1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2021 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <ethdev_driver.h> 12 #include <ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 rc = efx_nic_get_fw_version(sa->nic, &enfi); 50 if (rc != 0) 51 return -rc; 52 53 ret = snprintf(fw_version, fw_size, 54 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 55 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 56 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 57 if (ret < 0) 58 return ret; 59 60 if (enfi.enfi_dpcpu_fw_ids_valid) { 61 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 62 int ret_extra; 63 64 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 65 fw_size - dpcpu_fw_ids_offset, 66 " rx%" PRIx16 " tx%" PRIx16, 67 enfi.enfi_rx_dpcpu_fw_id, 68 enfi.enfi_tx_dpcpu_fw_id); 69 if (ret_extra < 0) 70 return ret_extra; 71 72 ret += ret_extra; 73 } 74 75 if (fw_size < (size_t)(++ret)) 76 return ret; 77 else 78 return 0; 79 } 80 81 static int 82 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 83 { 84 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 85 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 86 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 87 struct sfc_rss *rss = &sas->rss; 88 struct sfc_mae *mae = &sa->mae; 89 uint64_t txq_offloads_def = 0; 90 91 sfc_log_init(sa, "entry"); 92 93 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 94 dev_info->max_mtu = EFX_MAC_SDU_MAX; 95 96 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 97 98 dev_info->max_vfs = sa->sriov.num_vfs; 99 100 /* Autonegotiation may be disabled */ 101 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 102 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 103 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 104 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 105 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 106 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 107 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 108 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 109 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 110 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 111 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 112 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 113 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 114 115 dev_info->max_rx_queues = sa->rxq_max; 116 dev_info->max_tx_queues = sa->txq_max; 117 118 /* By default packets are dropped if no descriptors are available */ 119 dev_info->default_rxconf.rx_drop_en = 1; 120 121 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 122 123 /* 124 * rx_offload_capa includes both device and queue offloads since 125 * the latter may be requested on a per device basis which makes 126 * sense when some offloads are needed to be set on all queues. 127 */ 128 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 129 dev_info->rx_queue_offload_capa; 130 131 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 132 133 /* 134 * tx_offload_capa includes both device and queue offloads since 135 * the latter may be requested on a per device basis which makes 136 * sense when some offloads are needed to be set on all queues. 137 */ 138 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 139 dev_info->tx_queue_offload_capa; 140 141 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 142 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 143 144 dev_info->default_txconf.offloads |= txq_offloads_def; 145 146 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 147 uint64_t rte_hf = 0; 148 unsigned int i; 149 150 for (i = 0; i < rss->hf_map_nb_entries; ++i) 151 rte_hf |= rss->hf_map[i].rte; 152 153 dev_info->reta_size = EFX_RSS_TBL_SIZE; 154 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 155 dev_info->flow_type_rss_offloads = rte_hf; 156 } 157 158 /* Initialize to hardware limits */ 159 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 160 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 161 /* The RXQ hardware requires that the descriptor count is a power 162 * of 2, but rx_desc_lim cannot properly describe that constraint. 163 */ 164 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 165 166 /* Initialize to hardware limits */ 167 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 168 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 169 /* 170 * The TXQ hardware requires that the descriptor count is a power 171 * of 2, but tx_desc_lim cannot properly describe that constraint 172 */ 173 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 174 175 if (sap->dp_rx->get_dev_info != NULL) 176 sap->dp_rx->get_dev_info(dev_info); 177 if (sap->dp_tx->get_dev_info != NULL) 178 sap->dp_tx->get_dev_info(dev_info); 179 180 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 181 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 182 183 if (mae->status == SFC_MAE_STATUS_SUPPORTED) { 184 dev_info->switch_info.name = dev->device->driver->name; 185 dev_info->switch_info.domain_id = mae->switch_domain_id; 186 dev_info->switch_info.port_id = mae->switch_port_id; 187 } 188 189 return 0; 190 } 191 192 static const uint32_t * 193 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 194 { 195 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 196 197 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 198 } 199 200 static int 201 sfc_dev_configure(struct rte_eth_dev *dev) 202 { 203 struct rte_eth_dev_data *dev_data = dev->data; 204 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 205 int rc; 206 207 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 208 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 209 210 sfc_adapter_lock(sa); 211 switch (sa->state) { 212 case SFC_ADAPTER_CONFIGURED: 213 /* FALLTHROUGH */ 214 case SFC_ADAPTER_INITIALIZED: 215 rc = sfc_configure(sa); 216 break; 217 default: 218 sfc_err(sa, "unexpected adapter state %u to configure", 219 sa->state); 220 rc = EINVAL; 221 break; 222 } 223 sfc_adapter_unlock(sa); 224 225 sfc_log_init(sa, "done %d", rc); 226 SFC_ASSERT(rc >= 0); 227 return -rc; 228 } 229 230 static int 231 sfc_dev_start(struct rte_eth_dev *dev) 232 { 233 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 234 int rc; 235 236 sfc_log_init(sa, "entry"); 237 238 sfc_adapter_lock(sa); 239 rc = sfc_start(sa); 240 sfc_adapter_unlock(sa); 241 242 sfc_log_init(sa, "done %d", rc); 243 SFC_ASSERT(rc >= 0); 244 return -rc; 245 } 246 247 static int 248 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 249 { 250 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 251 struct rte_eth_link current_link; 252 int ret; 253 254 sfc_log_init(sa, "entry"); 255 256 if (sa->state != SFC_ADAPTER_STARTED) { 257 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 258 } else if (wait_to_complete) { 259 efx_link_mode_t link_mode; 260 261 if (efx_port_poll(sa->nic, &link_mode) != 0) 262 link_mode = EFX_LINK_UNKNOWN; 263 sfc_port_link_mode_to_info(link_mode, ¤t_link); 264 265 } else { 266 sfc_ev_mgmt_qpoll(sa); 267 rte_eth_linkstatus_get(dev, ¤t_link); 268 } 269 270 ret = rte_eth_linkstatus_set(dev, ¤t_link); 271 if (ret == 0) 272 sfc_notice(sa, "Link status is %s", 273 current_link.link_status ? "UP" : "DOWN"); 274 275 return ret; 276 } 277 278 static int 279 sfc_dev_stop(struct rte_eth_dev *dev) 280 { 281 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 282 283 sfc_log_init(sa, "entry"); 284 285 sfc_adapter_lock(sa); 286 sfc_stop(sa); 287 sfc_adapter_unlock(sa); 288 289 sfc_log_init(sa, "done"); 290 291 return 0; 292 } 293 294 static int 295 sfc_dev_set_link_up(struct rte_eth_dev *dev) 296 { 297 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 298 int rc; 299 300 sfc_log_init(sa, "entry"); 301 302 sfc_adapter_lock(sa); 303 rc = sfc_start(sa); 304 sfc_adapter_unlock(sa); 305 306 SFC_ASSERT(rc >= 0); 307 return -rc; 308 } 309 310 static int 311 sfc_dev_set_link_down(struct rte_eth_dev *dev) 312 { 313 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 314 315 sfc_log_init(sa, "entry"); 316 317 sfc_adapter_lock(sa); 318 sfc_stop(sa); 319 sfc_adapter_unlock(sa); 320 321 return 0; 322 } 323 324 static void 325 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 326 { 327 free(dev->process_private); 328 rte_eth_dev_release_port(dev); 329 } 330 331 static int 332 sfc_dev_close(struct rte_eth_dev *dev) 333 { 334 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 335 336 sfc_log_init(sa, "entry"); 337 338 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 339 sfc_eth_dev_secondary_clear_ops(dev); 340 return 0; 341 } 342 343 sfc_adapter_lock(sa); 344 switch (sa->state) { 345 case SFC_ADAPTER_STARTED: 346 sfc_stop(sa); 347 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 348 /* FALLTHROUGH */ 349 case SFC_ADAPTER_CONFIGURED: 350 sfc_close(sa); 351 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 352 /* FALLTHROUGH */ 353 case SFC_ADAPTER_INITIALIZED: 354 break; 355 default: 356 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 357 break; 358 } 359 360 /* 361 * Cleanup all resources. 