicast filters
1091 		 */
1092 		rc = sfc_set_rx_mode_unchecked(sa);
1093 		if (rc != 0) {
1094 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1095 			/* Rollback the old address */
1096 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1097 			(void)sfc_set_rx_mode_unchecked(sa);
1098 		}
1099 	} else {
1100 		sfc_warn(sa, "cannot set MAC address with filters installed");
1101 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1102 		sfc_warn(sa, "(some traffic may be dropped)");
1103 
1104 		/*
1105 		 * Since setting MAC address with filters installed is not
1106 		 * allowed on the adapter, the new MAC address will be set
1107 		 * by means of adapter restart. sfc_start() shall retrieve
1108 		 * the new address from the device private data and set it.
1109 		 */
1110 		sfc_stop(sa);
1111 		rc = sfc_start(sa);
1112 		if (rc != 0)
1113 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1114 	}
1115 
1116 unlock:
1117 	if (rc != 0)
1118 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1119 
1120 	sfc_adapter_unlock(sa);
1121 
1122 	SFC_ASSERT(rc >= 0);
1123 	return -rc;
1124 }
1125 
1126 
1127 static int
1128 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1129 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1130 {
1131 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1132 	struct sfc_port *port = &sa->port;
1133 	uint8_t *mc_addrs = port->mcast_addrs;
1134 	int rc;
1135 	unsigned int i;
1136 
1137 	if (sfc_sa2shared(sa)->isolated) {
1138 		sfc_err(sa, "isolated mode is active on the port");
1139 		sfc_err(sa, "will not set multicast address list");
1140 		return -ENOTSUP;
1141 	}
1142 
1143 	if (mc_addrs == NULL)
1144 		return -ENOBUFS;
1145 
1146 	if (nb_mc_addr > port->max_mcast_addrs) {
1147 		sfc_err(sa, "too many multicast addresses: %u > %u",
1148 			 nb_mc_addr, port->max_mcast_addrs);
1149 		return -EINVAL;
1150 	}
1151 
1152 	for (i = 0; i < nb_mc_addr; ++i) {
1153 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1154 				 EFX_MAC_ADDR_LEN);
1155 		mc_addrs += EFX_MAC_ADDR_LEN;
1156 	}
1157 
1158 	port->nb_mcast_addrs = nb_mc_addr;
1159 
1160 	if (sa->state != SFC_ADAPTER_STARTED)
1161 		return 0;
1162 
1163 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1164 					port->nb_mcast_addrs);
1165 	if (rc != 0)
1166 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1167 
1168 	SFC_ASSERT(rc >= 0);
1169 	return -rc;
1170 }
1171 
1172 /*
1173  * The function is used by the secondary process as well. It must not
1174  * use any process-local pointers from the adapter data.
1175  */
1176 static void
1177 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1178 		      struct rte_eth_rxq_info *qinfo)
1179 {
1180 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1181 	struct sfc_rxq_info *rxq_info;
1182 
1183 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1184 
1185 	rxq_info = &sas->rxq_info[rx_queue_id];
1186 
1187 	qinfo->mp = rxq_info->refill_mb_pool;
1188 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1189 	qinfo->conf.rx_drop_en = 1;
1190 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1191 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1192 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1193 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1194 		qinfo->scattered_rx = 1;
1195 	}
1196 	qinfo->nb_desc = rxq_info->entries;
1197 }
1198 
1199 /*
1200  * The function is used by the secondary process as well. It must not
1201  * use any process-local pointers from the adapter data.
1202  */
1203 static void
1204 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1205 		      struct rte_eth_txq_info *qinfo)
1206 {
1207 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1208 	struct sfc_txq_info *txq_info;
1209 
1210 	SFC_ASSERT(tx_queue_id < sas->txq_count);
1211 
1212 	txq_info = &sas->txq_info[tx_queue_id];
1213 
1214 	memset(qinfo, 0, sizeof(*qinfo));
1215 
1216 	qinfo->conf.offloads = txq_info->offloads;
1217 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1218 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1219 	qinfo->nb_desc = txq_info->entries;
1220 }
1221 
1222 /*
1223  * The function is used by the secondary process as well. It must not
1224  * use any process-local pointers from the adapter data.
1225  */
1226 static uint32_t
1227 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1228 {
1229 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1230 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1231 	struct sfc_rxq_info *rxq_info;
1232 
1233 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1234 	rxq_info = &sas->rxq_info[rx_queue_id];
1235 
1236 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1237 		return 0;
1238 
1239 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1240 }
1241 
1242 /*
1243  * The function is used by the secondary process as well. It must not
1244  * use any process-local pointers from the adapter data.
