1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2020 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 /* 50 * Return value of the callback is likely supposed to be 51 * equal to or greater than 0, nevertheless, if an error 52 * occurs, it will be desirable to pass it to the caller 53 */ 54 if ((fw_version == NULL) || (fw_size == 0)) 55 return -EINVAL; 56 57 rc = efx_nic_get_fw_version(sa->nic, &enfi); 58 if (rc != 0) 59 return -rc; 60 61 ret = snprintf(fw_version, fw_size, 62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 65 if (ret < 0) 66 return ret; 67 68 if (enfi.enfi_dpcpu_fw_ids_valid) { 69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 70 int ret_extra; 71 72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 73 fw_size - dpcpu_fw_ids_offset, 74 " rx%" PRIx16 " tx%" PRIx16, 75 enfi.enfi_rx_dpcpu_fw_id, 76 enfi.enfi_tx_dpcpu_fw_id); 77 if (ret_extra < 0) 78 return ret_extra; 79 80 ret += ret_extra; 81 } 82 83 if (fw_size < (size_t)(++ret)) 84 return ret; 85 else 86 return 0; 87 } 88 89 static int 90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 91 { 92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 95 struct sfc_rss *rss = &sas->rss; 96 uint64_t txq_offloads_def = 0; 97 98 sfc_log_init(sa, "entry"); 99 100 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 101 dev_info->max_mtu = EFX_MAC_SDU_MAX; 102 103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 104 105 dev_info->max_vfs = sa->sriov.num_vfs; 106 107 /* Autonegotiation may be disabled */ 108 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 116 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 118 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 119 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 120 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 121 122 dev_info->max_rx_queues = sa->rxq_max; 123 dev_info->max_tx_queues = sa->txq_max; 124 125 /* By default packets are dropped if no descriptors are available */ 126 dev_info->default_rxconf.rx_drop_en = 1; 127 128 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 129 130 /* 131 * rx_offload_capa includes both device and queue offloads since 132 * the latter may be requested on a per device basis which makes 133 * sense when some offloads are needed to be set on all queues. 134 */ 135 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 136 dev_info->rx_queue_offload_capa; 137 138 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 139 140 /* 141 * tx_offload_capa includes both device and queue offloads since 142 * the latter may be requested on a per device basis which makes 143 * sense when some offloads are needed to be set on all queues. 144 */ 145 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 146 dev_info->tx_queue_offload_capa; 147 148 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 149 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 150 151 dev_info->default_txconf.offloads |= txq_offloads_def; 152 153 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 154 uint64_t rte_hf = 0; 155 unsigned int i; 156 157 for (i = 0; i < rss->hf_map_nb_entries; ++i) 158 rte_hf |= rss->hf_map[i].rte; 159 160 dev_info->reta_size = EFX_RSS_TBL_SIZE; 161 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 162 dev_info->flow_type_rss_offloads = rte_hf; 163 } 164 165 /* Initialize to hardware limits */ 166 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 167 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 168 /* The RXQ hardware requires that the descriptor count is a power 169 * of 2, but rx_desc_lim cannot properly describe that constraint. 170 */ 171 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 172 173 /* Initialize to hardware limits */ 174 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 175 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 176 /* 177 * The TXQ hardware requires that the descriptor count is a power 178 * of 2, but tx_desc_lim cannot properly describe that constraint 179 */ 180 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 181 182 if (sap->dp_rx->get_dev_info != NULL) 183 sap->dp_rx->get_dev_info(dev_info); 184 if (sap->dp_tx->get_dev_info != NULL) 185 sap->dp_tx->get_dev_info(dev_info); 186 187 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 188 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 189 190 return 0; 191 } 192 193 static const uint32_t * 194 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 195 { 196 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 197 198 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 199 } 200 201 static int 202 sfc_dev_configure(struct rte_eth_dev *dev) 203 { 204 struct rte_eth_dev_data *dev_data = dev->data; 205 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 206 int rc; 207 208 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 209 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 210 211 sfc_adapter_lock(sa); 212 switch (sa->state) { 213 case SFC_ADAPTER_CONFIGURED: 214 /* FALLTHROUGH */ 215 case SFC_ADAPTER_INITIALIZED: 216 rc = sfc_configure(sa); 217 break; 218 default: 219 sfc_err(sa, "unexpected adapter state %u to configure", 220 sa->state); 221 rc = EINVAL; 222 break; 223 } 224 sfc_adapter_unlock(sa); 225 226 sfc_log_init(sa, "done %d", rc); 227 SFC_ASSERT(rc >= 0); 228 return -rc; 229 } 230 231 static int 232 sfc_dev_start(struct rte_eth_dev *dev) 233 { 234 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 235 int rc; 236 237 sfc_log_init(sa, "entry"); 238 239 sfc_adapter_lock(sa); 240 rc = sfc_start(sa); 241 sfc_adapter_unlock(sa); 242 243 sfc_log_init(sa, "done %d", rc); 244 SFC_ASSERT(rc >= 0); 245 return -rc; 246 } 247 248 static int 249 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 250 { 251 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 252 struct rte_eth_link current_link; 253 int ret; 254 255 sfc_log_init(sa, "entry"); 256 257 if (sa->state != SFC_ADAPTER_STARTED) { 258 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 259 } else if (wait_to_complete) { 260 efx_link_mode_t link_mode; 261 262 if (efx_port_poll(sa->nic, &link_mode) != 0) 263 link_mode = EFX_LINK_UNKNOWN; 264 sfc_port_link_mode_to_info(link_mode, ¤t_link); 265 266 } else { 267 sfc_ev_mgmt_qpoll(sa); 268 rte_eth_linkstatus_get(dev, ¤t_link); 269 } 270 271 ret = rte_eth_linkstatus_set(dev, ¤t_link); 272 if (ret == 0) 273 sfc_notice(sa, "Link status is %s", 274 current_link.link_status ? "UP" : "DOWN"); 275 276 return ret; 277 } 278 279 static int 280 sfc_dev_stop(struct rte_eth_dev *dev) 281 { 282 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 283 284 sfc_log_init(sa, "entry"); 285 286 sfc_adapter_lock(sa); 287 sfc_stop(sa); 288 sfc_adapter_unlock(sa); 289 290 sfc_log_init(sa, "done"); 291 292 return 0; 293 } 294 295 static int 296 sfc_dev_set_link_up(struct rte_eth_dev *dev) 297 { 298 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 299 int rc; 300 301 sfc_log_init(sa, "entry"); 302 303 sfc_adapter_lock(sa); 304 rc = sfc_start(sa); 305 sfc_adapter_unlock(sa); 306 307 SFC_ASSERT(rc >= 0); 308 return -rc; 309 } 310 311 static int 312 sfc_dev_set_link_down(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 315 316 sfc_log_init(sa, "entry"); 317 318 sfc_adapter_lock(sa); 319 sfc_stop(sa); 320 sfc_adapter_unlock(sa); 321 322 return 0; 323 } 324 325 static void 326 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 327 { 328 free(dev->process_private); 329 rte_eth_dev_release_port(dev); 330 } 331 332 static int 333 sfc_dev_close(struct rte_eth_dev *dev) 334 { 335 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 336 337 sfc_log_init(sa, "entry"); 338 339 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 340 sfc_eth_dev_secondary_clear_ops(dev); 341 return 0; 342 } 343 344 sfc_adapter_lock(sa); 345 switch (sa->state) { 346 case SFC_ADAPTER_STARTED: 347 sfc_stop(sa); 348 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 349 /* FALLTHROUGH */ 350 case SFC_ADAPTER_CONFIGURED: 351 sfc_close(sa); 352 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 353 /* FALLTHROUGH */ 354 case SFC_ADAPTER_INITIALIZED: 355 break; 356 default: 357 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 358 break; 359 } 360 361 /* 362 * Cleanup all resources. 