1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = dev->data->dev_private; 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 struct sfc_adapter *sa = dev->data->dev_private; 88 struct sfc_rss *rss = &sa->rss; 89 uint64_t txq_offloads_def = 0; 90 91 sfc_log_init(sa, "entry"); 92 93 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 94 95 /* Autonegotiation may be disabled */ 96 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 97 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 98 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 99 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 100 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 101 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 102 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 103 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 104 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 105 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 106 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 107 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 108 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 109 110 dev_info->max_rx_queues = sa->rxq_max; 111 dev_info->max_tx_queues = sa->txq_max; 112 113 /* By default packets are dropped if no descriptors are available */ 114 dev_info->default_rxconf.rx_drop_en = 1; 115 116 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 117 118 /* 119 * rx_offload_capa includes both device and queue offloads since 120 * the latter may be requested on a per device basis which makes 121 * sense when some offloads are needed to be set on all queues. 122 */ 123 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 124 dev_info->rx_queue_offload_capa; 125 126 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 127 128 /* 129 * tx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 134 dev_info->tx_queue_offload_capa; 135 136 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 137 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 138 139 dev_info->default_txconf.offloads |= txq_offloads_def; 140 141 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 142 uint64_t rte_hf = 0; 143 unsigned int i; 144 145 for (i = 0; i < rss->hf_map_nb_entries; ++i) 146 rte_hf |= rss->hf_map[i].rte; 147 148 dev_info->reta_size = EFX_RSS_TBL_SIZE; 149 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 150 dev_info->flow_type_rss_offloads = rte_hf; 151 } 152 153 /* Initialize to hardware limits */ 154 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 155 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 156 /* The RXQ hardware requires that the descriptor count is a power 157 * of 2, but rx_desc_lim cannot properly describe that constraint. 158 */ 159 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 160 161 /* Initialize to hardware limits */ 162 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 163 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 164 /* 165 * The TXQ hardware requires that the descriptor count is a power 166 * of 2, but tx_desc_lim cannot properly describe that constraint 167 */ 168 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 169 170 if (sa->dp_rx->get_dev_info != NULL) 171 sa->dp_rx->get_dev_info(dev_info); 172 if (sa->dp_tx->get_dev_info != NULL) 173 sa->dp_tx->get_dev_info(dev_info); 174 175 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 176 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 177 } 178 179 static const uint32_t * 180 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 181 { 182 struct sfc_adapter *sa = dev->data->dev_private; 183 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 184 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 185 186 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 187 } 188 189 static int 190 sfc_dev_configure(struct rte_eth_dev *dev) 191 { 192 struct rte_eth_dev_data *dev_data = dev->data; 193 struct sfc_adapter *sa = dev_data->dev_private; 194 int rc; 195 196 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 197 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 198 199 sfc_adapter_lock(sa); 200 switch (sa->state) { 201 case SFC_ADAPTER_CONFIGURED: 202 /* FALLTHROUGH */ 203 case SFC_ADAPTER_INITIALIZED: 204 rc = sfc_configure(sa); 205 break; 206 default: 207 sfc_err(sa, "unexpected adapter state %u to configure", 208 sa->state); 209 rc = EINVAL; 210 break; 211 } 212 sfc_adapter_unlock(sa); 213 214 sfc_log_init(sa, "done %d", rc); 215 SFC_ASSERT(rc >= 0); 216 return -rc; 217 } 218 219 static int 220 sfc_dev_start(struct rte_eth_dev *dev) 221 { 222 struct sfc_adapter *sa = dev->data->dev_private; 223 int rc; 224 225 sfc_log_init(sa, "entry"); 226 227 sfc_adapter_lock(sa); 228 rc = sfc_start(sa); 229 sfc_adapter_unlock(sa); 230 231 sfc_log_init(sa, "done %d", rc); 232 SFC_ASSERT(rc >= 0); 233 return -rc; 234 } 235 236 static int 237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 238 { 239 struct sfc_adapter *sa = dev->data->dev_private; 240 struct rte_eth_link current_link; 241 int ret; 242 243 sfc_log_init(sa, "entry"); 244 245 if (sa->state != SFC_ADAPTER_STARTED) { 246 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 247 } else if (wait_to_complete) { 248 efx_link_mode_t link_mode; 249 250 if (efx_port_poll(sa->nic, &link_mode) != 0) 251 link_mode = EFX_LINK_UNKNOWN; 252 sfc_port_link_mode_to_info(link_mode, ¤t_link); 253 254 } else { 255 sfc_ev_mgmt_qpoll(sa); 256 rte_eth_linkstatus_get(dev, ¤t_link); 257 } 258 259 ret = rte_eth_linkstatus_set(dev, ¤t_link); 260 if (ret == 0) 261 sfc_notice(sa, "Link status is %s", 262 current_link.link_status ? "UP" : "DOWN"); 263 264 return ret; 265 } 266 267 static void 268 sfc_dev_stop(struct rte_eth_dev *dev) 269 { 270 struct sfc_adapter *sa = dev->data->dev_private; 271 272 sfc_log_init(sa, "entry"); 273 274 sfc_adapter_lock(sa); 275 sfc_stop(sa); 276 sfc_adapter_unlock(sa); 277 278 sfc_log_init(sa, "done"); 279 } 280 281 static int 282 sfc_dev_set_link_up(struct rte_eth_dev *dev) 283 { 284 struct sfc_adapter *sa = dev->data->dev_private; 285 int rc; 286 287 sfc_log_init(sa, "entry"); 288 289 sfc_adapter_lock(sa); 290 rc = sfc_start(sa); 291 sfc_adapter_unlock(sa); 292 293 SFC_ASSERT(rc >= 0); 294 return -rc; 295 } 296 297 static int 298 sfc_dev_set_link_down(struct rte_eth_dev *dev) 299 { 300 struct sfc_adapter *sa = dev->data->dev_private; 301 302 sfc_log_init(sa, "entry"); 303 304 sfc_adapter_lock(sa); 305 sfc_stop(sa); 306 sfc_adapter_unlock(sa); 307 308 return 0; 309 } 310 311 static void 312 sfc_dev_close(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = dev->data->dev_private; 315 316 sfc_log_init(sa, "entry"); 317 318 sfc_adapter_lock(sa); 319 switch (sa->state) { 320 case SFC_ADAPTER_STARTED: 321 sfc_stop(sa); 322 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 323 /* FALLTHROUGH */ 324 case SFC_ADAPTER_CONFIGURED: 325 sfc_close(sa); 326 