1245  */
1246 static int
1247 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1248 {
1249 	struct sfc_dp_rxq *dp_rxq = queue;
1250 	const struct sfc_dp_rx *dp_rx;
1251 
1252 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1253 
1254 	return offset < dp_rx->qdesc_npending(dp_rxq);
1255 }
1256 
1257 /*
1258  * The function is used by the secondary process as well. It must not
1259  * use any process-local pointers from the adapter data.
1260  */
1261 static int
1262 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1263 {
1264 	struct sfc_dp_rxq *dp_rxq = queue;
1265 	const struct sfc_dp_rx *dp_rx;
1266 
1267 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1268 
1269 	return dp_rx->qdesc_status(dp_rxq, offset);
1270 }
1271 
1272 /*
1273  * The function is used by the secondary process as well. It must not
1274  * use any process-local pointers from the adapter data.
1275  */
1276 static int
1277 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1278 {
1279 	struct sfc_dp_txq *dp_txq = queue;
1280 	const struct sfc_dp_tx *dp_tx;
1281 
1282 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1283 
1284 	return dp_tx->qdesc_status(dp_txq, offset);
1285 }
1286 
1287 static int
1288 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1289 {
1290 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1291 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1292 	int rc;
1293 
1294 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1295 
1296 	sfc_adapter_lock(sa);
1297 
1298 	rc = EINVAL;
1299 	if (sa->state != SFC_ADAPTER_STARTED)
1300 		goto fail_not_started;
1301 
1302 	if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1303 		goto fail_not_setup;
1304 
1305 	rc = sfc_rx_qstart(sa, rx_queue_id);
1306 	if (rc != 0)
1307 		goto fail_rx_qstart;
1308 
1309 	sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1310 
1311 	sfc_adapter_unlock(sa);
1312 
1313 	return 0;
1314 
1315 fail_rx_qstart:
1316 fail_not_setup:
1317 fail_not_started:
1318 	sfc_adapter_unlock(sa);
1319 	SFC_ASSERT(rc > 0);
1320 	return -rc;
1321 }
1322 
1323 static int
1324 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1325 {
1326 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1327 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1328 
1329 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1330 
1331 	sfc_adapter_lock(sa);
1332 	sfc_rx_qstop(sa, rx_queue_id);
1333 
1334 	sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1335 
1336 	sfc_adapter_unlock(sa);
1337 
1338 	return 0;
1339 }
1340 
1341 static int
1342 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1343 {
1344 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1345 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1346 	int rc;
1347 
1348 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1349 
1350 	sfc_adapter_lock(sa);
1351 
1352 	rc = EINVAL;
1353 	if (sa->state != SFC_ADAPTER_STARTED)
1354 		goto fail_not_started;
1355 
1356 	if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1357 		goto fail_not_setup;
1358 
1359 	rc = sfc_tx_qstart(sa, tx_queue_id);
1360 	if (rc != 0)
1361 		goto fail_tx_qstart;
1362 
1363 	sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1364 
1365 	sfc_adapter_unlock(sa);
1366 	return 0;
1367 
1368 fail_tx_qstart:
1369 
1370 fail_not_setup:
1371 fail_not_started:
1372 	sfc_adapter_unlock(sa);
1373 	SFC_ASSERT(rc > 0);
1374 	return -rc;
1375 }
1376 
1377 static int
1378 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1379 {
1380 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1381 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1382 
1383 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1384 
1385 	sfc_adapter_lock(sa);
1386 
1387 	sfc_tx_qstop(sa, tx_queue_id);
1388 
1389 	sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1390 
1391 	sfc_adapter_unlock(sa);
1392 	return 0;
1393 }
1394 
1395 static efx_tunnel_protocol_t
1396 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1397 {
1398 	switch (rte_type) {
1399 	case RTE_TUNNEL_TYPE_VXLAN:
1400 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1401 	case RTE_TUNNEL_TYPE_GENEVE:
1402 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1403 	default:
1404 		return EFX_TUNNEL_NPROTOS;
1405 	}
1406 }
1407 
1408 enum sfc_udp_tunnel_op_e {
1409 	SFC_UDP_TUNNEL_ADD_PORT,
1410 	SFC_UDP_TUNNEL_DEL_PORT,
1411 };
1412 
1413 static int
1414 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1415 		      struct rte_eth_udp_tunnel *tunnel_udp,
1416 		      enum sfc_udp_tunnel_op_e op)
1417 {
1418 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1419 	efx_tunnel_protocol_t tunnel_proto;
1420 	int rc;
1421 
1422 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1423 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1424 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1425 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1426 
1427 	tunnel_proto =
1428 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1429 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1430 		rc = ENOTSUP;
1431 		goto fail_bad_proto;
1432 	}
1433 
1434 	sfc_adapter_lock(sa);
1435 
1436 	switch (op) {
1437 	case SFC_UDP_TUNNEL_ADD_PORT:
1438 		rc = efx_tunnel_config_udp_add(sa->nic,
1439 					       tunnel_udp->udp_port,
1440 					       tunnel_proto);
1441 		break;
1442 	case SFC_UDP_TUNNEL_DEL_PORT:
1443 		rc = efx_tunnel_config_udp_remove(sa->nic,
1444 						  tunnel_udp->udp_port,
1445 						  tunnel_proto);
1446 		break;
1447 	default:
1448 		rc = EINVAL;
1449 		goto fail_bad_op;
1450 	}
1451 
1452 	if (rc != 0)
1453 		goto fail_op;
1454 
1455 	if (sa->state == SFC_ADAPTER_STARTED) {
1456 		rc = efx_tunnel_reconfigure(sa->nic);
1457 		if (rc == EAGAIN) {
1458 			/*
1459 			 * Configuration is accepted by FW and MC reboot
1460 			 * is initiated to apply the changes. MC reboot
1461 			 * will be handled in a usual way (MC reboot
1462 			 * event on management event queue and adapter
1463 			 * restart).