362 * Rollback primary process sfc_eth_dev_init() below. 363 */ 364 365 sfc_eth_dev_clear_ops(dev); 366 367 sfc_detach(sa); 368 sfc_unprobe(sa); 369 370 sfc_kvargs_cleanup(sa); 371 372 sfc_adapter_unlock(sa); 373 sfc_adapter_lock_fini(sa); 374 375 sfc_log_init(sa, "done"); 376 377 /* Required for logging, so cleanup last */ 378 sa->eth_dev = NULL; 379 380 free(sa); 381 382 return 0; 383 } 384 385 static int 386 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 387 boolean_t enabled) 388 { 389 struct sfc_port *port; 390 boolean_t *toggle; 391 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 392 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 393 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 394 int rc = 0; 395 396 sfc_adapter_lock(sa); 397 398 port = &sa->port; 399 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 400 401 if (*toggle != enabled) { 402 *toggle = enabled; 403 404 if (sfc_sa2shared(sa)->isolated) { 405 sfc_warn(sa, "isolated mode is active on the port"); 406 sfc_warn(sa, "the change is to be applied on the next " 407 "start provided that isolated mode is " 408 "disabled prior the next start"); 409 } else if ((sa->state == SFC_ADAPTER_STARTED) && 410 ((rc = sfc_set_rx_mode(sa)) != 0)) { 411 *toggle = !(enabled); 412 sfc_warn(sa, "Failed to %s %s mode, rc = %d", 413 ((enabled) ? "enable" : "disable"), desc, rc); 414 415 /* 416 * For promiscuous and all-multicast filters a 417 * permission failure should be reported as an 418 * unsupported filter. 419 */ 420 if (rc == EPERM) 421 rc = ENOTSUP; 422 } 423 } 424 425 sfc_adapter_unlock(sa); 426 return rc; 427 } 428 429 static int 430 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 431 { 432 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 433 434 SFC_ASSERT(rc >= 0); 435 return -rc; 436 } 437 438 static int 439 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 440 { 441 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 442 443 SFC_ASSERT(rc >= 0); 444 return -rc; 445 } 446 447 static int 448 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 449 { 450 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 451 452 SFC_ASSERT(rc >= 0); 453 return -rc; 454 } 455 456 static int 457 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 458 { 459 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 460 461 SFC_ASSERT(rc >= 0); 462 return -rc; 463 } 464 465 static int 466 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid, 467 uint16_t nb_rx_desc, unsigned int socket_id, 468 const struct rte_eth_rxconf *rx_conf, 469 struct rte_mempool *mb_pool) 470 { 471 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 472 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 473 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 474 struct sfc_rxq_info *rxq_info; 475 sfc_sw_index_t sw_index; 476 int rc; 477 478 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 479 ethdev_qid, nb_rx_desc, socket_id); 480 481 sfc_adapter_lock(sa); 482 483 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid); 484 rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id, 485 rx_conf, mb_pool); 486 if (rc != 0) 487 goto fail_rx_qinit; 488 489 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 490 dev->data->rx_queues[ethdev_qid] = rxq_info->dp; 491 492 sfc_adapter_unlock(sa); 493 494 return 0; 495 496 fail_rx_qinit: 497 sfc_adapter_unlock(sa); 498 SFC_ASSERT(rc > 0); 499 return -rc; 500 } 501 502 static void 503 sfc_rx_queue_release(void *queue) 504 { 505 struct sfc_dp_rxq *dp_rxq = queue; 506 struct sfc_rxq *rxq; 507 struct sfc_adapter *sa; 508 sfc_sw_index_t sw_index; 509 510 if (dp_rxq == NULL) 511 return; 512 513 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 514 sa = rxq->evq->sa; 515 sfc_adapter_lock(sa); 516 517 sw_index = dp_rxq->dpq.queue_id; 518 519 sfc_log_init(sa, "RxQ=%u", sw_index); 520 521 sfc_rx_qfini(sa, sw_index); 522 523 sfc_adapter_unlock(sa); 524 } 525 526 static int 527 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid, 528 uint16_t nb_tx_desc, unsigned int socket_id, 529 const struct rte_eth_txconf *tx_conf) 530 { 531 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 532 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 533 struct sfc_txq_info *txq_info; 534 sfc_sw_index_t sw_index; 535 int rc; 536 537 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 538 ethdev_qid, nb_tx_desc, socket_id); 539 540 sfc_adapter_lock(sa); 541 542 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 543 rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf); 544 if (rc != 0) 545 goto fail_tx_qinit; 546 547 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 548 dev->data->tx_queues[ethdev_qid] = txq_info->dp; 549 550 sfc_adapter_unlock(sa); 551 return 0; 552 553 fail_tx_qinit: 554 sfc_adapter_unlock(sa); 555 SFC_ASSERT(rc > 0); 556 return -rc; 557 } 558 559 static void 560 sfc_tx_queue_release(void *queue) 561 { 562 struct sfc_dp_txq *dp_txq = queue; 563 struct sfc_txq *txq; 564 sfc_sw_index_t sw_index; 565 struct sfc_adapter *sa; 566 567 if (dp_txq == NULL) 568 return; 569 570 txq = sfc_txq_by_dp_txq(dp_txq); 571 sw_index = dp_txq->dpq.queue_id; 572 573 SFC_ASSERT(txq->evq != NULL); 574 sa = txq->evq->sa; 575 576 sfc_log_init(sa, "TxQ = %u", sw_index); 577 578 sfc_adapter_lock(sa); 579 580 sfc_tx_qfini(sa, sw_index); 581 582 sfc_adapter_unlock(sa); 583 } 584 585 /* 586 * Some statistics are computed as A - B where A and B each increase 587 * monotonically with some hardware counter(s) and the counters are read 588 * asynchronously. 589 * 590 * If packet X is counted in A, but not counted in B yet, computed value is 591 * greater than real. 592 * 593 * If packet X is not counted in A at the moment of reading the counter, 594 * but counted in B at the moment of reading the counter, computed value 595 * is less than real. 596 * 597 * However, counter which grows backward is worse evil than slightly wrong 598 * value. So, let's try to guarantee that it never happens except may be 599 * the case when the MAC stats are zeroed as a result of a NIC reset. 600 */ 601 static void 602 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 603 { 604 if ((int64_t)(newval - *stat) > 0 || newval == 0) 605 *stat = newval; 606 } 607 608 static int 609 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 610 { 611 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 612 struct sfc_port *port = &sa->port; 613 uint64_t *mac_stats; 614 int ret; 615 616 sfc_adapter_lock(sa); 617 618 ret = sfc_port_update_mac_stats(sa); 619 if (ret != 0) 620 goto unlock; 621 622 mac_stats = port->mac_stats_buf; 623 624 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 625 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 626 stats->ipackets = 627 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 628 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 629 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 630 stats->opackets = 631 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 632 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 633 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 634 stats->ibytes = 635 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 636 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 637 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 638 stats->obytes = 639 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 640 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 641 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 642 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 643 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 644 645 /* CRC is included in these stats, but shouldn't be */ 646 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN; 647 stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN; 648 } else { 649 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 650 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 651 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 652 653 /* CRC is included in these stats, but shouldn't be */ 654 stats->ibytes -= mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN; 655 stats->obytes -= mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN; 656 657 /* 658 * Take into account stats which are whenever supported 659 * on EF10. If some stat is not supported by current 660 * firmware variant or HW revision, it is guaranteed 661 * to be zero in mac_stats. 