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 327 /* FALLTHROUGH */ 328 case SFC_ADAPTER_INITIALIZED: 329 break; 330 default: 331 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 332 break; 333 } 334 sfc_adapter_unlock(sa); 335 336 sfc_log_init(sa, "done"); 337 } 338 339 static void 340 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 341 boolean_t enabled) 342 { 343 struct sfc_port *port; 344 boolean_t *toggle; 345 struct sfc_adapter *sa = dev->data->dev_private; 346 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 347 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 348 349 sfc_adapter_lock(sa); 350 351 port = &sa->port; 352 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 353 354 if (*toggle != enabled) { 355 *toggle = enabled; 356 357 if (port->isolated) { 358 sfc_warn(sa, "isolated mode is active on the port"); 359 sfc_warn(sa, "the change is to be applied on the next " 360 "start provided that isolated mode is " 361 "disabled prior the next start"); 362 } else if ((sa->state == SFC_ADAPTER_STARTED) && 363 (sfc_set_rx_mode(sa) != 0)) { 364 *toggle = !(enabled); 365 sfc_warn(sa, "Failed to %s %s mode", 366 ((enabled) ? "enable" : "disable"), desc); 367 } 368 } 369 370 sfc_adapter_unlock(sa); 371 } 372 373 static void 374 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 375 { 376 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 377 } 378 379 static void 380 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 381 { 382 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 383 } 384 385 static void 386 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 387 { 388 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 389 } 390 391 static void 392 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 393 { 394 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 395 } 396 397 static int 398 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 399 uint16_t nb_rx_desc, unsigned int socket_id, 400 const struct rte_eth_rxconf *rx_conf, 401 struct rte_mempool *mb_pool) 402 { 403 struct sfc_adapter *sa = dev->data->dev_private; 404 int rc; 405 406 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 407 rx_queue_id, nb_rx_desc, socket_id); 408 409 sfc_adapter_lock(sa); 410 411 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 412 rx_conf, mb_pool); 413 if (rc != 0) 414 goto fail_rx_qinit; 415 416 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 417 418 sfc_adapter_unlock(sa); 419 420 return 0; 421 422 fail_rx_qinit: 423 sfc_adapter_unlock(sa); 424 SFC_ASSERT(rc > 0); 425 return -rc; 426 } 427 428 static void 429 sfc_rx_queue_release(void *queue) 430 { 431 struct sfc_dp_rxq *dp_rxq = queue; 432 struct sfc_rxq *rxq; 433 struct sfc_adapter *sa; 434 unsigned int sw_index; 435 436 if (dp_rxq == NULL) 437 return; 438 439 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 440 sa = rxq->evq->sa; 441 sfc_adapter_lock(sa); 442 443 sw_index = sfc_rxq_sw_index(rxq); 444 445 sfc_log_init(sa, "RxQ=%u", sw_index); 446 447 sfc_rx_qfini(sa, sw_index); 448 449 sfc_adapter_unlock(sa); 450 } 451 452 static int 453 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 454 uint16_t nb_tx_desc, unsigned int socket_id, 455 const struct rte_eth_txconf *tx_conf) 456 { 457 struct sfc_adapter *sa = dev->data->dev_private; 458 int rc; 459 460 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 461 tx_queue_id, nb_tx_desc, socket_id); 462 463 sfc_adapter_lock(sa); 464 465 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 466 if (rc != 0) 467 goto fail_tx_qinit; 468 469 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 470 471 sfc_adapter_unlock(sa); 472 return 0; 473 474 fail_tx_qinit: 475 sfc_adapter_unlock(sa); 476 SFC_ASSERT(rc > 0); 477 return -rc; 478 } 479 480 static void 481 sfc_tx_queue_release(void *queue) 482 { 483 struct sfc_dp_txq *dp_txq = queue; 484 struct sfc_txq *txq; 485 unsigned int sw_index; 486 struct sfc_adapter *sa; 487 488 if (dp_txq == NULL) 489 return; 490 491 txq = sfc_txq_by_dp_txq(dp_txq); 492 sw_index = sfc_txq_sw_index(txq); 493 494 SFC_ASSERT(txq->evq != NULL); 495 sa = txq->evq->sa; 496 497 sfc_log_init(sa, "TxQ = %u", sw_index); 498 499 sfc_adapter_lock(sa); 500 501 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 502 sa->eth_dev->data->tx_queues[sw_index] = NULL; 503 504 sfc_tx_qfini(sa, sw_index); 505 506 sfc_adapter_unlock(sa); 507 } 508 509 static int 510 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 511 { 512 struct sfc_adapter *sa = dev->data->dev_private; 513 struct sfc_port *port = &sa->port; 514 uint64_t *mac_stats; 515 int ret; 516 517 rte_spinlock_lock(&port->mac_stats_lock); 518 519 ret = sfc_port_update_mac_stats(sa); 520 if (ret != 0) 521 goto unlock; 522 523 mac_stats = port->mac_stats_buf; 524 525 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 526 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 527 stats->ipackets = 528 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 529 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 530 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 531 stats->opackets = 532 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 533 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 534 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 535 stats->ibytes = 536 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 537 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 538 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 539 stats->obytes = 540 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 541 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 542 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 543 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 544 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 545 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 546 } else { 547 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 548 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 549 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 550 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 551 /* 552 * Take into account stats which are whenever supported 553 * on EF10. If some stat is not supported by current 554 * firmware variant or HW revision, it is guaranteed 555 * to be zero in mac_stats. 