xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 7d466e5fd8d13def57538d80a2f759c2c436dba0)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 
32 uint32_t sfc_logtype_driver;
33 
34 static struct sfc_dp_list sfc_dp_head =
35 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36 
37 
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
39 
40 
41 static int
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
43 {
44 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 	efx_nic_fw_info_t enfi;
46 	int ret;
47 	int rc;
48 
49 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
50 	if (rc != 0)
51 		return -rc;
52 
53 	ret = snprintf(fw_version, fw_size,
54 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
55 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
56 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
57 	if (ret < 0)
58 		return ret;
59 
60 	if (enfi.enfi_dpcpu_fw_ids_valid) {
61 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
62 		int ret_extra;
63 
64 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
65 				     fw_size - dpcpu_fw_ids_offset,
66 				     " rx%" PRIx16 " tx%" PRIx16,
67 				     enfi.enfi_rx_dpcpu_fw_id,
68 				     enfi.enfi_tx_dpcpu_fw_id);
69 		if (ret_extra < 0)
70 			return ret_extra;
71 
72 		ret += ret_extra;
73 	}
74 
75 	if (fw_size < (size_t)(++ret))
76 		return ret;
77 	else
78 		return 0;
79 }
80 
81 static int
82 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
83 {
84 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
85 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
86 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
87 	struct sfc_rss *rss = &sas->rss;
88 	struct sfc_mae *mae = &sa->mae;
89 	uint64_t txq_offloads_def = 0;
90 
91 	sfc_log_init(sa, "entry");
92 
93 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
94 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
95 
96 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
97 
98 	dev_info->max_vfs = sa->sriov.num_vfs;
99 
100 	/* Autonegotiation may be disabled */
101 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
102 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
103 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
104 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
105 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
106 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
107 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
108 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
109 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
110 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
111 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
112 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
113 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
114 
115 	dev_info->max_rx_queues = sa->rxq_max;
116 	dev_info->max_tx_queues = sa->txq_max;
117 
118 	/* By default packets are dropped if no descriptors are available */
119 	dev_info->default_rxconf.rx_drop_en = 1;
120 
121 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
122 
123 	/*
124 	 * rx_offload_capa includes both device and queue offloads since
125 	 * the latter may be requested on a per device basis which makes
126 	 * sense when some offloads are needed to be set on all queues.
127 	 */
128 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
129 				    dev_info->rx_queue_offload_capa;
130 
131 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
132 
133 	/*
134 	 * tx_offload_capa includes both device and queue offloads since
135 	 * the latter may be requested on a per device basis which makes
136 	 * sense when some offloads are needed to be set on all queues.
137 	 */
138 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
139 				    dev_info->tx_queue_offload_capa;
140 
141 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
142 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
143 
144 	dev_info->default_txconf.offloads |= txq_offloads_def;
145 
146 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
147 		uint64_t rte_hf = 0;
148 		unsigned int i;
149 
150 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
151 			rte_hf |= rss->hf_map[i].rte;
152 
153 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
154 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
155 		dev_info->flow_type_rss_offloads = rte_hf;
156 	}
157 
158 	/* Initialize to hardware limits */
159 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
160 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
161 	/* The RXQ hardware requires that the descriptor count is a power
162 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
163 	 */
164 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
165 
166 	/* Initialize to hardware limits */
167 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
168 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
169 	/*
170 	 * The TXQ hardware requires that the descriptor count is a power
171 	 * of 2, but tx_desc_lim cannot properly describe that constraint
172 	 */
173 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
174 
175 	if (sap->dp_rx->get_dev_info != NULL)
176 		sap->dp_rx->get_dev_info(dev_info);
177 	if (sap->dp_tx->get_dev_info != NULL)
178 		sap->dp_tx->get_dev_info(dev_info);
179 
180 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
181 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
182 
183 	if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
184 		dev_info->switch_info.name = dev->device->driver->name;
185 		dev_info->switch_info.domain_id = mae->switch_domain_id;
186 		dev_info->switch_info.port_id = mae->switch_port_id;
187 	}
188 
189 	return 0;
190 }
191 
192 static const uint32_t *
193 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
194 {
195 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
196 
197 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
198 }
199 
200 static int
201 sfc_dev_configure(struct rte_eth_dev *dev)
202 {
203 	struct rte_eth_dev_data *dev_data = dev->data;
204 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
205 	int rc;
206 
207 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
208 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
209 
210 	sfc_adapter_lock(sa);
211 	switch (sa->state) {
212 	case SFC_ADAPTER_CONFIGURED:
213 		/* FALLTHROUGH */
214 	case SFC_ADAPTER_INITIALIZED:
215 		rc = sfc_configure(sa);
216 		break;
217 	default:
218 		sfc_err(sa, "unexpected adapter state %u to configure",
219 			sa->state);
220 		rc = EINVAL;
221 		break;
222 	}
223 	sfc_adapter_unlock(sa);
224 
225 	sfc_log_init(sa, "done %d", rc);
226 	SFC_ASSERT(rc >= 0);
227 	return -rc;
228 }
229 
230 static int
231 sfc_dev_start(struct rte_eth_dev *dev)
232 {
233 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
234 	int rc;
235 
236 	sfc_log_init(sa, "entry");
237 
238 	sfc_adapter_lock(sa);
239 	rc = sfc_start(sa);
240 	sfc_adapter_unlock(sa);
241 
242 	sfc_log_init(sa, "done %d", rc);
243 	SFC_ASSERT(rc >= 0);
244 	return -rc;
245 }
246 
247 static int
248 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
249 {
250 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
251 	struct rte_eth_link current_link;
252 	int ret;
253 
254 	sfc_log_init(sa, "entry");
255 
256 	if (sa->state != SFC_ADAPTER_STARTED) {
257 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
258 	} else if (wait_to_complete) {
259 		efx_link_mode_t link_mode;
260 
261 		if (efx_port_poll(sa->nic, &link_mode) != 0)
262 			link_mode = EFX_LINK_UNKNOWN;
263 		sfc_port_link_mode_to_info(link_mode, &current_link);
264 
265 	} else {
266 		sfc_ev_mgmt_qpoll(sa);
267 		rte_eth_linkstatus_get(dev, &current_link);
268 	}
269 
270 	ret = rte_eth_linkstatus_set(dev, &current_link);
271 	if (ret == 0)
272 		sfc_notice(sa, "Link status is %s",
273 			   current_link.link_status ? "UP" : "DOWN");
274 
275 	return ret;
276 }
277 
278 static int
279 sfc_dev_stop(struct rte_eth_dev *dev)
280 {
281 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
282 
283 	sfc_log_init(sa, "entry");
284 
285 	sfc_adapter_lock(sa);
286 	sfc_stop(sa);
287 	sfc_adapter_unlock(sa);
288 
289 	sfc_log_init(sa, "done");
290 
291 	return 0;
292 }
293 
294 static int
295 sfc_dev_set_link_up(struct rte_eth_dev *dev)
296 {
297 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
298 	int rc;
299 
300 	sfc_log_init(sa, "entry");
301 
302 	sfc_adapter_lock(sa);
303 	rc = sfc_start(sa);
304 	sfc_adapter_unlock(sa);
305 
306 	SFC_ASSERT(rc >= 0);
307 	return -rc;
308 }
309 
310 static int
311 sfc_dev_set_link_down(struct rte_eth_dev *dev)
312 {
313 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
314 
315 	sfc_log_init(sa, "entry");
316 
317 	sfc_adapter_lock(sa);
318 	sfc_stop(sa);
319 	sfc_adapter_unlock(sa);
320 
321 	return 0;
322 }
323 
324 static void
325 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
326 {
327 	free(dev->process_private);
328 	rte_eth_dev_release_port(dev);
329 }
330 
331 static int
332 sfc_dev_close(struct rte_eth_dev *dev)
333 {
334 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
335 
336 	sfc_log_init(sa, "entry");
337 
338 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
339 		sfc_eth_dev_secondary_clear_ops(dev);
340 		return 0;
341 	}
342 
343 	sfc_adapter_lock(sa);
344 	switch (sa->state) {
345 	case SFC_ADAPTER_STARTED:
346 		sfc_stop(sa);
347 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
348 		/* FALLTHROUGH */
349 	case SFC_ADAPTER_CONFIGURED:
350 		sfc_close(sa);
351 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
352 		/* FALLTHROUGH */
353 	case SFC_ADAPTER_INITIALIZED:
354 		break;
355 	default:
356 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
357 		break;
358 	}
359 
360 	/*
361 	 * Cleanup all resources.
