1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 17 #include "efx.h" 18 19 #include "sfc.h" 20 #include "sfc_debug.h" 21 #include "sfc_log.h" 22 #include "sfc_kvargs.h" 23 #include "sfc_ev.h" 24 #include "sfc_rx.h" 25 #include "sfc_tx.h" 26 #include "sfc_flow.h" 27 #include "sfc_dp.h" 28 #include "sfc_dp_rx.h" 29 30 uint32_t sfc_logtype_driver; 31 32 static struct sfc_dp_list sfc_dp_head = 33 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 34 35 static int 36 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 37 { 38 struct sfc_adapter *sa = dev->data->dev_private; 39 efx_nic_fw_info_t enfi; 40 int ret; 41 int rc; 42 43 /* 44 * Return value of the callback is likely supposed to be 45 * equal to or greater than 0, nevertheless, if an error 46 * occurs, it will be desirable to pass it to the caller 47 */ 48 if ((fw_version == NULL) || (fw_size == 0)) 49 return -EINVAL; 50 51 rc = efx_nic_get_fw_version(sa->nic, &enfi); 52 if (rc != 0) 53 return -rc; 54 55 ret = snprintf(fw_version, fw_size, 56 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 57 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 58 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 59 if (ret < 0) 60 return ret; 61 62 if (enfi.enfi_dpcpu_fw_ids_valid) { 63 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 64 int ret_extra; 65 66 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 67 fw_size - dpcpu_fw_ids_offset, 68 " rx%" PRIx16 " tx%" PRIx16, 69 enfi.enfi_rx_dpcpu_fw_id, 70 enfi.enfi_tx_dpcpu_fw_id); 71 if (ret_extra < 0) 72 return ret_extra; 73 74 ret += ret_extra; 75 } 76 77 if (fw_size < (size_t)(++ret)) 78 return ret; 79 else 80 return 0; 81 } 82 83 static void 84 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 85 { 86 struct sfc_adapter *sa = dev->data->dev_private; 87 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 88 uint64_t txq_offloads_def = 0; 89 90 sfc_log_init(sa, "entry"); 91 92 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 93 94 /* Autonegotiation may be disabled */ 95 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 96 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 97 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 98 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 99 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 100 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 101 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 102 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 103 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 104 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 105 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 106 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 107 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 108 109 dev_info->max_rx_queues = sa->rxq_max; 110 dev_info->max_tx_queues = sa->txq_max; 111 112 /* By default packets are dropped if no descriptors are available */ 113 dev_info->default_rxconf.rx_drop_en = 1; 114 115 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 116 117 /* 118 * rx_offload_capa includes both device and queue offloads since 119 * the latter may be requested on a per device basis which makes 120 * sense when some offloads are needed to be set on all queues. 121 */ 122 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 123 dev_info->rx_queue_offload_capa; 124 125 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 126 127 /* 128 * tx_offload_capa includes both device and queue offloads since 129 * the latter may be requested on a per device basis which makes 130 * sense when some offloads are needed to be set on all queues. 