556 */ 557 stats->imissed = 558 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 559 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 560 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 561 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 562 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 563 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 564 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 565 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 566 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 567 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 568 stats->ierrors = 569 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 570 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 571 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 572 /* no oerrors counters supported on EF10 */ 573 } 574 575 unlock: 576 rte_spinlock_unlock(&port->mac_stats_lock); 577 SFC_ASSERT(ret >= 0); 578 return -ret; 579 } 580 581 static void 582 sfc_stats_reset(struct rte_eth_dev *dev) 583 { 584 struct sfc_adapter *sa = dev->data->dev_private; 585 struct sfc_port *port = &sa->port; 586 int rc; 587 588 if (sa->state != SFC_ADAPTER_STARTED) { 589 /* 590 * The operation cannot be done if port is not started; it 591 * will be scheduled to be done during the next port start 592 */ 593 port->mac_stats_reset_pending = B_TRUE; 594 return; 595 } 596 597 rc = sfc_port_reset_mac_stats(sa); 598 if (rc != 0) 599 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 600 } 601 602 static int 603 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 604 unsigned int xstats_count) 605 { 606 struct sfc_adapter *sa = dev->data->dev_private; 607 struct sfc_port *port = &sa->port; 608 uint64_t *mac_stats; 609 int rc; 610 unsigned int i; 611 int nstats = 0; 612 613 rte_spinlock_lock(&port->mac_stats_lock); 614 615 rc = sfc_port_update_mac_stats(sa); 616 if (rc != 0) { 617 SFC_ASSERT(rc > 0); 618 nstats = -rc; 619 goto unlock; 620 } 621 622 mac_stats = port->mac_stats_buf; 623 624 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 625 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 626 if (xstats != NULL && nstats < (int)xstats_count) { 627 xstats[nstats].id = nstats; 628 xstats[nstats].value = mac_stats[i]; 629 } 630 nstats++; 631 } 632 } 633 634 unlock: 635 rte_spinlock_unlock(&port->mac_stats_lock); 636 637 return nstats; 638 } 639 640 static int 641 sfc_xstats_get_names(struct rte_eth_dev *dev, 642 struct rte_eth_xstat_name *xstats_names, 643 unsigned int xstats_count) 644 { 645 struct sfc_adapter *sa = dev->data->dev_private; 646 struct sfc_port *port = &sa->port; 647 unsigned int i; 648 unsigned int nstats = 0; 649 650 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 651 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 652 if (xstats_names != NULL && nstats < xstats_count) 653 strlcpy(xstats_names[nstats].name, 654 efx_mac_stat_name(sa->nic, i), 655 sizeof(xstats_names[0].name)); 656 nstats++; 657 } 658 } 659 660 return nstats; 661 } 662 663 static int 664 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 665 uint64_t *values, unsigned int n) 666 { 667 struct sfc_adapter *sa = dev->data->dev_private; 668 struct sfc_port *port = &sa->port; 669 uint64_t *mac_stats; 670 unsigned int nb_supported = 0; 671 unsigned int nb_written = 0; 672 unsigned int i; 673 int ret; 674 int rc; 675 676 if (unlikely(values == NULL) || 677 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 678 return port->mac_stats_nb_supported; 679 680 rte_spinlock_lock(&port->mac_stats_lock); 681 682 rc = sfc_port_update_mac_stats(sa); 683 if (rc != 0) { 684 SFC_ASSERT(rc > 0); 685 ret = -rc; 686 goto unlock; 687 } 688 689 mac_stats = port->mac_stats_buf; 690 691 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 692 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 693 continue; 694 695 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 696 values[nb_written++] = mac_stats[i]; 697 698 ++nb_supported; 699 } 700 701 ret = nb_written; 702 703 unlock: 704 rte_spinlock_unlock(&port->mac_stats_lock); 705 706 return ret; 707 } 708 709 static int 710 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 711 struct rte_eth_xstat_name *xstats_names, 712 const uint64_t *ids, unsigned int size) 713 { 714 struct sfc_adapter *sa = dev->data->dev_private; 715 struct sfc_port *port = &sa->port; 716 unsigned int nb_supported = 0; 717 unsigned int nb_written = 0; 718 unsigned int i; 719 720 if (unlikely(xstats_names == NULL) || 721 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 722 return port->mac_stats_nb_supported; 723 724 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 725 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 726 continue; 727 728 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 729 char *name = xstats_names[nb_written++].name; 730 731 strlcpy(name, efx_mac_stat_name(sa->nic, i), 732 sizeof(xstats_names[0].name)); 733 } 734 735 ++nb_supported; 736 } 737 738 return nb_written; 739 } 740 741 static int 742 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 743 { 744 struct sfc_adapter *sa = dev->data->dev_private; 745 unsigned int wanted_fc, link_fc; 746 747 memset(fc_conf, 0, sizeof(*fc_conf)); 748 749 sfc_adapter_lock(sa); 750 751 if (sa->state == SFC_ADAPTER_STARTED) 752 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 753 else 754 link_fc = sa->port.flow_ctrl; 755 756 switch (link_fc) { 757 case 0: 758 fc_conf->mode = RTE_FC_NONE; 759 break; 760 case EFX_FCNTL_RESPOND: 761 fc_conf->mode = RTE_FC_RX_PAUSE; 762 break; 763 case EFX_FCNTL_GENERATE: 764 fc_conf->mode = RTE_FC_TX_PAUSE; 765 break; 766 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 767 fc_conf->mode = RTE_FC_FULL; 768 break; 769 default: 770 sfc_err(sa, "%s: unexpected flow control value %#x", 771 __func__, link_fc); 772 } 773 774 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 775 776 sfc_adapter_unlock(sa); 777 778 return 0; 779 } 780 781 static int 782 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 783 { 784 struct sfc_adapter *sa = dev->data->dev_private; 785 struct sfc_port *port = &sa->port; 786 unsigned int fcntl; 787 int rc; 788 789 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 790 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 791 fc_conf->mac_ctrl_frame_fwd != 0) { 792 sfc_err(sa, "unsupported flow control settings specified"); 793 rc = EINVAL; 794 goto fail_inval; 795 } 796 797 switch (fc_conf->mode) { 798 case RTE_FC_NONE: 799 fcntl = 0; 800 break; 801 case RTE_FC_RX_PAUSE: 802 fcntl = EFX_FCNTL_RESPOND; 803 break; 804 case RTE_FC_TX_PAUSE: 805 fcntl = EFX_FCNTL_GENERATE; 806 break; 807 case RTE_FC_FULL: 808 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 809 break; 810 default: 811 rc = EINVAL; 812 goto fail_inval; 813 } 814 815 sfc_adapter_lock(sa); 816 817 if (sa->state == SFC_ADAPTER_STARTED) { 818 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 819 if (rc != 0) 820 goto fail_mac_fcntl_set; 821 } 822 823 port->flow_ctrl = fcntl; 824 port->flow_ctrl_autoneg = fc_conf->autoneg; 825 826 sfc_adapter_unlock(sa); 827 828 return 0; 829 830 fail_mac_fcntl_set: 831 sfc_adapter_unlock(sa); 832 fail_inval: 833 SFC_ASSERT(rc > 0); 834 return -rc; 835 } 836 837 static int 838 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 839 { 840 struct sfc_adapter *sa = dev->data->dev_private; 841 size_t pdu = EFX_MAC_PDU(mtu); 842 size_t old_pdu; 843 int rc; 844 845 sfc_log_init(sa, "mtu=%u", mtu); 846 847 rc = EINVAL; 848 if (pdu < EFX_MAC_PDU_MIN) { 849 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 850 (unsigned int)mtu, (unsigned int)pdu, 851 EFX_MAC_PDU_MIN); 852 goto fail_inval; 853 } 854 if (pdu > EFX_MAC_PDU_MAX) { 855 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 856 (unsigned int)mtu, (unsigned int)pdu, 857 EFX_MAC_PDU_MAX); 858 goto fail_inval; 859 } 860 861 sfc_adapter_lock(sa); 862 863 if (pdu != sa->port.pdu) { 864 if (sa->state == SFC_ADAPTER_STARTED) { 865 sfc_stop(sa); 866 867 old_pdu = sa->port.pdu; 868 sa->port.pdu = pdu; 869 rc = sfc_start(sa); 870 if (rc != 0) 871 goto fail_start; 872 } else { 873 sa->port.pdu = pdu; 874 } 875 } 876 877 /* 878 * The driver does not use it, but other PMDs update jumbo frame 879 * flag and max_rx_pkt_len when MTU is set. 880 */ 881 if (mtu > ETHER_MAX_LEN) { 882 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 883 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 884 } 885 886 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 887 888 sfc_adapter_unlock(sa); 889 890 sfc_log_init(sa, "done"); 891 return 0; 892 893 fail_start: 894 sa->port.pdu = old_pdu; 895 if (sfc_start(sa) != 0) 896 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 897 "PDU max size - port is stopped", 898 (unsigned int)pdu, (unsigned int)old_pdu); 899 sfc_adapter_unlock(sa); 900 901 fail_inval: 902 sfc_log_init(sa, "failed %d", rc); 903 SFC_ASSERT(rc > 0); 904 return -rc; 905 } 906 static int 907 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 908 { 909 struct sfc_adapter *sa = dev->data->dev_private; 910 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 911 struct sfc_port *port = &sa->port; 912 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 913 int rc = 0; 914 915 sfc_adapter_lock(sa); 916 917 /* 918 * Copy the address to the device private data so that 919 * it could be recalled in the case of adapter restart. 920 */ 921 ether_addr_copy(mac_addr, &port->default_mac_addr); 922 923 /* 924 * Neither of the two following checks can return 925 * an error. The new MAC address is preserved in 926 * the device private data and can be activated 927 * on the next port start if the user prevents 928 * isolated mode from being enabled. 929 */ 930 if (port->isolated) { 931 sfc_warn(sa, "isolated mode is active on the port"); 932 sfc_warn(sa, "will not set MAC address"); 933 goto unlock; 934 } 935 936 if (sa->state != SFC_ADAPTER_STARTED) { 937 sfc_notice(sa, "the port is not started"); 938 sfc_notice(sa, "the new MAC address will be set on port start"); 939 940 goto unlock; 941 } 942 943 if (encp->enc_allow_set_mac_with_installed_filters) { 944 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 945 if (rc != 0) { 946 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 947 goto unlock; 948 } 949 950 /* 951 * Changing the MAC address by means of MCDI request 952 * has no effect on received traffic, therefore 953 * we also need to update unicast filters 954 */ 955 rc = sfc_set_rx_mode(sa); 956 if (rc != 0) { 957 sfc_err(sa, "cannot set filter (rc = %u)", rc); 958 /* Rollback the old address */ 959 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 960 (void)sfc_set_rx_mode(sa); 961 } 962 } else { 963 sfc_warn(sa, "cannot set MAC address with filters installed"); 964 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 965 sfc_warn(sa, "(some traffic may be dropped)"); 966 967 /* 968 * Since setting MAC address with filters installed is not 969 * allowed on the adapter, the new MAC address will be set 970 * by means of adapter restart. sfc_start() shall retrieve 971 * the new address from the device private data and set it. 972 */ 973 sfc_stop(sa); 974 rc = sfc_start(sa); 975 if (rc != 0) 976 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 977 } 978 979 unlock: 980 if (rc != 0) 981 ether_addr_copy(old_addr, &port->default_mac_addr); 982 983 sfc_adapter_unlock(sa); 984 985 SFC_ASSERT(rc >= 0); 986 return -rc; 987 } 988 989 990 static int 991 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 992 uint32_t nb_mc_addr) 993 { 994 struct sfc_adapter *sa = dev->data->dev_private; 995 struct sfc_port *port = &sa->port; 996 uint8_t *mc_addrs = port->mcast_addrs; 997 int rc; 998 unsigned int i; 999 1000 if (port->isolated) { 1001 sfc_err(sa, "isolated mode is active on the port"); 1002 sfc_err(sa, "will not set multicast address list"); 1003 return -ENOTSUP; 1004 } 1005 1006 if (mc_addrs == NULL) 1007 return -ENOBUFS; 1008 1009 if (nb_mc_addr > port->max_mcast_addrs) { 1010 sfc_err(sa, "too many multicast addresses: %u > %u", 1011 nb_mc_addr, port->max_mcast_addrs); 1012 return -EINVAL; 1013 } 1014 1015 for (i = 0; i < nb_mc_addr; ++i) { 1016 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1017 EFX_MAC_ADDR_LEN); 1018 mc_addrs += EFX_MAC_ADDR_LEN; 1019 } 1020 1021 port->nb_mcast_addrs = nb_mc_addr; 1022 1023 if (sa->state != SFC_ADAPTER_STARTED) 1024 return 0; 1025 1026 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1027 port->nb_mcast_addrs); 1028 if (rc != 0) 1029 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1030 1031 SFC_ASSERT(rc >= 0); 1032 return -rc; 1033 } 1034 1035 /* 1036 * The function is used by the secondary process as well. It must not 1037 * use any process-local pointers from the adapter data. 1038 */ 1039 static void 1040 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1041 struct rte_eth_rxq_info *qinfo) 1042 { 1043 struct sfc_adapter *sa = dev->data->dev_private; 1044 struct sfc_rxq_info *rxq_info; 1045 struct sfc_rxq *rxq; 1046 1047 sfc_adapter_lock(sa); 1048 1049 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1050 1051 rxq_info = &sa->rxq_info[rx_queue_id]; 1052 rxq = rxq_info->rxq; 1053 SFC_ASSERT(rxq != NULL); 1054 1055 qinfo->mp = rxq->refill_mb_pool; 1056 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1057 qinfo->conf.rx_drop_en = 1; 1058 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1059 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1060 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1061 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1062 qinfo->scattered_rx = 1; 1063 } 1064 qinfo->nb_desc = rxq_info->entries; 1065 1066 sfc_adapter_unlock(sa); 1067 } 1068 1069 /* 1070 * The function is used by the secondary process as well. It must not 1071 * use any process-local pointers from the adapter data. 1072 */ 1073 static void 1074 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1075 struct rte_eth_txq_info *qinfo) 1076 { 1077 struct sfc_adapter *sa = dev->data->dev_private; 1078 struct sfc_txq_info *txq_info; 1079 1080 sfc_adapter_lock(sa); 1081 1082 SFC_ASSERT(tx_queue_id < sa->txq_count); 1083 1084 txq_info = &sa->txq_info[tx_queue_id]; 1085 SFC_ASSERT(txq_info->txq != NULL); 1086 1087 memset(qinfo, 0, sizeof(*qinfo)); 1088 1089 qinfo->conf.offloads = txq_info->txq->offloads; 1090 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1091 