363 * Rollback primary process sfc_eth_dev_init() below. 364 */ 365 366 sfc_eth_dev_clear_ops(dev); 367 368 sfc_detach(sa); 369 sfc_unprobe(sa); 370 371 sfc_kvargs_cleanup(sa); 372 373 sfc_adapter_unlock(sa); 374 sfc_adapter_lock_fini(sa); 375 376 sfc_log_init(sa, "done"); 377 378 /* Required for logging, so cleanup last */ 379 sa->eth_dev = NULL; 380 381 free(sa); 382 383 return 0; 384 } 385 386 static int 387 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 388 boolean_t enabled) 389 { 390 struct sfc_port *port; 391 boolean_t *toggle; 392 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 393 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 394 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 395 int rc = 0; 396 397 sfc_adapter_lock(sa); 398 399 port = &sa->port; 400 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 401 402 if (*toggle != enabled) { 403 *toggle = enabled; 404 405 if (sfc_sa2shared(sa)->isolated) { 406 sfc_warn(sa, "isolated mode is active on the port"); 407 sfc_warn(sa, "the change is to be applied on the next " 408 "start provided that isolated mode is " 409 "disabled prior the next start"); 410 } else if ((sa->state == SFC_ADAPTER_STARTED) && 411 ((rc = sfc_set_rx_mode(sa)) != 0)) { 412 *toggle = !(enabled); 413 sfc_warn(sa, "Failed to %s %s mode, rc = %d", 414 ((enabled) ? "enable" : "disable"), desc, rc); 415 416 /* 417 * For promiscuous and all-multicast filters a 418 * permission failure should be reported as an 419 * unsupported filter. 420 */ 421 if (rc == EPERM) 422 rc = ENOTSUP; 423 } 424 } 425 426 sfc_adapter_unlock(sa); 427 return rc; 428 } 429 430 static int 431 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 432 { 433 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 434 435 SFC_ASSERT(rc >= 0); 436 return -rc; 437 } 438 439 static int 440 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 441 { 442 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 443 444 SFC_ASSERT(rc >= 0); 445 return -rc; 446 } 447 448 static int 449 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 450 { 451 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 452 453 SFC_ASSERT(rc >= 0); 454 return -rc; 455 } 456 457 static int 458 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 459 { 460 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 461 462 SFC_ASSERT(rc >= 0); 463 return -rc; 464 } 465 466 static int 467 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 468 uint16_t nb_rx_desc, unsigned int socket_id, 469 const struct rte_eth_rxconf *rx_conf, 470 struct rte_mempool *mb_pool) 471 { 472 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 473 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 474 int rc; 475 476 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 477 rx_queue_id, nb_rx_desc, socket_id); 478 479 sfc_adapter_lock(sa); 480 481 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 482 rx_conf, mb_pool); 483 if (rc != 0) 484 goto fail_rx_qinit; 485 486 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 487 488 sfc_adapter_unlock(sa); 489 490 return 0; 491 492 fail_rx_qinit: 493 sfc_adapter_unlock(sa); 494 SFC_ASSERT(rc > 0); 495 return -rc; 496 } 497 498 static void 499 sfc_rx_queue_release(void *queue) 500 { 501 struct sfc_dp_rxq *dp_rxq = queue; 502 struct sfc_rxq *rxq; 503 struct sfc_adapter *sa; 504 unsigned int sw_index; 505 506 if (dp_rxq == NULL) 507 return; 508 509 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 510 sa = rxq->evq->sa; 511 sfc_adapter_lock(sa); 512 513 sw_index = dp_rxq->dpq.queue_id; 514 515 sfc_log_init(sa, "RxQ=%u", sw_index); 516 517 sfc_rx_qfini(sa, sw_index); 518 519 sfc_adapter_unlock(sa); 520 } 521 522 static int 523 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 524 uint16_t nb_tx_desc, unsigned int socket_id, 525 const struct rte_eth_txconf *tx_conf) 526 { 527 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 528 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 529 int rc; 530 531 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 532 tx_queue_id, nb_tx_desc, socket_id); 533 534 sfc_adapter_lock(sa); 535 536 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 537 if (rc != 0) 538 goto fail_tx_qinit; 539 540 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 541 542 sfc_adapter_unlock(sa); 543 return 0; 544 545 fail_tx_qinit: 546 sfc_adapter_unlock(sa); 547 SFC_ASSERT(rc > 0); 548 return -rc; 549 } 550 551 static void 552 sfc_tx_queue_release(void *queue) 553 { 554 struct sfc_dp_txq *dp_txq = queue; 555 struct sfc_txq *txq; 556 unsigned int sw_index; 557 struct sfc_adapter *sa; 558 559 if (dp_txq == NULL) 560 return; 561 562 txq = sfc_txq_by_dp_txq(dp_txq); 563 sw_index = dp_txq->dpq.queue_id; 564 565 SFC_ASSERT(txq->evq != NULL); 566 sa = txq->evq->sa; 567 568 sfc_log_init(sa, "TxQ = %u", sw_index); 569 570 sfc_adapter_lock(sa); 571 572 sfc_tx_qfini(sa, sw_index); 573 574 sfc_adapter_unlock(sa); 575 } 576 577 /* 578 * Some statistics are computed as A - B where A and B each increase 579 * monotonically with some hardware counter(s) and the counters are read 580 * asynchronously. 581 * 582 * If packet X is counted in A, but not counted in B yet, computed value is 583 * greater than real. 584 * 585 * If packet X is not counted in A at the moment of reading the counter, 586 * but counted in B at the moment of reading the counter, computed value 587 * is less than real. 588 * 589 * However, counter which grows backward is worse evil than slightly wrong 590 * value. So, let's try to guarantee that it never happens except may be 591 * the case when the MAC stats are zeroed as a result of a NIC reset. 592 */ 593 static void 594 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 595 { 596 if ((int64_t)(newval - *stat) > 0 || newval == 0) 597 *stat = newval; 598 } 599 600 static int 601 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 602 { 603 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 604 struct sfc_port *port = &sa->port; 605 uint64_t *mac_stats; 606 int ret; 607 608 rte_spinlock_lock(&port->mac_stats_lock); 609 610 ret = sfc_port_update_mac_stats(sa); 611 if (ret != 0) 612 goto unlock; 613 614 mac_stats = port->mac_stats_buf; 615 616 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 617 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 618 stats->ipackets = 619 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 620 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 621 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 622 stats->opackets = 623 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 624 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 625 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 626 stats->ibytes = 627 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 628 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 629 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 630 stats->obytes = 631 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 632 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 633 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 634 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 635 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 636 } else { 637 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 638 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 639 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 640 /* 641 * Take into account stats which are whenever supported 642 * on EF10. If some stat is not supported by current 643 * firmware variant or HW revision, it is guaranteed 644 * to be zero in mac_stats. 