131 */ 132 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 133 dev_info->tx_queue_offload_capa; 134 135 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 136 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 137 138 dev_info->default_txconf.offloads |= txq_offloads_def; 139 140 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 141 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 142 !encp->enc_hw_tx_insert_vlan_enabled) 143 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 144 145 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 146 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 147 148 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) 149 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP; 150 151 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT) 152 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT; 153 154 #if EFSYS_OPT_RX_SCALE 155 if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) { 156 dev_info->reta_size = EFX_RSS_TBL_SIZE; 157 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 158 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 159 } 160 #endif 161 162 /* Initialize to hardware limits */ 163 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 164 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 165 /* The RXQ hardware requires that the descriptor count is a power 166 * of 2, but rx_desc_lim cannot properly describe that constraint. 167 */ 168 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 169 170 /* Initialize to hardware limits */ 171 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 172 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 173 /* 174 * The TXQ hardware requires that the descriptor count is a power 175 * of 2, but tx_desc_lim cannot properly describe that constraint 176 */ 177 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 178 179 if (sa->dp_rx->get_dev_info != NULL) 180 sa->dp_rx->get_dev_info(dev_info); 181 if (sa->dp_tx->get_dev_info != NULL) 182 sa->dp_tx->get_dev_info(dev_info); 183 } 184 185 static const uint32_t * 186 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 187 { 188 struct sfc_adapter *sa = dev->data->dev_private; 189 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 190 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 191 192 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 193 } 194 195 static int 196 sfc_dev_configure(struct rte_eth_dev *dev) 197 { 198 struct rte_eth_dev_data *dev_data = dev->data; 199 struct sfc_adapter *sa = dev_data->dev_private; 200 int rc; 201 202 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 203 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 204 205 sfc_adapter_lock(sa); 206 switch (sa->state) { 207 case SFC_ADAPTER_CONFIGURED: 208 /* FALLTHROUGH */ 209 case SFC_ADAPTER_INITIALIZED: 210 rc = sfc_configure(sa); 211 break; 212 default: 213 sfc_err(sa, "unexpected adapter state %u to configure", 214 sa->state); 215 rc = EINVAL; 216 break; 217 } 218 sfc_adapter_unlock(sa); 219 220 sfc_log_init(sa, "done %d", rc); 221 SFC_ASSERT(rc >= 0); 222 return -rc; 223 } 224 225 static int 226 sfc_dev_start(struct rte_eth_dev *dev) 227 { 228 struct sfc_adapter *sa = dev->data->dev_private; 229 int rc; 230 231 sfc_log_init(sa, "entry"); 232 233 sfc_adapter_lock(sa); 234 rc = sfc_start(sa); 235 sfc_adapter_unlock(sa); 236 237 sfc_log_init(sa, "done %d", rc); 238 SFC_ASSERT(rc >= 0); 239 return -rc; 240 } 241 242 static int 243 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 244 { 245 struct sfc_adapter *sa = dev->data->dev_private; 246 struct rte_eth_link current_link; 247 int ret; 248 249 sfc_log_init(sa, "entry"); 250 251 if (sa->state != SFC_ADAPTER_STARTED) { 252 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 253 } else if (wait_to_complete) { 254 efx_link_mode_t link_mode; 255 256 if (efx_port_poll(sa->nic, &link_mode) != 0) 257 link_mode = EFX_LINK_UNKNOWN; 258 sfc_port_link_mode_to_info(link_mode, ¤t_link); 259 260 } else { 261 sfc_ev_mgmt_qpoll(sa); 262 rte_eth_linkstatus_get(dev, ¤t_link); 263 } 264 265 ret = rte_eth_linkstatus_set(dev, ¤t_link); 266 if (ret == 0) 267 sfc_notice(sa, "Link status is %s", 268 current_link.link_status ? "UP" : "DOWN"); 269 270 return ret; 271 } 272 273 static void 274 sfc_dev_stop(struct rte_eth_dev *dev) 275 { 276 struct sfc_adapter *sa = dev->data->dev_private; 277 278 sfc_log_init(sa, "entry"); 279 280 sfc_adapter_lock(sa); 281 sfc_stop(sa); 282 sfc_adapter_unlock(sa); 283 284 sfc_log_init(sa, "done"); 285 } 286 287 static int 288 sfc_dev_set_link_up(struct rte_eth_dev *dev) 289 { 290 struct sfc_adapter *sa = dev->data->dev_private; 291 int rc; 292 293 sfc_log_init(sa, "entry"); 294 295 sfc_adapter_lock(sa); 296 rc = sfc_start(sa); 297 sfc_adapter_unlock(sa); 