xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 6c31a8c20a5af8f8b7929d7637a6a9d414ccfb31)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 #include "sfc_sw_stats.h"
32 
33 #define SFC_XSTAT_ID_INVALID_VAL  UINT64_MAX
34 #define SFC_XSTAT_ID_INVALID_NAME '\0'
35 
36 uint32_t sfc_logtype_driver;
37 
38 static struct sfc_dp_list sfc_dp_head =
39 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
40 
41 
42 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
43 
44 
45 static int
46 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
47 {
48 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
49 	efx_nic_fw_info_t enfi;
50 	int ret;
51 	int rc;
52 
53 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
54 	if (rc != 0)
55 		return -rc;
56 
57 	ret = snprintf(fw_version, fw_size,
58 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
59 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
60 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
61 	if (ret < 0)
62 		return ret;
63 
64 	if (enfi.enfi_dpcpu_fw_ids_valid) {
65 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
66 		int ret_extra;
67 
68 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
69 				     fw_size - dpcpu_fw_ids_offset,
70 				     " rx%" PRIx16 " tx%" PRIx16,
71 				     enfi.enfi_rx_dpcpu_fw_id,
72 				     enfi.enfi_tx_dpcpu_fw_id);
73 		if (ret_extra < 0)
74 			return ret_extra;
75 
76 		ret += ret_extra;
77 	}
78 
79 	if (fw_size < (size_t)(++ret))
80 		return ret;
81 	else
82 		return 0;
83 }
84 
85 static int
86 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
87 {
88 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
89 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
90 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
91 	struct sfc_rss *rss = &sas->rss;
92 	struct sfc_mae *mae = &sa->mae;
93 	uint64_t txq_offloads_def = 0;
94 
95 	sfc_log_init(sa, "entry");
96 
97 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
98 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
99 
100 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
101 
102 	dev_info->max_vfs = sa->sriov.num_vfs;
103 
104 	/* Autonegotiation may be disabled */
105 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
106 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
107 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
108 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
109 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
110 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
111 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
112 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
113 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
114 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
115 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
116 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
117 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
118 
119 	dev_info->max_rx_queues = sa->rxq_max;
120 	dev_info->max_tx_queues = sa->txq_max;
121 
122 	/* By default packets are dropped if no descriptors are available */
123 	dev_info->default_rxconf.rx_drop_en = 1;
124 
125 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
126 
127 	/*
128 	 * rx_offload_capa includes both device and queue offloads since
129 	 * the latter may be requested on a per device basis which makes
130 	 * sense when some offloads are needed to be set on all queues.
131 	 */
132 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
133 				    dev_info->rx_queue_offload_capa;
134 
135 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
136 
137 	/*
138 	 * tx_offload_capa includes both device and queue offloads since
139 	 * the latter may be requested on a per device basis which makes
140 	 * sense when some offloads are needed to be set on all queues.
141 	 */
142 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
143 				    dev_info->tx_queue_offload_capa;
144 
145 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
146 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
147 
148 	dev_info->default_txconf.offloads |= txq_offloads_def;
149 
150 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
151 		uint64_t rte_hf = 0;
152 		unsigned int i;
153 
154 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
155 			rte_hf |= rss->hf_map[i].rte;
156 
157 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
158 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
159 		dev_info->flow_type_rss_offloads = rte_hf;
160 	}
161 
162 	/* Initialize to hardware limits */
163 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
164 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
165 	/* The RXQ hardware requires that the descriptor count is a power
166 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
167 	 */
168 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
169 
170 	/* Initialize to hardware limits */
171 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
172 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
173 	/*
174 	 * The TXQ hardware requires that the descriptor count is a power
175 	 * of 2, but tx_desc_lim cannot properly describe that constraint
176 	 */
177 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
178 
179 	if (sap->dp_rx->get_dev_info != NULL)
180 		sap->dp_rx->get_dev_info(dev_info);
181 	if (sap->dp_tx->get_dev_info != NULL)
182 		sap->dp_tx->get_dev_info(dev_info);
183 
184 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
185 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
186 
187 	if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
188 		dev_info->switch_info.name = dev->device->driver->name;
189 		dev_info->switch_info.domain_id = mae->switch_domain_id;
190 		dev_info->switch_info.port_id = mae->switch_port_id;
191 	}
192 
193 	return 0;
194 }
195 
196 static const uint32_t *
197 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
198 {
199 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
200 
201 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
202 }
203 
204 static int
205 sfc_dev_configure(struct rte_eth_dev *dev)
206 {
207 	struct rte_eth_dev_data *dev_data = dev->data;
208 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
209 	int rc;
210 
211 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
212 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
213 
214 	sfc_adapter_lock(sa);
215 	switch (sa->state) {
216 	case SFC_ADAPTER_CONFIGURED:
217 		/* FALLTHROUGH */
218 	case SFC_ADAPTER_INITIALIZED:
219 		rc = sfc_configure(sa);
220 		break;
221 	default:
222 		sfc_err(sa, "unexpected adapter state %u to configure",
223 			sa->state);
224 		rc = EINVAL;
225 		break;
226 	}
227 	sfc_adapter_unlock(sa);
228 
229 	sfc_log_init(sa, "done %d", rc);
230 	SFC_ASSERT(rc >= 0);
231 	return -rc;
232 }
233 
234 static int
235 sfc_dev_start(struct rte_eth_dev *dev)
236 {
237 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
238 	int rc;
239 
240 	sfc_log_init(sa, "entry");
241 
242 	sfc_adapter_lock(sa);
243 	rc = sfc_start(sa);
244 	sfc_adapter_unlock(sa);
245 
246 	sfc_log_init(sa, "done %d", rc);
247 	SFC_ASSERT(rc >= 0);
248 	return -rc;
249 }
250 
251 static int
252 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
253 {
254 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
255 	struct rte_eth_link current_link;
256 	int ret;
257 
258 	sfc_log_init(sa, "entry");
259 
260 	if (sa->state != SFC_ADAPTER_STARTED) {
261 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
262 	} else if (wait_to_complete) {
263 		efx_link_mode_t link_mode;
264 
265 		if (efx_port_poll(sa->nic, &link_mode) != 0)
266 			link_mode = EFX_LINK_UNKNOWN;
267 		sfc_port_link_mode_to_info(link_mode, &current_link);
268 
269 	} else {
270 		sfc_ev_mgmt_qpoll(sa);
271 		rte_eth_linkstatus_get(dev, &current_link);
272 	}
273 
274 	ret = rte_eth_linkstatus_set(dev, &current_link);
275 	if (ret == 0)
276 		sfc_notice(sa, "Link status is %s",
277 			   current_link.link_status ? "UP" : "DOWN");
278 
279 	return ret;
280 }
281 
282 static int
283 sfc_dev_stop(struct rte_eth_dev *dev)
284 {
285 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
286 
287 	sfc_log_init(sa, "entry");
288 
289 	sfc_adapter_lock(sa);
290 	sfc_stop(sa);
291 	sfc_adapter_unlock(sa);
292 
293 	sfc_log_init(sa, "done");
294 
295 	return 0;
296 }
297 
298 static int
299 sfc_dev_set_link_up(struct rte_eth_dev *dev)
300 {
301 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
302 	int rc;
303 
304 	sfc_log_init(sa, "entry");
305 
306 	sfc_adapter_lock(sa);
307 	rc = sfc_start(sa);
308 	sfc_adapter_unlock(sa);
309 
310 	SFC_ASSERT(rc >= 0);
311 	return -rc;
312 }
313 
314 static int
315 sfc_dev_set_link_down(struct rte_eth_dev *dev)
316 {
317 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
318 
319 	sfc_log_init(sa, "entry");
320 
321 	sfc_adapter_lock(sa);
322 	sfc_stop(sa);
323 	sfc_adapter_unlock(sa);
324 
325 	return 0;
326 }
327 
328 static void
329 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
330 {
331 	free(dev->process_private);
332 	rte_eth_dev_release_port(dev);
333 }
334 
335 static int
336 sfc_dev_close(struct rte_eth_dev *dev)
337 {
338 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
339 
340 	sfc_log_init(sa, "entry");
341 
342 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
343 		sfc_eth_dev_secondary_clear_ops(dev);
344 		return 0;
345 	}
346 
347 	sfc_adapter_lock(sa);
348 	switch (sa->state) {
349 	case SFC_ADAPTER_STARTED:
350 		sfc_stop(sa);
351 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
352 		/* FALLTHROUGH */
353 	case SFC_ADAPTER_CONFIGURED:
354 		sfc_close(sa);
355 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
356 		/* FALLTHROUGH */
357 	case SFC_ADAPTER_INITIALIZED:
358 		break;
359 	default:
360 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
361 		break;
362 	}
363 
364 	/*
365 	 * Cleanup all resources.