1464 			 */
1465 			rc = 0;
1466 		} else if (rc != 0) {
1467 			goto fail_reconfigure;
1468 		}
1469 	}
1470 
1471 	sfc_adapter_unlock(sa);
1472 	return 0;
1473 
1474 fail_reconfigure:
1475 	/* Remove/restore entry since the change makes the trouble */
1476 	switch (op) {
1477 	case SFC_UDP_TUNNEL_ADD_PORT:
1478 		(void)efx_tunnel_config_udp_remove(sa->nic,
1479 						   tunnel_udp->udp_port,
1480 						   tunnel_proto);
1481 		break;
1482 	case SFC_UDP_TUNNEL_DEL_PORT:
1483 		(void)efx_tunnel_config_udp_add(sa->nic,
1484 						tunnel_udp->udp_port,
1485 						tunnel_proto);
1486 		break;
1487 	}
1488 
1489 fail_op:
1490 fail_bad_op:
1491 	sfc_adapter_unlock(sa);
1492 
1493 fail_bad_proto:
1494 	SFC_ASSERT(rc > 0);
1495 	return -rc;
1496 }
1497 
1498 static int
1499 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1500 			    struct rte_eth_udp_tunnel *tunnel_udp)
1501 {
1502 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1503 }
1504 
1505 static int
1506 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1507 			    struct rte_eth_udp_tunnel *tunnel_udp)
1508 {
1509 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1510 }
1511 
1512 /*
1513  * The function is used by the secondary process as well. It must not
1514  * use any process-local pointers from the adapter data.
1515  */
1516 static int
1517 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1518 			  struct rte_eth_rss_conf *rss_conf)
1519 {
1520 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1521 	struct sfc_rss *rss = &sas->rss;
1522 
1523 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1524 		return -ENOTSUP;
1525 
1526 	/*
1527 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1528 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1529 	 * flags which corresponds to the active EFX configuration stored
1530 	 * locally in 'sfc_adapter' and kept up-to-date
1531 	 */
1532 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1533 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1534 	if (rss_conf->rss_key != NULL)
1535 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1536 
1537 	return 0;
1538 }
1539 
1540 static int
1541 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1542 			struct rte_eth_rss_conf *rss_conf)
1543 {
1544 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1545 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1546 	unsigned int efx_hash_types;
1547 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1548 	unsigned int n_contexts;
1549 	unsigned int mode_i = 0;
1550 	unsigned int key_i = 0;
1551 	unsigned int i = 0;
1552 	int rc = 0;
1553 
1554 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1555 
1556 	if (sfc_sa2shared(sa)->isolated)
1557 		return -ENOTSUP;
1558 
1559 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1560 		sfc_err(sa, "RSS is not available");
1561 		return -ENOTSUP;
1562 	}
1563 
1564 	if (rss->channels == 0) {
1565 		sfc_err(sa, "RSS is not configured");
1566 		return -EINVAL;
1567 	}
1568 
1569 	if ((rss_conf->rss_key != NULL) &&
1570 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1571 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1572 			sizeof(rss->key));
1573 		return -EINVAL;
1574 	}
1575 
1576 	sfc_adapter_lock(sa);
1577 
1578 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1579 	if (rc != 0)
1580 		goto fail_rx_hf_rte_to_efx;
1581 
1582 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1583 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1584 					   rss->hash_alg, efx_hash_types,
1585 					   B_TRUE);
1586 		if (rc != 0)
1587 			goto fail_scale_mode_set;
1588 	}
1589 
1590 	if (rss_conf->rss_key != NULL) {
1591 		if (sa->state == SFC_ADAPTER_STARTED) {
1592 			for (key_i = 0; key_i < n_contexts; key_i++) {
1593 				rc = efx_rx_scale_key_set(sa->nic,
1594 							  contexts[key_i],
1595 							  rss_conf->rss_key,
1596 							  sizeof(rss->key));
1597 				if (rc != 0)
1598 					goto fail_scale_key_set;
1599 			}
1600 		}
1601 
1602 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1603 	}
1604 
1605 	rss->hash_types = efx_hash_types;
1606 
1607 	sfc_adapter_unlock(sa);
1608 
1609 	return 0;
1610 
1611 fail_scale_key_set:
1612 	for (i = 0; i < key_i; i++) {
1613 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1614 					 sizeof(rss->key)) != 0)