298 299 SFC_ASSERT(rc >= 0); 300 return -rc; 301 } 302 303 static int 304 sfc_dev_set_link_down(struct rte_eth_dev *dev) 305 { 306 struct sfc_adapter *sa = dev->data->dev_private; 307 308 sfc_log_init(sa, "entry"); 309 310 sfc_adapter_lock(sa); 311 sfc_stop(sa); 312 sfc_adapter_unlock(sa); 313 314 return 0; 315 } 316 317 static void 318 sfc_dev_close(struct rte_eth_dev *dev) 319 { 320 struct sfc_adapter *sa = dev->data->dev_private; 321 322 sfc_log_init(sa, "entry"); 323 324 sfc_adapter_lock(sa); 325 switch (sa->state) { 326 case SFC_ADAPTER_STARTED: 327 sfc_stop(sa); 328 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 329 /* FALLTHROUGH */ 330 case SFC_ADAPTER_CONFIGURED: 331 sfc_close(sa); 332 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 333 /* FALLTHROUGH */ 334 case SFC_ADAPTER_INITIALIZED: 335 break; 336 default: 337 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 338 break; 339 } 340 sfc_adapter_unlock(sa); 341 342 sfc_log_init(sa, "done"); 343 } 344 345 static void 346 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 347 boolean_t enabled) 348 { 349 struct sfc_port *port; 350 boolean_t *toggle; 351 struct sfc_adapter *sa = dev->data->dev_private; 352 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 353 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 354 355 sfc_adapter_lock(sa); 356 357 port = &sa->port; 358 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 359 360 if (*toggle != enabled) { 361 *toggle = enabled; 362 363 if (port->isolated) { 364 sfc_warn(sa, "isolated mode is active on the port"); 365 sfc_warn(sa, "the change is to be applied on the next " 366 "start provided that isolated mode is " 367 "disabled prior the next start"); 368 } else if ((sa->state == SFC_ADAPTER_STARTED) && 369 (sfc_set_rx_mode(sa) != 0)) { 370 *toggle = !(enabled); 371 sfc_warn(sa, "Failed to %s %s mode", 372 ((enabled) ? "enable" : "disable"), desc); 373 } 374 } 375 376 sfc_adapter_unlock(sa); 377 } 378 379 static void 380 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 381 { 382 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 383 } 384 385 static void 386 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 387 { 388 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 389 } 390 391 static void 392 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 393 { 394 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 395 } 396 397 static void 398 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 399 { 400 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 401 } 402 403 static int 404 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 405 uint16_t nb_rx_desc, unsigned int socket_id, 406 const struct rte_eth_rxconf *rx_conf, 407 struct rte_mempool *mb_pool) 408 { 409 struct sfc_adapter *sa = dev->data->dev_private; 410 int rc; 411 412 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 413 rx_queue_id, nb_rx_desc, socket_id); 414 415 sfc_adapter_lock(sa); 416 417 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 418 rx_conf, mb_pool); 419 if (rc != 0) 420 goto fail_rx_qinit; 421 422 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 423 424 sfc_adapter_unlock(sa); 425 426 return 0; 427 428 fail_rx_qinit: 429 sfc_adapter_unlock(sa); 430 SFC_ASSERT(rc > 0); 431 return -rc; 432 } 433 434 static void 435 sfc_rx_queue_release(void *queue) 436 { 437 struct sfc_dp_rxq *dp_rxq = queue; 438 struct sfc_rxq *rxq; 439 struct sfc_adapter *sa; 440 unsigned int sw_index; 441 442 if (dp_rxq == NULL) 443 return; 444 445 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 446 sa = rxq->evq->sa; 447 sfc_adapter_lock(sa); 448 449 sw_index = sfc_rxq_sw_index(rxq); 450 451 sfc_log_init(sa, "RxQ=%u", sw_index); 452 453 sa->eth_dev->data->rx_queues[sw_index] = NULL; 454 455 sfc_rx_qfini(sa, sw_index); 456 457 sfc_adapter_unlock(sa); 458 } 459 460 static int 461 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 462 uint16_t nb_tx_desc, unsigned int socket_id, 463 const struct rte_eth_txconf *tx_conf) 464 { 465 struct sfc_adapter *sa = dev->data->dev_private; 466 int rc; 467 468 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 469 tx_queue_id, nb_tx_desc, socket_id); 470 471 