645 */ 646 stats->imissed = 647 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 648 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 649 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 650 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 651 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 652 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 653 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 654 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 655 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 656 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 657 stats->ierrors = 658 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 659 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 660 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 661 /* no oerrors counters supported on EF10 */ 662 663 /* Exclude missed, errors and pauses from Rx packets */ 664 sfc_update_diff_stat(&port->ipackets, 665 mac_stats[EFX_MAC_RX_PKTS] - 666 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 667 stats->imissed - stats->ierrors); 668 stats->ipackets = port->ipackets; 669 } 670 671 unlock: 672 rte_spinlock_unlock(&port->mac_stats_lock); 673 SFC_ASSERT(ret >= 0); 674 return -ret; 675 } 676 677 static int 678 sfc_stats_reset(struct rte_eth_dev *dev) 679 { 680 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 681 struct sfc_port *port = &sa->port; 682 int rc; 683 684 if (sa->state != SFC_ADAPTER_STARTED) { 685 /* 686 * The operation cannot be done if port is not started; it 687 * will be scheduled to be done during the next port start 688 */ 689 port->mac_stats_reset_pending = B_TRUE; 690 return 0; 691 } 692 693 rc = sfc_port_reset_mac_stats(sa); 694 if (rc != 0) 695 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 696 697 SFC_ASSERT(rc >= 0); 698 return -rc; 699 } 700 701 static int 702 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 703 unsigned int xstats_count) 704 { 705 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 706 struct sfc_port *port = &sa->port; 707 uint64_t *mac_stats; 708 int rc; 709 unsigned int i; 710 int nstats = 0; 711 712 rte_spinlock_lock(&port->mac_stats_lock); 713 714 rc = sfc_port_update_mac_stats(sa); 715 if (rc != 0) { 716 SFC_ASSERT(rc > 0); 717 nstats = -rc; 718 goto unlock; 719 } 720 721 mac_stats = port->mac_stats_buf; 722 723 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 724 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 725 if (xstats != NULL && nstats < (int)xstats_count) { 726 xstats[nstats].id = nstats; 727 xstats[nstats].value = mac_stats[i]; 728 } 729 nstats++; 730 } 731 } 732 733 unlock: 734 rte_spinlock_unlock(&port->mac_stats_lock); 735 736 return nstats; 737 } 738 739 static int 740 sfc_xstats_get_names(struct rte_eth_dev *dev, 741 struct rte_eth_xstat_name *xstats_names, 742 unsigned int xstats_count) 743 { 744 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 745 struct sfc_port *port = &sa->port; 746 unsigned int i; 747 unsigned int nstats = 0; 748 749 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 750 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 751 if (xstats_names != NULL && nstats < xstats_count) 752 strlcpy(xstats_names[nstats].name, 753 efx_mac_stat_name(sa->nic, i), 754 sizeof(xstats_names[0].name)); 755 nstats++; 756 } 757 } 758 759 return nstats; 760 } 761 762 static int 763 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 764 uint64_t *values, unsigned int n) 765 { 766 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 767 struct sfc_port *port = &sa->port; 768 uint64_t *mac_stats; 769 unsigned int nb_supported = 0; 770 unsigned int nb_written = 0; 771 unsigned int i; 772 int ret; 773 int rc; 774 775 if (unlikely(values == NULL) || 776 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 777 return port->mac_stats_nb_supported; 778 779 rte_spinlock_lock(&port->mac_stats_lock); 780 781 rc = sfc_port_update_mac_stats(sa); 782 if (rc != 0) { 783 SFC_ASSERT(rc > 0); 784 ret = -rc; 785 goto unlock; 786 } 787 788 mac_stats = port->mac_stats_buf; 789 790 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 791 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 792 continue; 793 794 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 795 values[nb_written++] = mac_stats[i]; 796 797 ++nb_supported; 798 } 799 800 ret = nb_written; 801 802 unlock: 803 rte_spinlock_unlock(&port->mac_stats_lock); 804 805 return ret; 806 } 807 808 static int 809 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 810 struct rte_eth_xstat_name *xstats_names, 811 const uint64_t *ids, unsigned int size) 812 { 813 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 814 struct sfc_port *port = &sa->port; 815 unsigned int nb_supported = 0; 816 unsigned int nb_written = 0; 817 unsigned int i; 818 819 if (unlikely(xstats_names == NULL) || 820 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 821 return port->mac_stats_nb_supported; 822 823 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 824 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 825 continue; 826 827 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 828 char *name = xstats_names[nb_written++].name; 829 830 strlcpy(name, efx_mac_stat_name(sa->nic, i), 831 sizeof(xstats_names[0].name)); 832 } 833 834 ++nb_supported; 835 } 836 837 return nb_written; 838 } 839 840 static int 841 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 842 { 843 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 844 unsigned int wanted_fc, link_fc; 845 846 memset(fc_conf, 0, sizeof(*fc_conf)); 847 848 sfc_adapter_lock(sa); 849 850 if (sa->state == SFC_ADAPTER_STARTED) 851 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 852 else 853 link_fc = sa->port.flow_ctrl; 854 855 switch (link_fc) { 856 case 0: 857 fc_conf->mode = RTE_FC_NONE; 858 break; 859 case EFX_FCNTL_RESPOND: 860 fc_conf->mode = RTE_FC_RX_PAUSE; 861 break; 862 case EFX_FCNTL_GENERATE: 863 fc_conf->mode = RTE_FC_TX_PAUSE; 864 break; 865 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 866 fc_conf->mode = RTE_FC_FULL; 867 break; 868 default: 869 sfc_err(sa, "%s: unexpected flow control value %#x", 870 __func__, link_fc); 871 } 872 873 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 874 875 sfc_adapter_unlock(sa); 876 877 return 0; 878 } 879 880 static int 881 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 882 { 883 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 884 struct sfc_port *port = &sa->port; 885 unsigned int fcntl; 886 int rc; 887 888 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 889 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 890 fc_conf->mac_ctrl_frame_fwd != 0) { 891 sfc_err(sa, "unsupported flow control settings specified"); 892 rc = EINVAL; 893 goto fail_inval; 894 } 895 896 switch (fc_conf->mode) { 897 case RTE_FC_NONE: 898 fcntl = 0; 899 break; 900 case RTE_FC_RX_PAUSE: 901 fcntl = EFX_FCNTL_RESPOND; 902 break; 903 case RTE_FC_TX_PAUSE: 904 fcntl = EFX_FCNTL_GENERATE; 905 break; 906 case RTE_FC_FULL: 907 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 908 break; 909 default: 910 rc = EINVAL; 911 goto fail_inval; 912 } 913 914 sfc_adapter_lock(sa); 915 916 if (sa->state == SFC_ADAPTER_STARTED) { 917 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 918 if (rc != 0) 919 goto fail_mac_fcntl_set; 920 } 921 922 port->flow_ctrl = fcntl; 923 port->flow_ctrl_autoneg = fc_conf->autoneg; 924 925 sfc_adapter_unlock(sa); 926 927 return 0; 928 929 fail_mac_fcntl_set: 930 sfc_adapter_unlock(sa); 931 fail_inval: 932 SFC_ASSERT(rc > 0); 933 return -rc; 934 } 935 936 static int 937 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 938 { 939 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 940 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 941 boolean_t scatter_enabled; 942 const char *error; 943 unsigned int i; 944 945 for (i = 0; i < sas->rxq_count; i++) { 946 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 947 continue; 948 949 scatter_enabled = (sas->rxq_info[i].type_flags & 950 EFX_RXQ_FLAG_SCATTER); 951 952 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 953 encp->enc_rx_prefix_size, 