662 */ 663 stats->imissed = 664 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 665 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 666 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 667 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 668 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 669 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 670 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 671 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 672 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 673 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 674 stats->ierrors = 675 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 676 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 677 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 678 /* no oerrors counters supported on EF10 */ 679 680 /* Exclude missed, errors and pauses from Rx packets */ 681 sfc_update_diff_stat(&port->ipackets, 682 mac_stats[EFX_MAC_RX_PKTS] - 683 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 684 stats->imissed - stats->ierrors); 685 stats->ipackets = port->ipackets; 686 } 687 688 unlock: 689 sfc_adapter_unlock(sa); 690 SFC_ASSERT(ret >= 0); 691 return -ret; 692 } 693 694 static int 695 sfc_stats_reset(struct rte_eth_dev *dev) 696 { 697 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 698 struct sfc_port *port = &sa->port; 699 int rc; 700 701 sfc_adapter_lock(sa); 702 703 if (sa->state != SFC_ADAPTER_STARTED) { 704 /* 705 * The operation cannot be done if port is not started; it 706 * will be scheduled to be done during the next port start 707 */ 708 port->mac_stats_reset_pending = B_TRUE; 709 sfc_adapter_unlock(sa); 710 return 0; 711 } 712 713 rc = sfc_port_reset_mac_stats(sa); 714 if (rc != 0) 715 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 716 717 sfc_adapter_unlock(sa); 718 719 SFC_ASSERT(rc >= 0); 720 return -rc; 721 } 722 723 static int 724 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 725 unsigned int xstats_count) 726 { 727 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 728 struct sfc_port *port = &sa->port; 729 uint64_t *mac_stats; 730 int rc; 731 unsigned int i; 732 int nstats = 0; 733 734 sfc_adapter_lock(sa); 735 736 rc = sfc_port_update_mac_stats(sa); 737 if (rc != 0) { 738 SFC_ASSERT(rc > 0); 739 nstats = -rc; 740 goto unlock; 741 } 742 743 mac_stats = port->mac_stats_buf; 744 745 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 746 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 747 if (xstats != NULL && nstats < (int)xstats_count) { 748 xstats[nstats].id = nstats; 749 xstats[nstats].value = mac_stats[i]; 750 } 751 nstats++; 752 } 753 } 754 755 unlock: 756 sfc_adapter_unlock(sa); 757 758 return nstats; 759 } 760 761 static int 762 sfc_xstats_get_names(struct rte_eth_dev *dev, 763 struct rte_eth_xstat_name *xstats_names, 764 unsigned int xstats_count) 765 { 766 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 767 struct sfc_port *port = &sa->port; 768 unsigned int i; 769 unsigned int nstats = 0; 770 771 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 772 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 773 if (xstats_names != NULL && nstats < xstats_count) 774 strlcpy(xstats_names[nstats].name, 775 efx_mac_stat_name(sa->nic, i), 776 sizeof(xstats_names[0].name)); 777 nstats++; 778 } 779 } 780 781 return nstats; 782 } 783 784 static int 785 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 786 uint64_t *values, unsigned int n) 787 { 788 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 789 struct sfc_port *port = &sa->port; 790 uint64_t *mac_stats; 791 unsigned int i; 792 int ret; 793 int rc; 794 795 if (unlikely(ids == NULL || values == NULL)) 796 return -EINVAL; 797 798 sfc_adapter_lock(sa); 799 800 rc = sfc_port_update_mac_stats(sa); 801 if (rc != 0) { 802 SFC_ASSERT(rc > 0); 803 ret = -rc; 804 goto unlock; 805 } 806 807 mac_stats = port->mac_stats_buf; 808 809 SFC_ASSERT(port->mac_stats_nb_supported <= 810 RTE_DIM(port->mac_stats_by_id)); 811 812 for (i = 0; i < n; i++) { 813 if (ids[i] < port->mac_stats_nb_supported) { 814 values[i] = mac_stats[port->mac_stats_by_id[ids[i]]]; 815 } else { 816 ret = i; 817 goto unlock; 818 } 819 } 820 821 ret = n; 822 823 unlock: 824 sfc_adapter_unlock(sa); 825 826 return ret; 827 } 828 829 static int 830 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 831 struct rte_eth_xstat_name *xstats_names, 832 const uint64_t *ids, unsigned int size) 833 { 834 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 835 struct sfc_port *port = &sa->port; 836 unsigned int nb_supported; 837 unsigned int i; 838 839 if (unlikely(xstats_names == NULL && ids != NULL) || 840 unlikely(xstats_names != NULL && ids == NULL)) 841 return -EINVAL; 842 843 sfc_adapter_lock(sa); 844 845 if (unlikely(xstats_names == NULL && ids == NULL)) { 846 nb_supported = port->mac_stats_nb_supported; 847 sfc_adapter_unlock(sa); 848 return nb_supported; 849 } 850 851 SFC_ASSERT(port->mac_stats_nb_supported <= 852 RTE_DIM(port->mac_stats_by_id)); 853 854 for (i = 0; i < size; i++) { 855 if (ids[i] < port->mac_stats_nb_supported) { 856 strlcpy(xstats_names[i].name, 857 efx_mac_stat_name(sa->nic, 858 port->mac_stats_by_id[ids[i]]), 859 sizeof(xstats_names[0].name)); 860 } else { 861 sfc_adapter_unlock(sa); 862 return i; 863 } 864 } 865 866 sfc_adapter_unlock(sa); 867 868 return size; 869 } 870 871 static int 872 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 873 { 874 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 875 unsigned int wanted_fc, link_fc; 876 877 memset(fc_conf, 0, sizeof(*fc_conf)); 878 879 sfc_adapter_lock(sa); 880 881 if (sa->state == SFC_ADAPTER_STARTED) 882 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 883 else 884 link_fc = sa->port.flow_ctrl; 885 886 switch (link_fc) { 887 case 0: 888 fc_conf->mode = RTE_FC_NONE; 889 break; 890 case EFX_FCNTL_RESPOND: 891 fc_conf->mode = RTE_FC_RX_PAUSE; 892 break; 893 case EFX_FCNTL_GENERATE: 894 fc_conf->mode = RTE_FC_TX_PAUSE; 895 break; 896 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 897 fc_conf->mode = RTE_FC_FULL; 898 break; 899 default: 900 sfc_err(sa, "%s: unexpected flow control value %#x", 901 __func__, link_fc); 902 } 903 904 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 905 906 sfc_adapter_unlock(sa); 907 908 return 0; 909 } 910 911 static int 912 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 913 { 914 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 915 struct sfc_port *port = &sa->port; 916 unsigned int fcntl; 917 int rc; 918 919 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 920 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 921 fc_conf->mac_ctrl_frame_fwd != 0) { 922 sfc_err(sa, "unsupported flow control settings specified"); 923 rc = EINVAL; 924 goto fail_inval; 925 } 926 927 switch (fc_conf->mode) { 928 case RTE_FC_NONE: 929 fcntl = 0; 930 break; 931 case RTE_FC_RX_PAUSE: 932 fcntl = EFX_FCNTL_RESPOND; 933 break; 934 case RTE_FC_TX_PAUSE: 935 fcntl = EFX_FCNTL_GENERATE; 936 break; 937 case RTE_FC_FULL: 