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1092 qinfo->nb_desc = txq_info->entries; 1093 1094 sfc_adapter_unlock(sa); 1095 } 1096 1097 static uint32_t 1098 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1099 { 1100 struct sfc_adapter *sa = dev->data->dev_private; 1101 1102 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1103 1104 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1105 } 1106 1107 static int 1108 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1109 { 1110 struct sfc_dp_rxq *dp_rxq = queue; 1111 1112 return sfc_rx_qdesc_done(dp_rxq, offset); 1113 } 1114 1115 static int 1116 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1117 { 1118 struct sfc_dp_rxq *dp_rxq = queue; 1119 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1120 1121 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1122 } 1123 1124 static int 1125 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1126 { 1127 struct sfc_dp_txq *dp_txq = queue; 1128 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1129 1130 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1131 } 1132 1133 static int 1134 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1135 { 1136 struct sfc_adapter *sa = dev->data->dev_private; 1137 int rc; 1138 1139 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1140 1141 sfc_adapter_lock(sa); 1142 1143 rc = EINVAL; 1144 if (sa->state != SFC_ADAPTER_STARTED) 1145 goto fail_not_started; 1146 1147 if (sa->rxq_info[rx_queue_id].rxq == NULL) 1148 goto fail_not_setup; 1149 1150 rc = sfc_rx_qstart(sa, rx_queue_id); 1151 if (rc != 0) 1152 goto fail_rx_qstart; 1153 1154 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1155 1156 sfc_adapter_unlock(sa); 1157 1158 return 0; 1159 1160 fail_rx_qstart: 1161 fail_not_setup: 1162 fail_not_started: 1163 sfc_adapter_unlock(sa); 1164 SFC_ASSERT(rc > 0); 1165 return -rc; 1166 } 1167 1168 static int 1169 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1170 { 1171 struct sfc_adapter *sa = dev->data->dev_private; 1172 1173 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1174 1175 sfc_adapter_lock(sa); 1176 sfc_rx_qstop(sa, rx_queue_id); 1177 1178 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1179 1180 sfc_adapter_unlock(sa); 1181 1182 return 0; 1183 } 1184 1185 static int 1186 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1187 { 1188 struct sfc_adapter *sa = dev->data->dev_private; 1189 int rc; 1190 1191 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1192 1193 sfc_adapter_lock(sa); 1194 1195 rc = EINVAL; 1196 if (sa->state != SFC_ADAPTER_STARTED) 1197 goto fail_not_started; 1198 1199 if (sa->txq_info[tx_queue_id].txq == NULL) 1200 goto fail_not_setup; 1201 1202 rc = sfc_tx_qstart(sa, tx_queue_id); 1203 if (rc != 0) 1204 goto fail_tx_qstart; 1205 1206 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1207 1208 sfc_adapter_unlock(sa); 1209 return 0; 1210 1211 fail_tx_qstart: 1212 1213 fail_not_setup: 1214 fail_not_started: 1215 sfc_adapter_unlock(sa); 1216 SFC_ASSERT(rc > 0); 1217 return -rc; 1218 } 1219 1220 static int 1221 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1222 { 1223 struct sfc_adapter *sa = dev->data->dev_private; 1224 1225 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1226 1227 sfc_adapter_lock(sa); 1228 1229 sfc_tx_qstop(sa, tx_queue_id); 1230 1231 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1232 1233 sfc_adapter_unlock(sa); 1234 return 0; 1235 } 1236 1237 static efx_tunnel_protocol_t 1238 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1239 { 1240 switch (rte_type) { 1241 case RTE_TUNNEL_TYPE_VXLAN: 1242 return EFX_TUNNEL_PROTOCOL_VXLAN; 1243 case RTE_TUNNEL_TYPE_GENEVE: 1244 return EFX_TUNNEL_PROTOCOL_GENEVE; 1245 default: 1246 return EFX_TUNNEL_NPROTOS; 1247 } 1248 } 1249 1250 enum sfc_udp_tunnel_op_e { 1251 SFC_UDP_TUNNEL_ADD_PORT, 1252 SFC_UDP_TUNNEL_DEL_PORT, 1253 }; 1254 1255 static int 1256 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1257 struct rte_eth_udp_tunnel *tunnel_udp, 1258 enum sfc_udp_tunnel_op_e op) 1259 { 1260 struct sfc_adapter *sa = dev->data->dev_private; 1261 efx_tunnel_protocol_t tunnel_proto; 1262 int rc; 1263 1264 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1265 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1266 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1267 tunnel_udp->udp_port, tunnel_udp->prot_type); 1268 1269 tunnel_proto = 1270 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1271 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1272 rc = ENOTSUP; 1273 goto fail_bad_proto; 1274 } 1275 1276 sfc_adapter_lock(sa); 1277 1278 switch (op) { 1279 case SFC_UDP_TUNNEL_ADD_PORT: 1280 rc = efx_tunnel_config_udp_add(sa->nic, 1281 tunnel_udp->udp_port, 1282 tunnel_proto); 1283 break; 1284 case SFC_UDP_TUNNEL_DEL_PORT: 1285 rc = efx_tunnel_config_udp_remove(sa->nic, 1286 tunnel_udp->udp_port, 1287 tunnel_proto); 1288 break; 1289 default: 1290 rc = EINVAL; 1291 goto fail_bad_op; 1292 } 1293 1294 if (rc != 0) 1295 goto fail_op; 1296 1297 if (sa->state == SFC_ADAPTER_STARTED) { 1298 rc = efx_tunnel_reconfigure(sa->nic); 1299 if (rc == EAGAIN) { 1300 /* 1301 * Configuration is accepted by FW and MC reboot 1302 * is initiated to apply the changes. MC reboot 1303 * will be handled in a usual way (MC reboot 1304 * event on management event queue and adapter 1305 * restart). 1306 */ 1307 rc = 0; 1308 } else if (rc != 0) { 1309 goto fail_reconfigure; 1310 } 1311 } 1312 1313 sfc_adapter_unlock(sa); 1314 return 0; 1315 1316 fail_reconfigure: 1317 /* Remove/restore entry since the change makes the trouble */ 1318 switch (op) { 1319 case SFC_UDP_TUNNEL_ADD_PORT: 1320 (void)efx_tunnel_config_udp_remove(sa->nic, 1321 tunnel_udp->udp_port, 1322 tunnel_proto); 1323 break; 1324 case SFC_UDP_TUNNEL_DEL_PORT: 1325 (void)efx_tunnel_config_udp_add(sa->nic, 1326 tunnel_udp->udp_port, 1327 tunnel_proto); 1328 break; 1329 } 1330 1331 fail_op: 1332 fail_bad_op: 1333 sfc_adapter_unlock(sa); 1334 1335 fail_bad_proto: 1336 SFC_ASSERT(rc > 0); 1337 return -rc; 1338 } 1339 1340 static int 1341 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1342 struct rte_eth_udp_tunnel *tunnel_udp) 1343 { 1344 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1345 } 1346 1347 static int 1348 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1349 struct rte_eth_udp_tunnel *tunnel_udp) 1350 { 1351 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1352 } 1353 1354 static int 1355 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1356 struct rte_eth_rss_conf *rss_conf) 1357 { 1358 struct sfc_adapter *sa = dev->data->dev_private; 1359 struct sfc_rss *rss = &sa->rss; 1360 struct sfc_port *port = &sa->port; 1361 1362 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1363 return -ENOTSUP; 1364 1365 if (rss->channels == 0) 1366 return -EINVAL; 1367 1368 sfc_adapter_lock(sa); 1369 1370 /* 1371 