366 	 * Rollback primary process sfc_eth_dev_init() below.
367 	 */
368 
369 	sfc_eth_dev_clear_ops(dev);
370 
371 	sfc_detach(sa);
372 	sfc_unprobe(sa);
373 
374 	sfc_kvargs_cleanup(sa);
375 
376 	sfc_adapter_unlock(sa);
377 	sfc_adapter_lock_fini(sa);
378 
379 	sfc_log_init(sa, "done");
380 
381 	/* Required for logging, so cleanup last */
382 	sa->eth_dev = NULL;
383 
384 	free(sa);
385 
386 	return 0;
387 }
388 
389 static int
390 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
391 		   boolean_t enabled)
392 {
393 	struct sfc_port *port;
394 	boolean_t *toggle;
395 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
396 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
397 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
398 	int rc = 0;
399 
400 	sfc_adapter_lock(sa);
401 
402 	port = &sa->port;
403 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
404 
405 	if (*toggle != enabled) {
406 		*toggle = enabled;
407 
408 		if (sfc_sa2shared(sa)->isolated) {
409 			sfc_warn(sa, "isolated mode is active on the port");
410 			sfc_warn(sa, "the change is to be applied on the next "
411 				     "start provided that isolated mode is "
412 				     "disabled prior the next start");
413 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
414 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
415 			*toggle = !(enabled);
416 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
417 				 ((enabled) ? "enable" : "disable"), desc, rc);
418 
419 			/*
420 			 * For promiscuous and all-multicast filters a
421 			 * permission failure should be reported as an
422 			 * unsupported filter.
423 			 */
424 			if (rc == EPERM)
425 				rc = ENOTSUP;
426 		}
427 	}
428 
429 	sfc_adapter_unlock(sa);
430 	return rc;
431 }
432 
433 static int
434 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
435 {
436 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
437 
438 	SFC_ASSERT(rc >= 0);
439 	return -rc;
440 }
441 
442 static int
443 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
444 {
445 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
446 
447 	SFC_ASSERT(rc >= 0);
448 	return -rc;
449 }
450 
451 static int
452 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
453 {
454 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
455 
456 	SFC_ASSERT(rc >= 0);
457 	return -rc;
458 }
459 
460 static int
461 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
462 {
463 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
464 
465 	SFC_ASSERT(rc >= 0);
466 	return -rc;
467 }
468 
469 static int
470 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
471 		   uint16_t nb_rx_desc, unsigned int socket_id,
472 		   const struct rte_eth_rxconf *rx_conf,
473 		   struct rte_mempool *mb_pool)
474 {
475 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
476 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
477 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
478 	struct sfc_rxq_info *rxq_info;
479 	sfc_sw_index_t sw_index;
480 	int rc;
481 
482 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
483 		     ethdev_qid, nb_rx_desc, socket_id);
484 
485 	sfc_adapter_lock(sa);
486 
487 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
488 	rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
489 			  rx_conf, mb_pool);
490 	if (rc != 0)
491 		goto fail_rx_qinit;
492 
493 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
494 	dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
495 
496 	sfc_adapter_unlock(sa);
497 
498 	return 0;
499 
500 fail_rx_qinit:
501 	sfc_adapter_unlock(sa);
502 	SFC_ASSERT(rc > 0);
503 	return -rc;
504 }
505 
506 static void
507 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
508 {
509 	struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
510 	struct sfc_rxq *rxq;
511 	struct sfc_adapter *sa;
512 	sfc_sw_index_t sw_index;
513 
514 	if (dp_rxq == NULL)
515 		return;
516 
517 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
518 	sa = rxq->evq->sa;
519 	sfc_adapter_lock(sa);
520 
521 	sw_index = dp_rxq->dpq.queue_id;
522 
523 	sfc_log_init(sa, "RxQ=%u", sw_index);
524 
525 	sfc_rx_qfini(sa, sw_index);
526 
527 	sfc_adapter_unlock(sa);
528 }
529 
530 static int
531 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
532 		   uint16_t nb_tx_desc, unsigned int socket_id,
533 		   const struct rte_eth_txconf *tx_conf)
534 {
535 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
536 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
537 	struct sfc_txq_info *txq_info;
538 	sfc_sw_index_t sw_index;
539 	int rc;
540 
541 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
542 		     ethdev_qid, nb_tx_desc, socket_id);
543 
544 	sfc_adapter_lock(sa);
545 
546 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
547 	rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
548 	if (rc != 0)
549 		goto fail_tx_qinit;
550 
551 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
552 	dev->data->tx_queues[ethdev_qid] = txq_info->dp;
553 
554 	sfc_adapter_unlock(sa);
555 	return 0;
556 
557 fail_tx_qinit:
558 	sfc_adapter_unlock(sa);
559 	SFC_ASSERT(rc > 0);
560 	return -rc;
561 }
562 
563 static void
564 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
565 {
566 	struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
567 	struct sfc_txq *txq;
568 	sfc_sw_index_t sw_index;
569 	struct sfc_adapter *sa;
570 
571 	if (dp_txq == NULL)
572 		return;
573 
574 	txq = sfc_txq_by_dp_txq(dp_txq);
575 	sw_index = dp_txq->dpq.queue_id;
576 
577 	SFC_ASSERT(txq->evq != NULL);
578 	sa = txq->evq->sa;
579 
580 	sfc_log_init(sa, "TxQ = %u", sw_index);
581 
582 	sfc_adapter_lock(sa);
583 
584 	sfc_tx_qfini(sa, sw_index);
585 
586 	sfc_adapter_unlock(sa);
587 }
588 
589 /*
590  * Some statistics are computed as A - B where A and B each increase
591  * monotonically with some hardware counter(s) and the counters are read
592  * asynchronously.
593  *
594  * If packet X is counted in A, but not counted in B yet, computed value is
595  * greater than real.
596  *
597  * If packet X is not counted in A at the moment of reading the counter,
598  * but counted in B at the moment of reading the counter, computed value
599  * is less than real.
600  *
601  * However, counter which grows backward is worse evil than slightly wrong
602  * value. So, let's try to guarantee that it never happens except may be
603  * the case when the MAC stats are zeroed as a result of a NIC reset.
604  */
605 static void
606 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
607 {
608 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
609 		*stat = newval;
610 }
611 
612 static int
613 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
614 {
615 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
616 	struct sfc_port *port = &sa->port;
617 	uint64_t *mac_stats;
618 	int ret;
619 
620 	sfc_adapter_lock(sa);
621 
622 	ret = sfc_port_update_mac_stats(sa, B_FALSE);
623 	if (ret != 0)
624 		goto unlock;
625 
626 	mac_stats = port->mac_stats_buf;
627 
628 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
629 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
630 		stats->ipackets =
631 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
632 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
633 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
634 		stats->opackets =
635 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
636 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
637 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
638 		stats->ibytes =
639 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
640 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
641 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
642 		stats->obytes =
643 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
644 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
645 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
646 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
647 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
648 
649 		/* CRC is included in these stats, but shouldn't be */
650 		stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
651 		stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
652 	} else {
653 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
654 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
655 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
656 
657 		/* CRC is included in these stats, but shouldn't be */
658 		stats->ibytes -= mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
659 		stats->obytes -= mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
660 
661 		/*
662 		 * Take into account stats which are whenever supported
663 		 * on EF10. If some stat is not supported by current
664 		 * firmware variant or HW revision, it is guaranteed
665 		 * to be zero in mac_stats.