938 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 939 break; 940 default: 941 rc = EINVAL; 942 goto fail_inval; 943 } 944 945 sfc_adapter_lock(sa); 946 947 if (sa->state == SFC_ADAPTER_STARTED) { 948 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 949 if (rc != 0) 950 goto fail_mac_fcntl_set; 951 } 952 953 port->flow_ctrl = fcntl; 954 port->flow_ctrl_autoneg = fc_conf->autoneg; 955 956 sfc_adapter_unlock(sa); 957 958 return 0; 959 960 fail_mac_fcntl_set: 961 sfc_adapter_unlock(sa); 962 fail_inval: 963 SFC_ASSERT(rc > 0); 964 return -rc; 965 } 966 967 static int 968 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 969 { 970 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 971 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 972 boolean_t scatter_enabled; 973 const char *error; 974 unsigned int i; 975 976 for (i = 0; i < sas->rxq_count; i++) { 977 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 978 continue; 979 980 scatter_enabled = (sas->rxq_info[i].type_flags & 981 EFX_RXQ_FLAG_SCATTER); 982 983 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 984 encp->enc_rx_prefix_size, 985 scatter_enabled, 986 encp->enc_rx_scatter_max, &error)) { 987 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 988 error); 989 return EINVAL; 990 } 991 } 992 993 return 0; 994 } 995 996 static int 997 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 998 { 999 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1000 size_t pdu = EFX_MAC_PDU(mtu); 1001 size_t old_pdu; 1002 int rc; 1003 1004 sfc_log_init(sa, "mtu=%u", mtu); 1005 1006 rc = EINVAL; 1007 if (pdu < EFX_MAC_PDU_MIN) { 1008 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 1009 (unsigned int)mtu, (unsigned int)pdu, 1010 EFX_MAC_PDU_MIN); 1011 goto fail_inval; 1012 } 1013 if (pdu > EFX_MAC_PDU_MAX) { 1014 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 1015 (unsigned int)mtu, (unsigned int)pdu, 1016 (unsigned int)EFX_MAC_PDU_MAX); 1017 goto fail_inval; 1018 } 1019 1020 sfc_adapter_lock(sa); 1021 1022 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 1023 if (rc != 0) 1024 goto fail_check_scatter; 1025 1026 if (pdu != sa->port.pdu) { 1027 if (sa->state == SFC_ADAPTER_STARTED) { 1028 sfc_stop(sa); 1029 1030 old_pdu = sa->port.pdu; 1031 sa->port.pdu = pdu; 1032 rc = sfc_start(sa); 1033 if (rc != 0) 1034 goto fail_start; 1035 } else { 1036 sa->port.pdu = pdu; 1037 } 1038 } 1039 1040 /* 1041 * The driver does not use it, but other PMDs update jumbo frame 1042 * flag and max_rx_pkt_len when MTU is set. 1043 */ 1044 if (mtu > RTE_ETHER_MTU) { 1045 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 1046 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1047 } 1048 1049 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 1050 1051 sfc_adapter_unlock(sa); 1052 1053 sfc_log_init(sa, "done"); 1054 return 0; 1055 1056 fail_start: 1057 sa->port.pdu = old_pdu; 1058 if (sfc_start(sa) != 0) 1059 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1060 "PDU max size - port is stopped", 1061 (unsigned int)pdu, (unsigned int)old_pdu); 1062 1063 fail_check_scatter: 1064 sfc_adapter_unlock(sa); 1065 1066 fail_inval: 1067 sfc_log_init(sa, "failed %d", rc); 1068 SFC_ASSERT(rc > 0); 1069 return -rc; 1070 } 1071 static int 1072 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1073 { 1074 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1075 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1076 struct sfc_port *port = &sa->port; 1077 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1078 int rc = 0; 1079 1080 sfc_adapter_lock(sa); 1081 1082 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr)) 1083 goto unlock; 1084 1085 /* 1086 * Copy the address to the device private data so that 1087 * it could be recalled in the case of adapter restart. 1088 */ 1089 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1090 1091 /* 1092 * Neither of the two following checks can return 1093 * an error. The new MAC address is preserved in 1094 * the device private data and can be activated 1095 * on the next port start if the user prevents 1096 * isolated mode from being enabled. 1097 */ 1098 if (sfc_sa2shared(sa)->isolated) { 1099 sfc_warn(sa, "isolated mode is active on the port"); 1100 sfc_warn(sa, "will not set MAC address"); 1101 goto unlock; 1102 } 1103 1104 if (sa->state != SFC_ADAPTER_STARTED) { 1105 sfc_notice(sa, "the port is not started"); 1106 sfc_notice(sa, "the new MAC address will be set on port start"); 1107 1108 goto unlock; 1109 } 1110 1111 if (encp->enc_allow_set_mac_with_installed_filters) { 1112 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1113 if (rc != 0) { 1114 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1115 goto unlock; 1116 } 1117 1118 /* 1119 * Changing the MAC address by means of MCDI request 1120 * has no effect on received traffic, therefore 1121 * we also need to update unicast filters 1122 */ 1123 rc = sfc_set_rx_mode_unchecked(sa); 1124 if (rc != 0) { 1125 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1126 /* Rollback the old address */ 1127 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1128 (void)sfc_set_rx_mode_unchecked(sa); 1129 } 1130 } else { 1131 sfc_warn(sa, "cannot set MAC address with filters installed"); 1132 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1133 sfc_warn(sa, "(some traffic may be dropped)"); 1134 1135 /* 1136 * Since setting MAC address with filters installed is not 1137 * allowed on the adapter, the new MAC address will be set 1138 * by means of adapter restart. sfc_start() shall retrieve 1139 * the new address from the device private data and set it. 1140 */ 1141 sfc_stop(sa); 1142 rc = sfc_start(sa); 1143 if (rc != 0) 1144 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1145 } 1146 1147 unlock: 1148 if (rc != 0) 1149 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1150 1151 sfc_adapter_unlock(sa); 1152 1153 SFC_ASSERT(rc >= 0); 1154 return -rc; 1155 } 1156 1157 1158 static int 1159 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1160 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1161 { 1162 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1163 struct sfc_port *port = &sa->port; 1164 uint8_t *mc_addrs = port->mcast_addrs; 1165 int rc; 1166 unsigned int i; 1167 1168 if (sfc_sa2shared(sa)->isolated) { 1169 sfc_err(sa, "isolated mode is active on the port"); 1170 sfc_err(sa, "will not set multicast address list"); 1171 return -ENOTSUP; 1172 } 1173 1174 if (mc_addrs == NULL) 1175 return -ENOBUFS; 1176 1177 if (nb_mc_addr > port->max_mcast_addrs) { 1178 sfc_err(sa, "too many multicast addresses: %u > %u", 1179 nb_mc_addr, port->max_mcast_addrs); 1180 return -EINVAL; 1181 } 1182 1183 for (i = 0; i < nb_mc_addr; ++i) { 1184 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1185 EFX_MAC_ADDR_LEN); 1186 mc_addrs += EFX_MAC_ADDR_LEN; 1187 } 1188 1189 port->nb_mcast_addrs = nb_mc_addr; 1190 1191 if (sa->state != SFC_ADAPTER_STARTED) 1192 return 0; 1193 1194 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1195 port->nb_mcast_addrs); 1196 if (rc != 0) 1197 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1198 1199 SFC_ASSERT(rc >= 0); 1200 return -rc; 1201 } 1202 1203 /* 1204 * The function is used by the secondary process as well. It must not 1205 * use any process-local pointers from the adapter data. 1206 */ 1207 static void 1208 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid, 1209 struct rte_eth_rxq_info *qinfo) 1210 { 1211 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1212 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1213 struct sfc_rxq_info *rxq_info; 1214 1215 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1216 1217 qinfo->mp = rxq_info->refill_mb_pool; 1218 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1219 qinfo->conf.rx_drop_en = 1; 1220 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1221 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1222 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1223 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1224 qinfo->scattered_rx = 1; 1225 } 1226 qinfo->nb_desc = rxq_info->entries; 1227 } 1228 1229 /* 1230 * The function is used by the