362 	 * Rollback primary process sfc_eth_dev_init() below.
363 	 */
364 
365 	sfc_eth_dev_clear_ops(dev);
366 
367 	sfc_detach(sa);
368 	sfc_unprobe(sa);
369 
370 	sfc_kvargs_cleanup(sa);
371 
372 	sfc_adapter_unlock(sa);
373 	sfc_adapter_lock_fini(sa);
374 
375 	sfc_log_init(sa, "done");
376 
377 	/* Required for logging, so cleanup last */
378 	sa->eth_dev = NULL;
379 
380 	free(sa);
381 
382 	return 0;
383 }
384 
385 static int
386 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
387 		   boolean_t enabled)
388 {
389 	struct sfc_port *port;
390 	boolean_t *toggle;
391 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
392 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
393 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
394 	int rc = 0;
395 
396 	sfc_adapter_lock(sa);
397 
398 	port = &sa->port;
399 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
400 
401 	if (*toggle != enabled) {
402 		*toggle = enabled;
403 
404 		if (sfc_sa2shared(sa)->isolated) {
405 			sfc_warn(sa, "isolated mode is active on the port");
406 			sfc_warn(sa, "the change is to be applied on the next "
407 				     "start provided that isolated mode is "
408 				     "disabled prior the next start");
409 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
410 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
411 			*toggle = !(enabled);
412 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
413 				 ((enabled) ? "enable" : "disable"), desc, rc);
414 
415 			/*
416 			 * For promiscuous and all-multicast filters a
417 			 * permission failure should be reported as an
418 			 * unsupported filter.
419 			 */
420 			if (rc == EPERM)
421 				rc = ENOTSUP;
422 		}
423 	}
424 
425 	sfc_adapter_unlock(sa);
426 	return rc;
427 }
428 
429 static int
430 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
431 {
432 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
433 
434 	SFC_ASSERT(rc >= 0);
435 	return -rc;
436 }
437 
438 static int
439 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
440 {
441 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
442 
443 	SFC_ASSERT(rc >= 0);
444 	return -rc;
445 }
446 
447 static int
448 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
449 {
450 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
451 
452 	SFC_ASSERT(rc >= 0);
453 	return -rc;
454 }
455 
456 static int
457 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
458 {
459 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
460 
461 	SFC_ASSERT(rc >= 0);
462 	return -rc;
463 }
464 
465 static int
466 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
467 		   uint16_t nb_rx_desc, unsigned int socket_id,
468 		   const struct rte_eth_rxconf *rx_conf,
469 		   struct rte_mempool *mb_pool)
470 {
471 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
472 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
473 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
474 	struct sfc_rxq_info *rxq_info;
475 	sfc_sw_index_t sw_index;
476 	int rc;
477 
478 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
479 		     ethdev_qid, nb_rx_desc, socket_id);
480 
481 	sfc_adapter_lock(sa);
482 
483 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
484 	rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
485 			  rx_conf, mb_pool);
486 	if (rc != 0)
487 		goto fail_rx_qinit;
488 
489 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
490 	dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
491 
492 	sfc_adapter_unlock(sa);
493 
494 	return 0;
495 
496 fail_rx_qinit:
497 	sfc_adapter_unlock(sa);
498 	SFC_ASSERT(rc > 0);
499 	return -rc;
500 }
501 
502 static void
503 sfc_rx_queue_release(void *queue)
504 {
505 	struct sfc_dp_rxq *dp_rxq = queue;
506 	struct sfc_rxq *rxq;
507 	struct sfc_adapter *sa;
508 	sfc_sw_index_t sw_index;
509 
510 	if (dp_rxq == NULL)
511 		return;
512 
513 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
514 	sa = rxq->evq->sa;
515 	sfc_adapter_lock(sa);
516 
517 	sw_index = dp_rxq->dpq.queue_id;
518 
519 	sfc_log_init(sa, "RxQ=%u", sw_index);
520 
521 	sfc_rx_qfini(sa, sw_index);
522 
523 	sfc_adapter_unlock(sa);
524 }
525 
526 static int
527 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
528 		   uint16_t nb_tx_desc, unsigned int socket_id,
529 		   const struct rte_eth_txconf *tx_conf)
530 {
531 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
532 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
533 	struct sfc_txq_info *txq_info;
534 	sfc_sw_index_t sw_index;
535 	int rc;
536 
537 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
538 		     ethdev_qid, nb_tx_desc, socket_id);
539 
540 	sfc_adapter_lock(sa);
541 
542 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
543 	rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
544 	if (rc != 0)
545 		goto fail_tx_qinit;
546 
547 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
548 	dev->data->tx_queues[ethdev_qid] = txq_info->dp;
549 
550 	sfc_adapter_unlock(sa);
551 	return 0;
552 
553 fail_tx_qinit:
554 	sfc_adapter_unlock(sa);
555 	SFC_ASSERT(rc > 0);
556 	return -rc;
557 }
558 
559 static void
560 sfc_tx_queue_release(void *queue)
561 {
562 	struct sfc_dp_txq *dp_txq = queue;
563 	struct sfc_txq *txq;
564 	sfc_sw_index_t sw_index;
565 	struct sfc_adapter *sa;
566 
567 	if (dp_txq == NULL)
568 		return;
569 
570 	txq = sfc_txq_by_dp_txq(dp_txq);
571 	sw_index = dp_txq->dpq.queue_id;
572 
573 	SFC_ASSERT(txq->evq != NULL);
574 	sa = txq->evq->sa;
575 
576 	sfc_log_init(sa, "TxQ = %u", sw_index);
577 
578 	sfc_adapter_lock(sa);
579 
580 	sfc_tx_qfini(sa, sw_index);
581 
582 	sfc_adapter_unlock(sa);
583 }
584 
585 /*
586  * Some statistics are computed as A - B where A and B each increase
587  * monotonically with some hardware counter(s) and the counters are read
588  * asynchronously.
589  *
590  * If packet X is counted in A, but not counted in B yet, computed value is
591  * greater than real.
592  *
593  * If packet X is not counted in A at the moment of reading the counter,
594  * but counted in B at the moment of reading the counter, computed value
595  * is less than real.
596  *
597  * However, counter which grows backward is worse evil than slightly wrong
598  * value. So, let's try to guarantee that it never happens except may be
599  * the case when the MAC stats are zeroed as a result of a NIC reset.
600  */
601 static void
602 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
603 {
604 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
605 		*stat = newval;
606 }
607 
608 static int
609 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
610 {
611 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
612 	struct sfc_port *port = &sa->port;
613 	uint64_t *mac_stats;
614 	int ret;
615 
616 	sfc_adapter_lock(sa);
617 
618 	ret = sfc_port_update_mac_stats(sa);
619 	if (ret != 0)
620 		goto unlock;
621 
622 	mac_stats = port->mac_stats_buf;
623 
624 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
625 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
626 		stats->ipackets =
627 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
628 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
629 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
630 		stats->opackets =
631 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
632 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
633 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
634 		stats->ibytes =
635 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
636 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
637 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
638 		stats->obytes =
639 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
640 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
641 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
642 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
643 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
644 
645 		/* CRC is included in these stats, but shouldn't be */
646 		stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
647 		stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
648 	} else {
649 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
650 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
651 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
652 
653 		/* CRC is included in these stats, but shouldn't be */
654 		stats->ibytes -= mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
655 		stats->obytes -= mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
656 
657 		/*
658 		 * Take into account stats which are whenever supported
659 		 * on EF10. If some stat is not supported by current
660 		 * firmware variant or HW revision, it is guaranteed
661 		 * to be zero in mac_stats.