954 scatter_enabled, 955 encp->enc_rx_scatter_max, &error)) { 956 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 957 error); 958 return EINVAL; 959 } 960 } 961 962 return 0; 963 } 964 965 static int 966 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 967 { 968 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 969 size_t pdu = EFX_MAC_PDU(mtu); 970 size_t old_pdu; 971 int rc; 972 973 sfc_log_init(sa, "mtu=%u", mtu); 974 975 rc = EINVAL; 976 if (pdu < EFX_MAC_PDU_MIN) { 977 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 978 (unsigned int)mtu, (unsigned int)pdu, 979 EFX_MAC_PDU_MIN); 980 goto fail_inval; 981 } 982 if (pdu > EFX_MAC_PDU_MAX) { 983 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 984 (unsigned int)mtu, (unsigned int)pdu, 985 (unsigned int)EFX_MAC_PDU_MAX); 986 goto fail_inval; 987 } 988 989 sfc_adapter_lock(sa); 990 991 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 992 if (rc != 0) 993 goto fail_check_scatter; 994 995 if (pdu != sa->port.pdu) { 996 if (sa->state == SFC_ADAPTER_STARTED) { 997 sfc_stop(sa); 998 999 old_pdu = sa->port.pdu; 1000 sa->port.pdu = pdu; 1001 rc = sfc_start(sa); 1002 if (rc != 0) 1003 goto fail_start; 1004 } else { 1005 sa->port.pdu = pdu; 1006 } 1007 } 1008 1009 /* 1010 * The driver does not use it, but other PMDs update jumbo frame 1011 * flag and max_rx_pkt_len when MTU is set. 1012 */ 1013 if (mtu > RTE_ETHER_MAX_LEN) { 1014 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 1015 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1016 } 1017 1018 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 1019 1020 sfc_adapter_unlock(sa); 1021 1022 sfc_log_init(sa, "done"); 1023 return 0; 1024 1025 fail_start: 1026 sa->port.pdu = old_pdu; 1027 if (sfc_start(sa) != 0) 1028 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1029 "PDU max size - port is stopped", 1030 (unsigned int)pdu, (unsigned int)old_pdu); 1031 1032 fail_check_scatter: 1033 sfc_adapter_unlock(sa); 1034 1035 fail_inval: 1036 sfc_log_init(sa, "failed %d", rc); 1037 SFC_ASSERT(rc > 0); 1038 return -rc; 1039 } 1040 static int 1041 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1042 { 1043 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1044 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1045 struct sfc_port *port = &sa->port; 1046 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1047 int rc = 0; 1048 1049 sfc_adapter_lock(sa); 1050 1051 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr)) 1052 goto unlock; 1053 1054 /* 1055 * Copy the address to the device private data so that 1056 * it could be recalled in the case of adapter restart. 1057 */ 1058 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1059 1060 /* 1061 * Neither of the two following checks can return 1062 * an error. The new MAC address is preserved in 1063 * the device private data and can be activated 1064 * on the next port start if the user prevents 1065 * isolated mode from being enabled. 1066 */ 1067 if (sfc_sa2shared(sa)->isolated) { 1068 sfc_warn(sa, "isolated mode is active on the port"); 1069 sfc_warn(sa, "will not set MAC address"); 1070 goto unlock; 1071 } 1072 1073 if (sa->state != SFC_ADAPTER_STARTED) { 1074 sfc_notice(sa, "the port is not started"); 1075 sfc_notice(sa, "the new MAC address will be set on port start"); 1076 1077 goto unlock; 1078 } 1079 1080 if (encp->enc_allow_set_mac_with_installed_filters) { 1081 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1082 if (rc != 0) { 1083 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1084 goto unlock; 1085 } 1086 1087 /* 1088 * Changing the MAC address by means of MCDI request 1089 * has no effect on received traffic, therefore 1090 * we also need to update unicast filters 1091 */ 1092 rc = sfc_set_rx_mode_unchecked(sa); 1093 if (rc != 0) { 1094 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1095 /* Rollback the old address */ 1096 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1097 (void)sfc_set_rx_mode_unchecked(sa); 1098 } 1099 } else { 1100 sfc_warn(sa, "cannot set MAC address with filters installed"); 1101 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1102 sfc_warn(sa, "(some traffic may be dropped)"); 1103 1104 /* 1105 * Since setting MAC address with filters installed is not 1106 * allowed on the adapter, the new MAC address will be set 1107 * by means of adapter restart. sfc_start() shall retrieve 1108 * the new address from the device private data and set it. 1109 */ 1110 sfc_stop(sa); 1111 rc = sfc_start(sa); 1112 if (rc != 0) 1113 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1114 } 1115 1116 unlock: 1117 if (rc != 0) 1118 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1119 1120 sfc_adapter_unlock(sa); 1121 1122 SFC_ASSERT(rc >= 0); 1123 return -rc; 1124 } 1125 1126 1127 static int 1128 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1129 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1130 { 1131 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1132 struct sfc_port *port = &sa->port; 1133 uint8_t *mc_addrs = port->mcast_addrs; 1134 int rc; 1135 unsigned int i; 1136 1137 if (sfc_sa2shared(sa)->isolated) { 1138 sfc_err(sa, "isolated mode is active on the port"); 1139 sfc_err(sa, "will not set multicast address list"); 1140 return -ENOTSUP; 1141 } 1142 1143 if (mc_addrs == NULL) 1144 return -ENOBUFS; 1145 1146 if (nb_mc_addr > port->max_mcast_addrs) { 1147 sfc_err(sa, "too many multicast addresses: %u > %u", 1148 nb_mc_addr, port->max_mcast_addrs); 1149 return -EINVAL; 1150 } 1151 1152 for (i = 0; i < nb_mc_addr; ++i) { 1153 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1154 EFX_MAC_ADDR_LEN); 1155 mc_addrs += EFX_MAC_ADDR_LEN; 1156 } 1157 1158 port->nb_mcast_addrs = nb_mc_addr; 1159 1160 if (sa->state != SFC_ADAPTER_STARTED) 1161 return 0; 1162 1163 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1164 port->nb_mcast_addrs); 1165 if (rc != 0) 1166 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1167 1168 SFC_ASSERT(rc >= 0); 1169 return -rc; 1170 } 1171 1172 /* 1173 * The function is used by the secondary process as well. It must not 1174 * use any process-local pointers from the adapter data. 1175 */ 1176 static void 1177 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1178 struct rte_eth_rxq_info *qinfo) 1179 { 1180 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1181 struct sfc_rxq_info *rxq_info; 1182 1183 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1184 1185 rxq_info = &sas->rxq_info[rx_queue_id]; 1186 1187 qinfo->mp = rxq_info->refill_mb_pool; 1188 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1189 qinfo->conf.rx_drop_en = 1; 1190 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1191 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1192 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1193 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1194 qinfo->scattered_rx = 1; 1195 } 1196 qinfo->nb_desc = rxq_info->entries; 1197 } 1198 1199 /* 1200 * The function is used by the secondary process as well. It must not 1201 * use any process-local pointers from the adapter data. 1202 */ 1203 static void 1204 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1205 struct rte_eth_txq_info *qinfo) 1206 { 1207 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1208 struct sfc_txq_info *txq_info; 1209 1210 SFC_ASSERT(tx_queue_id < sas->txq_count); 1211 1212 txq_info = &sas->txq_info[tx_queue_id]; 1213 1214 memset(qinfo, 0, sizeof(*qinfo)); 1215 1216 qinfo->conf.offloads = txq_info->offloads; 1217 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1218 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1219 qinfo->nb_desc = txq_info->entries; 1220 } 1221 1222 /* 1223 * The function is used by the secondary process as well. It must not 1224 * use any process-local pointers from the adapter data. 1225 */ 1226 static uint32_t 1227 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1228 { 1229 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1230 