secondary process as well. It must not 1231 * use any process-local pointers from the adapter data. 1232 */ 1233 static void 1234 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid, 1235 struct rte_eth_txq_info *qinfo) 1236 { 1237 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1238 struct sfc_txq_info *txq_info; 1239 1240 SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count); 1241 1242 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 1243 1244 memset(qinfo, 0, sizeof(*qinfo)); 1245 1246 qinfo->conf.offloads = txq_info->offloads; 1247 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1248 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1249 qinfo->nb_desc = txq_info->entries; 1250 } 1251 1252 /* 1253 * The function is used by the secondary process as well. It must not 1254 * use any process-local pointers from the adapter data. 1255 */ 1256 static uint32_t 1257 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1258 { 1259 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1260 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1261 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1262 struct sfc_rxq_info *rxq_info; 1263 1264 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1265 1266 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1267 return 0; 1268 1269 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1270 } 1271 1272 /* 1273 * The function is used by the secondary process as well. It must not 1274 * use any process-local pointers from the adapter data. 1275 */ 1276 static int 1277 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1278 { 1279 struct sfc_dp_rxq *dp_rxq = queue; 1280 const struct sfc_dp_rx *dp_rx; 1281 1282 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1283 1284 return offset < dp_rx->qdesc_npending(dp_rxq); 1285 } 1286 1287 /* 1288 * The function is used by the secondary process as well. It must not 1289 * use any process-local pointers from the adapter data. 1290 */ 1291 static int 1292 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1293 { 1294 struct sfc_dp_rxq *dp_rxq = queue; 1295 const struct sfc_dp_rx *dp_rx; 1296 1297 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1298 1299 return dp_rx->qdesc_status(dp_rxq, offset); 1300 } 1301 1302 /* 1303 * The function is used by the secondary process as well. It must not 1304 * use any process-local pointers from the adapter data. 1305 */ 1306 static int 1307 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1308 { 1309 struct sfc_dp_txq *dp_txq = queue; 1310 const struct sfc_dp_tx *dp_tx; 1311 1312 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1313 1314 return dp_tx->qdesc_status(dp_txq, offset); 1315 } 1316 1317 static int 1318 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1319 { 1320 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1321 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1322 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1323 struct sfc_rxq_info *rxq_info; 1324 sfc_sw_index_t sw_index; 1325 int rc; 1326 1327 sfc_log_init(sa, "RxQ=%u", ethdev_qid); 1328 1329 sfc_adapter_lock(sa); 1330 1331 rc = EINVAL; 1332 if (sa->state != SFC_ADAPTER_STARTED) 1333 goto fail_not_started; 1334 1335 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1336 if (rxq_info->state != SFC_RXQ_INITIALIZED) 1337 goto fail_not_setup; 1338 1339 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid); 1340 rc = sfc_rx_qstart(sa, sw_index); 1341 if (rc != 0) 1342 goto fail_rx_qstart; 1343 1344 rxq_info->deferred_started = B_TRUE; 1345 1346 sfc_adapter_unlock(sa); 1347 1348 return 0; 1349 1350 fail_rx_qstart: 1351 fail_not_setup: 1352 fail_not_started: 1353 sfc_adapter_unlock(sa); 1354 SFC_ASSERT(rc > 0); 1355 return -rc; 1356 } 1357 1358 static int 1359 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1360 { 1361 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1362 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1363 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1364 struct sfc_rxq_info *rxq_info; 1365 sfc_sw_index_t sw_index; 1366 1367 sfc_log_init(sa, "RxQ=%u", ethdev_qid); 1368 1369 sfc_adapter_lock(sa); 1370 1371 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid); 1372 sfc_rx_qstop(sa, sw_index); 1373 1374 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1375 rxq_info->deferred_started = B_FALSE; 1376 1377 sfc_adapter_unlock(sa); 1378 1379 return 0; 1380 } 1381 1382 static int 1383 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1384 { 1385 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1386 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1387 struct sfc_txq_info *txq_info; 1388 sfc_sw_index_t sw_index; 1389 int rc; 1390 1391 sfc_log_init(sa, "TxQ = %u", ethdev_qid); 1392 1393 sfc_adapter_lock(sa); 1394 1395 rc = EINVAL; 1396 if (sa->state != SFC_ADAPTER_STARTED) 1397 goto fail_not_started; 1398 1399 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 1400 if (txq_info->state != SFC_TXQ_INITIALIZED) 1401 goto fail_not_setup; 1402 1403 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 1404 rc = sfc_tx_qstart(sa, sw_index); 1405 if (rc != 0) 1406 goto fail_tx_qstart; 1407 1408 txq_info->deferred_started = B_TRUE; 1409 1410 sfc_adapter_unlock(sa); 1411 return 0; 1412 1413 fail_tx_qstart: 1414 1415 fail_not_setup: 1416 fail_not_started: 1417 sfc_adapter_unlock(sa); 1418 SFC_ASSERT(rc > 0); 1419 return -rc; 1420 } 1421 1422 static int 1423 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1424 { 1425 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1426 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1427 struct sfc_txq_info *txq_info; 1428 sfc_sw_index_t sw_index; 1429 1430 sfc_log_init(sa, "TxQ = %u", ethdev_qid); 1431 1432 sfc_adapter_lock(sa); 1433 1434 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 1435 sfc_tx_qstop(sa, sw_index); 1436 1437 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 1438 txq_info->deferred_started = B_FALSE; 1439 1440 sfc_adapter_unlock(sa); 1441 return 0; 1442 } 1443 1444 static efx_tunnel_protocol_t 1445 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1446 { 1447 switch (rte_type) { 1448 case RTE_TUNNEL_TYPE_VXLAN: 1449 return EFX_TUNNEL_PROTOCOL_VXLAN; 1450 case RTE_TUNNEL_TYPE_GENEVE: 1451 return EFX_TUNNEL_PROTOCOL_GENEVE; 1452 default: 1453 return EFX_TUNNEL_NPROTOS; 1454 } 1455 } 1456 1457 enum sfc_udp_tunnel_op_e { 1458 SFC_UDP_TUNNEL_ADD_PORT, 1459 SFC_UDP_TUNNEL_DEL_PORT, 1460 }; 1461 1462 static int 1463 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1464 struct rte_eth_udp_tunnel *tunnel_udp, 1465 enum sfc_udp_tunnel_op_e op) 1466 { 1467 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1468 efx_tunnel_protocol_t tunnel_proto; 1469 int rc; 1470 1471 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1472 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1473 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1474 tunnel_udp->udp_port, tunnel_udp->prot_type); 1475 1476 tunnel_proto = 1477 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1478 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1479 rc = ENOTSUP; 1480 goto fail_bad_proto; 1481 } 1482 1483 sfc_adapter_lock(sa); 1484 1485 switch (op) { 1486 case SFC_UDP_TUNNEL_ADD_PORT: 1487 rc = efx_tunnel_config_udp_add(sa->nic, 1488 tunnel_udp->udp_port, 1489 tunnel_proto); 1490 break; 1491 case SFC_UDP_TUNNEL_DEL_PORT: 1492 rc = efx_tunnel_config_udp_remove(sa->nic, 1493 tunnel_udp->udp_port, 1494 tunnel_proto); 1495 break; 1496 default: 1497 rc = EINVAL; 1498 goto fail_bad_op; 1499 } 1500 1501 if (rc != 0) 1502 goto fail_op; 1503 1504 if (sa->state == SFC_ADAPTER_STARTED) { 1505 rc = efx_tunnel_reconfigure(sa->nic); 1506 if (rc == EAGAIN) { 1507 /* 1508 * Configuration is accepted by FW and MC reboot 1509 * is initiated to apply the changes. MC reboot 1510 * will be handled in a usual way (MC reboot 1511 * event on management event queue and adapter 1512 * restart). 