662 		 */
663 		stats->imissed =
664 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
665 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
666 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
667 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
668 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
669 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
670 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
671 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
672 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
673 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
674 		stats->ierrors =
675 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
676 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
677 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
678 		/* no oerrors counters supported on EF10 */
679 
680 		/* Exclude missed, errors and pauses from Rx packets */
681 		sfc_update_diff_stat(&port->ipackets,
682 			mac_stats[EFX_MAC_RX_PKTS] -
683 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
684 			stats->imissed - stats->ierrors);
685 		stats->ipackets = port->ipackets;
686 	}
687 
688 unlock:
689 	sfc_adapter_unlock(sa);
690 	SFC_ASSERT(ret >= 0);
691 	return -ret;
692 }
693 
694 static int
695 sfc_stats_reset(struct rte_eth_dev *dev)
696 {
697 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
698 	struct sfc_port *port = &sa->port;
699 	int rc;
700 
701 	sfc_adapter_lock(sa);
702 
703 	if (sa->state != SFC_ADAPTER_STARTED) {
704 		/*
705 		 * The operation cannot be done if port is not started; it
706 		 * will be scheduled to be done during the next port start
707 		 */
708 		port->mac_stats_reset_pending = B_TRUE;
709 		sfc_adapter_unlock(sa);
710 		return 0;
711 	}
712 
713 	rc = sfc_port_reset_mac_stats(sa);
714 	if (rc != 0)
715 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
716 
717 	sfc_adapter_unlock(sa);
718 
719 	SFC_ASSERT(rc >= 0);
720 	return -rc;
721 }
722 
723 static int
724 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
725 	       unsigned int xstats_count)
726 {
727 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
728 	struct sfc_port *port = &sa->port;
729 	uint64_t *mac_stats;
730 	int rc;
731 	unsigned int i;
732 	int nstats = 0;
733 
734 	sfc_adapter_lock(sa);
735 
736 	rc = sfc_port_update_mac_stats(sa);
737 	if (rc != 0) {
738 		SFC_ASSERT(rc > 0);
739 		nstats = -rc;
740 		goto unlock;
741 	}
742 
743 	mac_stats = port->mac_stats_buf;
744 
745 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
746 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
747 			if (xstats != NULL && nstats < (int)xstats_count) {
748 				xstats[nstats].id = nstats;
749 				xstats[nstats].value = mac_stats[i];
750 			}
751 			nstats++;
752 		}
753 	}
754 
755 unlock:
756 	sfc_adapter_unlock(sa);
757 
758 	return nstats;
759 }
760 
761 static int
762 sfc_xstats_get_names(struct rte_eth_dev *dev,
763 		     struct rte_eth_xstat_name *xstats_names,
764 		     unsigned int xstats_count)
765 {
766 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
767 	struct sfc_port *port = &sa->port;
768 	unsigned int i;
769 	unsigned int nstats = 0;
770 
771 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
772 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
773 			if (xstats_names != NULL && nstats < xstats_count)
774 				strlcpy(xstats_names[nstats].name,
775 					efx_mac_stat_name(sa->nic, i),
776 					sizeof(xstats_names[0].name));
777 			nstats++;
778 		}
779 	}
780 
781 	return nstats;
782 }
783 
784 static int
785 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
786 		     uint64_t *values, unsigned int n)
787 {
788 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
789 	struct sfc_port *port = &sa->port;
790 	uint64_t *mac_stats;
791 	unsigned int i;
792 	int ret;
793 	int rc;
794 
795 	if (unlikely(ids == NULL || values == NULL))
796 		return -EINVAL;
797 
798 	sfc_adapter_lock(sa);
799 
800 	rc = sfc_port_update_mac_stats(sa);
801 	if (rc != 0) {
802 		SFC_ASSERT(rc > 0);
803 		ret = -rc;
804 		goto unlock;
805 	}
806 
807 	mac_stats = port->mac_stats_buf;
808 
809 	SFC_ASSERT(port->mac_stats_nb_supported <=
810 		   RTE_DIM(port->mac_stats_by_id));
811 
812 	for (i = 0; i < n; i++) {
813 		if (ids[i] < port->mac_stats_nb_supported) {
814 			values[i] = mac_stats[port->mac_stats_by_id[ids[i]]];
815 		} else {
816 			ret = i;
817 			goto unlock;
818 		}
819 	}
820 
821 	ret = n;
822 
823 unlock:
824 	sfc_adapter_unlock(sa);
825 
826 	return ret;
827 }
828 
829 static int
830 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
831 			   struct rte_eth_xstat_name *xstats_names,
832 			   const uint64_t *ids, unsigned int size)
833 {
834 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
835 	struct sfc_port *port = &sa->port;
836 	unsigned int nb_supported;
837 	unsigned int i;
838 
839 	if (unlikely(xstats_names == NULL && ids != NULL) ||
840 	    unlikely(xstats_names != NULL && ids == NULL))
841 		return -EINVAL;
842 
843 	sfc_adapter_lock(sa);
844 
845 	if (unlikely(xstats_names == NULL && ids == NULL)) {
846 		nb_supported = port->mac_stats_nb_supported;
847 		sfc_adapter_unlock(sa);
848 		return nb_supported;
849 	}
850 
851 	SFC_ASSERT(port->mac_stats_nb_supported <=
852 		   RTE_DIM(port->mac_stats_by_id));
853 
854 	for (i = 0; i < size; i++) {
855 		if (ids[i] < port->mac_stats_nb_supported) {
856 			strlcpy(xstats_names[i].name,
857 				efx_mac_stat_name(sa->nic,
858 						 port->mac_stats_by_id[ids[i]]),
859 				sizeof(xstats_names[0].name));
860 		} else {
861 			sfc_adapter_unlock(sa);
862 			return i;
863 		}
864 	}
865 
866 	sfc_adapter_unlock(sa);
867 
868 	return size;
869 }
870 
871 static int
872 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
873 {
874 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
875 	unsigned int wanted_fc, link_fc;
876 
877 	memset(fc_conf, 0, sizeof(*fc_conf));
878 
879 	sfc_adapter_lock(sa);
880 
881 	if (sa->state == SFC_ADAPTER_STARTED)
882 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
883 	else
884 		link_fc = sa->port.flow_ctrl;
885 
886 	switch (link_fc) {
887 	case 0:
888 		fc_conf->mode = RTE_FC_NONE;
889 		break;
890 	case EFX_FCNTL_RESPOND:
891 		fc_conf->mode = RTE_FC_RX_PAUSE;
892 		break;
893 	case EFX_FCNTL_GENERATE:
894 		fc_conf->mode = RTE_FC_TX_PAUSE;
895 		break;
896 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
897 		fc_conf->mode = RTE_FC_FULL;
898 		break;
899 	default:
900 		sfc_err(sa, "%s: unexpected flow control value %#x",
901 			__func__, link_fc);
902 	}
903 
904 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
905 
906 	sfc_adapter_unlock(sa);
907 
908 	return 0;
909 }
910 
911 static int
912 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
913 {
914 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
915 	struct sfc_port *port = &sa->port;
916 	unsigned int fcntl;
917 	int rc;
918 
919 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
920 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
921 	    fc_conf->mac_ctrl_frame_fwd != 0) {
922 		sfc_err(sa, "unsupported flow control settings specified");
923 		rc = EINVAL;
924 		goto fail_inval;
925 	}
926 
927 	switch (fc_conf->mode) {
928 	case RTE_FC_NONE:
929 		fcntl = 0;
930 		break;
931 	case RTE_FC_RX_PAUSE:
932 		fcntl = EFX_FCNTL_RESPOND;
933 		break;
934 	case RTE_FC_TX_PAUSE:
935 		fcntl = EFX_FCNTL_GENERATE;
936 		break;
937 	case RTE_FC_FULL:
938 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
939 		break;
940 	default:
941 		rc = EINVAL;
942 		goto fail_inval;
943 	}
944 
945 	sfc_adapter_lock(sa);
946 
947 	if (sa->state == SFC_ADAPTER_STARTED) {
948 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
949 		if (rc != 0)
950 			goto fail_mac_fcntl_set;
951 	}
952 
953 	port->flow_ctrl = fcntl;
954 	port->flow_ctrl_autoneg = fc_conf->autoneg;
955 
956 	sfc_adapter_unlock(sa);
957 
958 	return 0;
959 
960 fail_mac_fcntl_set:
961 	sfc_adapter_unlock(sa);
962 fail_inval:
963 	SFC_ASSERT(rc > 0);
964 	return -rc;
965 }
966 
967 static int