666 		 */
667 		stats->imissed =
668 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
669 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
670 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
671 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
672 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
673 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
674 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
675 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
676 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
677 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
678 		stats->ierrors =
679 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
680 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
681 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
682 		/* no oerrors counters supported on EF10 */
683 
684 		/* Exclude missed, errors and pauses from Rx packets */
685 		sfc_update_diff_stat(&port->ipackets,
686 			mac_stats[EFX_MAC_RX_PKTS] -
687 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
688 			stats->imissed - stats->ierrors);
689 		stats->ipackets = port->ipackets;
690 	}
691 
692 unlock:
693 	sfc_adapter_unlock(sa);
694 	SFC_ASSERT(ret >= 0);
695 	return -ret;
696 }
697 
698 static int
699 sfc_stats_reset(struct rte_eth_dev *dev)
700 {
701 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
702 	struct sfc_port *port = &sa->port;
703 	int rc;
704 
705 	sfc_adapter_lock(sa);
706 
707 	if (sa->state != SFC_ADAPTER_STARTED) {
708 		/*
709 		 * The operation cannot be done if port is not started; it
710 		 * will be scheduled to be done during the next port start
711 		 */
712 		port->mac_stats_reset_pending = B_TRUE;
713 		sfc_adapter_unlock(sa);
714 		return 0;
715 	}
716 
717 	rc = sfc_port_reset_mac_stats(sa);
718 	if (rc != 0)
719 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
720 
721 	sfc_sw_xstats_reset(sa);
722 
723 	sfc_adapter_unlock(sa);
724 
725 	SFC_ASSERT(rc >= 0);
726 	return -rc;
727 }
728 
729 static unsigned int
730 sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
731 {
732 	struct sfc_port *port = &sa->port;
733 	unsigned int nb_supported;
734 
735 	sfc_adapter_lock(sa);
736 	nb_supported = port->mac_stats_nb_supported +
737 		       sfc_sw_xstats_get_nb_supported(sa);
738 	sfc_adapter_unlock(sa);
739 
740 	return nb_supported;
741 }
742 
743 static int
744 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
745 	       unsigned int xstats_count)
746 {
747 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
748 	unsigned int nb_written = 0;
749 	unsigned int nb_supported = 0;
750 	int rc;
751 
752 	if (unlikely(xstats == NULL))
753 		return sfc_xstats_get_nb_supported(sa);
754 
755 	rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
756 	if (rc < 0)
757 		return rc;
758 
759 	nb_supported = rc;
760 	sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
761 			       &nb_supported);
762 
763 	return nb_supported;
764 }
765 
766 static int
767 sfc_xstats_get_names(struct rte_eth_dev *dev,
768 		     struct rte_eth_xstat_name *xstats_names,
769 		     unsigned int xstats_count)
770 {
771 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
772 	struct sfc_port *port = &sa->port;
773 	unsigned int i;
774 	unsigned int nstats = 0;
775 	unsigned int nb_written = 0;
776 	int ret;
777 
778 	if (unlikely(xstats_names == NULL))
779 		return sfc_xstats_get_nb_supported(sa);
780 
781 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
782 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
783 			if (nstats < xstats_count) {
784 				strlcpy(xstats_names[nstats].name,
785 					efx_mac_stat_name(sa->nic, i),
786 					sizeof(xstats_names[0].name));
787 				nb_written++;
788 			}
789 			nstats++;
790 		}
791 	}
792 
793 	ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
794 				      &nb_written, &nstats);
795 	if (ret != 0) {
796 		SFC_ASSERT(ret < 0);
797 		return ret;
798 	}
799 
800 	return nstats;
801 }
802 
803 static int
804 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
805 		     uint64_t *values, unsigned int n)
806 {
807 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
808 	struct sfc_port *port = &sa->port;
809 	unsigned int nb_supported;
810 	unsigned int i;
811 	int rc;
812 
813 	if (unlikely(ids == NULL || values == NULL))
814 		return -EINVAL;
815 
816 	/*
817 	 * Values array could be filled in nonsequential order. Fill values with
818 	 * constant indicating invalid ID first.
819 	 */
820 	for (i = 0; i < n; i++)
821 		values[i] = SFC_XSTAT_ID_INVALID_VAL;
822 
823 	rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
824 	if (rc != 0)
825 		return rc;
826 
827 	nb_supported = port->mac_stats_nb_supported;
828 	sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
829 
830 	/* Return number of written stats before invalid ID is encountered. */
831 	for (i = 0; i < n; i++) {
832 		if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
833 			return i;
834 	}
835 
836 	return n;
837 }
838 
839 static int
840 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
841 			   const uint64_t *ids,
842 			   struct rte_eth_xstat_name *xstats_names,
843 			   unsigned int size)
844 {
845 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
846 	struct sfc_port *port = &sa->port;
847 	unsigned int nb_supported;
848 	unsigned int i;
849 	int ret;
850 
851 	if (unlikely(xstats_names == NULL && ids != NULL) ||
852 	    unlikely(xstats_names != NULL && ids == NULL))
853 		return -EINVAL;
854 
855 	if (unlikely(xstats_names == NULL && ids == NULL))
856 		return sfc_xstats_get_nb_supported(sa);
857 
858 	/*
859 	 * Names array could be filled in nonsequential order. Fill names with
860 	 * string indicating invalid ID first.
861 	 */
862 	for (i = 0; i < size; i++)
863 		xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
864 
865 	sfc_adapter_lock(sa);
866 
867 	SFC_ASSERT(port->mac_stats_nb_supported <=
868 		   RTE_DIM(port->mac_stats_by_id));
869 
870 	for (i = 0; i < size; i++) {
871 		if (ids[i] < port->mac_stats_nb_supported) {
872 			strlcpy(xstats_names[i].name,
873 				efx_mac_stat_name(sa->nic,
874 						 port->mac_stats_by_id[ids[i]]),
875 				sizeof(xstats_names[0].name));
876 		}
877 	}
878 
879 	nb_supported = port->mac_stats_nb_supported;
880 
881 	sfc_adapter_unlock(sa);
882 
883 	ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
884 					    &nb_supported);
885 	if (ret != 0) {
886 		SFC_ASSERT(ret < 0);
887 		return ret;
888 	}
889 
890 	/* Return number of written names before invalid ID is encountered. */
891 	for (i = 0; i < size; i++) {
892 		if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
893 			return i;
894 	}
895 
896 	return size;
897 }
898 
899 static int
900 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
901 {
902 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
903 	unsigned int wanted_fc, link_fc;
904 
905 	memset(fc_conf, 0, sizeof(*fc_conf));
906 
907 	sfc_adapter_lock(sa);
908 
909 	if (sa->state == SFC_ADAPTER_STARTED)
910 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
911 	else
912 		link_fc = sa->port.flow_ctrl;
913 
914 	switch (link_fc) {
915 	case 0:
916 		fc_conf->mode = RTE_FC_NONE;
917 		break;
918 	case EFX_FCNTL_RESPOND:
919 		fc_conf->mode = RTE_FC_RX_PAUSE;
920 		break;
921 	case EFX_FCNTL_GENERATE:
922 		fc_conf->mode = RTE_FC_TX_PAUSE;
923 		break;
924 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
925 		fc_conf->mode = RTE_FC_FULL;
926 		break;
927 	default:
928 		sfc_err(sa, "%s: unexpected flow control value %#x",
929 			__func__, link_fc);
930 	}
931 
932 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
933 
934 	sfc_adapter_unlock(sa);
935 
936 	return 0;
937 }
938 
939 static int
940 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
941 {
942 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
943 	struct sfc_port *port = &sa->port;
944 	unsigned int fcntl;
945 	int rc;
946 
947 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
948 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
949 	    fc_conf->mac_ctrl_frame_fwd != 0) {