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1372 * hence, conversion is done here to derive a correct set of ETH_RSS 1373 * flags which corresponds to the active EFX configuration stored 1374 * locally in 'sfc_adapter' and kept up-to-date 1375 */ 1376 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1377 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1378 if (rss_conf->rss_key != NULL) 1379 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1380 1381 sfc_adapter_unlock(sa); 1382 1383 return 0; 1384 } 1385 1386 static int 1387 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1388 struct rte_eth_rss_conf *rss_conf) 1389 { 1390 struct sfc_adapter *sa = dev->data->dev_private; 1391 struct sfc_rss *rss = &sa->rss; 1392 struct sfc_port *port = &sa->port; 1393 unsigned int efx_hash_types; 1394 int rc = 0; 1395 1396 if (port->isolated) 1397 return -ENOTSUP; 1398 1399 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1400 sfc_err(sa, "RSS is not available"); 1401 return -ENOTSUP; 1402 } 1403 1404 if (rss->channels == 0) { 1405 sfc_err(sa, "RSS is not configured"); 1406 return -EINVAL; 1407 } 1408 1409 if ((rss_conf->rss_key != NULL) && 1410 (rss_conf->rss_key_len != sizeof(rss->key))) { 1411 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1412 sizeof(rss->key)); 1413 return -EINVAL; 1414 } 1415 1416 sfc_adapter_lock(sa); 1417 1418 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1419 if (rc != 0) 1420 goto fail_rx_hf_rte_to_efx; 1421 1422 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1423 rss->hash_alg, efx_hash_types, B_TRUE); 1424 if (rc != 0) 1425 goto fail_scale_mode_set; 1426 1427 if (rss_conf->rss_key != NULL) { 1428 if (sa->state == SFC_ADAPTER_STARTED) { 1429 rc = efx_rx_scale_key_set(sa->nic, 1430 EFX_RSS_CONTEXT_DEFAULT, 1431 rss_conf->rss_key, 1432 sizeof(rss->key)); 1433 if (rc != 0) 1434 goto fail_scale_key_set; 1435 } 1436 1437 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1438 } 1439 1440 rss->hash_types = efx_hash_types; 1441 1442 sfc_adapter_unlock(sa); 1443 1444 return 0; 1445 1446 fail_scale_key_set: 1447 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1448 EFX_RX_HASHALG_TOEPLITZ, 1449 rss->hash_types, B_TRUE) != 0) 1450 sfc_err(sa, "failed to restore RSS mode"); 1451 1452 fail_scale_mode_set: 1453 fail_rx_hf_rte_to_efx: 1454 sfc_adapter_unlock(sa); 1455 return -rc; 1456 } 1457 1458 static int 1459 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1460 struct rte_eth_rss_reta_entry64 *reta_conf, 1461 uint16_t reta_size) 1462 { 1463 struct sfc_adapter *sa = dev->data->dev_private; 1464 struct sfc_rss *rss = &sa->rss; 1465 struct sfc_port *port = &sa->port; 1466 int entry; 1467 1468 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1469 return -ENOTSUP; 1470 1471 if (rss->channels == 0) 1472 return -EINVAL; 1473 1474 if (reta_size != EFX_RSS_TBL_SIZE) 1475 return -EINVAL; 1476 1477 sfc_adapter_lock(sa); 1478 1479 for (entry = 0; entry < reta_size; entry++) { 1480 int grp = entry / RTE_RETA_GROUP_SIZE; 1481 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1482 1483 if ((reta_conf[grp].mask >> grp_idx) & 1) 1484 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1485 } 1486 1487 sfc_adapter_unlock(sa); 1488 1489 return 0; 1490 } 1491 1492 static int 1493 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1494 struct rte_eth_rss_reta_entry64 *reta_conf, 1495 uint16_t reta_size) 1496 { 1497 struct sfc_adapter *sa = dev->data->dev_private; 1498 struct sfc_rss *rss = &sa->rss; 1499 struct sfc_port *port = &sa->port; 1500 unsigned int *rss_tbl_new; 1501 uint16_t entry; 1502 int rc = 0; 1503 1504 1505 if (port->isolated) 1506 return -ENOTSUP; 1507 1508 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1509 sfc_err(sa, "RSS is not available"); 1510 return -ENOTSUP; 1511 } 1512 1513 if (rss->channels == 0) { 1514 sfc_err(sa, "RSS is not configured"); 1515 return -EINVAL; 1516 } 1517 1518 if (reta_size != EFX_RSS_TBL_SIZE) { 1519 sfc_err(sa, "RETA size is wrong (should be %u)", 1520 EFX_RSS_TBL_SIZE); 1521 return -EINVAL; 1522 } 1523 1524 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1525 if (rss_tbl_new == NULL) 1526 return -ENOMEM; 1527 1528 sfc_adapter_lock(sa); 1529 1530 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1531 1532 for (entry = 0; entry < reta_size; entry++) { 1533 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1534 struct rte_eth_rss_reta_entry64 *grp; 1535 1536 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1537 1538 if (grp->mask & (1ull << grp_idx)) { 1539 if (grp->reta[grp_idx] >= rss->channels) { 1540 rc = EINVAL; 1541 goto bad_reta_entry; 1542 } 1543 rss_tbl_new[entry] = grp->reta[grp_idx]; 1544 } 1545 } 1546 1547 if (sa->state == SFC_ADAPTER_STARTED) { 1548 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1549 rss_tbl_new, EFX_RSS_TBL_SIZE); 1550 if (rc != 0) 1551 goto fail_scale_tbl_set; 1552 } 1553 1554 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1555 1556 fail_scale_tbl_set: 1557 bad_reta_entry: 1558 sfc_adapter_unlock(sa); 1559 1560 rte_free(rss_tbl_new); 1561 1562 SFC_ASSERT(rc >= 0); 1563 return -rc; 1564 } 1565 1566 static int 1567 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1568 enum rte_filter_op filter_op, 1569 void *arg) 1570 { 1571 struct sfc_adapter *sa = dev->data->dev_private; 1572 int rc = ENOTSUP; 1573 1574 sfc_log_init(sa, "entry"); 1575 1576 switch (filter_type) { 1577 case RTE_ETH_FILTER_NONE: 1578 sfc_err(sa, "Global filters configuration not supported"); 1579 break; 1580 case RTE_ETH_FILTER_MACVLAN: 1581 sfc_err(sa, "MACVLAN filters not supported"); 1582 break; 1583 case RTE_ETH_FILTER_ETHERTYPE: 1584 sfc_err(sa, "EtherType filters not supported"); 1585 break; 1586 case RTE_ETH_FILTER_FLEXIBLE: 1587 sfc_err(sa, "Flexible filters not supported"); 1588 break; 1589 case RTE_ETH_FILTER_SYN: 1590 sfc_err(sa, "SYN filters not supported"); 1591 break; 1592 case RTE_ETH_FILTER_NTUPLE: 1593 sfc_err(sa, "NTUPLE filters not supported"); 1594 break; 1595 case RTE_ETH_FILTER_TUNNEL: 1596 sfc_err(sa, "Tunnel filters not supported"); 1597 break; 1598 case RTE_ETH_FILTER_FDIR: 1599 sfc_err(sa, "Flow Director filters not supported"); 1600 break; 1601 case RTE_ETH_FILTER_HASH: 1602 sfc_err(sa, "Hash filters not supported"); 1603 break; 1604 case RTE_ETH_FILTER_GENERIC: 1605 if (filter_op != RTE_ETH_FILTER_GET) { 1606 rc = EINVAL; 1607 } else { 1608 *(const void **)arg = &sfc_flow_ops; 1609 rc = 0; 1610 } 1611 break; 1612 default: 1613 sfc_err(sa, "Unknown filter type %u", filter_type); 1614 break; 1615 } 1616 1617 sfc_log_init(sa, "exit: %d", -rc); 1618 SFC_ASSERT(rc >= 0); 1619 return -rc; 1620 } 1621 1622 static int 1623 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1624 { 1625 struct sfc_adapter *sa = dev->data->dev_private; 1626 1627 /* 1628 * If Rx datapath does not provide callback to check mempool, 1629 * all pools are supported. 