968 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
969 {
970 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
971 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
972 	boolean_t scatter_enabled;
973 	const char *error;
974 	unsigned int i;
975 
976 	for (i = 0; i < sas->rxq_count; i++) {
977 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
978 			continue;
979 
980 		scatter_enabled = (sas->rxq_info[i].type_flags &
981 				   EFX_RXQ_FLAG_SCATTER);
982 
983 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
984 					  encp->enc_rx_prefix_size,
985 					  scatter_enabled,
986 					  encp->enc_rx_scatter_max, &error)) {
987 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
988 				error);
989 			return EINVAL;
990 		}
991 	}
992 
993 	return 0;
994 }
995 
996 static int
997 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
998 {
999 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1000 	size_t pdu = EFX_MAC_PDU(mtu);
1001 	size_t old_pdu;
1002 	int rc;
1003 
1004 	sfc_log_init(sa, "mtu=%u", mtu);
1005 
1006 	rc = EINVAL;
1007 	if (pdu < EFX_MAC_PDU_MIN) {
1008 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1009 			(unsigned int)mtu, (unsigned int)pdu,
1010 			EFX_MAC_PDU_MIN);
1011 		goto fail_inval;
1012 	}
1013 	if (pdu > EFX_MAC_PDU_MAX) {
1014 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1015 			(unsigned int)mtu, (unsigned int)pdu,
1016 			(unsigned int)EFX_MAC_PDU_MAX);
1017 		goto fail_inval;
1018 	}
1019 
1020 	sfc_adapter_lock(sa);
1021 
1022 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1023 	if (rc != 0)
1024 		goto fail_check_scatter;
1025 
1026 	if (pdu != sa->port.pdu) {
1027 		if (sa->state == SFC_ADAPTER_STARTED) {
1028 			sfc_stop(sa);
1029 
1030 			old_pdu = sa->port.pdu;
1031 			sa->port.pdu = pdu;
1032 			rc = sfc_start(sa);
1033 			if (rc != 0)
1034 				goto fail_start;
1035 		} else {
1036 			sa->port.pdu = pdu;
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * The driver does not use it, but other PMDs update jumbo frame
1042 	 * flag and max_rx_pkt_len when MTU is set.
1043 	 */
1044 	if (mtu > RTE_ETHER_MTU) {
1045 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1046 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1047 	}
1048 
1049 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1050 
1051 	sfc_adapter_unlock(sa);
1052 
1053 	sfc_log_init(sa, "done");
1054 	return 0;
1055 
1056 fail_start:
1057 	sa->port.pdu = old_pdu;
1058 	if (sfc_start(sa) != 0)
1059 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1060 			"PDU max size - port is stopped",
1061 			(unsigned int)pdu, (unsigned int)old_pdu);
1062 
1063 fail_check_scatter:
1064 	sfc_adapter_unlock(sa);
1065 
1066 fail_inval:
1067 	sfc_log_init(sa, "failed %d", rc);
1068 	SFC_ASSERT(rc > 0);
1069 	return -rc;
1070 }
1071 static int
1072 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1073 {
1074 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1075 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1076 	struct sfc_port *port = &sa->port;
1077 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1078 	int rc = 0;
1079 
1080 	sfc_adapter_lock(sa);
1081 
1082 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1083 		goto unlock;
1084 
1085 	/*
1086 	 * Copy the address to the device private data so that
1087 	 * it could be recalled in the case of adapter restart.
1088 	 */
1089 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1090 
1091 	/*
1092 	 * Neither of the two following checks can return
1093 	 * an error. The new MAC address is preserved in
1094 	 * the device private data and can be activated
1095 	 * on the next port start if the user prevents
1096 	 * isolated mode from being enabled.
1097 	 */
1098 	if (sfc_sa2shared(sa)->isolated) {
1099 		sfc_warn(sa, "isolated mode is active on the port");
1100 		sfc_warn(sa, "will not set MAC address");
1101 		goto unlock;
1102 	}
1103 
1104 	if (sa->state != SFC_ADAPTER_STARTED) {
1105 		sfc_notice(sa, "the port is not started");
1106 		sfc_notice(sa, "the new MAC address will be set on port start");
1107 
1108 		goto unlock;
1109 	}
1110 
1111 	if (encp->enc_allow_set_mac_with_installed_filters) {
1112 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1113 		if (rc != 0) {
1114 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1115 			goto unlock;
1116 		}
1117 
1118 		/*
1119 		 * Changing the MAC address by means of MCDI request
1120 		 * has no effect on received traffic, therefore
1121 		 * we also need to update unicast filters
1122 		 */
1123 		rc = sfc_set_rx_mode_unchecked(sa);
1124 		if (rc != 0) {
1125 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1126 			/* Rollback the old address */
1127 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1128 			(void)sfc_set_rx_mode_unchecked(sa);
1129 		}
1130 	} else {
1131 		sfc_warn(sa, "cannot set MAC address with filters installed");
1132 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1133 		sfc_warn(sa, "(some traffic may be dropped)");
1134 
1135 		/*
1136 		 * Since setting MAC address with filters installed is not
1137 		 * allowed on the adapter, the new MAC address will be set
1138 		 * by means of adapter restart. sfc_start() shall retrieve
1139 		 * the new address from the device private data and set it.
1140 		 */
1141 		sfc_stop(sa);
1142 		rc = sfc_start(sa);
1143 		if (rc != 0)
1144 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1145 	}
1146 
1147 unlock:
1148 	if (rc != 0)
1149 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1150 
1151 	sfc_adapter_unlock(sa);
1152 
1153 	SFC_ASSERT(rc >= 0);
1154 	return -rc;
1155 }
1156 
1157 
1158 static int
1159 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1160 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1161 {
1162 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1163 	struct sfc_port *port = &sa->port;
1164 	uint8_t *mc_addrs = port->mcast_addrs;
1165 	int rc;
1166 	unsigned int i;
1167 
1168 	if (sfc_sa2shared(sa)->isolated) {
1169 		sfc_err(sa, "isolated mode is active on the port");
1170 		sfc_err(sa, "will not set multicast address list");
1171 		return -ENOTSUP;
1172 	}
1173 
1174 	if (mc_addrs == NULL)
1175 		return -ENOBUFS;
1176 
1177 	if (nb_mc_addr > port->max_mcast_addrs) {
1178 		sfc_err(sa, "too many multicast addresses: %u > %u",
1179 			 nb_mc_addr, port->max_mcast_addrs);
1180 		return -EINVAL;
1181 	}
1182 
1183 	for (i = 0; i < nb_mc_addr; ++i) {
1184 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1185 				 EFX_MAC_ADDR_LEN);
1186 		mc_addrs += EFX_MAC_ADDR_LEN;
1187 	}
1188 
1189 	port->nb_mcast_addrs = nb_mc_addr;
1190 
1191 	if (sa->state != SFC_ADAPTER_STARTED)
1192 		return 0;
1193 
1194 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1195 					port->nb_mcast_addrs);
1196 	if (rc != 0)
1197 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1198 
1199 	SFC_ASSERT(rc >= 0);
1200 	return -rc;
1201 }
1202 
1203 /*
1204  * The function is used by the secondary process as well. It must not
1205  * use any process-local pointers from the adapter data.
1206  */
1207 static void
1208 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1209 		      struct rte_eth_rxq_info *qinfo)
1210 {
1211 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1212 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1213 	struct sfc_rxq_info *rxq_info;
1214 
1215 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1216 
1217 	qinfo->mp = rxq_info->refill_mb_pool;
1218 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1219 	qinfo->conf.rx_drop_en = 1;
1220 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1221 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1222 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1223 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1224 		qinfo->scattered_rx = 1;
1225 	}
1226 	qinfo->nb_desc = rxq_info->entries;
1227 }
1228 
1229 /*
1230  * The function is used by the secondary process as well. It must not
1231  * use any process-local pointers from the adapter data.