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1231 struct sfc_rxq_info *rxq_info; 1232 1233 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1234 rxq_info = &sas->rxq_info[rx_queue_id]; 1235 1236 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1237 return 0; 1238 1239 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1240 } 1241 1242 /* 1243 * The function is used by the secondary process as well. It must not 1244 * use any process-local pointers from the adapter data. 1245 */ 1246 static int 1247 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1248 { 1249 struct sfc_dp_rxq *dp_rxq = queue; 1250 const struct sfc_dp_rx *dp_rx; 1251 1252 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1253 1254 return offset < dp_rx->qdesc_npending(dp_rxq); 1255 } 1256 1257 /* 1258 * The function is used by the secondary process as well. It must not 1259 * use any process-local pointers from the adapter data. 1260 */ 1261 static int 1262 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1263 { 1264 struct sfc_dp_rxq *dp_rxq = queue; 1265 const struct sfc_dp_rx *dp_rx; 1266 1267 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1268 1269 return dp_rx->qdesc_status(dp_rxq, offset); 1270 } 1271 1272 /* 1273 * The function is used by the secondary process as well. It must not 1274 * use any process-local pointers from the adapter data. 1275 */ 1276 static int 1277 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1278 { 1279 struct sfc_dp_txq *dp_txq = queue; 1280 const struct sfc_dp_tx *dp_tx; 1281 1282 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1283 1284 return dp_tx->qdesc_status(dp_txq, offset); 1285 } 1286 1287 static int 1288 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1289 { 1290 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1291 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1292 int rc; 1293 1294 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1295 1296 sfc_adapter_lock(sa); 1297 1298 rc = EINVAL; 1299 if (sa->state != SFC_ADAPTER_STARTED) 1300 goto fail_not_started; 1301 1302 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1303 goto fail_not_setup; 1304 1305 rc = sfc_rx_qstart(sa, rx_queue_id); 1306 if (rc != 0) 1307 goto fail_rx_qstart; 1308 1309 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1310 1311 sfc_adapter_unlock(sa); 1312 1313 return 0; 1314 1315 fail_rx_qstart: 1316 fail_not_setup: 1317 fail_not_started: 1318 sfc_adapter_unlock(sa); 1319 SFC_ASSERT(rc > 0); 1320 return -rc; 1321 } 1322 1323 static int 1324 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1325 { 1326 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1327 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1328 1329 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1330 1331 sfc_adapter_lock(sa); 1332 sfc_rx_qstop(sa, rx_queue_id); 1333 1334 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1335 1336 sfc_adapter_unlock(sa); 1337 1338 return 0; 1339 } 1340 1341 static int 1342 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1343 { 1344 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1345 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1346 int rc; 1347 1348 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1349 1350 sfc_adapter_lock(sa); 1351 1352 rc = EINVAL; 1353 if (sa->state != SFC_ADAPTER_STARTED) 1354 goto fail_not_started; 1355 1356 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1357 goto fail_not_setup; 1358 1359 rc = sfc_tx_qstart(sa, tx_queue_id); 1360 if (rc != 0) 1361 goto fail_tx_qstart; 1362 1363 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1364 1365 sfc_adapter_unlock(sa); 1366 return 0; 1367 1368 fail_tx_qstart: 1369 1370 fail_not_setup: 1371 fail_not_started: 1372 sfc_adapter_unlock(sa); 1373 SFC_ASSERT(rc > 0); 1374 return -rc; 1375 } 1376 1377 static int 1378 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1379 { 1380 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1381 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1382 1383 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1384 1385 sfc_adapter_lock(sa); 1386 1387 sfc_tx_qstop(sa, tx_queue_id); 1388 1389 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1390 1391 sfc_adapter_unlock(sa); 1392 return 0; 1393 } 1394 1395 static efx_tunnel_protocol_t 1396 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1397 { 1398 switch (rte_type) { 1399 case RTE_TUNNEL_TYPE_VXLAN: 1400 return EFX_TUNNEL_PROTOCOL_VXLAN; 1401 case RTE_TUNNEL_TYPE_GENEVE: 1402 return EFX_TUNNEL_PROTOCOL_GENEVE; 1403 default: 1404 return EFX_TUNNEL_NPROTOS; 1405 } 1406 } 1407 1408 enum sfc_udp_tunnel_op_e { 1409 SFC_UDP_TUNNEL_ADD_PORT, 1410 SFC_UDP_TUNNEL_DEL_PORT, 1411 }; 1412 1413 static int 1414 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1415 struct rte_eth_udp_tunnel *tunnel_udp, 1416 enum sfc_udp_tunnel_op_e op) 1417 { 1418 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1419 efx_tunnel_protocol_t tunnel_proto; 1420 int rc; 1421 1422 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1423 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1424 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1425 tunnel_udp->udp_port, tunnel_udp->prot_type); 1426 1427 tunnel_proto = 1428 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1429 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1430 rc = ENOTSUP; 1431 goto fail_bad_proto; 1432 } 1433 1434 sfc_adapter_lock(sa); 1435 1436 switch (op) { 1437 case SFC_UDP_TUNNEL_ADD_PORT: 1438 rc = efx_tunnel_config_udp_add(sa->nic, 1439 tunnel_udp->udp_port, 1440 tunnel_proto); 1441 break; 1442 case SFC_UDP_TUNNEL_DEL_PORT: 1443 rc = efx_tunnel_config_udp_remove(sa->nic, 1444 tunnel_udp->udp_port, 1445 tunnel_proto); 1446 break; 1447 default: 1448 rc = EINVAL; 1449 goto fail_bad_op; 1450 } 1451 1452 if (rc != 0) 1453 goto fail_op; 1454 1455 if (sa->state == SFC_ADAPTER_STARTED) { 1456 rc = efx_tunnel_reconfigure(sa->nic); 1457 if (rc == EAGAIN) { 1458 /* 1459 * Configuration is accepted by FW and MC reboot 1460 * is initiated to apply the changes. MC reboot 1461 * will be handled in a usual way (MC reboot 1462 * event on management event queue and adapter 1463 * restart). 1464 */ 1465 rc = 0; 1466 } else if (rc != 0) { 1467 goto fail_reconfigure; 1468 } 1469 } 1470 1471 sfc_adapter_unlock(sa); 1472 return 0; 1473 1474 fail_reconfigure: 1475 /* Remove/restore entry since the change makes the trouble */ 1476 switch (op) { 1477 case SFC_UDP_TUNNEL_ADD_PORT: 1478 (void)efx_tunnel_config_udp_remove(sa->nic, 1479 tunnel_udp->udp_port, 1480 tunnel_proto); 1481 break; 1482 case SFC_UDP_TUNNEL_DEL_PORT: 1483 (void)efx_tunnel_config_udp_add(sa->nic, 1484 tunnel_udp->udp_port, 1485 tunnel_proto); 1486 break; 1487 } 1488 1489 fail_op: 1490 fail_bad_op: 1491 sfc_adapter_unlock(sa); 1492 1493 fail_bad_proto: 1494 SFC_ASSERT(rc > 0); 1495 return -rc; 1496 } 1497 1498 static int 1499 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1500 struct rte_eth_udp_tunnel *tunnel_udp) 1501 { 1502 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1503 } 1504 1505 static int 1506 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1507 struct rte_eth_udp_tunnel *tunnel_udp) 1508 { 1509 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1510 } 1511 1512 /* 1513 * The function is used by the secondary process as well. It must not 1514 * use any process-local pointers from the adapter data. 1515 */ 1516 static int 1517 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1518 struct rte_eth_rss_conf *rss_conf) 1519 { 1520 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1521 struct sfc_rss *rss = &sas->rss; 1522 1523 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1524 return -ENOTSUP; 1525 1526 /* 1527 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1528 * hence, conversion is done here to derive a correct set of ETH_RSS 1529 * flags which corresponds to the active EFX configuration stored 1530 * locally in 'sfc_adapter' and kept up-to-date 