950 		sfc_err(sa, "unsupported flow control settings specified");
951 		rc = EINVAL;
952 		goto fail_inval;
953 	}
954 
955 	switch (fc_conf->mode) {
956 	case RTE_FC_NONE:
957 		fcntl = 0;
958 		break;
959 	case RTE_FC_RX_PAUSE:
960 		fcntl = EFX_FCNTL_RESPOND;
961 		break;
962 	case RTE_FC_TX_PAUSE:
963 		fcntl = EFX_FCNTL_GENERATE;
964 		break;
965 	case RTE_FC_FULL:
966 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
967 		break;
968 	default:
969 		rc = EINVAL;
970 		goto fail_inval;
971 	}
972 
973 	sfc_adapter_lock(sa);
974 
975 	if (sa->state == SFC_ADAPTER_STARTED) {
976 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
977 		if (rc != 0)
978 			goto fail_mac_fcntl_set;
979 	}
980 
981 	port->flow_ctrl = fcntl;
982 	port->flow_ctrl_autoneg = fc_conf->autoneg;
983 
984 	sfc_adapter_unlock(sa);
985 
986 	return 0;
987 
988 fail_mac_fcntl_set:
989 	sfc_adapter_unlock(sa);
990 fail_inval:
991 	SFC_ASSERT(rc > 0);
992 	return -rc;
993 }
994 
995 static int
996 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
997 {
998 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
999 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1000 	boolean_t scatter_enabled;
1001 	const char *error;
1002 	unsigned int i;
1003 
1004 	for (i = 0; i < sas->rxq_count; i++) {
1005 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
1006 			continue;
1007 
1008 		scatter_enabled = (sas->rxq_info[i].type_flags &
1009 				   EFX_RXQ_FLAG_SCATTER);
1010 
1011 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
1012 					  encp->enc_rx_prefix_size,
1013 					  scatter_enabled,
1014 					  encp->enc_rx_scatter_max, &error)) {
1015 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1016 				error);
1017 			return EINVAL;
1018 		}
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static int
1025 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1026 {
1027 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1028 	size_t pdu = EFX_MAC_PDU(mtu);
1029 	size_t old_pdu;
1030 	int rc;
1031 
1032 	sfc_log_init(sa, "mtu=%u", mtu);
1033 
1034 	rc = EINVAL;
1035 	if (pdu < EFX_MAC_PDU_MIN) {
1036 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1037 			(unsigned int)mtu, (unsigned int)pdu,
1038 			EFX_MAC_PDU_MIN);
1039 		goto fail_inval;
1040 	}
1041 	if (pdu > EFX_MAC_PDU_MAX) {
1042 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1043 			(unsigned int)mtu, (unsigned int)pdu,
1044 			(unsigned int)EFX_MAC_PDU_MAX);
1045 		goto fail_inval;
1046 	}
1047 
1048 	sfc_adapter_lock(sa);
1049 
1050 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1051 	if (rc != 0)
1052 		goto fail_check_scatter;
1053 
1054 	if (pdu != sa->port.pdu) {
1055 		if (sa->state == SFC_ADAPTER_STARTED) {
1056 			sfc_stop(sa);
1057 
1058 			old_pdu = sa->port.pdu;
1059 			sa->port.pdu = pdu;
1060 			rc = sfc_start(sa);
1061 			if (rc != 0)
1062 				goto fail_start;
1063 		} else {
1064 			sa->port.pdu = pdu;
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * The driver does not use it, but other PMDs update jumbo frame
1070 	 * flag and max_rx_pkt_len when MTU is set.
1071 	 */
1072 	if (mtu > RTE_ETHER_MTU) {
1073 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1074 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1075 	}
1076 
1077 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1078 
1079 	sfc_adapter_unlock(sa);
1080 
1081 	sfc_log_init(sa, "done");
1082 	return 0;
1083 
1084 fail_start:
1085 	sa->port.pdu = old_pdu;
1086 	if (sfc_start(sa) != 0)
1087 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1088 			"PDU max size - port is stopped",
1089 			(unsigned int)pdu, (unsigned int)old_pdu);
1090 
1091 fail_check_scatter:
1092 	sfc_adapter_unlock(sa);
1093 
1094 fail_inval:
1095 	sfc_log_init(sa, "failed %d", rc);
1096 	SFC_ASSERT(rc > 0);
1097 	return -rc;
1098 }
1099 static int
1100 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1101 {
1102 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1103 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1104 	struct sfc_port *port = &sa->port;
1105 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1106 	int rc = 0;
1107 
1108 	sfc_adapter_lock(sa);
1109 
1110 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1111 		goto unlock;
1112 
1113 	/*
1114 	 * Copy the address to the device private data so that
1115 	 * it could be recalled in the case of adapter restart.
1116 	 */
1117 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1118 
1119 	/*
1120 	 * Neither of the two following checks can return
1121 	 * an error. The new MAC address is preserved in
1122 	 * the device private data and can be activated
1123 	 * on the next port start if the user prevents
1124 	 * isolated mode from being enabled.
1125 	 */
1126 	if (sfc_sa2shared(sa)->isolated) {
1127 		sfc_warn(sa, "isolated mode is active on the port");
1128 		sfc_warn(sa, "will not set MAC address");
1129 		goto unlock;
1130 	}
1131 
1132 	if (sa->state != SFC_ADAPTER_STARTED) {
1133 		sfc_notice(sa, "the port is not started");
1134 		sfc_notice(sa, "the new MAC address will be set on port start");
1135 
1136 		goto unlock;
1137 	}
1138 
1139 	if (encp->enc_allow_set_mac_with_installed_filters) {
1140 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1141 		if (rc != 0) {
1142 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1143 			goto unlock;
1144 		}
1145 
1146 		/*
1147 		 * Changing the MAC address by means of MCDI request
1148 		 * has no effect on received traffic, therefore
1149 		 * we also need to update unicast filters
1150 		 */
1151 		rc = sfc_set_rx_mode_unchecked(sa);
1152 		if (rc != 0) {
1153 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1154 			/* Rollback the old address */
1155 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1156 			(void)sfc_set_rx_mode_unchecked(sa);
1157 		}
1158 	} else {
1159 		sfc_warn(sa, "cannot set MAC address with filters installed");
1160 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1161 		sfc_warn(sa, "(some traffic may be dropped)");
1162 
1163 		/*
1164 		 * Since setting MAC address with filters installed is not
1165 		 * allowed on the adapter, the new MAC address will be set
1166 		 * by means of adapter restart. sfc_start() shall retrieve
1167 		 * the new address from the device private data and set it.
1168 		 */
1169 		sfc_stop(sa);
1170 		rc = sfc_start(sa);
1171 		if (rc != 0)
1172 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1173 	}
1174 
1175 unlock:
1176 	if (rc != 0)
1177 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1178 
1179 	sfc_adapter_unlock(sa);
1180 
1181 	SFC_ASSERT(rc >= 0);
1182 	return -rc;
1183 }
1184 
1185 
1186 static int
1187 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1188 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1189 {
1190 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1191 	struct sfc_port *port = &sa->port;
1192 	uint8_t *mc_addrs = port->mcast_addrs;
1193 	int rc;
1194 	unsigned int i;
1195 
1196 	if (sfc_sa2shared(sa)->isolated) {
1197 		sfc_err(sa, "isolated mode is active on the port");
1198 		sfc_err(sa, "will not set multicast address list");
1199 		return -ENOTSUP;
1200 	}
1201 
1202 	if (mc_addrs == NULL)
1203 		return -ENOBUFS;
1204 
1205 	if (nb_mc_addr > port->max_mcast_addrs) {
1206 		sfc_err(sa, "too many multicast addresses: %u > %u",
1207 			 nb_mc_addr, port->max_mcast_addrs);
1208 		return -EINVAL;
1209 	}
1210 
1211 	for (i = 0; i < nb_mc_addr; ++i) {
1212 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1213 				 EFX_MAC_ADDR_LEN);
1214 		mc_addrs += EFX_MAC_ADDR_LEN;
1215 	}
1216 
1217 	port->nb_mcast_addrs = nb_mc_addr;
1218 
1219 	if (sa->state != SFC_ADAPTER_STARTED)
1220 		return 0;
1221 
1222 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1223 					port->nb_mcast_addrs);
1224 	if (rc != 0)
1225 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1226 
1227 	SFC_ASSERT(rc >= 0);
1228 	return -rc;
1229 }
1230 
1231 /*
1232  * The function is used by the secondary process as well. It must not
1233  * use any process-local pointers from the adapter data.