1615 			sfc_err(sa, "failed to restore RSS key");
1616 	}
1617 
1618 fail_scale_mode_set:
1619 	for (i = 0; i < mode_i; i++) {
1620 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1621 					  EFX_RX_HASHALG_TOEPLITZ,
1622 					  rss->hash_types, B_TRUE) != 0)
1623 			sfc_err(sa, "failed to restore RSS mode");
1624 	}
1625 
1626 fail_rx_hf_rte_to_efx:
1627 	sfc_adapter_unlock(sa);
1628 	return -rc;
1629 }
1630 
1631 /*
1632  * The function is used by the secondary process as well. It must not
1633  * use any process-local pointers from the adapter data.
1634  */
1635 static int
1636 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1637 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1638 		       uint16_t reta_size)
1639 {
1640 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1641 	struct sfc_rss *rss = &sas->rss;
1642 	int entry;
1643 
1644 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1645 		return -ENOTSUP;
1646 
1647 	if (rss->channels == 0)
1648 		return -EINVAL;
1649 
1650 	if (reta_size != EFX_RSS_TBL_SIZE)
1651 		return -EINVAL;
1652 
1653 	for (entry = 0; entry < reta_size; entry++) {
1654 		int grp = entry / RTE_RETA_GROUP_SIZE;
1655 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1656 
1657 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1658 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 static int
1665 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1666 			struct rte_eth_rss_reta_entry64 *reta_conf,
1667 			uint16_t reta_size)
1668 {
1669 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1670 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1671 	unsigned int *rss_tbl_new;
1672 	uint16_t entry;
1673 	int rc = 0;
1674 
1675 
1676 	if (sfc_sa2shared(sa)->isolated)
1677 		return -ENOTSUP;
1678 
1679 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1680 		sfc_err(sa, "RSS is not available");
1681 		return -ENOTSUP;
1682 	}
1683 
1684 	if (rss->channels == 0) {
1685 		sfc_err(sa, "RSS is not configured");
1686 		return -EINVAL;
1687 	}
1688 
1689 	if (reta_size != EFX_RSS_TBL_SIZE) {
1690 		sfc_err(sa, "RETA size is wrong (should be %u)",
1691 			EFX_RSS_TBL_SIZE);
1692 		return -EINVAL;
1693 	}
1694 
1695 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1696 	if (rss_tbl_new == NULL)
1697 		return -ENOMEM;
1698 
1699 	sfc_adapter_lock(sa);
1700 
1701 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1702 
1703 	for (entry = 0; entry < reta_size; entry++) {
1704 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1705 		struct rte_eth_rss_reta_entry64 *grp;
1706 
1707 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1708 
1709 		if (grp->mask & (1ull << grp_idx)) {
1710 			if (grp->reta[grp_idx] >= rss->channels) {
1711 				rc = EINVAL;
1712 				goto bad_reta_entry;
1713 			}
1714 			rss_tbl_new[entry] = grp->reta[grp_idx];
1715 		}
1716 	}
1717 
1718 	if (sa->state == SFC_ADAPTER_STARTED) {
1719 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1720 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1721 		if (rc != 0)
1722 			goto fail_scale_tbl_set;
1723 	}
1724 
1725 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1726 
1727 fail_scale_tbl_set:
1728 bad_reta_entry:
1729 	sfc_adapter_unlock(sa);
1730 
1731 	rte_free(rss_tbl_new);
1732 
1733 	SFC_ASSERT(rc >= 0);
1734 	return -rc;
1735 }
1736 
1737 static int
1738 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1739 		    enum rte_filter_op filter_op,
1740 		    void *arg)
1741 {
1742 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1743 	int rc = ENOTSUP;
1744 
1745 	sfc_log_init(sa, "entry");
1746 
1747 	switch (filter_type) {
1748 	case RTE_ETH_FILTER_NONE:
1749 		sfc_err(sa, "Global filters configuration not supported");
1750 		break;
1751 	case RTE_ETH_FILTER_MACVLAN:
1752 		sfc_err(sa, "MACVLAN filters not supported");
1753 		break;
1754 	case RTE_ETH_FILTER_ETHERTYPE:
1755 		sfc_err(sa, "EtherType filters not supported");
1756 		break;
1757 	case RTE_ETH_FILTER_FLEXIBLE:
1758 		sfc_err(sa, "Flexible filters not supported");
1759 		break;
1760 	case RTE_ETH_FILTER_SYN:
1761 		sfc_err(sa, "SYN filters not supported");
1762 		break;
1763 	case RTE_ETH_FILTER_NTUPLE:
1764 		sfc_err(sa, "NTUPLE filters not supported");
1765 		break;
1766 	case RTE_ETH_FILTER_TUNNEL:
1767 		sfc_err(sa, "Tunnel filters not supported");
1768 		break;
1769 	case RTE_ETH_FILTER_FDIR:
1770 		sfc_err(sa, "Flow Director filters not supported");
1771 		break;
1772 	case RTE_ETH_FILTER_HASH:
1773 		sfc_err(sa, "Hash filters not supported");
1774 		break;
1775 	case RTE_ETH_FILTER_GENERIC:
1776 		if (filter_op != RTE_ETH_FILTER_GET) {
1777 			rc = EINVAL;
1778 		} else {
1779 			*(const void **)arg = &sfc_flow_ops;
1780 			rc = 0;
1781 		}
1782 		break;
1783 	default:
1784 		sfc_err(sa, "Unknown filter type %u", filter_type);
1785 		break;
1786 	}
1787 
1788 	sfc_log_init(sa, "exit: %d", -rc);
1789 	SFC_ASSERT(rc >= 0);
1790 	return -rc;
1791 }
1792 
1793 static int
1794 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1795 {
1796 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1797 
1798 	/*
1799 	 * If Rx datapath does not provide callback to check mempool,
1800 	 * all pools are supported.
1801 	 */
1802 	if (sap->dp_rx->pool_ops_supported == NULL)
1803 		return 1;
1804 
1805 	return sap->dp_rx->pool_ops_supported(pool);
1806 }
1807 
1808 static int
1809 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1810 {
1811 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1812 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1813 	struct sfc_rxq_info *rxq_info;
1814 
1815 	SFC_ASSERT(queue_id < sas->rxq_count);
1816 	rxq_info = &sas->rxq_info[queue_id];
1817 
1818 	return sap->dp_rx->intr_enable(rxq_info->dp);
1819 }
1820 
1821 static int
1822 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1823 {
1824 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1825 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1826 	struct sfc_rxq_info *rxq_info;
1827 
1828 	SFC_ASSERT(queue_id < sas->rxq_count);
1829 	rxq_info = &sas->rxq_info[queue_id];
1830 
1831 	return sap->dp_rx->intr_disable(rxq_info->dp);
1832 }
1833 
1834 static const struct eth_dev_ops sfc_eth_dev_ops = {
1835 	.dev_configure			= sfc_dev_configure,
1836 	.dev_start			= sfc_dev_start,
1837 	.dev_stop			= sfc_dev_stop,
1838 	.dev_set_link_up		= sfc_dev_set_link_up,
1839 	.dev_set_link_down		= sfc_dev_set_link_down,
1840 	.dev_close			= sfc_dev_close,
1841 	.promiscuous_enable		= sfc_dev_promisc_enable,
1842 	.promiscuous_disable		= sfc_dev_promisc_disable,
1843 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1844 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1845 	.link_update			= sfc_dev_link_update,
1846 	.stats_get			= sfc_stats_get,
1847 	.stats_reset			= sfc_stats_reset,
1848 	.xstats_get			= sfc_xstats_get,
1849 	.xstats_reset			= sfc_stats_reset,
1850 	.xstats_get_names		= sfc_xstats_get_names,
1851 	.dev_infos_get			= sfc_dev_infos_get,
1852 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1853 	.mtu_set			= sfc_dev_set_mtu,
1854 	.rx_queue_start			= sfc_rx_queue_start,
1855 	.rx_queue_stop			= sfc_rx_queue_stop,
1856 	.tx_queue_start			= sfc_tx_queue_start,
1857 	.tx_queue_stop			= sfc_tx_queue_stop,
1858 	.rx_queue_setup			= sfc_rx_queue_setup,
1859 	.rx_queue_release		= sfc_rx_queue_release,
1860 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1861 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1862 	.tx_queue_setup			= sfc_tx_queue_setup,
1863 	.tx_queue_release		= sfc_tx_queue_release,
1864 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1865 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1866 	.mac_addr_set			= sfc_mac_addr_set,
1867 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1868 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1869 	.reta_update			= sfc_dev_rss_reta_update,
1870 	.reta_query			= sfc_dev_rss_reta_query,
1871 	.rss_hash_update		= sfc_dev_rss_hash_update,
1872 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1873 	.filter_ctrl			= sfc_dev_filter_ctrl,
1874 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1875 	.rxq_info_get			= sfc_rx_queue_info_get,
1876 	.txq_info_get			= sfc_tx_queue_info_get,
1877 	.fw_version_get			= sfc_fw_version_get,
1878 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1879 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1880 	.pool_ops_supported		= sfc_pool_ops_supported,
1881 };
1882 
1883 /**
1884  * Duplicate a string in potentially shared memory required for
1885  * multi-process support.