1630 */ 1631 if (sa->dp_rx->pool_ops_supported == NULL) 1632 return 1; 1633 1634 return sa->dp_rx->pool_ops_supported(pool); 1635 } 1636 1637 static const struct eth_dev_ops sfc_eth_dev_ops = { 1638 .dev_configure = sfc_dev_configure, 1639 .dev_start = sfc_dev_start, 1640 .dev_stop = sfc_dev_stop, 1641 .dev_set_link_up = sfc_dev_set_link_up, 1642 .dev_set_link_down = sfc_dev_set_link_down, 1643 .dev_close = sfc_dev_close, 1644 .promiscuous_enable = sfc_dev_promisc_enable, 1645 .promiscuous_disable = sfc_dev_promisc_disable, 1646 .allmulticast_enable = sfc_dev_allmulti_enable, 1647 .allmulticast_disable = sfc_dev_allmulti_disable, 1648 .link_update = sfc_dev_link_update, 1649 .stats_get = sfc_stats_get, 1650 .stats_reset = sfc_stats_reset, 1651 .xstats_get = sfc_xstats_get, 1652 .xstats_reset = sfc_stats_reset, 1653 .xstats_get_names = sfc_xstats_get_names, 1654 .dev_infos_get = sfc_dev_infos_get, 1655 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1656 .mtu_set = sfc_dev_set_mtu, 1657 .rx_queue_start = sfc_rx_queue_start, 1658 .rx_queue_stop = sfc_rx_queue_stop, 1659 .tx_queue_start = sfc_tx_queue_start, 1660 .tx_queue_stop = sfc_tx_queue_stop, 1661 .rx_queue_setup = sfc_rx_queue_setup, 1662 .rx_queue_release = sfc_rx_queue_release, 1663 .rx_queue_count = sfc_rx_queue_count, 1664 .rx_descriptor_done = sfc_rx_descriptor_done, 1665 .rx_descriptor_status = sfc_rx_descriptor_status, 1666 .tx_descriptor_status = sfc_tx_descriptor_status, 1667 .tx_queue_setup = sfc_tx_queue_setup, 1668 .tx_queue_release = sfc_tx_queue_release, 1669 .flow_ctrl_get = sfc_flow_ctrl_get, 1670 .flow_ctrl_set = sfc_flow_ctrl_set, 1671 .mac_addr_set = sfc_mac_addr_set, 1672 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1673 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1674 .reta_update = sfc_dev_rss_reta_update, 1675 .reta_query = sfc_dev_rss_reta_query, 1676 .rss_hash_update = sfc_dev_rss_hash_update, 1677 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1678 .filter_ctrl = sfc_dev_filter_ctrl, 1679 .set_mc_addr_list = sfc_set_mc_addr_list, 1680 .rxq_info_get = sfc_rx_queue_info_get, 1681 .txq_info_get = sfc_tx_queue_info_get, 1682 .fw_version_get = sfc_fw_version_get, 1683 .xstats_get_by_id = sfc_xstats_get_by_id, 1684 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1685 .pool_ops_supported = sfc_pool_ops_supported, 1686 }; 1687 1688 /** 1689 * Duplicate a string in potentially shared memory required for 1690 * multi-process support. 1691 * 1692 * strdup() allocates from process-local heap/memory. 1693 */ 1694 static char * 1695 sfc_strdup(const char *str) 1696 { 1697 size_t size; 1698 char *copy; 1699 1700 if (str == NULL) 1701 return NULL; 1702 1703 size = strlen(str) + 1; 1704 copy = rte_malloc(__func__, size, 0); 1705 if (copy != NULL) 1706 rte_memcpy(copy, str, size); 1707 1708 return copy; 1709 } 1710 1711 static int 1712 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1713 { 1714 struct sfc_adapter *sa = dev->data->dev_private; 1715 const efx_nic_cfg_t *encp; 1716 unsigned int avail_caps = 0; 1717 const char *rx_name = NULL; 1718 const char *tx_name = NULL; 1719 int rc; 1720 1721 switch (sa->family) { 1722 case EFX_FAMILY_HUNTINGTON: 1723 case EFX_FAMILY_MEDFORD: 1724 case EFX_FAMILY_MEDFORD2: 1725 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1726 break; 1727 default: 1728 break; 1729 } 1730 1731 encp = efx_nic_cfg_get(sa->nic); 1732 if (encp->enc_rx_es_super_buffer_supported) 1733 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1734 1735 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1736 sfc_kvarg_string_handler, &rx_name); 1737 if (rc != 0) 1738 goto fail_kvarg_rx_datapath; 1739 1740 if (rx_name != NULL) { 1741 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1742 if (sa->dp_rx == NULL) { 1743 sfc_err(sa, "Rx datapath %s not found", rx_name); 1744 rc = ENOENT; 1745 goto fail_dp_rx; 1746 } 1747 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1748 sfc_err(sa, 1749 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1750 rx_name); 1751 rc = EINVAL; 1752 goto fail_dp_rx_caps; 1753 } 1754 } else { 1755 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1756 if (sa->dp_rx == NULL) { 1757 sfc_err(sa, "Rx datapath by caps %#x not found", 1758 avail_caps); 1759 rc = ENOENT; 1760 goto fail_dp_rx; 1761 } 1762 } 1763 1764 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1765 if (sa->dp_rx_name == NULL) { 1766 rc = ENOMEM; 1767 goto fail_dp_rx_name; 1768 } 1769 1770 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1771 1772 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1773 1774 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1775 sfc_kvarg_string_handler, &tx_name); 1776 if (rc != 0) 1777 goto fail_kvarg_tx_datapath; 1778 1779 if (tx_name != NULL) { 1780 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1781 if (sa->dp_tx == NULL) { 1782 sfc_err(sa, "Tx datapath %s not found", tx_name); 1783 rc = ENOENT; 1784 goto fail_dp_tx; 1785 } 1786 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1787 sfc_err(sa, 1788 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1789 tx_name); 1790 rc = EINVAL; 1791 goto fail_dp_tx_caps; 1792 } 1793 } else { 1794 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1795 if (sa->dp_tx == NULL) { 1796 sfc_err(sa, "Tx datapath by caps %#x not found", 1797 avail_caps); 1798 rc = ENOENT; 1799 goto fail_dp_tx; 1800 } 1801 } 1802 1803 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1804 if (sa->dp_tx_name == NULL) { 1805 rc = ENOMEM; 1806 goto fail_dp_tx_name; 1807 } 1808 1809 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1810 1811 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1812 1813 dev->dev_ops = &sfc_eth_dev_ops; 1814 1815 return 0; 1816 1817 fail_dp_tx_name: 1818 fail_dp_tx_caps: 1819 sa->dp_tx = NULL; 1820 1821 fail_dp_tx: 1822 fail_kvarg_tx_datapath: 1823 rte_free(sa->dp_rx_name); 1824 sa->dp_rx_name = NULL; 1825 1826 fail_dp_rx_name: 1827 fail_dp_rx_caps: 1828 sa->dp_rx = NULL; 1829 1830 fail_dp_rx: 1831 fail_kvarg_rx_datapath: 1832 return rc; 1833 } 1834 1835 static void 1836 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1837 { 1838 struct sfc_adapter *sa = dev->data->dev_private; 1839 1840 dev->dev_ops = NULL; 1841 dev->rx_pkt_burst = NULL; 1842 dev->tx_pkt_burst = NULL; 1843 1844 rte_free(sa->dp_tx_name); 1845 sa->dp_tx_name = NULL; 1846 sa->dp_tx = NULL; 1847 1848 rte_free(sa->dp_rx_name); 1849 sa->dp_rx_name = NULL; 1850 sa->dp_rx = NULL; 1851 } 1852 1853 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1854 .rxq_info_get = sfc_rx_queue_info_get, 1855 .txq_info_get = sfc_tx_queue_info_get, 1856 }; 1857 1858 static int 1859 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1860 { 1861 /* 1862 * Device private data has really many process-local pointers. 