1234  */
1235 static void
1236 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1237 		      struct rte_eth_rxq_info *qinfo)
1238 {
1239 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1240 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1241 	struct sfc_rxq_info *rxq_info;
1242 
1243 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1244 
1245 	qinfo->mp = rxq_info->refill_mb_pool;
1246 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1247 	qinfo->conf.rx_drop_en = 1;
1248 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1249 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1250 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1251 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1252 		qinfo->scattered_rx = 1;
1253 	}
1254 	qinfo->nb_desc = rxq_info->entries;
1255 }
1256 
1257 /*
1258  * The function is used by the secondary process as well. It must not
1259  * use any process-local pointers from the adapter data.
1260  */
1261 static void
1262 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1263 		      struct rte_eth_txq_info *qinfo)
1264 {
1265 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1266 	struct sfc_txq_info *txq_info;
1267 
1268 	SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1269 
1270 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1271 
1272 	memset(qinfo, 0, sizeof(*qinfo));
1273 
1274 	qinfo->conf.offloads = txq_info->offloads;
1275 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1276 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1277 	qinfo->nb_desc = txq_info->entries;
1278 }
1279 
1280 /*
1281  * The function is used by the secondary process as well. It must not
1282  * use any process-local pointers from the adapter data.
1283  */
1284 static uint32_t
1285 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1286 {
1287 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1288 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1289 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1290 	struct sfc_rxq_info *rxq_info;
1291 
1292 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1293 
1294 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1295 		return 0;
1296 
1297 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1298 }
1299 
1300 /*
1301  * The function is used by the secondary process as well. It must not
1302  * use any process-local pointers from the adapter data.
1303  */
1304 static int
1305 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1306 {
1307 	struct sfc_dp_rxq *dp_rxq = queue;
1308 	const struct sfc_dp_rx *dp_rx;
1309 
1310 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1311 
1312 	return dp_rx->qdesc_status(dp_rxq, offset);
1313 }
1314 
1315 /*
1316  * The function is used by the secondary process as well. It must not
1317  * use any process-local pointers from the adapter data.
1318  */
1319 static int
1320 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1321 {
1322 	struct sfc_dp_txq *dp_txq = queue;
1323 	const struct sfc_dp_tx *dp_tx;
1324 
1325 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1326 
1327 	return dp_tx->qdesc_status(dp_txq, offset);
1328 }
1329 
1330 static int
1331 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1332 {
1333 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1334 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1335 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1336 	struct sfc_rxq_info *rxq_info;
1337 	sfc_sw_index_t sw_index;
1338 	int rc;
1339 
1340 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1341 
1342 	sfc_adapter_lock(sa);
1343 
1344 	rc = EINVAL;
1345 	if (sa->state != SFC_ADAPTER_STARTED)
1346 		goto fail_not_started;
1347 
1348 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1349 	if (rxq_info->state != SFC_RXQ_INITIALIZED)
1350 		goto fail_not_setup;
1351 
1352 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1353 	rc = sfc_rx_qstart(sa, sw_index);
1354 	if (rc != 0)
1355 		goto fail_rx_qstart;
1356 
1357 	rxq_info->deferred_started = B_TRUE;
1358 
1359 	sfc_adapter_unlock(sa);
1360 
1361 	return 0;
1362 
1363 fail_rx_qstart:
1364 fail_not_setup:
1365 fail_not_started:
1366 	sfc_adapter_unlock(sa);
1367 	SFC_ASSERT(rc > 0);
1368 	return -rc;
1369 }
1370 
1371 static int
1372 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1373 {
1374 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1375 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1376 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1377 	struct sfc_rxq_info *rxq_info;
1378 	sfc_sw_index_t sw_index;
1379 
1380 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1381 
1382 	sfc_adapter_lock(sa);
1383 
1384 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1385 	sfc_rx_qstop(sa, sw_index);
1386 
1387 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1388 	rxq_info->deferred_started = B_FALSE;
1389 
1390 	sfc_adapter_unlock(sa);
1391 
1392 	return 0;
1393 }
1394 
1395 static int
1396 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1397 {
1398 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1399 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1400 	struct sfc_txq_info *txq_info;
1401 	sfc_sw_index_t sw_index;
1402 	int rc;
1403 
1404 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1405 
1406 	sfc_adapter_lock(sa);
1407 
1408 	rc = EINVAL;
1409 	if (sa->state != SFC_ADAPTER_STARTED)
1410 		goto fail_not_started;
1411 
1412 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1413 	if (txq_info->state != SFC_TXQ_INITIALIZED)
1414 		goto fail_not_setup;
1415 
1416 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1417 	rc = sfc_tx_qstart(sa, sw_index);
1418 	if (rc != 0)
1419 		goto fail_tx_qstart;
1420 
1421 	txq_info->deferred_started = B_TRUE;
1422 
1423 	sfc_adapter_unlock(sa);
1424 	return 0;
1425 
1426 fail_tx_qstart:
1427 
1428 fail_not_setup:
1429 fail_not_started:
1430 	sfc_adapter_unlock(sa);
1431 	SFC_ASSERT(rc > 0);
1432 	return -rc;
1433 }
1434 
1435 static int
1436 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1437 {
1438 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1439 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1440 	struct sfc_txq_info *txq_info;
1441 	sfc_sw_index_t sw_index;
1442 
1443 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1444 
1445 	sfc_adapter_lock(sa);
1446 
1447 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1448 	sfc_tx_qstop(sa, sw_index);
1449 
1450 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1451 	txq_info->deferred_started = B_FALSE;
1452 
1453 	sfc_adapter_unlock(sa);
1454 	return 0;
1455 }
1456 
1457 static efx_tunnel_protocol_t
1458 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1459 {
1460 	switch (rte_type) {
1461 	case RTE_TUNNEL_TYPE_VXLAN:
1462 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1463 	case RTE_TUNNEL_TYPE_GENEVE:
1464 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1465 	default:
1466 		return EFX_TUNNEL_NPROTOS;
1467 	}
1468 }
1469 
1470 enum sfc_udp_tunnel_op_e {
1471 	SFC_UDP_TUNNEL_ADD_PORT,
1472 	SFC_UDP_TUNNEL_DEL_PORT,
1473 };
1474 
1475 static int
1476 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1477 		      struct rte_eth_udp_tunnel *tunnel_udp,
1478 		      enum sfc_udp_tunnel_op_e op)
1479 {
1480 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1481 	efx_tunnel_protocol_t tunnel_proto;
1482 	int rc;
1483 
1484 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1485 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1486 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1487 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1488 
1489 	tunnel_proto =
1490 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1491 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1492 		rc = ENOTSUP;
1493 		goto fail_bad_proto;
1494 	}
1495 
1496 	sfc_adapter_lock(sa);
1497 
1498 	switch (op) {
1499 	case SFC_UDP_TUNNEL_ADD_PORT:
1500 		rc = efx_tunnel_config_udp_add(sa->nic,
1501 					       tunnel_udp->udp_port,
1502 					       tunnel_proto);
1503 		break;
1504 	case SFC_UDP_TUNNEL_DEL_PORT:
1505 		rc = efx_tunnel_config_udp_remove(sa->nic,
1506 						  tunnel_udp->udp_port,
1507 						  tunnel_proto);
1508 		break;
1509 	default:
1510 		rc = EINVAL;
1511 		goto fail_bad_op;
1512 	}
1513 
1514 	if (rc != 0)
1515 		goto fail_op;
1516 
1517 	if (sa->state == SFC_ADAPTER_STARTED) {
1518 		rc = efx_tunnel_reconfigure(sa->nic);
1519 		if (rc == EAGAIN) {
1520 			/*
1521 			 * Configuration is accepted by FW and MC reboot
1522 			 * is initiated to apply the changes. MC reboot
1523 			 * will be handled in a usual way (MC reboot
1524 			 * event on management event queue and adapter
1525 			 * restart).