1232  */
1233 static void
1234 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1235 		      struct rte_eth_txq_info *qinfo)
1236 {
1237 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1238 	struct sfc_txq_info *txq_info;
1239 
1240 	SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1241 
1242 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1243 
1244 	memset(qinfo, 0, sizeof(*qinfo));
1245 
1246 	qinfo->conf.offloads = txq_info->offloads;
1247 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1248 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1249 	qinfo->nb_desc = txq_info->entries;
1250 }
1251 
1252 /*
1253  * The function is used by the secondary process as well. It must not
1254  * use any process-local pointers from the adapter data.
1255  */
1256 static uint32_t
1257 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1258 {
1259 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1260 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1261 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1262 	struct sfc_rxq_info *rxq_info;
1263 
1264 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1265 
1266 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1267 		return 0;
1268 
1269 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1270 }
1271 
1272 /*
1273  * The function is used by the secondary process as well. It must not
1274  * use any process-local pointers from the adapter data.
1275  */
1276 static int
1277 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1278 {
1279 	struct sfc_dp_rxq *dp_rxq = queue;
1280 	const struct sfc_dp_rx *dp_rx;
1281 
1282 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1283 
1284 	return offset < dp_rx->qdesc_npending(dp_rxq);
1285 }
1286 
1287 /*
1288  * The function is used by the secondary process as well. It must not
1289  * use any process-local pointers from the adapter data.
1290  */
1291 static int
1292 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1293 {
1294 	struct sfc_dp_rxq *dp_rxq = queue;
1295 	const struct sfc_dp_rx *dp_rx;
1296 
1297 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1298 
1299 	return dp_rx->qdesc_status(dp_rxq, offset);
1300 }
1301 
1302 /*
1303  * The function is used by the secondary process as well. It must not
1304  * use any process-local pointers from the adapter data.
1305  */
1306 static int
1307 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1308 {
1309 	struct sfc_dp_txq *dp_txq = queue;
1310 	const struct sfc_dp_tx *dp_tx;
1311 
1312 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1313 
1314 	return dp_tx->qdesc_status(dp_txq, offset);
1315 }
1316 
1317 static int
1318 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1319 {
1320 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1321 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1322 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1323 	struct sfc_rxq_info *rxq_info;
1324 	sfc_sw_index_t sw_index;
1325 	int rc;
1326 
1327 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1328 
1329 	sfc_adapter_lock(sa);
1330 
1331 	rc = EINVAL;
1332 	if (sa->state != SFC_ADAPTER_STARTED)
1333 		goto fail_not_started;
1334 
1335 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1336 	if (rxq_info->state != SFC_RXQ_INITIALIZED)
1337 		goto fail_not_setup;
1338 
1339 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1340 	rc = sfc_rx_qstart(sa, sw_index);
1341 	if (rc != 0)
1342 		goto fail_rx_qstart;
1343 
1344 	rxq_info->deferred_started = B_TRUE;
1345 
1346 	sfc_adapter_unlock(sa);
1347 
1348 	return 0;
1349 
1350 fail_rx_qstart:
1351 fail_not_setup:
1352 fail_not_started:
1353 	sfc_adapter_unlock(sa);
1354 	SFC_ASSERT(rc > 0);
1355 	return -rc;
1356 }
1357 
1358 static int
1359 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1360 {
1361 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1362 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1363 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1364 	struct sfc_rxq_info *rxq_info;
1365 	sfc_sw_index_t sw_index;
1366 
1367 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1368 
1369 	sfc_adapter_lock(sa);
1370 
1371 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1372 	sfc_rx_qstop(sa, sw_index);
1373 
1374 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1375 	rxq_info->deferred_started = B_FALSE;
1376 
1377 	sfc_adapter_unlock(sa);
1378 
1379 	return 0;
1380 }
1381 
1382 static int
1383 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1384 {
1385 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1386 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1387 	struct sfc_txq_info *txq_info;
1388 	sfc_sw_index_t sw_index;
1389 	int rc;
1390 
1391 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1392 
1393 	sfc_adapter_lock(sa);
1394 
1395 	rc = EINVAL;
1396 	if (sa->state != SFC_ADAPTER_STARTED)
1397 		goto fail_not_started;
1398 
1399 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1400 	if (txq_info->state != SFC_TXQ_INITIALIZED)
1401 		goto fail_not_setup;
1402 
1403 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1404 	rc = sfc_tx_qstart(sa, sw_index);
1405 	if (rc != 0)
1406 		goto fail_tx_qstart;
1407 
1408 	txq_info->deferred_started = B_TRUE;
1409 
1410 	sfc_adapter_unlock(sa);
1411 	return 0;
1412 
1413 fail_tx_qstart:
1414 
1415 fail_not_setup:
1416 fail_not_started:
1417 	sfc_adapter_unlock(sa);
1418 	SFC_ASSERT(rc > 0);
1419 	return -rc;
1420 }
1421 
1422 static int
1423 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1424 {
1425 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1426 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1427 	struct sfc_txq_info *txq_info;
1428 	sfc_sw_index_t sw_index;
1429 
1430 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1431 
1432 	sfc_adapter_lock(sa);
1433 
1434 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1435 	sfc_tx_qstop(sa, sw_index);
1436 
1437 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1438 	txq_info->deferred_started = B_FALSE;
1439 
1440 	sfc_adapter_unlock(sa);
1441 	return 0;
1442 }
1443 
1444 static efx_tunnel_protocol_t
1445 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1446 {
1447 	switch (rte_type) {
1448 	case RTE_TUNNEL_TYPE_VXLAN:
1449 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1450 	case RTE_TUNNEL_TYPE_GENEVE:
1451 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1452 	default:
1453 		return EFX_TUNNEL_NPROTOS;
1454 	}
1455 }
1456 
1457 enum sfc_udp_tunnel_op_e {
1458 	SFC_UDP_TUNNEL_ADD_PORT,
1459 	SFC_UDP_TUNNEL_DEL_PORT,
1460 };
1461 
1462 static int
1463 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1464 		      struct rte_eth_udp_tunnel *tunnel_udp,
1465 		      enum sfc_udp_tunnel_op_e op)
1466 {
1467 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1468 	efx_tunnel_protocol_t tunnel_proto;
1469 	int rc;
1470 
1471 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1472 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1473 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1474 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1475 
1476 	tunnel_proto =
1477 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1478 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1479 		rc = ENOTSUP;
1480 		goto fail_bad_proto;
1481 	}
1482 
1483 	sfc_adapter_lock(sa);
1484 
1485 	switch (op) {
1486 	case SFC_UDP_TUNNEL_ADD_PORT:
1487 		rc = efx_tunnel_config_udp_add(sa->nic,
1488 					       tunnel_udp->udp_port,
1489 					       tunnel_proto);
1490 		break;
1491 	case SFC_UDP_TUNNEL_DEL_PORT:
1492 		rc = efx_tunnel_config_udp_remove(sa->nic,
1493 						  tunnel_udp->udp_port,
1494 						  tunnel_proto);
1495 		break;
1496 	default:
1497 		rc = EINVAL;
1498 		goto fail_bad_op;
1499 	}
1500 
1501 	if (rc != 0)
1502 		goto fail_op;
1503 
1504 	if (sa->state == SFC_ADAPTER_STARTED) {
1505 		rc = efx_tunnel_reconfigure(sa->nic);
1506 		if (rc == EAGAIN) {
1507 			/*
1508 			 * Configuration is accepted by FW and MC reboot
1509 			 * is initiated to apply the changes. MC reboot
1510 			 * will be handled in a usual way (MC reboot
1511 			 * event on management event queue and adapter
1512 			 * restart).