1863 * Below code should be extremely careful to use data located 1864 * in shared memory only. 1865 */ 1866 struct sfc_adapter *sa = dev->data->dev_private; 1867 const struct sfc_dp_rx *dp_rx; 1868 const struct sfc_dp_tx *dp_tx; 1869 int rc; 1870 1871 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1872 if (dp_rx == NULL) { 1873 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1874 rc = ENOENT; 1875 goto fail_dp_rx; 1876 } 1877 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1878 sfc_err(sa, "%s Rx datapath does not support multi-process", 1879 sa->dp_tx_name); 1880 rc = EINVAL; 1881 goto fail_dp_rx_multi_process; 1882 } 1883 1884 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1885 if (dp_tx == NULL) { 1886 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1887 rc = ENOENT; 1888 goto fail_dp_tx; 1889 } 1890 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1891 sfc_err(sa, "%s Tx datapath does not support multi-process", 1892 sa->dp_tx_name); 1893 rc = EINVAL; 1894 goto fail_dp_tx_multi_process; 1895 } 1896 1897 dev->rx_pkt_burst = dp_rx->pkt_burst; 1898 dev->tx_pkt_burst = dp_tx->pkt_burst; 1899 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1900 1901 return 0; 1902 1903 fail_dp_tx_multi_process: 1904 fail_dp_tx: 1905 fail_dp_rx_multi_process: 1906 fail_dp_rx: 1907 return rc; 1908 } 1909 1910 static void 1911 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1912 { 1913 dev->dev_ops = NULL; 1914 dev->tx_pkt_burst = NULL; 1915 dev->rx_pkt_burst = NULL; 1916 } 1917 1918 static void 1919 sfc_register_dp(void) 1920 { 1921 /* Register once */ 1922 if (TAILQ_EMPTY(&sfc_dp_head)) { 1923 /* Prefer EF10 datapath */ 1924 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 1925 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1926 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1927 1928 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1929 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1930 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1931 } 1932 } 1933 1934 static int 1935 sfc_eth_dev_init(struct rte_eth_dev *dev) 1936 { 1937 struct sfc_adapter *sa = dev->data->dev_private; 1938 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1939 int rc; 1940 const efx_nic_cfg_t *encp; 1941 const struct ether_addr *from; 1942 1943 sfc_register_dp(); 1944 1945 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1946 return -sfc_eth_dev_secondary_set_ops(dev); 1947 1948 /* Required for logging */ 1949 sa->pci_addr = pci_dev->addr; 1950 sa->port_id = dev->data->port_id; 1951 1952 sa->eth_dev = dev; 1953 1954 /* Copy PCI device info to the dev->data */ 1955 rte_eth_copy_pci_info(dev, pci_dev); 1956 1957 sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR, 1958 RTE_LOG_NOTICE); 1959 1960 rc = sfc_kvargs_parse(sa); 1961 if (rc != 0) 1962 goto fail_kvargs_parse; 1963 1964 sfc_log_init(sa, "entry"); 1965 1966 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1967 if (dev->data->mac_addrs == NULL) { 1968 rc = ENOMEM; 1969 goto fail_mac_addrs; 1970 } 1971 1972 sfc_adapter_lock_init(sa); 1973 sfc_adapter_lock(sa); 1974 1975 sfc_log_init(sa, "probing"); 1976 rc = sfc_probe(sa); 1977 if (rc != 0) 1978 goto fail_probe; 1979 1980 sfc_log_init(sa, "set device ops"); 1981 rc = sfc_eth_dev_set_ops(dev); 1982 if (rc != 0) 1983 goto fail_set_ops; 1984 1985 sfc_log_init(sa, "attaching"); 1986 rc = sfc_attach(sa); 1987 if (rc != 0) 1988 goto fail_attach; 1989 1990 encp = efx_nic_cfg_get(sa->nic); 1991 1992 /* 1993 * The arguments are really reverse order in comparison to 1994 * Linux kernel. Copy from NIC config to Ethernet device data. 1995 */ 1996 from = (const struct ether_addr *)(encp->enc_mac_addr); 1997 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1998 1999 sfc_adapter_unlock(sa); 2000 2001 sfc_log_init(sa, "done"); 2002 return 0; 2003 2004 fail_attach: 2005 sfc_eth_dev_clear_ops(dev); 2006 2007 fail_set_ops: 2008 sfc_unprobe(sa); 2009 2010 fail_probe: 2011 sfc_adapter_unlock(sa); 2012 sfc_adapter_lock_fini(sa); 2013 rte_free(dev->data->mac_addrs); 2014 dev->data->mac_addrs = NULL; 2015 2016 fail_mac_addrs: 2017 sfc_kvargs_cleanup(sa); 2018 2019 fail_kvargs_parse: 2020 sfc_log_init(sa, "failed %d", rc); 2021 SFC_ASSERT(rc > 0); 2022 return -rc; 2023 } 2024 2025 static int 2026 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2027 { 2028 struct sfc_adapter *sa; 2029 2030 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2031 sfc_eth_dev_secondary_clear_ops(dev); 2032 return 0; 2033 } 2034 2035 sa = dev->data->dev_private; 2036 sfc_log_init(sa, "entry"); 2037 2038 sfc_adapter_lock(sa); 2039 2040 sfc_eth_dev_clear_ops(dev); 2041 2042 sfc_detach(sa); 2043 sfc_unprobe(sa); 2044 2045 rte_free(dev->data->mac_addrs); 2046 dev->data->mac_addrs = NULL; 2047 2048 sfc_kvargs_cleanup(sa); 2049 2050 sfc_adapter_unlock(sa); 2051 sfc_adapter_lock_fini(sa); 2052 2053 sfc_log_init(sa, "done"); 2054 2055 /* Required for logging, so cleanup last */ 2056 sa->eth_dev = NULL; 2057 return 0; 2058 } 2059 2060 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2061 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2062 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2063 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2064 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2065 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2066 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2067 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2068 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2069 { .vendor_id = 0 /* sentinel */ } 2070 }; 2071 2072 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2073 struct rte_pci_device *pci_dev) 2074 { 2075 return rte_eth_dev_pci_generic_probe(pci_dev, 2076 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2077 } 2078 2079 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2080 { 2081 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2082 } 2083 2084 static struct rte_pci_driver sfc_efx_pmd = { 2085 .id_table = pci_id_sfc_efx_map, 2086 .drv_flags = 2087 RTE_PCI_DRV_INTR_LSC | 2088 RTE_PCI_DRV_NEED_MAPPING, 2089 .probe = sfc_eth_dev_pci_probe, 2090 .remove = sfc_eth_dev_pci_remove, 2091 }; 2092 2093 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2094 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2095 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2096 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2097 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2098 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2099 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2100 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2101 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2102 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2103 2104 RTE_INIT(sfc_driver_register_logtype) 2105 { 2106 int ret; 2107 2108 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2109 RTE_LOG_NOTICE); 2110 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2111 } 2112