sfc_adapter_lock(sa); 472 473 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 474 if (rc != 0) 475 goto fail_tx_qinit; 476 477 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 478 479 sfc_adapter_unlock(sa); 480 return 0; 481 482 fail_tx_qinit: 483 sfc_adapter_unlock(sa); 484 SFC_ASSERT(rc > 0); 485 return -rc; 486 } 487 488 static void 489 sfc_tx_queue_release(void *queue) 490 { 491 struct sfc_dp_txq *dp_txq = queue; 492 struct sfc_txq *txq; 493 unsigned int sw_index; 494 struct sfc_adapter *sa; 495 496 if (dp_txq == NULL) 497 return; 498 499 txq = sfc_txq_by_dp_txq(dp_txq); 500 sw_index = sfc_txq_sw_index(txq); 501 502 SFC_ASSERT(txq->evq != NULL); 503 sa = txq->evq->sa; 504 505 sfc_log_init(sa, "TxQ = %u", sw_index); 506 507 sfc_adapter_lock(sa); 508 509 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 510 sa->eth_dev->data->tx_queues[sw_index] = NULL; 511 512 sfc_tx_qfini(sa, sw_index); 513 514 sfc_adapter_unlock(sa); 515 } 516 517 static int 518 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 519 { 520 struct sfc_adapter *sa = dev->data->dev_private; 521 struct sfc_port *port = &sa->port; 522 uint64_t *mac_stats; 523 int ret; 524 525 rte_spinlock_lock(&port->mac_stats_lock); 526 527 ret = sfc_port_update_mac_stats(sa); 528 if (ret != 0) 529 goto unlock; 530 531 mac_stats = port->mac_stats_buf; 532 533 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 534 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 535 stats->ipackets = 536 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 537 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 538 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 539 stats->opackets = 540 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 541 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 542 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 543 stats->ibytes = 544 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 545 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 546 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 547 stats->obytes = 548 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 549 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 550 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 551 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 552 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 553 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 554 } else { 555 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 556 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 557 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 558 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 559 /* 560 * Take into account stats which are whenever supported 561 * on EF10. If some stat is not supported by current 562 * firmware variant or HW revision, it is guaranteed 563 * to be zero in mac_stats. 564 */ 565 stats->imissed = 566 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 567 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 568 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 569 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 570 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 571 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 572 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 573 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 574 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 575 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 576 stats->ierrors = 577 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 578 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 579 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 580 /* no oerrors counters supported on EF10 */ 581 } 582 583 unlock: 584 rte_spinlock_unlock(&port->mac_stats_lock); 585 SFC_ASSERT(ret >= 0); 586 return -ret; 587 } 588 589 static void 590 sfc_stats_reset(struct rte_eth_dev *dev) 591 { 592 struct sfc_adapter *sa = dev->data->dev_private; 593 struct sfc_port *port = &sa->port; 594 int rc; 595 596 if (sa->state != SFC_ADAPTER_STARTED) { 597 /* 598 * The operation cannot be done if port is not started; it 599 * will be scheduled to be done during the next port start 600 */ 601 