1513 			 */
1514 			rc = 0;
1515 		} else if (rc != 0) {
1516 			goto fail_reconfigure;
1517 		}
1518 	}
1519 
1520 	sfc_adapter_unlock(sa);
1521 	return 0;
1522 
1523 fail_reconfigure:
1524 	/* Remove/restore entry since the change makes the trouble */
1525 	switch (op) {
1526 	case SFC_UDP_TUNNEL_ADD_PORT:
1527 		(void)efx_tunnel_config_udp_remove(sa->nic,
1528 						   tunnel_udp->udp_port,
1529 						   tunnel_proto);
1530 		break;
1531 	case SFC_UDP_TUNNEL_DEL_PORT:
1532 		(void)efx_tunnel_config_udp_add(sa->nic,
1533 						tunnel_udp->udp_port,
1534 						tunnel_proto);
1535 		break;
1536 	}
1537 
1538 fail_op:
1539 fail_bad_op:
1540 	sfc_adapter_unlock(sa);
1541 
1542 fail_bad_proto:
1543 	SFC_ASSERT(rc > 0);
1544 	return -rc;
1545 }
1546 
1547 static int
1548 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1549 			    struct rte_eth_udp_tunnel *tunnel_udp)
1550 {
1551 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1552 }
1553 
1554 static int
1555 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1556 			    struct rte_eth_udp_tunnel *tunnel_udp)
1557 {
1558 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1559 }
1560 
1561 /*
1562  * The function is used by the secondary process as well. It must not
1563  * use any process-local pointers from the adapter data.
1564  */
1565 static int
1566 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1567 			  struct rte_eth_rss_conf *rss_conf)
1568 {
1569 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1570 	struct sfc_rss *rss = &sas->rss;
1571 
1572 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1573 		return -ENOTSUP;
1574 
1575 	/*
1576 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1577 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1578 	 * flags which corresponds to the active EFX configuration stored
1579 	 * locally in 'sfc_adapter' and kept up-to-date
1580 	 */
1581 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1582 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1583 	if (rss_conf->rss_key != NULL)
1584 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1585 
1586 	return 0;
1587 }
1588 
1589 static int
1590 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1591 			struct rte_eth_rss_conf *rss_conf)
1592 {
1593 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1594 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1595 	unsigned int efx_hash_types;
1596 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1597 	unsigned int n_contexts;
1598 	unsigned int mode_i = 0;
1599 	unsigned int key_i = 0;
1600 	unsigned int i = 0;
1601 	int rc = 0;
1602 
1603 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1604 
1605 	if (sfc_sa2shared(sa)->isolated)
1606 		return -ENOTSUP;
1607 
1608 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1609 		sfc_err(sa, "RSS is not available");
1610 		return -ENOTSUP;
1611 	}
1612 
1613 	if (rss->channels == 0) {
1614 		sfc_err(sa, "RSS is not configured");
1615 		return -EINVAL;
1616 	}
1617 
1618 	if ((rss_conf->rss_key != NULL) &&
1619 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1620 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1621 			sizeof(rss->key));
1622 		return -EINVAL;
1623 	}
1624 
1625 	sfc_adapter_lock(sa);
1626 
1627 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1628 	if (rc != 0)
1629 		goto fail_rx_hf_rte_to_efx;
1630 
1631 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1632 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1633 					   rss->hash_alg, efx_hash_types,
1634 					   B_TRUE);
1635 		if (rc != 0)
1636 			goto fail_scale_mode_set;
1637 	}
1638 
1639 	if (rss_conf->rss_key != NULL) {
1640 		if (sa->state == SFC_ADAPTER_STARTED) {
1641 			for (key_i = 0; key_i < n_contexts; key_i++) {
1642 				rc = efx_rx_scale_key_set(sa->nic,
1643 							  contexts[key_i],
1644 							  rss_conf->rss_key,
1645 							  sizeof(rss->key));
1646 				if (rc != 0)
1647 					goto fail_scale_key_set;
1648 			}
1649 		}
1650 
1651 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1652 	}
1653 
1654 	rss->hash_types = efx_hash_types;
1655 
1656 	sfc_adapter_unlock(sa);
1657 
1658 	return 0;
1659 
1660 fail_scale_key_set:
1661 	for (i = 0; i < key_i; i++) {
1662 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1663 					 sizeof(rss->key)) != 0)
1664 			sfc_err(sa, "failed to restore RSS key");
1665 	}
1666 
1667 fail_scale_mode_set:
1668 	for (i = 0; i < mode_i; i++) {
1669 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1670 					  EFX_RX_HASHALG_TOEPLITZ,
1671 					  rss->hash_types, B_TRUE) != 0)
1672 			sfc_err(sa, "failed to restore RSS mode");
1673 	}
1674 
1675 fail_rx_hf_rte_to_efx:
1676 	sfc_adapter_unlock(sa);
1677 	return -rc;
1678 }
1679 
1680 /*
1681  * The function is used by the secondary process as well. It must not
1682  * use any process-local pointers from the adapter data.
1683  */
1684 static int
1685 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1686 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1687 		       uint16_t reta_size)
1688 {
1689 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1690 	struct sfc_rss *rss = &sas->rss;
1691 	int entry;
1692 
1693 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1694 		return -ENOTSUP;
1695 
1696 	if (rss->channels == 0)
1697 		return -EINVAL;
1698 
1699 	if (reta_size != EFX_RSS_TBL_SIZE)
1700 		return -EINVAL;
1701 
1702 	for (entry = 0; entry < reta_size; entry++) {
1703 		int grp = entry / RTE_RETA_GROUP_SIZE;
1704 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1705 
1706 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1707 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 static int
1714 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1715 			struct rte_eth_rss_reta_entry64 *reta_conf,
1716 			uint16_t reta_size)
1717 {
1718 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1719 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1720 	unsigned int *rss_tbl_new;
1721 	uint16_t entry;
1722 	int rc = 0;
1723 
1724 
1725 	if (sfc_sa2shared(sa)->isolated)
1726 		return -ENOTSUP;
1727 
1728 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1729 		sfc_err(sa, "RSS is not available");
1730 		return -ENOTSUP;
1731 	}
1732 
1733 	if (rss->channels == 0) {
1734 		sfc_err(sa, "RSS is not configured");
1735 		return -EINVAL;
1736 	}
1737 
1738 	if (reta_size != EFX_RSS_TBL_SIZE) {
1739 		sfc_err(sa, "RETA size is wrong (should be %u)",
1740 			EFX_RSS_TBL_SIZE);
1741 		return -EINVAL;
1742 	}
1743 
1744 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1745 	if (rss_tbl_new == NULL)
1746 		return -ENOMEM;
1747 
1748 	sfc_adapter_lock(sa);
1749 
1750 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1751 
1752 	for (entry = 0; entry < reta_size; entry++) {
1753 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1754 		struct rte_eth_rss_reta_entry64 *grp;
1755 
1756 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1757 
1758 		if (grp->mask & (1ull << grp_idx)) {
1759 			if (grp->reta[grp_idx] >= rss->channels) {
1760 				rc = EINVAL;
1761 				goto bad_reta_entry;
1762 			}
1763 			rss_tbl_new[entry] = grp->reta[grp_idx];
1764 		}
1765 	}
1766 
1767 	if (sa->state == SFC_ADAPTER_STARTED) {
1768 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1769 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1770 		if (rc != 0)
1771 			goto fail_scale_tbl_set;
1772 	}
1773 
1774 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1775 
1776 fail_scale_tbl_set:
1777 bad_reta_entry:
1778 	sfc_adapter_unlock(sa);
1779 
1780 	rte_free(rss_tbl_new);
1781 
1782 	SFC_ASSERT(rc >= 0);
1783 	return -rc;
1784 }
1785 
1786 static int
1787 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1788 		     const struct rte_flow_ops **ops)
1789 {
1790 	*ops = &sfc_flow_ops;
1791 	return 0;
1792 }
1793 
1794 static int
1795 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1796 {
1797 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1798 
1799 	/*
1800 	 * If Rx datapath does not provide callback to check mempool,
1801 	 * all pools are supported.