1526 			 */
1527 			rc = 0;
1528 		} else if (rc != 0) {
1529 			goto fail_reconfigure;
1530 		}
1531 	}
1532 
1533 	sfc_adapter_unlock(sa);
1534 	return 0;
1535 
1536 fail_reconfigure:
1537 	/* Remove/restore entry since the change makes the trouble */
1538 	switch (op) {
1539 	case SFC_UDP_TUNNEL_ADD_PORT:
1540 		(void)efx_tunnel_config_udp_remove(sa->nic,
1541 						   tunnel_udp->udp_port,
1542 						   tunnel_proto);
1543 		break;
1544 	case SFC_UDP_TUNNEL_DEL_PORT:
1545 		(void)efx_tunnel_config_udp_add(sa->nic,
1546 						tunnel_udp->udp_port,
1547 						tunnel_proto);
1548 		break;
1549 	}
1550 
1551 fail_op:
1552 fail_bad_op:
1553 	sfc_adapter_unlock(sa);
1554 
1555 fail_bad_proto:
1556 	SFC_ASSERT(rc > 0);
1557 	return -rc;
1558 }
1559 
1560 static int
1561 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1562 			    struct rte_eth_udp_tunnel *tunnel_udp)
1563 {
1564 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1565 }
1566 
1567 static int
1568 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1569 			    struct rte_eth_udp_tunnel *tunnel_udp)
1570 {
1571 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1572 }
1573 
1574 /*
1575  * The function is used by the secondary process as well. It must not
1576  * use any process-local pointers from the adapter data.
1577  */
1578 static int
1579 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1580 			  struct rte_eth_rss_conf *rss_conf)
1581 {
1582 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1583 	struct sfc_rss *rss = &sas->rss;
1584 
1585 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1586 		return -ENOTSUP;
1587 
1588 	/*
1589 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1590 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1591 	 * flags which corresponds to the active EFX configuration stored
1592 	 * locally in 'sfc_adapter' and kept up-to-date
1593 	 */
1594 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1595 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1596 	if (rss_conf->rss_key != NULL)
1597 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1598 
1599 	return 0;
1600 }
1601 
1602 static int
1603 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1604 			struct rte_eth_rss_conf *rss_conf)
1605 {
1606 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1607 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1608 	unsigned int efx_hash_types;
1609 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1610 	unsigned int n_contexts;
1611 	unsigned int mode_i = 0;
1612 	unsigned int key_i = 0;
1613 	unsigned int i = 0;
1614 	int rc = 0;
1615 
1616 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1617 
1618 	if (sfc_sa2shared(sa)->isolated)
1619 		return -ENOTSUP;
1620 
1621 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1622 		sfc_err(sa, "RSS is not available");
1623 		return -ENOTSUP;
1624 	}
1625 
1626 	if (rss->channels == 0) {
1627 		sfc_err(sa, "RSS is not configured");
1628 		return -EINVAL;
1629 	}
1630 
1631 	if ((rss_conf->rss_key != NULL) &&
1632 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1633 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1634 			sizeof(rss->key));
1635 		return -EINVAL;
1636 	}
1637 
1638 	sfc_adapter_lock(sa);
1639 
1640 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1641 	if (rc != 0)
1642 		goto fail_rx_hf_rte_to_efx;
1643 
1644 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1645 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1646 					   rss->hash_alg, efx_hash_types,
1647 					   B_TRUE);
1648 		if (rc != 0)
1649 			goto fail_scale_mode_set;
1650 	}
1651 
1652 	if (rss_conf->rss_key != NULL) {
1653 		if (sa->state == SFC_ADAPTER_STARTED) {
1654 			for (key_i = 0; key_i < n_contexts; key_i++) {
1655 				rc = efx_rx_scale_key_set(sa->nic,
1656 							  contexts[key_i],
1657 							  rss_conf->rss_key,
1658 							  sizeof(rss->key));
1659 				if (rc != 0)
1660 					goto fail_scale_key_set;
1661 			}
1662 		}
1663 
1664 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1665 	}
1666 
1667 	rss->hash_types = efx_hash_types;
1668 
1669 	sfc_adapter_unlock(sa);
1670 
1671 	return 0;
1672 
1673 fail_scale_key_set:
1674 	for (i = 0; i < key_i; i++) {
1675 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1676 					 sizeof(rss->key)) != 0)
1677 			sfc_err(sa, "failed to restore RSS key");
1678 	}
1679 
1680 fail_scale_mode_set:
1681 	for (i = 0; i < mode_i; i++) {
1682 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1683 					  EFX_RX_HASHALG_TOEPLITZ,
1684 					  rss->hash_types, B_TRUE) != 0)
1685 			sfc_err(sa, "failed to restore RSS mode");
1686 	}
1687 
1688 fail_rx_hf_rte_to_efx:
1689 	sfc_adapter_unlock(sa);
1690 	return -rc;
1691 }
1692 
1693 /*
1694  * The function is used by the secondary process as well. It must not
1695  * use any process-local pointers from the adapter data.
1696  */
1697 static int
1698 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1699 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1700 		       uint16_t reta_size)
1701 {
1702 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1703 	struct sfc_rss *rss = &sas->rss;
1704 	int entry;
1705 
1706 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1707 		return -ENOTSUP;
1708 
1709 	if (rss->channels == 0)
1710 		return -EINVAL;
1711 
1712 	if (reta_size != EFX_RSS_TBL_SIZE)
1713 		return -EINVAL;
1714 
1715 	for (entry = 0; entry < reta_size; entry++) {
1716 		int grp = entry / RTE_RETA_GROUP_SIZE;
1717 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1718 
1719 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1720 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 static int
1727 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1728 			struct rte_eth_rss_reta_entry64 *reta_conf,
1729 			uint16_t reta_size)
1730 {
1731 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1732 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1733 	unsigned int *rss_tbl_new;
1734 	uint16_t entry;
1735 	int rc = 0;
1736 
1737 
1738 	if (sfc_sa2shared(sa)->isolated)
1739 		return -ENOTSUP;
1740 
1741 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1742 		sfc_err(sa, "RSS is not available");
1743 		return -ENOTSUP;
1744 	}
1745 
1746 	if (rss->channels == 0) {
1747 		sfc_err(sa, "RSS is not configured");
1748 		return -EINVAL;
1749 	}
1750 
1751 	if (reta_size != EFX_RSS_TBL_SIZE) {
1752 		sfc_err(sa, "RETA size is wrong (should be %u)",
1753 			EFX_RSS_TBL_SIZE);
1754 		return -EINVAL;
1755 	}
1756 
1757 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1758 	if (rss_tbl_new == NULL)
1759 		return -ENOMEM;
1760 
1761 	sfc_adapter_lock(sa);
1762 
1763 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1764 
1765 	for (entry = 0; entry < reta_size; entry++) {
1766 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1767 		struct rte_eth_rss_reta_entry64 *grp;
1768 
1769 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1770 
1771 		if (grp->mask & (1ull << grp_idx)) {
1772 			if (grp->reta[grp_idx] >= rss->channels) {
1773 				rc = EINVAL;
1774 				goto bad_reta_entry;
1775 			}
1776 			rss_tbl_new[entry] = grp->reta[grp_idx];
1777 		}
1778 	}
1779 
1780 	if (sa->state == SFC_ADAPTER_STARTED) {
1781 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1782 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1783 		if (rc != 0)
1784 			goto fail_scale_tbl_set;
1785 	}
1786 
1787 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1788 
1789 fail_scale_tbl_set:
1790 bad_reta_entry:
1791 	sfc_adapter_unlock(sa);
1792 
1793 	rte_free(rss_tbl_new);
1794 
1795 	SFC_ASSERT(rc >= 0);
1796 	return -rc;
1797 }
1798 
1799 static int
1800 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1801 		     const struct rte_flow_ops **ops)
1802 {
1803 	*ops = &sfc_flow_ops;
1804 	return 0;
1805 }
1806 
1807 static int
1808 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1809 {
1810 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1811 
1812 	/*
1813 	 * If Rx datapath does not provide callback to check mempool,
1814 	 * all pools are supported.