1513 */ 1514 rc = 0; 1515 } else if (rc != 0) { 1516 goto fail_reconfigure; 1517 } 1518 } 1519 1520 sfc_adapter_unlock(sa); 1521 return 0; 1522 1523 fail_reconfigure: 1524 /* Remove/restore entry since the change makes the trouble */ 1525 switch (op) { 1526 case SFC_UDP_TUNNEL_ADD_PORT: 1527 (void)efx_tunnel_config_udp_remove(sa->nic, 1528 tunnel_udp->udp_port, 1529 tunnel_proto); 1530 break; 1531 case SFC_UDP_TUNNEL_DEL_PORT: 1532 (void)efx_tunnel_config_udp_add(sa->nic, 1533 tunnel_udp->udp_port, 1534 tunnel_proto); 1535 break; 1536 } 1537 1538 fail_op: 1539 fail_bad_op: 1540 sfc_adapter_unlock(sa); 1541 1542 fail_bad_proto: 1543 SFC_ASSERT(rc > 0); 1544 return -rc; 1545 } 1546 1547 static int 1548 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1549 struct rte_eth_udp_tunnel *tunnel_udp) 1550 { 1551 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1552 } 1553 1554 static int 1555 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1556 struct rte_eth_udp_tunnel *tunnel_udp) 1557 { 1558 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1559 } 1560 1561 /* 1562 * The function is used by the secondary process as well. It must not 1563 * use any process-local pointers from the adapter data. 1564 */ 1565 static int 1566 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1567 struct rte_eth_rss_conf *rss_conf) 1568 { 1569 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1570 struct sfc_rss *rss = &sas->rss; 1571 1572 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1573 return -ENOTSUP; 1574 1575 /* 1576 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1577 * hence, conversion is done here to derive a correct set of ETH_RSS 1578 * flags which corresponds to the active EFX configuration stored 1579 * locally in 'sfc_adapter' and kept up-to-date 1580 */ 1581 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1582 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1583 if (rss_conf->rss_key != NULL) 1584 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1585 1586 return 0; 1587 } 1588 1589 static int 1590 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1591 struct rte_eth_rss_conf *rss_conf) 1592 { 1593 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1594 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1595 unsigned int efx_hash_types; 1596 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context}; 1597 unsigned int n_contexts; 1598 unsigned int mode_i = 0; 1599 unsigned int key_i = 0; 1600 unsigned int i = 0; 1601 int rc = 0; 1602 1603 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2; 1604 1605 if (sfc_sa2shared(sa)->isolated) 1606 return -ENOTSUP; 1607 1608 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1609 sfc_err(sa, "RSS is not available"); 1610 return -ENOTSUP; 1611 } 1612 1613 if (rss->channels == 0) { 1614 sfc_err(sa, "RSS is not configured"); 1615 return -EINVAL; 1616 } 1617 1618 if ((rss_conf->rss_key != NULL) && 1619 (rss_conf->rss_key_len != sizeof(rss->key))) { 1620 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1621 sizeof(rss->key)); 1622 return -EINVAL; 1623 } 1624 1625 sfc_adapter_lock(sa); 1626 1627 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1628 if (rc != 0) 1629 goto fail_rx_hf_rte_to_efx; 1630 1631 for (mode_i = 0; mode_i < n_contexts; mode_i++) { 1632 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i], 1633 rss->hash_alg, efx_hash_types, 1634 B_TRUE); 1635 if (rc != 0) 1636 goto fail_scale_mode_set; 1637 } 1638 1639 if (rss_conf->rss_key != NULL) { 1640 if (sa->state == SFC_ADAPTER_STARTED) { 1641 for (key_i = 0; key_i < n_contexts; key_i++) { 1642 rc = efx_rx_scale_key_set(sa->nic, 1643 contexts[key_i], 1644 rss_conf->rss_key, 1645 sizeof(rss->key)); 1646 if (rc != 0) 1647 goto fail_scale_key_set; 1648 } 1649 } 1650 1651 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1652 } 1653 1654 rss->hash_types = efx_hash_types; 1655 1656 sfc_adapter_unlock(sa); 1657 1658 return 0; 1659 1660 fail_scale_key_set: 1661 for (i = 0; i < key_i; i++) { 1662 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key, 1663 sizeof(rss->key)) != 0) 1664 sfc_err(sa, "failed to restore RSS key"); 1665 } 1666 1667 fail_scale_mode_set: 1668 for (i = 0; i < mode_i; i++) { 1669 if (efx_rx_scale_mode_set(sa->nic, contexts[i], 1670 EFX_RX_HASHALG_TOEPLITZ, 1671 rss->hash_types, B_TRUE) != 0) 1672 sfc_err(sa, "failed to restore RSS mode"); 1673 } 1674 1675 fail_rx_hf_rte_to_efx: 1676 sfc_adapter_unlock(sa); 1677 return -rc; 1678 } 1679 1680 /* 1681 * The function is used by the secondary process as well. It must not 1682 * use any process-local pointers from the adapter data. 1683 */ 1684 static int 1685 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1686 struct rte_eth_rss_reta_entry64 *reta_conf, 1687 uint16_t reta_size) 1688 { 1689 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1690 struct sfc_rss *rss = &sas->rss; 1691 int entry; 1692 1693 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1694 return -ENOTSUP; 1695 1696 if (rss->channels == 0) 1697 return -EINVAL; 1698 1699 if (reta_size != EFX_RSS_TBL_SIZE) 1700 return -EINVAL; 1701 1702 for (entry = 0; entry < reta_size; entry++) { 1703 int grp = entry / RTE_RETA_GROUP_SIZE; 1704 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1705 1706 if ((reta_conf[grp].mask >> grp_idx) & 1) 1707 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1708 } 1709 1710 return 0; 1711 } 1712 1713 static int 1714 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1715 struct rte_eth_rss_reta_entry64 *reta_conf, 1716 uint16_t reta_size) 1717 { 1718 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1719 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1720 unsigned int *rss_tbl_new; 1721 uint16_t entry; 1722 int rc = 0; 1723 1724 1725 if (sfc_sa2shared(sa)->isolated) 1726 return -ENOTSUP; 1727 1728 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1729 sfc_err(sa, "RSS is not available"); 1730 return -ENOTSUP; 1731 } 1732 1733 if (rss->channels == 0) { 1734 sfc_err(sa, "RSS is not configured"); 1735 return -EINVAL; 1736 } 1737 1738 if (reta_size != EFX_RSS_TBL_SIZE) { 1739 sfc_err(sa, "RETA size is wrong (should be %u)", 1740 EFX_RSS_TBL_SIZE); 1741 return -EINVAL; 1742 } 1743 1744 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1745 if (rss_tbl_new == NULL) 1746 return -ENOMEM; 1747 1748 sfc_adapter_lock(sa); 1749 1750 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1751 1752 for (entry = 0; entry < reta_size; entry++) { 1753 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1754 struct rte_eth_rss_reta_entry64 *grp; 1755 1756 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1757 1758 if (grp->mask & (1ull << grp_idx)) { 1759 if (grp->reta[grp_idx] >= rss->channels) { 1760 rc = EINVAL; 1761 goto bad_reta_entry; 1762 } 1763 rss_tbl_new[entry] = grp->reta[grp_idx]; 1764 } 1765 } 1766 1767 if (sa->state == SFC_ADAPTER_STARTED) { 1768 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1769 rss_tbl_new, EFX_RSS_TBL_SIZE); 1770 if (rc != 0) 1771 goto fail_scale_tbl_set; 1772 } 1773 1774 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1775 1776 fail_scale_tbl_set: 1777 bad_reta_entry: 1778 sfc_adapter_unlock(sa); 1779 1780 rte_free(rss_tbl_new); 1781 1782 SFC_ASSERT(rc >= 0); 1783 return -rc; 1784 } 1785 1786 static int 1787 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused, 1788 const struct rte_flow_ops **ops) 1789 { 1790 *ops = &sfc_flow_ops; 1791 return 0; 1792 } 1793 1794 static int 1795 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1796 { 1797 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1798 1799 /* 1800 * If Rx datapath does not provide callback to check mempool, 1801 * all pools are supported. 