1802 	 */
1803 	if (sap->dp_rx->pool_ops_supported == NULL)
1804 		return 1;
1805 
1806 	return sap->dp_rx->pool_ops_supported(pool);
1807 }
1808 
1809 static int
1810 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1811 {
1812 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1813 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1814 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1815 	struct sfc_rxq_info *rxq_info;
1816 
1817 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1818 
1819 	return sap->dp_rx->intr_enable(rxq_info->dp);
1820 }
1821 
1822 static int
1823 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1824 {
1825 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1826 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1827 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1828 	struct sfc_rxq_info *rxq_info;
1829 
1830 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1831 
1832 	return sap->dp_rx->intr_disable(rxq_info->dp);
1833 }
1834 
1835 static const struct eth_dev_ops sfc_eth_dev_ops = {
1836 	.dev_configure			= sfc_dev_configure,
1837 	.dev_start			= sfc_dev_start,
1838 	.dev_stop			= sfc_dev_stop,
1839 	.dev_set_link_up		= sfc_dev_set_link_up,
1840 	.dev_set_link_down		= sfc_dev_set_link_down,
1841 	.dev_close			= sfc_dev_close,
1842 	.promiscuous_enable		= sfc_dev_promisc_enable,
1843 	.promiscuous_disable		= sfc_dev_promisc_disable,
1844 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1845 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1846 	.link_update			= sfc_dev_link_update,
1847 	.stats_get			= sfc_stats_get,
1848 	.stats_reset			= sfc_stats_reset,
1849 	.xstats_get			= sfc_xstats_get,
1850 	.xstats_reset			= sfc_stats_reset,
1851 	.xstats_get_names		= sfc_xstats_get_names,
1852 	.dev_infos_get			= sfc_dev_infos_get,
1853 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1854 	.mtu_set			= sfc_dev_set_mtu,
1855 	.rx_queue_start			= sfc_rx_queue_start,
1856 	.rx_queue_stop			= sfc_rx_queue_stop,
1857 	.tx_queue_start			= sfc_tx_queue_start,
1858 	.tx_queue_stop			= sfc_tx_queue_stop,
1859 	.rx_queue_setup			= sfc_rx_queue_setup,
1860 	.rx_queue_release		= sfc_rx_queue_release,
1861 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1862 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1863 	.tx_queue_setup			= sfc_tx_queue_setup,
1864 	.tx_queue_release		= sfc_tx_queue_release,
1865 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1866 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1867 	.mac_addr_set			= sfc_mac_addr_set,
1868 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1869 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1870 	.reta_update			= sfc_dev_rss_reta_update,
1871 	.reta_query			= sfc_dev_rss_reta_query,
1872 	.rss_hash_update		= sfc_dev_rss_hash_update,
1873 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1874 	.flow_ops_get			= sfc_dev_flow_ops_get,
1875 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1876 	.rxq_info_get			= sfc_rx_queue_info_get,
1877 	.txq_info_get			= sfc_tx_queue_info_get,
1878 	.fw_version_get			= sfc_fw_version_get,
1879 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1880 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1881 	.pool_ops_supported		= sfc_pool_ops_supported,
1882 };
1883 
1884 /**
1885  * Duplicate a string in potentially shared memory required for
1886  * multi-process support.
1887  *
1888  * strdup() allocates from process-local heap/memory.
1889  */
1890 static char *
1891 sfc_strdup(const char *str)
1892 {
1893 	size_t size;
1894 	char *copy;
1895 
1896 	if (str == NULL)
1897 		return NULL;
1898 
1899 	size = strlen(str) + 1;
1900 	copy = rte_malloc(__func__, size, 0);
1901 	if (copy != NULL)
1902 		rte_memcpy(copy, str, size);
1903 
1904 	return copy;
1905 }
1906 
1907 static int
1908 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1909 {
1910 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1911 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1912 	const struct sfc_dp_rx *dp_rx;
1913 	const struct sfc_dp_tx *dp_tx;
1914 	const efx_nic_cfg_t *encp;
1915 	unsigned int avail_caps = 0;
1916 	const char *rx_name = NULL;
1917 	const char *tx_name = NULL;
1918 	int rc;
1919 
1920 	switch (sa->family) {
1921 	case EFX_FAMILY_HUNTINGTON:
1922 	case EFX_FAMILY_MEDFORD:
1923 	case EFX_FAMILY_MEDFORD2:
1924 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1925 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
1926 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
1927 		break;
1928 	case EFX_FAMILY_RIVERHEAD:
1929 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
1930 		break;
1931 	default:
1932 		break;
1933 	}
1934 
1935 	encp = efx_nic_cfg_get(sa->nic);
1936 	if (encp->enc_rx_es_super_buffer_supported)
1937 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1938 
1939 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1940 				sfc_kvarg_string_handler, &rx_name);
1941 	if (rc != 0)
1942 		goto fail_kvarg_rx_datapath;
1943 
1944 	if (rx_name != NULL) {
1945 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1946 		if (dp_rx == NULL) {
1947 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1948 			rc = ENOENT;
1949 			goto fail_dp_rx;
1950 		}
1951 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1952 			sfc_err(sa,
1953 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1954 				rx_name);
1955 			rc = EINVAL;
1956 			goto fail_dp_rx_caps;
1957 		}
1958 	} else {
1959 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1960 		if (dp_rx == NULL) {
1961 			sfc_err(sa, "Rx datapath by caps %#x not found",
1962 				avail_caps);
1963 			rc = ENOENT;
1964 			goto fail_dp_rx;
1965 		}
1966 	}
1967 
1968 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1969 	if (sas->dp_rx_name == NULL) {
1970 		rc = ENOMEM;
1971 		goto fail_dp_rx_name;
1972 	}
1973 
1974 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1975 
1976 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1977 				sfc_kvarg_string_handler, &tx_name);
1978 	if (rc != 0)
1979 		goto fail_kvarg_tx_datapath;
1980 
1981 	if (tx_name != NULL) {
1982 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1983 		if (dp_tx == NULL) {
1984 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1985 			rc = ENOENT;
1986 			goto fail_dp_tx;
1987 		}
1988 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1989 			sfc_err(sa,
1990 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1991 				tx_name);
1992 			rc = EINVAL;
1993 			goto fail_dp_tx_caps;
1994 		}
1995 	} else {
1996 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1997 		if (dp_tx == NULL) {
1998 			sfc_err(sa, "Tx datapath by caps %#x not found",
1999 				avail_caps);
2000 			rc = ENOENT;
2001 			goto fail_dp_tx;
2002 		}
2003 	}
2004 
2005 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2006 	if (sas->dp_tx_name == NULL) {
2007 		rc = ENOMEM;
2008 		goto fail_dp_tx_name;
2009 	}
2010 
2011 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2012 
2013 	sa->priv.dp_rx = dp_rx;
2014 	sa->priv.dp_tx = dp_tx;
2015 
2016 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2017 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2018 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2019 
2020 	dev->rx_queue_count = sfc_rx_queue_count;
2021 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2022 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2023 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2024 	dev->dev_ops = &sfc_eth_dev_ops;
2025 
2026 	return 0;
2027 
2028 fail_dp_tx_name:
2029 fail_dp_tx_caps:
2030 fail_dp_tx:
2031 fail_kvarg_tx_datapath:
2032 	rte_free(sas->dp_rx_name);
2033 	sas->dp_rx_name = NULL;
2034 
2035 fail_dp_rx_name:
2036 fail_dp_rx_caps:
2037 fail_dp_rx:
2038 fail_kvarg_rx_datapath:
2039 	return rc;
2040 }
2041 
2042 static void
2043 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2044 {
2045 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2046 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2047 
2048 	dev->dev_ops = NULL;
2049 	dev->tx_pkt_prepare = NULL;
2050 	dev->rx_pkt_burst = NULL;
2051 	dev->tx_pkt_burst = NULL;
2052 
2053 	rte_free(sas->dp_tx_name);
2054 	sas->dp_tx_name = NULL;
2055 	sa->priv.dp_tx = NULL;
2056 
2057 	rte_free(sas->dp_rx_name);
2058 	sas->dp_rx_name = NULL;
2059 	sa->priv.dp_rx = NULL;
2060 }
2061 
2062 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2063 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2064 	.reta_query			= sfc_dev_rss_reta_query,
2065 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2066 	.rxq_info_get			= sfc_rx_queue_info_get,
2067 	.txq_info_get			= sfc_tx_queue_info_get,
2068 };
2069 
2070 static int
2071 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2072 {
2073 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2074 	struct sfc_adapter_priv *sap;
2075 	const struct sfc_dp_rx *dp_rx;
2076 	const struct sfc_dp_tx *dp_tx;
2077 	int rc;
2078 
2079 	/*
2080 	 * Allocate process private data from heap, since it should not
2081 	 * be located in shared memory allocated using rte_malloc() API.