1886  *
1887  * strdup() allocates from process-local heap/memory.
1888  */
1889 static char *
1890 sfc_strdup(const char *str)
1891 {
1892 	size_t size;
1893 	char *copy;
1894 
1895 	if (str == NULL)
1896 		return NULL;
1897 
1898 	size = strlen(str) + 1;
1899 	copy = rte_malloc(__func__, size, 0);
1900 	if (copy != NULL)
1901 		rte_memcpy(copy, str, size);
1902 
1903 	return copy;
1904 }
1905 
1906 static int
1907 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1908 {
1909 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1910 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1911 	const struct sfc_dp_rx *dp_rx;
1912 	const struct sfc_dp_tx *dp_tx;
1913 	const efx_nic_cfg_t *encp;
1914 	unsigned int avail_caps = 0;
1915 	const char *rx_name = NULL;
1916 	const char *tx_name = NULL;
1917 	int rc;
1918 
1919 	switch (sa->family) {
1920 	case EFX_FAMILY_HUNTINGTON:
1921 	case EFX_FAMILY_MEDFORD:
1922 	case EFX_FAMILY_MEDFORD2:
1923 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1924 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
1925 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
1926 		break;
1927 	case EFX_FAMILY_RIVERHEAD:
1928 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
1929 		break;
1930 	default:
1931 		break;
1932 	}
1933 
1934 	encp = efx_nic_cfg_get(sa->nic);
1935 	if (encp->enc_rx_es_super_buffer_supported)
1936 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1937 
1938 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1939 				sfc_kvarg_string_handler, &rx_name);
1940 	if (rc != 0)
1941 		goto fail_kvarg_rx_datapath;
1942 
1943 	if (rx_name != NULL) {
1944 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1945 		if (dp_rx == NULL) {
1946 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1947 			rc = ENOENT;
1948 			goto fail_dp_rx;
1949 		}
1950 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1951 			sfc_err(sa,
1952 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1953 				rx_name);
1954 			rc = EINVAL;
1955 			goto fail_dp_rx_caps;
1956 		}
1957 	} else {
1958 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1959 		if (dp_rx == NULL) {
1960 			sfc_err(sa, "Rx datapath by caps %#x not found",
1961 				avail_caps);
1962 			rc = ENOENT;
1963 			goto fail_dp_rx;
1964 		}
1965 	}
1966 
1967 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1968 	if (sas->dp_rx_name == NULL) {
1969 		rc = ENOMEM;
1970 		goto fail_dp_rx_name;
1971 	}
1972 
1973 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1974 
1975 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1976 				sfc_kvarg_string_handler, &tx_name);
1977 	if (rc != 0)
1978 		goto fail_kvarg_tx_datapath;
1979 
1980 	if (tx_name != NULL) {
1981 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1982 		if (dp_tx == NULL) {
1983 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1984 			rc = ENOENT;
1985 			goto fail_dp_tx;
1986 		}
1987 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1988 			sfc_err(sa,
1989 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1990 				tx_name);
1991 			rc = EINVAL;
1992 			goto fail_dp_tx_caps;
1993 		}
1994 	} else {
1995 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1996 		if (dp_tx == NULL) {
1997 			sfc_err(sa, "Tx datapath by caps %#x not found",
1998 				avail_caps);
1999 			rc = ENOENT;
2000 			goto fail_dp_tx;
2001 		}
2002 	}
2003 
2004 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2005 	if (sas->dp_tx_name == NULL) {
2006 		rc = ENOMEM;
2007 		goto fail_dp_tx_name;
2008 	}
2009 
2010 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2011 
2012 	sa->priv.dp_rx = dp_rx;
2013 	sa->priv.dp_tx = dp_tx;
2014 
2015 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2016 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2017 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2018 
2019 	dev->rx_queue_count = sfc_rx_queue_count;
2020 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2021 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2022 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2023 	dev->dev_ops = &sfc_eth_dev_ops;
2024 
2025 	return 0;
2026 
2027 fail_dp_tx_name:
2028 fail_dp_tx_caps:
2029 fail_dp_tx:
2030 fail_kvarg_tx_datapath:
2031 	rte_free(sas->dp_rx_name);
2032 	sas->dp_rx_name = NULL;
2033 
2034 fail_dp_rx_name:
2035 fail_dp_rx_caps:
2036 fail_dp_rx:
2037 fail_kvarg_rx_datapath:
2038 	return rc;
2039 }
2040 
2041 static void
2042 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2043 {
2044 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2045 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2046 
2047 	dev->dev_ops = NULL;
2048 	dev->tx_pkt_prepare = NULL;
2049 	dev->rx_pkt_burst = NULL;
2050 	dev->tx_pkt_burst = NULL;
2051 
2052 	rte_free(sas->dp_tx_name);
2053 	sas->dp_tx_name = NULL;
2054 	sa->priv.dp_tx = NULL;
2055 
2056 	rte_free(sas->dp_rx_name);