1531 */ 1532 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1533 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1534 if (rss_conf->rss_key != NULL) 1535 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1536 1537 return 0; 1538 } 1539 1540 static int 1541 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1542 struct rte_eth_rss_conf *rss_conf) 1543 { 1544 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1545 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1546 unsigned int efx_hash_types; 1547 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context}; 1548 unsigned int n_contexts; 1549 unsigned int mode_i = 0; 1550 unsigned int key_i = 0; 1551 unsigned int i = 0; 1552 int rc = 0; 1553 1554 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2; 1555 1556 if (sfc_sa2shared(sa)->isolated) 1557 return -ENOTSUP; 1558 1559 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1560 sfc_err(sa, "RSS is not available"); 1561 return -ENOTSUP; 1562 } 1563 1564 if (rss->channels == 0) { 1565 sfc_err(sa, "RSS is not configured"); 1566 return -EINVAL; 1567 } 1568 1569 if ((rss_conf->rss_key != NULL) && 1570 (rss_conf->rss_key_len != sizeof(rss->key))) { 1571 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1572 sizeof(rss->key)); 1573 return -EINVAL; 1574 } 1575 1576 sfc_adapter_lock(sa); 1577 1578 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1579 if (rc != 0) 1580 goto fail_rx_hf_rte_to_efx; 1581 1582 for (mode_i = 0; mode_i < n_contexts; mode_i++) { 1583 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i], 1584 rss->hash_alg, efx_hash_types, 1585 B_TRUE); 1586 if (rc != 0) 1587 goto fail_scale_mode_set; 1588 } 1589 1590 if (rss_conf->rss_key != NULL) { 1591 if (sa->state == SFC_ADAPTER_STARTED) { 1592 for (key_i = 0; key_i < n_contexts; key_i++) { 1593 rc = efx_rx_scale_key_set(sa->nic, 1594 contexts[key_i], 1595 rss_conf->rss_key, 1596 sizeof(rss->key)); 1597 if (rc != 0) 1598 goto fail_scale_key_set; 1599 } 1600 } 1601 1602 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1603 } 1604 1605 rss->hash_types = efx_hash_types; 1606 1607 sfc_adapter_unlock(sa); 1608 1609 return 0; 1610 1611 fail_scale_key_set: 1612 for (i = 0; i < key_i; i++) { 1613 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key, 1614 sizeof(rss->key)) != 0) 1615 sfc_err(sa, "failed to restore RSS key"); 1616 } 1617 1618 fail_scale_mode_set: 1619 for (i = 0; i < mode_i; i++) { 1620 if (efx_rx_scale_mode_set(sa->nic, contexts[i], 1621 EFX_RX_HASHALG_TOEPLITZ, 1622 rss->hash_types, B_TRUE) != 0) 1623 sfc_err(sa, "failed to restore RSS mode"); 1624 } 1625 1626 fail_rx_hf_rte_to_efx: 1627 sfc_adapter_unlock(sa); 1628 return -rc; 1629 } 1630 1631 /* 1632 * The function is used by the secondary process as well. It must not 1633 * use any process-local pointers from the adapter data. 1634 */ 1635 static int 1636 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1637 struct rte_eth_rss_reta_entry64 *reta_conf, 1638 uint16_t reta_size) 1639 { 1640 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1641 struct sfc_rss *rss = &sas->rss; 1642 int entry; 1643 1644 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1645 return -ENOTSUP; 1646 1647 if (rss->channels == 0) 1648 return -EINVAL; 1649 1650 if (reta_size != EFX_RSS_TBL_SIZE) 1651 return -EINVAL; 1652 1653 for (entry = 0; entry < reta_size; entry++) { 1654 int grp = entry / RTE_RETA_GROUP_SIZE; 1655 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1656 1657 if ((reta_conf[grp].mask >> grp_idx) & 1) 1658 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1659 } 1660 1661 return 0; 1662 } 1663 1664 static int 1665 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1666 struct rte_eth_rss_reta_entry64 *reta_conf, 1667 uint16_t reta_size) 1668 { 1669 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1670 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1671 unsigned int *rss_tbl_new; 1672 uint16_t entry; 1673 int rc = 0; 1674 1675 1676 if (sfc_sa2shared(sa)->isolated) 1677 return -ENOTSUP; 1678 1679 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1680 sfc_err(sa, "RSS is not available"); 1681 return -ENOTSUP; 1682 } 1683 1684 if (rss->channels == 0) { 1685 sfc_err(sa, "RSS is not configured"); 1686 return -EINVAL; 1687 } 1688 1689 if (reta_size != EFX_RSS_TBL_SIZE) { 1690 sfc_err(sa, "RETA size is wrong (should be %u)", 1691 EFX_RSS_TBL_SIZE); 1692 return -EINVAL; 1693 } 1694 1695 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1696 if (rss_tbl_new == NULL) 1697 return -ENOMEM; 1698 1699 sfc_adapter_lock(sa); 1700 1701 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1702 1703 for (entry = 0; entry < reta_size; entry++) { 1704 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1705 struct rte_eth_rss_reta_entry64 *grp; 1706 1707 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1708 1709 if (grp->mask & (1ull << grp_idx)) { 1710 if (grp->reta[grp_idx] >= rss->channels) { 1711 rc = EINVAL; 1712 goto bad_reta_entry; 1713 } 1714 rss_tbl_new[entry] = grp->reta[grp_idx]; 1715 } 1716 } 1717 1718 if (sa->state == SFC_ADAPTER_STARTED) { 1719 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1720 rss_tbl_new, EFX_RSS_TBL_SIZE); 1721 if (rc != 0) 1722 goto fail_scale_tbl_set; 1723 } 1724 1725 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1726 1727 fail_scale_tbl_set: 1728 bad_reta_entry: 1729 sfc_adapter_unlock(sa); 1730 1731 rte_free(rss_tbl_new); 1732 1733 SFC_ASSERT(rc >= 0); 1734 return -rc; 1735 } 1736 1737 static int 1738 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1739 enum rte_filter_op filter_op, 1740 void *arg) 1741 { 1742 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1743 int rc = ENOTSUP; 1744 1745 sfc_log_init(sa, "entry"); 1746 1747 switch (filter_type) { 1748 case RTE_ETH_FILTER_NONE: 1749 sfc_err(sa, "Global filters configuration not supported"); 1750 break; 1751 case RTE_ETH_FILTER_MACVLAN: 1752 sfc_err(sa, "MACVLAN filters not supported"); 1753 break; 1754 case RTE_ETH_FILTER_ETHERTYPE: 1755 sfc_err(sa, "EtherType filters not supported"); 1756 break; 1757 case RTE_ETH_FILTER_FLEXIBLE: 1758 sfc_err(sa, "Flexible filters not supported"); 1759 break; 1760 case RTE_ETH_FILTER_SYN: 1761 sfc_err(sa, "SYN filters not supported"); 1762 break; 1763 case RTE_ETH_FILTER_NTUPLE: 1764 sfc_err(sa, "NTUPLE filters not supported"); 1765 break; 1766 case RTE_ETH_FILTER_TUNNEL: 1767 sfc_err(sa, "Tunnel filters not supported"); 1768 break; 1769 case RTE_ETH_FILTER_FDIR: 1770 sfc_err(sa, "Flow Director filters not supported"); 1771 break; 1772 case RTE_ETH_FILTER_HASH: 1773 sfc_err(sa, "Hash filters not supported"); 1774 break; 1775 case RTE_ETH_FILTER_GENERIC: 1776 if (filter_op != RTE_ETH_FILTER_GET) { 1777 rc = EINVAL; 1778 } else { 1779 *(const void **)arg = &sfc_flow_ops; 1780 rc = 0; 1781 } 1782 break; 1783 default: 1784 sfc_err(sa, "Unknown filter type %u", filter_type); 1785 break; 1786 } 1787 1788 sfc_log_init(sa, "exit: %d", -rc); 1789 SFC_ASSERT(rc >= 0); 1790 return -rc; 1791 } 1792 1793 static int 1794 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1795 { 1796 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1797 1798 /* 1799 * If Rx datapath does not provide callback to check mempool, 1800 * all pools are supported. 