1802 */ 1803 if (sap->dp_rx->pool_ops_supported == NULL) 1804 return 1; 1805 1806 return sap->dp_rx->pool_ops_supported(pool); 1807 } 1808 1809 static int 1810 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1811 { 1812 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1813 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1814 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1815 struct sfc_rxq_info *rxq_info; 1816 1817 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1818 1819 return sap->dp_rx->intr_enable(rxq_info->dp); 1820 } 1821 1822 static int 1823 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1824 { 1825 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1826 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1827 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1828 struct sfc_rxq_info *rxq_info; 1829 1830 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1831 1832 return sap->dp_rx->intr_disable(rxq_info->dp); 1833 } 1834 1835 static const struct eth_dev_ops sfc_eth_dev_ops = { 1836 .dev_configure = sfc_dev_configure, 1837 .dev_start = sfc_dev_start, 1838 .dev_stop = sfc_dev_stop, 1839 .dev_set_link_up = sfc_dev_set_link_up, 1840 .dev_set_link_down = sfc_dev_set_link_down, 1841 .dev_close = sfc_dev_close, 1842 .promiscuous_enable = sfc_dev_promisc_enable, 1843 .promiscuous_disable = sfc_dev_promisc_disable, 1844 .allmulticast_enable = sfc_dev_allmulti_enable, 1845 .allmulticast_disable = sfc_dev_allmulti_disable, 1846 .link_update = sfc_dev_link_update, 1847 .stats_get = sfc_stats_get, 1848 .stats_reset = sfc_stats_reset, 1849 .xstats_get = sfc_xstats_get, 1850 .xstats_reset = sfc_stats_reset, 1851 .xstats_get_names = sfc_xstats_get_names, 1852 .dev_infos_get = sfc_dev_infos_get, 1853 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1854 .mtu_set = sfc_dev_set_mtu, 1855 .rx_queue_start = sfc_rx_queue_start, 1856 .rx_queue_stop = sfc_rx_queue_stop, 1857 .tx_queue_start = sfc_tx_queue_start, 1858 .tx_queue_stop = sfc_tx_queue_stop, 1859 .rx_queue_setup = sfc_rx_queue_setup, 1860 .rx_queue_release = sfc_rx_queue_release, 1861 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1862 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1863 .tx_queue_setup = sfc_tx_queue_setup, 1864 .tx_queue_release = sfc_tx_queue_release, 1865 .flow_ctrl_get = sfc_flow_ctrl_get, 1866 .flow_ctrl_set = sfc_flow_ctrl_set, 1867 .mac_addr_set = sfc_mac_addr_set, 1868 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1869 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1870 .reta_update = sfc_dev_rss_reta_update, 1871 .reta_query = sfc_dev_rss_reta_query, 1872 .rss_hash_update = sfc_dev_rss_hash_update, 1873 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1874 .flow_ops_get = sfc_dev_flow_ops_get, 1875 .set_mc_addr_list = sfc_set_mc_addr_list, 1876 .rxq_info_get = sfc_rx_queue_info_get, 1877 .txq_info_get = sfc_tx_queue_info_get, 1878 .fw_version_get = sfc_fw_version_get, 1879 .xstats_get_by_id = sfc_xstats_get_by_id, 1880 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1881 .pool_ops_supported = sfc_pool_ops_supported, 1882 }; 1883 1884 /** 1885 * Duplicate a string in potentially shared memory required for 1886 * multi-process support. 1887 * 1888 * strdup() allocates from process-local heap/memory. 1889 */ 1890 static char * 1891 sfc_strdup(const char *str) 1892 { 1893 size_t size; 1894 char *copy; 1895 1896 if (str == NULL) 1897 return NULL; 1898 1899 size = strlen(str) + 1; 1900 copy = rte_malloc(__func__, size, 0); 1901 if (copy != NULL) 1902 rte_memcpy(copy, str, size); 1903 1904 return copy; 1905 } 1906 1907 static int 1908 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1909 { 1910 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1911 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1912 const struct sfc_dp_rx *dp_rx; 1913 const struct sfc_dp_tx *dp_tx; 1914 const efx_nic_cfg_t *encp; 1915 unsigned int avail_caps = 0; 1916 const char *rx_name = NULL; 1917 const char *tx_name = NULL; 1918 int rc; 1919 1920 switch (sa->family) { 1921 case EFX_FAMILY_HUNTINGTON: 1922 case EFX_FAMILY_MEDFORD: 1923 case EFX_FAMILY_MEDFORD2: 1924 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1925 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX; 1926 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX; 1927 break; 1928 case EFX_FAMILY_RIVERHEAD: 1929 avail_caps |= SFC_DP_HW_FW_CAP_EF100; 1930 break; 1931 default: 1932 break; 1933 } 1934 1935 encp = efx_nic_cfg_get(sa->nic); 1936 if (encp->enc_rx_es_super_buffer_supported) 1937 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1938 1939 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1940 sfc_kvarg_string_handler, &rx_name); 1941 if (rc != 0) 1942 goto fail_kvarg_rx_datapath; 1943 1944 if (rx_name != NULL) { 1945 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1946 if (dp_rx == NULL) { 1947 sfc_err(sa, "Rx datapath %s not found", rx_name); 1948 rc = ENOENT; 1949 goto fail_dp_rx; 1950 } 1951 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1952 sfc_err(sa, 1953 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1954 rx_name); 1955 rc = EINVAL; 1956 goto fail_dp_rx_caps; 1957 } 1958 } else { 1959 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1960 if (dp_rx == NULL) { 1961 sfc_err(sa, "Rx datapath by caps %#x not found", 1962 avail_caps); 1963 rc = ENOENT; 1964 goto fail_dp_rx; 1965 } 1966 } 1967 1968 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1969 if (sas->dp_rx_name == NULL) { 1970 rc = ENOMEM; 1971 goto fail_dp_rx_name; 1972 } 1973 1974 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1975 1976 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1977 sfc_kvarg_string_handler, &tx_name); 1978 if (rc != 0) 1979 goto fail_kvarg_tx_datapath; 1980 1981 if (tx_name != NULL) { 1982 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1983 if (dp_tx == NULL) { 1984 sfc_err(sa, "Tx datapath %s not found", tx_name); 1985 rc = ENOENT; 1986 goto fail_dp_tx; 1987 } 1988 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1989 sfc_err(sa, 1990 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1991 tx_name); 1992 rc = EINVAL; 1993 goto fail_dp_tx_caps; 1994 } 1995 } else { 1996 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1997 if (dp_tx == NULL) { 1998 sfc_err(sa, "Tx datapath by caps %#x not found", 1999 avail_caps); 2000 rc = ENOENT; 2001 goto fail_dp_tx; 2002 } 2003 } 2004 2005 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 2006 if (sas->dp_tx_name == NULL) { 2007 rc = ENOMEM; 2008 goto fail_dp_tx_name; 2009 } 2010 2011 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 2012 2013 sa->priv.dp_rx = dp_rx; 2014 sa->priv.dp_tx = dp_tx; 2015 2016 dev->rx_pkt_burst = dp_rx->pkt_burst; 2017 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2018 dev->tx_pkt_burst = dp_tx->pkt_burst; 2019 2020 dev->rx_queue_count = sfc_rx_queue_count; 2021 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2022 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2023 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2024 dev->dev_ops = &sfc_eth_dev_ops; 2025 2026 return 0; 2027 2028 fail_dp_tx_name: 2029 fail_dp_tx_caps: 2030 fail_dp_tx: 2031 fail_kvarg_tx_datapath: 2032 rte_free(sas->dp_rx_name); 2033 sas->dp_rx_name = NULL; 2034 2035 fail_dp_rx_name: 2036 fail_dp_rx_caps: 2037 fail_dp_rx: 2038 fail_kvarg_rx_datapath: 2039 return rc; 2040 } 2041 2042 static void 2043 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 2044 { 2045 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2046 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2047 2048 dev->dev_ops = NULL; 2049 dev->tx_pkt_prepare = NULL; 2050 dev->rx_pkt_burst = NULL; 2051 dev->tx_pkt_burst = NULL; 2052 2053 rte_free(sas->dp_tx_name); 2054 sas->dp_tx_name = NULL; 2055 sa->priv.dp_tx = NULL; 2056 2057 rte_free(sas->dp_rx_name); 2058 sas->dp_rx_name = NULL; 2059 sa->priv.dp_rx = NULL; 2060 } 2061 2062 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2063 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2064 .reta_query = sfc_dev_rss_reta_query, 2065 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2066 .rxq_info_get = sfc_rx_queue_info_get, 2067 .txq_info_get = sfc_tx_queue_info_get, 2068 }; 2069 2070 static int 2071 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2072 { 2073 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2074 struct sfc_adapter_priv *sap; 2075 const struct sfc_dp_rx *dp_rx; 2076 const struct sfc_dp_tx *dp_tx; 2077 int rc; 2078 2079 /* 2080 * Allocate process private data from heap, since it should not 2081 * be located in shared memory allocated using rte_malloc() API. 2082 */ 2083 sap = calloc(1, sizeof(*sap)); 2084 if (sap == NULL) { 2085 rc = ENOMEM; 2086 goto fail_alloc_priv; 2087 } 2088 2089 sap->logtype_main = logtype_main; 2090 2091 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2092 