2057 	sas->dp_rx_name = NULL;
2058 	sa->priv.dp_rx = NULL;
2059 }
2060 
2061 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2062 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2063 	.reta_query			= sfc_dev_rss_reta_query,
2064 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2065 	.rxq_info_get			= sfc_rx_queue_info_get,
2066 	.txq_info_get			= sfc_tx_queue_info_get,
2067 };
2068 
2069 static int
2070 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2071 {
2072 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2073 	struct sfc_adapter_priv *sap;
2074 	const struct sfc_dp_rx *dp_rx;
2075 	const struct sfc_dp_tx *dp_tx;
2076 	int rc;
2077 
2078 	/*
2079 	 * Allocate process private data from heap, since it should not
2080 	 * be located in shared memory allocated using rte_malloc() API.
2081 	 */
2082 	sap = calloc(1, sizeof(*sap));
2083 	if (sap == NULL) {
2084 		rc = ENOMEM;
2085 		goto fail_alloc_priv;
2086 	}
2087 
2088 	sap->logtype_main = logtype_main;
2089 
2090 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2091 	if (dp_rx == NULL) {
2092 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2093 			"cannot find %s Rx datapath", sas->dp_rx_name);
2094 		rc = ENOENT;
2095 		goto fail_dp_rx;
2096 	}
2097 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2098 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2099 			"%s Rx datapath does not support multi-process",
2100 			sas->dp_rx_name);
2101 		rc = EINVAL;
2102 		goto fail_dp_rx_multi_process;
2103 	}
2104 
2105 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2106 	if (dp_tx == NULL) {
2107 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2108 			"cannot find %s Tx datapath", sas->dp_tx_name);
2109 		rc = ENOENT;
2110 		goto fail_dp_tx;
2111 	}
2112 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2113 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2114 			"%s Tx datapath does not support multi-process",
2115 			sas->dp_tx_name);
2116 		rc = EINVAL;
2117 		goto fail_dp_tx_multi_process;
2118 	}
2119 
2120 	sap->dp_rx = dp_rx;
2121 	sap->dp_tx = dp_tx;
2122 
2123 	dev->process_private = sap;
2124 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2125 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2126 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2127 	dev->rx_queue_count = sfc_rx_queue_count;
2128 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2129 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2130 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2131 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2132 
2133 	return 0;
2134 
2135 fail_dp_tx_multi_process:
2136 fail_dp_tx:
2137 fail_dp_rx_multi_process:
2138 fail_dp_rx:
2139 	free(sap);
2140 
2141 fail_alloc_priv:
2142 	return rc;
2143 }
2144 
2145 static void
2146 sfc_register_dp(void)
2147 {
2148 	/* Register once */
2149 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2150 		/* Prefer EF10 datapath */
2151 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2152 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2153 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2154 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2155 
2156 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2157 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2158 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2159 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2160 	}
2161 }
2162 
2163 static int
2164 sfc_eth_dev_init(struct rte_eth_dev *dev)
2165 {
2166 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2167 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2168 	uint32_t logtype_main;
2169 	struct sfc_adapter *sa;
2170 	int rc;
2171 	const efx_nic_cfg_t *encp;
2172 	const struct rte_ether_addr *from;
2173 	int ret;
2174 
2175 	sfc_register_dp();
2176 
2177 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2178 					    SFC_LOGTYPE_MAIN_STR,
2179 					    RTE_LOG_NOTICE);
2180 
2181 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2182 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2183 
2184 	/* Required for logging */
2185 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2186 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2187 			pci_dev->addr.domain, pci_dev->addr.bus,
2188 			pci_dev->addr.devid, pci_dev->addr.function,
2189 			dev->data->port_id);
2190 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2191 		SFC_GENERIC_LOG(ERR,
2192 			"reserved log prefix is too short for " PCI_PRI_FMT,
2193 			pci_dev->addr.domain, pci_dev->addr.bus,
2194 			pci_dev->addr.devid, pci_dev->addr.function);
2195 		return -EINVAL;
2196 	}
2197 	sas->pci_addr = pci_dev->addr;
2198 	sas->port_id = dev->data->port_id;
2199 
2200 	/*
2201 	 * Allocate process private data from heap, since it should not
2202 	 * be located in shared memory allocated using rte_malloc() API.