1801 */ 1802 if (sap->dp_rx->pool_ops_supported == NULL) 1803 return 1; 1804 1805 return sap->dp_rx->pool_ops_supported(pool); 1806 } 1807 1808 static int 1809 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1810 { 1811 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1812 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1813 struct sfc_rxq_info *rxq_info; 1814 1815 SFC_ASSERT(queue_id < sas->rxq_count); 1816 rxq_info = &sas->rxq_info[queue_id]; 1817 1818 return sap->dp_rx->intr_enable(rxq_info->dp); 1819 } 1820 1821 static int 1822 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1823 { 1824 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1825 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1826 struct sfc_rxq_info *rxq_info; 1827 1828 SFC_ASSERT(queue_id < sas->rxq_count); 1829 rxq_info = &sas->rxq_info[queue_id]; 1830 1831 return sap->dp_rx->intr_disable(rxq_info->dp); 1832 } 1833 1834 static const struct eth_dev_ops sfc_eth_dev_ops = { 1835 .dev_configure = sfc_dev_configure, 1836 .dev_start = sfc_dev_start, 1837 .dev_stop = sfc_dev_stop, 1838 .dev_set_link_up = sfc_dev_set_link_up, 1839 .dev_set_link_down = sfc_dev_set_link_down, 1840 .dev_close = sfc_dev_close, 1841 .promiscuous_enable = sfc_dev_promisc_enable, 1842 .promiscuous_disable = sfc_dev_promisc_disable, 1843 .allmulticast_enable = sfc_dev_allmulti_enable, 1844 .allmulticast_disable = sfc_dev_allmulti_disable, 1845 .link_update = sfc_dev_link_update, 1846 .stats_get = sfc_stats_get, 1847 .stats_reset = sfc_stats_reset, 1848 .xstats_get = sfc_xstats_get, 1849 .xstats_reset = sfc_stats_reset, 1850 .xstats_get_names = sfc_xstats_get_names, 1851 .dev_infos_get = sfc_dev_infos_get, 1852 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1853 .mtu_set = sfc_dev_set_mtu, 1854 .rx_queue_start = sfc_rx_queue_start, 1855 .rx_queue_stop = sfc_rx_queue_stop, 1856 .tx_queue_start = sfc_tx_queue_start, 1857 .tx_queue_stop = sfc_tx_queue_stop, 1858 .rx_queue_setup = sfc_rx_queue_setup, 1859 .rx_queue_release = sfc_rx_queue_release, 1860 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1861 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1862 .tx_queue_setup = sfc_tx_queue_setup, 1863 .tx_queue_release = sfc_tx_queue_release, 1864 .flow_ctrl_get = sfc_flow_ctrl_get, 1865 .flow_ctrl_set = sfc_flow_ctrl_set, 1866 .mac_addr_set = sfc_mac_addr_set, 1867 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1868 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1869 .reta_update = sfc_dev_rss_reta_update, 1870 .reta_query = sfc_dev_rss_reta_query, 1871 .rss_hash_update = sfc_dev_rss_hash_update, 1872 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1873 .filter_ctrl = sfc_dev_filter_ctrl, 1874 .set_mc_addr_list = sfc_set_mc_addr_list, 1875 .rxq_info_get = sfc_rx_queue_info_get, 1876 .txq_info_get = sfc_tx_queue_info_get, 1877 .fw_version_get = sfc_fw_version_get, 1878 .xstats_get_by_id = sfc_xstats_get_by_id, 1879 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1880 .pool_ops_supported = sfc_pool_ops_supported, 1881 }; 1882 1883 /** 1884 * Duplicate a string in potentially shared memory required for 1885 * multi-process support. 1886 * 1887 * strdup() allocates from process-local heap/memory. 1888 */ 1889 static char * 1890 sfc_strdup(const char *str) 1891 { 1892 size_t size; 1893 char *copy; 1894 1895 if (str == NULL) 1896 return NULL; 1897 1898 size = strlen(str) + 1; 1899 copy = rte_malloc(__func__, size, 0); 1900 if (copy != NULL) 1901 rte_memcpy(copy, str, size); 1902 1903 return copy; 1904 } 1905 1906 static int 1907 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1908 { 1909 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1910 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1911 const struct sfc_dp_rx *dp_rx; 1912 const struct sfc_dp_tx *dp_tx; 1913 const efx_nic_cfg_t *encp; 1914 unsigned int avail_caps = 0; 1915 const char *rx_name = NULL; 1916 const char *tx_name = NULL; 1917 int rc; 1918 1919 switch (sa->family) { 1920 case EFX_FAMILY_HUNTINGTON: 1921 case EFX_FAMILY_MEDFORD: 1922 case EFX_FAMILY_MEDFORD2: 1923 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1924 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX; 1925 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX; 1926 break; 1927 case EFX_FAMILY_RIVERHEAD: 1928 avail_caps |= SFC_DP_HW_FW_CAP_EF100; 1929 break; 1930 default: 1931 break; 1932 } 1933 1934 encp = efx_nic_cfg_get(sa->nic); 1935 if (encp->enc_rx_es_super_buffer_supported) 1936 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1937 1938 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1939 sfc_kvarg_string_handler, &rx_name); 1940 if (rc != 0) 1941 goto fail_kvarg_rx_datapath; 1942 1943 if (rx_name != NULL) { 1944 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1945 if (dp_rx == NULL) { 1946 sfc_err(sa, "Rx datapath %s not found", rx_name); 1947 rc = ENOENT; 1948 goto fail_dp_rx; 1949 } 1950 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1951 sfc_err(sa, 1952 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1953 rx_name); 1954 rc = EINVAL; 1955 goto fail_dp_rx_caps; 1956 } 1957 } else { 1958 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1959 if (dp_rx == NULL) { 1960 sfc_err(sa, "Rx datapath by caps %#x not found", 1961 avail_caps); 1962 rc = ENOENT; 1963 goto fail_dp_rx; 1964 } 1965 } 1966 1967 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1968 if (sas->dp_rx_name == NULL) { 1969 rc = ENOMEM; 1970 goto fail_dp_rx_name; 1971 } 1972 1973 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1974 1975 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1976 sfc_kvarg_string_handler, &tx_name); 1977 if (rc != 0) 1978 goto fail_kvarg_tx_datapath; 1979 1980 if (tx_name != NULL) { 1981 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1982 if (dp_tx == NULL) { 1983 sfc_err(sa, "Tx datapath %s not found", tx_name); 1984 rc = ENOENT; 1985 goto fail_dp_tx; 1986 } 1987 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1988 sfc_err(sa, 1989 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1990 tx_name); 1991 rc = EINVAL; 1992 goto fail_dp_tx_caps; 1993 } 1994 } else { 1995 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1996 if (dp_tx == NULL) { 1997 sfc_err(sa, "Tx datapath by caps %#x not found", 1998 avail_caps); 1999 rc = ENOENT; 2000 goto fail_dp_tx; 2001 } 2002 } 2003 2004 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 2005 if (sas->dp_tx_name == NULL) { 2006 rc = ENOMEM; 2007 goto fail_dp_tx_name; 2008 } 2009 2010 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 2011 2012 sa->priv.dp_rx = dp_rx; 2013 sa->priv.dp_tx = dp_tx; 2014 2015 dev->rx_pkt_burst = dp_rx->pkt_burst; 2016 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2017 dev->tx_pkt_burst = dp_tx->pkt_burst; 2018 2019 dev->rx_queue_count = sfc_rx_queue_count; 2020 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2021 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2022 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2023 dev->dev_ops = &sfc_eth_dev_ops; 2024 2025 return 0; 2026 2027 fail_dp_tx_name: 2028 fail_dp_tx_caps: 2029 fail_dp_tx: 2030 fail_kvarg_tx_datapath: 2031 rte_free(sas->dp_rx_name); 2032 sas->dp_rx_name = NULL; 2033 2034 fail_dp_rx_name: 2035 fail_dp_rx_caps: 2036 fail_dp_rx: 2037 fail_kvarg_rx_datapath: 2038 return rc; 2039 } 2040 2041 static void 2042 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 2043 { 2044 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2045 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2046 2047 dev->dev_ops = NULL; 2048 dev->tx_pkt_prepare = NULL; 2049 dev->rx_pkt_burst = NULL; 2050 dev->tx_pkt_burst = NULL; 2051 2052 rte_free(sas->dp_tx_name); 2053 sas->dp_tx_name = NULL; 2054 sa->priv.dp_tx = NULL; 2055 2056 rte_free(sas->dp_rx_name); 2057 sas->dp_rx_name = NULL; 2058 sa->priv.dp_rx = NULL; 2059 } 2060 2061 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2062 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2063 .reta_query = sfc_dev_rss_reta_query, 2064 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2065 .rxq_info_get = sfc_rx_queue_info_get, 2066 .txq_info_get = sfc_tx_queue_info_get, 2067 }; 2068 2069 static int 2070 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2071 { 2072 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2073 struct sfc_adapter_priv *sap; 2074 const struct sfc_dp_rx *dp_rx; 2075 const struct sfc_dp_tx *dp_tx; 2076 int rc; 2077 2078 /* 2079 * Allocate process private data from heap, since it should not 2080 * be located in shared memory allocated using rte_malloc() API. 2081 */ 2082 sap = calloc(1, sizeof(*sap)); 2083 if (sap == NULL) { 2084 rc = ENOMEM; 2085 goto fail_alloc_priv; 