if (dp_rx == NULL) { 2093 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2094 "cannot find %s Rx datapath", sas->dp_rx_name); 2095 rc = ENOENT; 2096 goto fail_dp_rx; 2097 } 2098 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2099 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2100 "%s Rx datapath does not support multi-process", 2101 sas->dp_rx_name); 2102 rc = EINVAL; 2103 goto fail_dp_rx_multi_process; 2104 } 2105 2106 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2107 if (dp_tx == NULL) { 2108 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2109 "cannot find %s Tx datapath", sas->dp_tx_name); 2110 rc = ENOENT; 2111 goto fail_dp_tx; 2112 } 2113 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2114 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2115 "%s Tx datapath does not support multi-process", 2116 sas->dp_tx_name); 2117 rc = EINVAL; 2118 goto fail_dp_tx_multi_process; 2119 } 2120 2121 sap->dp_rx = dp_rx; 2122 sap->dp_tx = dp_tx; 2123 2124 dev->process_private = sap; 2125 dev->rx_pkt_burst = dp_rx->pkt_burst; 2126 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2127 dev->tx_pkt_burst = dp_tx->pkt_burst; 2128 dev->rx_queue_count = sfc_rx_queue_count; 2129 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2130 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2131 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2132 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2133 2134 return 0; 2135 2136 fail_dp_tx_multi_process: 2137 fail_dp_tx: 2138 fail_dp_rx_multi_process: 2139 fail_dp_rx: 2140 free(sap); 2141 2142 fail_alloc_priv: 2143 return rc; 2144 } 2145 2146 static void 2147 sfc_register_dp(void) 2148 { 2149 /* Register once */ 2150 if (TAILQ_EMPTY(&sfc_dp_head)) { 2151 /* Prefer EF10 datapath */ 2152 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp); 2153 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2154 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2155 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2156 2157 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp); 2158 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2159 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2160 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2161 } 2162 } 2163 2164 static int 2165 sfc_eth_dev_init(struct rte_eth_dev *dev) 2166 { 2167 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2168 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2169 uint32_t logtype_main; 2170 struct sfc_adapter *sa; 2171 int rc; 2172 const efx_nic_cfg_t *encp; 2173 const struct rte_ether_addr *from; 2174 int ret; 2175 2176 if (sfc_efx_dev_class_get(pci_dev->device.devargs) != 2177 SFC_EFX_DEV_CLASS_NET) { 2178 SFC_GENERIC_LOG(DEBUG, 2179 "Incompatible device class: skip probing, should be probed by other sfc driver."); 2180 return 1; 2181 } 2182 2183 sfc_register_dp(); 2184 2185 logtype_main = sfc_register_logtype(&pci_dev->addr, 2186 SFC_LOGTYPE_MAIN_STR, 2187 RTE_LOG_NOTICE); 2188 2189 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2190 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2191 2192 /* Required for logging */ 2193 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix), 2194 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ", 2195 pci_dev->addr.domain, pci_dev->addr.bus, 2196 pci_dev->addr.devid, pci_dev->addr.function, 2197 dev->data->port_id); 2198 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) { 2199 SFC_GENERIC_LOG(ERR, 2200 "reserved log prefix is too short for " PCI_PRI_FMT, 2201 pci_dev->addr.domain, pci_dev->addr.bus, 2202 pci_dev->addr.devid, pci_dev->addr.function); 2203 return -EINVAL; 2204 } 2205 sas->pci_addr = pci_dev->addr; 2206 sas->port_id = dev->data->port_id; 2207 2208 /* 2209 * Allocate process private data from heap, since it should not 2210 * be located in shared memory allocated using rte_malloc() API. 2211 */ 2212 sa = calloc(1, sizeof(*sa)); 2213 if (sa == NULL) { 2214 rc = ENOMEM; 2215 goto fail_alloc_sa; 2216 } 2217 2218 dev->process_private = sa; 2219 2220 /* Required for logging */ 2221 sa->priv.shared = sas; 2222 sa->priv.logtype_main = logtype_main; 2223 2224 sa->eth_dev = dev; 2225 2226 /* Copy PCI device info to the dev->data */ 2227 rte_eth_copy_pci_info(dev, pci_dev); 2228 dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 2229 dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE; 2230 2231 rc = sfc_kvargs_parse(sa); 2232 if (rc != 0) 2233 goto fail_kvargs_parse; 2234 2235 sfc_log_init(sa, "entry"); 2236 2237 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2238 if (dev->data->mac_addrs == NULL) { 2239 rc = ENOMEM; 2240 goto fail_mac_addrs; 2241 } 2242 2243 sfc_adapter_lock_init(sa); 2244 sfc_adapter_lock(sa); 2245 2246 sfc_log_init(sa, "probing"); 2247 rc = sfc_probe(sa); 2248 if (rc != 0) 2249 goto fail_probe; 2250 2251 sfc_log_init(sa, "set device ops"); 2252 rc = sfc_eth_dev_set_ops(dev); 2253 if (rc != 0) 2254 goto fail_set_ops; 2255 2256 sfc_log_init(sa, "attaching"); 2257 rc = sfc_attach(sa); 2258 if (rc != 0) 2259 goto fail_attach; 2260 2261 encp = efx_nic_cfg_get(sa->nic); 2262 2263 /* 2264 * The arguments are really reverse order in comparison to 2265 * Linux kernel. Copy from NIC config to Ethernet device data. 2266 */ 2267 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2268 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2269 2270 sfc_adapter_unlock(sa); 2271 2272 sfc_log_init(sa, "done"); 2273 return 0; 2274 2275 fail_attach: 2276 sfc_eth_dev_clear_ops(dev); 2277 2278 fail_set_ops: 2279 sfc_unprobe(sa); 2280 2281 fail_probe: 2282 sfc_adapter_unlock(sa); 2283 sfc_adapter_lock_fini(sa); 2284 rte_free(dev->data->mac_addrs); 2285 dev->data->mac_addrs = NULL; 2286 2287 fail_mac_addrs: 2288 sfc_kvargs_cleanup(sa); 2289 2290 fail_kvargs_parse: 2291 sfc_log_init(sa, "failed %d", rc); 2292 dev->process_private = NULL; 2293 free(sa); 2294 2295 fail_alloc_sa: 2296 SFC_ASSERT(rc > 0); 2297 return -rc; 2298 } 2299 2300 static int 2301 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2302 { 2303 sfc_dev_close(dev); 2304 2305 return 0; 2306 } 2307 2308 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2309 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2310 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2311 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2312 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2313 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2314 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2315 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2316 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2317 { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) }, 2318 { .vendor_id = 0 /* sentinel */ } 2319 }; 2320 2321 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2322 struct rte_pci_device *pci_dev) 2323 { 2324 return rte_eth_dev_pci_generic_probe(pci_dev, 2325 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2326 } 2327 2328 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2329 { 2330 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2331 } 2332 2333 static struct rte_pci_driver sfc_efx_pmd = { 2334 .id_table = pci_id_sfc_efx_map, 2335 .drv_flags = 2336 RTE_PCI_DRV_INTR_LSC | 2337 RTE_PCI_DRV_NEED_MAPPING, 2338 .probe = sfc_eth_dev_pci_probe, 2339 .remove = sfc_eth_dev_pci_remove, 2340 }; 2341 2342 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2343 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2344 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2345 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2346 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2347 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2348 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2349 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2350 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2351 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2352 2353 RTE_INIT(sfc_driver_register_logtype) 2354 { 2355 int ret; 2356 2357 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2358 RTE_LOG_NOTICE); 2359 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2360 } 2361