1815 	 */
1816 	if (sap->dp_rx->pool_ops_supported == NULL)
1817 		return 1;
1818 
1819 	return sap->dp_rx->pool_ops_supported(pool);
1820 }
1821 
1822 static int
1823 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1824 {
1825 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1826 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1827 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1828 	struct sfc_rxq_info *rxq_info;
1829 
1830 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1831 
1832 	return sap->dp_rx->intr_enable(rxq_info->dp);
1833 }
1834 
1835 static int
1836 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1837 {
1838 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1839 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1840 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1841 	struct sfc_rxq_info *rxq_info;
1842 
1843 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1844 
1845 	return sap->dp_rx->intr_disable(rxq_info->dp);
1846 }
1847 
1848 static const struct eth_dev_ops sfc_eth_dev_ops = {
1849 	.dev_configure			= sfc_dev_configure,
1850 	.dev_start			= sfc_dev_start,
1851 	.dev_stop			= sfc_dev_stop,
1852 	.dev_set_link_up		= sfc_dev_set_link_up,
1853 	.dev_set_link_down		= sfc_dev_set_link_down,
1854 	.dev_close			= sfc_dev_close,
1855 	.promiscuous_enable		= sfc_dev_promisc_enable,
1856 	.promiscuous_disable		= sfc_dev_promisc_disable,
1857 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1858 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1859 	.link_update			= sfc_dev_link_update,
1860 	.stats_get			= sfc_stats_get,
1861 	.stats_reset			= sfc_stats_reset,
1862 	.xstats_get			= sfc_xstats_get,
1863 	.xstats_reset			= sfc_stats_reset,
1864 	.xstats_get_names		= sfc_xstats_get_names,
1865 	.dev_infos_get			= sfc_dev_infos_get,
1866 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1867 	.mtu_set			= sfc_dev_set_mtu,
1868 	.rx_queue_start			= sfc_rx_queue_start,
1869 	.rx_queue_stop			= sfc_rx_queue_stop,
1870 	.tx_queue_start			= sfc_tx_queue_start,
1871 	.tx_queue_stop			= sfc_tx_queue_stop,
1872 	.rx_queue_setup			= sfc_rx_queue_setup,
1873 	.rx_queue_release		= sfc_rx_queue_release,
1874 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1875 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1876 	.tx_queue_setup			= sfc_tx_queue_setup,
1877 	.tx_queue_release		= sfc_tx_queue_release,
1878 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1879 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1880 	.mac_addr_set			= sfc_mac_addr_set,
1881 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1882 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1883 	.reta_update			= sfc_dev_rss_reta_update,
1884 	.reta_query			= sfc_dev_rss_reta_query,
1885 	.rss_hash_update		= sfc_dev_rss_hash_update,
1886 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1887 	.flow_ops_get			= sfc_dev_flow_ops_get,
1888 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1889 	.rxq_info_get			= sfc_rx_queue_info_get,
1890 	.txq_info_get			= sfc_tx_queue_info_get,
1891 	.fw_version_get			= sfc_fw_version_get,
1892 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1893 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1894 	.pool_ops_supported		= sfc_pool_ops_supported,
1895 };
1896 
1897 /**
1898  * Duplicate a string in potentially shared memory required for
1899  * multi-process support.
1900  *
1901  * strdup() allocates from process-local heap/memory.
1902  */
1903 static char *
1904 sfc_strdup(const char *str)
1905 {
1906 	size_t size;
1907 	char *copy;
1908 
1909 	if (str == NULL)
1910 		return NULL;
1911 
1912 	size = strlen(str) + 1;
1913 	copy = rte_malloc(__func__, size, 0);
1914 	if (copy != NULL)
1915 		rte_memcpy(copy, str, size);
1916 
1917 	return copy;
1918 }
1919 
1920 static int
1921 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1922 {
1923 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1924 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1925 	const struct sfc_dp_rx *dp_rx;
1926 	const struct sfc_dp_tx *dp_tx;
1927 	const efx_nic_cfg_t *encp;
1928 	unsigned int avail_caps = 0;
1929 	const char *rx_name = NULL;
1930 	const char *tx_name = NULL;
1931 	int rc;
1932 
1933 	switch (sa->family) {
1934 	case EFX_FAMILY_HUNTINGTON:
1935 	case EFX_FAMILY_MEDFORD:
1936 	case EFX_FAMILY_MEDFORD2:
1937 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1938 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
1939 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
1940 		break;
1941 	case EFX_FAMILY_RIVERHEAD:
1942 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
1943 		break;
1944 	default:
1945 		break;
1946 	}
1947 
1948 	encp = efx_nic_cfg_get(sa->nic);
1949 	if (encp->enc_rx_es_super_buffer_supported)
1950 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1951 
1952 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1953 				sfc_kvarg_string_handler, &rx_name);
1954 	if (rc != 0)
1955 		goto fail_kvarg_rx_datapath;
1956 
1957 	if (rx_name != NULL) {
1958 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1959 		if (dp_rx == NULL) {
1960 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1961 			rc = ENOENT;
1962 			goto fail_dp_rx;
1963 		}
1964 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1965 			sfc_err(sa,
1966 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1967 				rx_name);
1968 			rc = EINVAL;
1969 			goto fail_dp_rx_caps;
1970 		}
1971 	} else {
1972 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1973 		if (dp_rx == NULL) {
1974 			sfc_err(sa, "Rx datapath by caps %#x not found",
1975 				avail_caps);
1976 			rc = ENOENT;
1977 			goto fail_dp_rx;
1978 		}
1979 	}
1980 
1981 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1982 	if (sas->dp_rx_name == NULL) {
1983 		rc = ENOMEM;
1984 		goto fail_dp_rx_name;
1985 	}
1986 
1987 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1988 
1989 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1990 				sfc_kvarg_string_handler, &tx_name);
1991 	if (rc != 0)
1992 		goto fail_kvarg_tx_datapath;
1993 
1994 	if (tx_name != NULL) {
1995 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1996 		if (dp_tx == NULL) {
1997 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1998 			rc = ENOENT;
1999 			goto fail_dp_tx;
2000 		}
2001 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2002 			sfc_err(sa,
2003 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
2004 				tx_name);
2005 			rc = EINVAL;
2006 			goto fail_dp_tx_caps;
2007 		}
2008 	} else {
2009 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2010 		if (dp_tx == NULL) {
2011 			sfc_err(sa, "Tx datapath by caps %#x not found",
2012 				avail_caps);
2013 			rc = ENOENT;
2014 			goto fail_dp_tx;
2015 		}
2016 	}
2017 
2018 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2019 	if (sas->dp_tx_name == NULL) {
2020 		rc = ENOMEM;
2021 		goto fail_dp_tx_name;
2022 	}
2023 
2024 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2025 
2026 	sa->priv.dp_rx = dp_rx;
2027 	sa->priv.dp_tx = dp_tx;
2028 
2029 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2030 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2031 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2032 
2033 	dev->rx_queue_count = sfc_rx_queue_count;
2034 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2035 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2036 	dev->dev_ops = &sfc_eth_dev_ops;
2037 
2038 	return 0;
2039 
2040 fail_dp_tx_name:
2041 fail_dp_tx_caps:
2042 fail_dp_tx:
2043 fail_kvarg_tx_datapath:
2044 	rte_free(sas->dp_rx_name);
2045 	sas->dp_rx_name = NULL;
2046 
2047 fail_dp_rx_name:
2048 fail_dp_rx_caps:
2049 fail_dp_rx:
2050 fail_kvarg_rx_datapath:
2051 	return rc;
2052 }
2053 
2054 static void
2055 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2056 {
2057 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2058 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2059 
2060 	dev->dev_ops = NULL;
2061 	dev->tx_pkt_prepare = NULL;
2062 	dev->rx_pkt_burst = NULL;
2063 	dev->tx_pkt_burst = NULL;
2064 
2065 	rte_free(sas->dp_tx_name);
2066 	sas->dp_tx_name = NULL;
2067 	sa->priv.dp_tx = NULL;
2068 
2069 	rte_free(sas->dp_rx_name);
2070 	sas->dp_rx_name = NULL;
2071 	sa->priv.dp_rx = NULL;
2072 }
2073 
2074 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2075 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2076 	.reta_query			= sfc_dev_rss_reta_query,
2077 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2078 	.rxq_info_get			= sfc_rx_queue_info_get,
2079 	.txq_info_get			= sfc_tx_queue_info_get,
2080 };
2081 
2082 static int
2083 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2084 {
2085 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2086 	struct sfc_adapter_priv *sap;
2087 	const struct sfc_dp_rx *dp_rx;
2088 	const struct sfc_dp_tx *dp_tx;
2089 	int rc;
2090 
2091 	/*
2092 	 * Allocate process private data from heap, since it should not
2093 	 * be located in shared memory allocated using rte_malloc() API.