2082 	 */
2083 	sap = calloc(1, sizeof(*sap));
2084 	if (sap == NULL) {
2085 		rc = ENOMEM;
2086 		goto fail_alloc_priv;
2087 	}
2088 
2089 	sap->logtype_main = logtype_main;
2090 
2091 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2092 	if (dp_rx == NULL) {
2093 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2094 			"cannot find %s Rx datapath", sas->dp_rx_name);
2095 		rc = ENOENT;
2096 		goto fail_dp_rx;
2097 	}
2098 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2099 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2100 			"%s Rx datapath does not support multi-process",
2101 			sas->dp_rx_name);
2102 		rc = EINVAL;
2103 		goto fail_dp_rx_multi_process;
2104 	}
2105 
2106 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2107 	if (dp_tx == NULL) {
2108 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2109 			"cannot find %s Tx datapath", sas->dp_tx_name);
2110 		rc = ENOENT;
2111 		goto fail_dp_tx;
2112 	}
2113 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2114 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2115 			"%s Tx datapath does not support multi-process",
2116 			sas->dp_tx_name);
2117 		rc = EINVAL;
2118 		goto fail_dp_tx_multi_process;
2119 	}
2120 
2121 	sap->dp_rx = dp_rx;
2122 	sap->dp_tx = dp_tx;
2123 
2124 	dev->process_private = sap;
2125 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2126 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2127 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2128 	dev->rx_queue_count = sfc_rx_queue_count;
2129 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2130 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2131 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2132 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2133 
2134 	return 0;
2135 
2136 fail_dp_tx_multi_process:
2137 fail_dp_tx:
2138 fail_dp_rx_multi_process:
2139 fail_dp_rx:
2140 	free(sap);
2141 
2142 fail_alloc_priv:
2143 	return rc;
2144 }
2145 
2146 static void
2147 sfc_register_dp(void)
2148 {
2149 	/* Register once */
2150 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2151 		/* Prefer EF10 datapath */
2152 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2153 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2154 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2155 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2156 
2157 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2158 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2159 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2160 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2161 	}
2162 }
2163 
2164 static int
2165 sfc_eth_dev_init(struct rte_eth_dev *dev)
2166 {
2167 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2168 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2169 	uint32_t logtype_main;
2170 	struct sfc_adapter *sa;
2171 	int rc;
2172 	const efx_nic_cfg_t *encp;
2173 	const struct rte_ether_addr *from;
2174 	int ret;
2175 
2176 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2177 			SFC_EFX_DEV_CLASS_NET) {
2178 		SFC_GENERIC_LOG(DEBUG,
2179 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2180 		return 1;
2181 	}
2182 
2183 	sfc_register_dp();
2184 
2185 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2186 					    SFC_LOGTYPE_MAIN_STR,
2187 					    RTE_LOG_NOTICE);
2188 
2189 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2190 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2191 
2192 	/* Required for logging */
2193 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2194 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2195 			pci_dev->addr.domain, pci_dev->addr.bus,
2196 			pci_dev->addr.devid, pci_dev->addr.function,
2197 			dev->data->port_id);
2198 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2199 		SFC_GENERIC_LOG(ERR,
2200 			"reserved log prefix is too short for " PCI_PRI_FMT,
2201 			pci_dev->addr.domain, pci_dev->addr.bus,
2202 			pci_dev->addr.devid, pci_dev->addr.function);
2203 		return -EINVAL;
2204 	}
2205 	sas->pci_addr = pci_dev->addr;
2206 	sas->port_id = dev->data->port_id;
2207 
2208 	/*
2209 	 * Allocate process private data from heap, since it should not
2210 	 * be located in shared memory allocated using rte_malloc() API.
2211 	 */
2212 	sa = calloc(1, sizeof(*sa));
2213 	if (sa == NULL) {
2214 		rc = ENOMEM;
2215 		goto fail_alloc_sa;
2216 	}
2217 
2218 	dev->process_private = sa;
2219 
2220 	/* Required for logging */
2221 	sa->priv.shared = sas;
2222 	sa->priv.logtype_main = logtype_main;
2223 
2224 	sa->eth_dev = dev;
2225 
2226 	/* Copy PCI device info to the dev->data */
2227 	rte_eth_copy_pci_info(dev, pci_dev);
2228 	dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2229 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2230 
2231 	rc = sfc_kvargs_parse(sa);
2232 	if (rc != 0)
2233 		goto fail_kvargs_parse;
2234 
2235 	sfc_log_init(sa, "entry");
2236 
2237 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2238 	if (dev->data->mac_addrs == NULL) {
2239 		rc = ENOMEM;
2240 		goto fail_mac_addrs;
2241 	}
2242 
2243 	sfc_adapter_lock_init(sa);
2244 	sfc_adapter_lock(sa);
2245 
2246 	sfc_log_init(sa, "probing");
2247 	rc = sfc_probe(sa);
2248 	if (rc != 0)
2249 		goto fail_probe;
2250 
2251 	sfc_log_init(sa, "set device ops");
2252 	rc = sfc_eth_dev_set_ops(dev);
2253 	if (rc != 0)
2254 		goto fail_set_ops;
2255 
2256 	sfc_log_init(sa, "attaching");
2257 	rc = sfc_attach(sa);
2258 	if (rc != 0)
2259 		goto fail_attach;
2260 
2261 	encp = efx_nic_cfg_get(sa->nic);
2262 
2263 	/*
2264 	 * The arguments are really reverse order in comparison to
2265 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2266 	 */
2267 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2268 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2269 
2270 	sfc_adapter_unlock(sa);
2271 
2272 	sfc_log_init(sa, "done");
2273 	return 0;
2274 
2275 fail_attach:
2276 	sfc_eth_dev_clear_ops(dev);
2277 
2278 fail_set_ops:
2279 	sfc_unprobe(sa);
2280 
2281 fail_probe:
2282 	sfc_adapter_unlock(sa);
2283 	sfc_adapter_lock_fini(sa);
2284 	rte_free(dev->data->mac_addrs);
2285 	dev->data->mac_addrs = NULL;
2286 
2287 fail_mac_addrs:
2288 	sfc_kvargs_cleanup(sa);
2289 
2290 fail_kvargs_parse:
2291 	sfc_log_init(sa, "failed %d", rc);
2292 	dev->process_private = NULL;
2293 	free(sa);
2294 
2295 fail_alloc_sa:
2296 	SFC_ASSERT(rc > 0);
2297 	return -rc;
2298 }
2299 
2300 static int
2301 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2302 {
2303 	sfc_dev_close(dev);
2304 
2305 	return 0;
2306 }
2307 
2308 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2309 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2310 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2311 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2312 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2313 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2314 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2315 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2316 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2317 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2318 	{ .vendor_id = 0 /* sentinel */ }
2319 };
2320 
2321 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2322 	struct rte_pci_device *pci_dev)
2323 {
2324 	return rte_eth_dev_pci_generic_probe(pci_dev,
2325 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2326 }
2327 
2328 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2329 {
2330 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2331 }
2332 
2333 static struct rte_pci_driver sfc_efx_pmd = {
2334 	.id_table = pci_id_sfc_efx_map,
2335 	.drv_flags =
2336 		RTE_PCI_DRV_INTR_LSC |
2337 		RTE_PCI_DRV_NEED_MAPPING,
2338 	.probe = sfc_eth_dev_pci_probe,
2339 	.remove = sfc_eth_dev_pci_remove,
2340 };
2341 
2342 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2343 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2344 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2345 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2346 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2347 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2348 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2349 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2350 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2351 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2352 
2353 RTE_INIT(sfc_driver_register_logtype)
2354 {
2355 	int ret;
2356 
2357 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2358 						   RTE_LOG_NOTICE);
2359 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2360 }
2361