2086 } 2087 2088 sap->logtype_main = logtype_main; 2089 2090 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2091 if (dp_rx == NULL) { 2092 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2093 "cannot find %s Rx datapath", sas->dp_rx_name); 2094 rc = ENOENT; 2095 goto fail_dp_rx; 2096 } 2097 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2098 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2099 "%s Rx datapath does not support multi-process", 2100 sas->dp_rx_name); 2101 rc = EINVAL; 2102 goto fail_dp_rx_multi_process; 2103 } 2104 2105 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2106 if (dp_tx == NULL) { 2107 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2108 "cannot find %s Tx datapath", sas->dp_tx_name); 2109 rc = ENOENT; 2110 goto fail_dp_tx; 2111 } 2112 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2113 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2114 "%s Tx datapath does not support multi-process", 2115 sas->dp_tx_name); 2116 rc = EINVAL; 2117 goto fail_dp_tx_multi_process; 2118 } 2119 2120 sap->dp_rx = dp_rx; 2121 sap->dp_tx = dp_tx; 2122 2123 dev->process_private = sap; 2124 dev->rx_pkt_burst = dp_rx->pkt_burst; 2125 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2126 dev->tx_pkt_burst = dp_tx->pkt_burst; 2127 dev->rx_queue_count = sfc_rx_queue_count; 2128 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2129 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2130 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2131 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2132 2133 return 0; 2134 2135 fail_dp_tx_multi_process: 2136 fail_dp_tx: 2137 fail_dp_rx_multi_process: 2138 fail_dp_rx: 2139 free(sap); 2140 2141 fail_alloc_priv: 2142 return rc; 2143 } 2144 2145 static void 2146 sfc_register_dp(void) 2147 { 2148 /* Register once */ 2149 if (TAILQ_EMPTY(&sfc_dp_head)) { 2150 /* Prefer EF10 datapath */ 2151 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp); 2152 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2153 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2154 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2155 2156 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp); 2157 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2158 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2159 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2160 } 2161 } 2162 2163 static int 2164 sfc_eth_dev_init(struct rte_eth_dev *dev) 2165 { 2166 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2167 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2168 uint32_t logtype_main; 2169 struct sfc_adapter *sa; 2170 int rc; 2171 const efx_nic_cfg_t *encp; 2172 const struct rte_ether_addr *from; 2173 int ret; 2174 2175 sfc_register_dp(); 2176 2177 logtype_main = sfc_register_logtype(&pci_dev->addr, 2178 SFC_LOGTYPE_MAIN_STR, 2179 RTE_LOG_NOTICE); 2180 2181 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2182 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2183 2184 /* Required for logging */ 2185 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix), 2186 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ", 2187 pci_dev->addr.domain, pci_dev->addr.bus, 2188 pci_dev->addr.devid, pci_dev->addr.function, 2189 dev->data->port_id); 2190 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) { 2191 SFC_GENERIC_LOG(ERR, 2192 "reserved log prefix is too short for " PCI_PRI_FMT, 2193 pci_dev->addr.domain, pci_dev->addr.bus, 2194 pci_dev->addr.devid, pci_dev->addr.function); 2195 return -EINVAL; 2196 } 2197 sas->pci_addr = pci_dev->addr; 2198 sas->port_id = dev->data->port_id; 2199 2200 /* 2201 * Allocate process private data from heap, since it should not 2202 * be located in shared memory allocated using rte_malloc() API. 2203 */ 2204 sa = calloc(1, sizeof(*sa)); 2205 if (sa == NULL) { 2206 rc = ENOMEM; 2207 goto fail_alloc_sa; 2208 } 2209 2210 dev->process_private = sa; 2211 2212 /* Required for logging */ 2213 sa->priv.shared = sas; 2214 sa->priv.logtype_main = logtype_main; 2215 2216 sa->eth_dev = dev; 2217 2218 /* Copy PCI device info to the dev->data */ 2219 rte_eth_copy_pci_info(dev, pci_dev); 2220 dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 2221 2222 rc = sfc_kvargs_parse(sa); 2223 if (rc != 0) 2224 goto fail_kvargs_parse; 2225 2226 sfc_log_init(sa, "entry"); 2227 2228 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2229 if (dev->data->mac_addrs == NULL) { 2230 rc = ENOMEM; 2231 goto fail_mac_addrs; 2232 } 2233 2234 sfc_adapter_lock_init(sa); 2235 sfc_adapter_lock(sa); 2236 2237 sfc_log_init(sa, "probing"); 2238 rc = sfc_probe(sa); 2239 if (rc != 0) 2240 goto fail_probe; 2241 2242 sfc_log_init(sa, "set device ops"); 2243 rc = sfc_eth_dev_set_ops(dev); 2244 if (rc != 0) 2245 goto fail_set_ops; 2246 2247 sfc_log_init(sa, "attaching"); 2248 rc = sfc_attach(sa); 2249 if (rc != 0) 2250 goto fail_attach; 2251 2252 encp = efx_nic_cfg_get(sa->nic); 2253 2254 /* 2255 * The arguments are really reverse order in comparison to 2256 * Linux kernel. Copy from NIC config to Ethernet device data. 2257 */ 2258 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2259 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2260 2261 sfc_adapter_unlock(sa); 2262 2263 sfc_log_init(sa, "done"); 2264 return 0; 2265 2266 fail_attach: 2267 sfc_eth_dev_clear_ops(dev); 2268 2269 fail_set_ops: 2270 sfc_unprobe(sa); 2271 2272 fail_probe: 2273 sfc_adapter_unlock(sa); 2274 sfc_adapter_lock_fini(sa); 2275 rte_free(dev->data->mac_addrs); 2276 dev->data->mac_addrs = NULL; 2277 2278 fail_mac_addrs: 2279 sfc_kvargs_cleanup(sa); 2280 2281 fail_kvargs_parse: 2282 sfc_log_init(sa, "failed %d", rc); 2283 dev->process_private = NULL; 2284 free(sa); 2285 2286 fail_alloc_sa: 2287 SFC_ASSERT(rc > 0); 2288 return -rc; 2289 } 2290 2291 static int 2292 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2293 { 2294 sfc_dev_close(dev); 2295 2296 return 0; 2297 } 2298 2299 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2300 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2301 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2302 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2303 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2304 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2305 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2306 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2307 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2308 { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) }, 2309 { .vendor_id = 0 /* sentinel */ } 2310 }; 2311 2312 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2313 struct rte_pci_device *pci_dev) 2314 { 2315 return rte_eth_dev_pci_generic_probe(pci_dev, 2316 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2317 } 2318 2319 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2320 { 2321 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2322 } 2323 2324 static struct rte_pci_driver sfc_efx_pmd = { 2325 .id_table = pci_id_sfc_efx_map, 2326 .drv_flags = 2327 RTE_PCI_DRV_INTR_LSC | 2328 RTE_PCI_DRV_NEED_MAPPING, 2329 .probe = sfc_eth_dev_pci_probe, 2330 .remove = sfc_eth_dev_pci_remove, 2331 }; 2332 2333 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2334 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2335 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2336 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2337 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2338 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2339 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2340 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2341 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2342 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2343 2344 RTE_INIT(sfc_driver_register_logtype) 2345 { 2346 int ret; 2347 2348 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2349 RTE_LOG_NOTICE); 2350 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2351 } 2352