2094 	 */
2095 	sap = calloc(1, sizeof(*sap));
2096 	if (sap == NULL) {
2097 		rc = ENOMEM;
2098 		goto fail_alloc_priv;
2099 	}
2100 
2101 	sap->logtype_main = logtype_main;
2102 
2103 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2104 	if (dp_rx == NULL) {
2105 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2106 			"cannot find %s Rx datapath", sas->dp_rx_name);
2107 		rc = ENOENT;
2108 		goto fail_dp_rx;
2109 	}
2110 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2111 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2112 			"%s Rx datapath does not support multi-process",
2113 			sas->dp_rx_name);
2114 		rc = EINVAL;
2115 		goto fail_dp_rx_multi_process;
2116 	}
2117 
2118 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2119 	if (dp_tx == NULL) {
2120 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2121 			"cannot find %s Tx datapath", sas->dp_tx_name);
2122 		rc = ENOENT;
2123 		goto fail_dp_tx;
2124 	}
2125 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2126 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2127 			"%s Tx datapath does not support multi-process",
2128 			sas->dp_tx_name);
2129 		rc = EINVAL;
2130 		goto fail_dp_tx_multi_process;
2131 	}
2132 
2133 	sap->dp_rx = dp_rx;
2134 	sap->dp_tx = dp_tx;
2135 
2136 	dev->process_private = sap;
2137 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2138 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2139 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2140 	dev->rx_queue_count = sfc_rx_queue_count;
2141 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2142 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2143 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2144 
2145 	return 0;
2146 
2147 fail_dp_tx_multi_process:
2148 fail_dp_tx:
2149 fail_dp_rx_multi_process:
2150 fail_dp_rx:
2151 	free(sap);
2152 
2153 fail_alloc_priv:
2154 	return rc;
2155 }
2156 
2157 static void
2158 sfc_register_dp(void)
2159 {
2160 	/* Register once */
2161 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2162 		/* Prefer EF10 datapath */
2163 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2164 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2165 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2166 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2167 
2168 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2169 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2170 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2171 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2172 	}
2173 }
2174 
2175 static int
2176 sfc_eth_dev_init(struct rte_eth_dev *dev)
2177 {
2178 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2179 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2180 	uint32_t logtype_main;
2181 	struct sfc_adapter *sa;
2182 	int rc;
2183 	const efx_nic_cfg_t *encp;
2184 	const struct rte_ether_addr *from;
2185 	int ret;
2186 
2187 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2188 			SFC_EFX_DEV_CLASS_NET) {
2189 		SFC_GENERIC_LOG(DEBUG,
2190 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2191 		return 1;
2192 	}
2193 
2194 	sfc_register_dp();
2195 
2196 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2197 					    SFC_LOGTYPE_MAIN_STR,
2198 					    RTE_LOG_NOTICE);
2199 
2200 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2201 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2202 
2203 	/* Required for logging */
2204 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2205 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2206 			pci_dev->addr.domain, pci_dev->addr.bus,
2207 			pci_dev->addr.devid, pci_dev->addr.function,
2208 			dev->data->port_id);
2209 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2210 		SFC_GENERIC_LOG(ERR,
2211 			"reserved log prefix is too short for " PCI_PRI_FMT,
2212 			pci_dev->addr.domain, pci_dev->addr.bus,
2213 			pci_dev->addr.devid, pci_dev->addr.function);
2214 		return -EINVAL;
2215 	}
2216 	sas->pci_addr = pci_dev->addr;
2217 	sas->port_id = dev->data->port_id;
2218 
2219 	/*
2220 	 * Allocate process private data from heap, since it should not
2221 	 * be located in shared memory allocated using rte_malloc() API.
2222 	 */
2223 	sa = calloc(1, sizeof(*sa));
2224 	if (sa == NULL) {
2225 		rc = ENOMEM;
2226 		goto fail_alloc_sa;
2227 	}
2228 
2229 	dev->process_private = sa;
2230 
2231 	/* Required for logging */
2232 	sa->priv.shared = sas;
2233 	sa->priv.logtype_main = logtype_main;
2234 
2235 	sa->eth_dev = dev;
2236 
2237 	/* Copy PCI device info to the dev->data */
2238 	rte_eth_copy_pci_info(dev, pci_dev);
2239 	dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2240 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2241 
2242 	rc = sfc_kvargs_parse(sa);
2243 	if (rc != 0)
2244 		goto fail_kvargs_parse;
2245 
2246 	sfc_log_init(sa, "entry");
2247 
2248 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2249 	if (dev->data->mac_addrs == NULL) {
2250 		rc = ENOMEM;
2251 		goto fail_mac_addrs;
2252 	}
2253 
2254 	sfc_adapter_lock_init(sa);
2255 	sfc_adapter_lock(sa);
2256 
2257 	sfc_log_init(sa, "probing");
2258 	rc = sfc_probe(sa);
2259 	if (rc != 0)
2260 		goto fail_probe;
2261 
2262 	sfc_log_init(sa, "set device ops");
2263 	rc = sfc_eth_dev_set_ops(dev);
2264 	if (rc != 0)
2265 		goto fail_set_ops;
2266 
2267 	sfc_log_init(sa, "attaching");
2268 	rc = sfc_attach(sa);
2269 	if (rc != 0)
2270 		goto fail_attach;
2271 
2272 	encp = efx_nic_cfg_get(sa->nic);
2273 
2274 	/*
2275 	 * The arguments are really reverse order in comparison to
2276 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2277 	 */
2278 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2279 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2280 
2281 	sfc_adapter_unlock(sa);
2282 
2283 	sfc_log_init(sa, "done");
2284 	return 0;
2285 
2286 fail_attach:
2287 	sfc_eth_dev_clear_ops(dev);
2288 
2289 fail_set_ops:
2290 	sfc_unprobe(sa);
2291 
2292 fail_probe:
2293 	sfc_adapter_unlock(sa);
2294 	sfc_adapter_lock_fini(sa);
2295 	rte_free(dev->data->mac_addrs);
2296 	dev->data->mac_addrs = NULL;
2297 
2298 fail_mac_addrs:
2299 	sfc_kvargs_cleanup(sa);
2300 
2301 fail_kvargs_parse:
2302 	sfc_log_init(sa, "failed %d", rc);
2303 	dev->process_private = NULL;
2304 	free(sa);
2305 
2306 fail_alloc_sa:
2307 	SFC_ASSERT(rc > 0);
2308 	return -rc;
2309 }
2310 
2311 static int
2312 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2313 {
2314 	sfc_dev_close(dev);
2315 
2316 	return 0;
2317 }
2318 
2319 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2320 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2321 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2322 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2323 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2324 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2325 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2326 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2327 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2328 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2329 	{ .vendor_id = 0 /* sentinel */ }
2330 };
2331 
2332 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2333 	struct rte_pci_device *pci_dev)
2334 {
2335 	return rte_eth_dev_pci_generic_probe(pci_dev,
2336 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2337 }
2338 
2339 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2340 {
2341 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2342 }
2343 
2344 static struct rte_pci_driver sfc_efx_pmd = {
2345 	.id_table = pci_id_sfc_efx_map,
2346 	.drv_flags =
2347 		RTE_PCI_DRV_INTR_LSC |
2348 		RTE_PCI_DRV_NEED_MAPPING,
2349 	.probe = sfc_eth_dev_pci_probe,
2350 	.remove = sfc_eth_dev_pci_remove,
2351 };
2352 
2353 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2354 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2355 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2356 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2357 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2358 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2359 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2360 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2361 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2362 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2363 
2364 RTE_INIT(sfc_driver_register_logtype)
2365 {
2366 	int ret;
2367 
2368 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2369 						   RTE_LOG_NOTICE);
2370 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2371 }
2372