2203 	 */
2204 	sa = calloc(1, sizeof(*sa));
2205 	if (sa == NULL) {
2206 		rc = ENOMEM;
2207 		goto fail_alloc_sa;
2208 	}
2209 
2210 	dev->process_private = sa;
2211 
2212 	/* Required for logging */
2213 	sa->priv.shared = sas;
2214 	sa->priv.logtype_main = logtype_main;
2215 
2216 	sa->eth_dev = dev;
2217 
2218 	/* Copy PCI device info to the dev->data */
2219 	rte_eth_copy_pci_info(dev, pci_dev);
2220 	dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2221 
2222 	rc = sfc_kvargs_parse(sa);
2223 	if (rc != 0)
2224 		goto fail_kvargs_parse;
2225 
2226 	sfc_log_init(sa, "entry");
2227 
2228 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2229 	if (dev->data->mac_addrs == NULL) {
2230 		rc = ENOMEM;
2231 		goto fail_mac_addrs;
2232 	}
2233 
2234 	sfc_adapter_lock_init(sa);
2235 	sfc_adapter_lock(sa);
2236 
2237 	sfc_log_init(sa, "probing");
2238 	rc = sfc_probe(sa);
2239 	if (rc != 0)
2240 		goto fail_probe;
2241 
2242 	sfc_log_init(sa, "set device ops");
2243 	rc = sfc_eth_dev_set_ops(dev);
2244 	if (rc != 0)
2245 		goto fail_set_ops;
2246 
2247 	sfc_log_init(sa, "attaching");
2248 	rc = sfc_attach(sa);
2249 	if (rc != 0)
2250 		goto fail_attach;
2251 
2252 	encp = efx_nic_cfg_get(sa->nic);
2253 
2254 	/*
2255 	 * The arguments are really reverse order in comparison to
2256 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2257 	 */
2258 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2259 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2260 
2261 	sfc_adapter_unlock(sa);
2262 
2263 	sfc_log_init(sa, "done");
2264 	return 0;
2265 
2266 fail_attach:
2267 	sfc_eth_dev_clear_ops(dev);
2268 
2269 fail_set_ops:
2270 	sfc_unprobe(sa);
2271 
2272 fail_probe:
2273 	sfc_adapter_unlock(sa);
2274 	sfc_adapter_lock_fini(sa);
2275 	rte_free(dev->data->mac_addrs);
2276 	dev->data->mac_addrs = NULL;
2277 
2278 fail_mac_addrs:
2279 	sfc_kvargs_cleanup(sa);
2280 
2281 fail_kvargs_parse:
2282 	sfc_log_init(sa, "failed %d", rc);
2283 	dev->process_private = NULL;
2284 	free(sa);
2285 
2286 fail_alloc_sa:
2287 	SFC_ASSERT(rc > 0);
2288 	return -rc;
2289 }
2290 
2291 static int
2292 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2293 {
2294 	sfc_dev_close(dev);
2295 
2296 	return 0;
2297 }
2298 
2299 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2300 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2301 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2302 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2303 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2304 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2305 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2306 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2307 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2308 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2309 	{ .vendor_id = 0 /* sentinel */ }
2310 };
2311 
2312 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2313 	struct rte_pci_device *pci_dev)
2314 {
2315 	return rte_eth_dev_pci_generic_probe(pci_dev,
2316 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2317 }
2318 
2319 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2320 {
2321 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2322 }
2323 
2324 static struct rte_pci_driver sfc_efx_pmd = {
2325 	.id_table = pci_id_sfc_efx_map,
2326 	.drv_flags =
2327 		RTE_PCI_DRV_INTR_LSC |
2328 		RTE_PCI_DRV_NEED_MAPPING,
2329 	.probe = sfc_eth_dev_pci_probe,
2330 	.remove = sfc_eth_dev_pci_remove,
2331 };
2332 
2333 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2334 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2335 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2336 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2337 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2338 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2339 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2340 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2341 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2342 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2343 
2344 RTE_INIT(sfc_driver_register_logtype)
2345 {
2346 	int ret;
2347 
2348 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2349 						   RTE_LOG_NOTICE);
2350 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2351 }
2352