port->mac_stats_reset_pending = B_TRUE; 602 return; 603 } 604 605 rc = sfc_port_reset_mac_stats(sa); 606 if (rc != 0) 607 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 608 } 609 610 static int 611 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 612 unsigned int xstats_count) 613 { 614 struct sfc_adapter *sa = dev->data->dev_private; 615 struct sfc_port *port = &sa->port; 616 uint64_t *mac_stats; 617 int rc; 618 unsigned int i; 619 int nstats = 0; 620 621 rte_spinlock_lock(&port->mac_stats_lock); 622 623 rc = sfc_port_update_mac_stats(sa); 624 if (rc != 0) { 625 SFC_ASSERT(rc > 0); 626 nstats = -rc; 627 goto unlock; 628 } 629 630 mac_stats = port->mac_stats_buf; 631 632 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 633 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 634 if (xstats != NULL && nstats < (int)xstats_count) { 635 xstats[nstats].id = nstats; 636 xstats[nstats].value = mac_stats[i]; 637 } 638 nstats++; 639 } 640 } 641 642 unlock: 643 rte_spinlock_unlock(&port->mac_stats_lock); 644 645 return nstats; 646 } 647 648 static int 649 sfc_xstats_get_names(struct rte_eth_dev *dev, 650 struct rte_eth_xstat_name *xstats_names, 651 unsigned int xstats_count) 652 { 653 struct sfc_adapter *sa = dev->data->dev_private; 654 struct sfc_port *port = &sa->port; 655 unsigned int i; 656 unsigned int nstats = 0; 657 658 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 659 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 660 if (xstats_names != NULL && nstats < xstats_count) 661 strncpy(xstats_names[nstats].name, 662 efx_mac_stat_name(sa->nic, i), 663 sizeof(xstats_names[0].name)); 664 nstats++; 665 } 666 } 667 668 return nstats; 669 } 670 671 static int 672 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 673 uint64_t *values, unsigned int n) 674 { 675 struct sfc_adapter *sa = dev->data->dev_private; 676 struct sfc_port *port = &sa->port; 677 uint64_t *mac_stats; 678 unsigned int nb_supported = 0; 679 unsigned int nb_written = 0; 680 unsigned int i; 681 int ret; 682 int rc; 683 684 if (unlikely(values == NULL) || 685 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 686 return port->mac_stats_nb_supported; 687 688 rte_spinlock_lock(&port->mac_stats_lock); 689 690 rc = sfc_port_update_mac_stats(sa); 691 if (rc != 0) { 692 SFC_ASSERT(rc > 0); 693 ret = -rc; 694 goto unlock; 695 } 696 697 mac_stats = port->mac_stats_buf; 698 699 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 700 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 701 continue; 702 703 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 704 values[nb_written++] = mac_stats[i]; 705 706 ++nb_supported; 707 } 708 709 ret = nb_written; 710 711 unlock: 712 rte_spinlock_unlock(&port->mac_stats_lock); 713 714 return ret; 715 } 716 717 static int 718 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 719 struct rte_eth_xstat_name *xstats_names, 720 const uint64_t *ids, unsigned int size) 721 { 722 struct sfc_adapter *sa = dev->data->dev_private; 723 struct sfc_port *port = &sa->port; 724 unsigned int nb_supported = 0; 725 unsigned int nb_written = 0; 726 unsigned int i; 727 728 if (unlikely(xstats_names == NULL) || 729 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 730 return port->mac_stats_nb_supported; 731 732 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 733 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 734 continue; 735 736 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 737 char *name = xstats_names[nb_written++].name; 738 739 strncpy(name, efx_mac_stat_name(sa->nic, i), 740 sizeof(xstats_names[0].name)); 741 name[sizeof(xstats_names[0].name) - 1] = '\0'; 742 } 743 744 ++nb_supported; 745 } 746 747 return nb_written; 748 } 749 750 static int 751 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 752 { 753 struct sfc_adapter *sa = dev->data->dev_private; 754 unsigned int wanted_fc, link_fc; 755 756 memset(fc_conf, 0, sizeof(*fc_conf)); 757 758 sfc_adapter_lock(sa); 759 760 if (sa->state == SFC_ADAPTER_STARTED) 761 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 762 else 763 link_fc = sa->port.flow_ctrl; 764 765 switch (link_fc) { 766 case 0: 767 fc_conf->mode = RTE_FC_NONE; 768 break; 769 case EFX_FCNTL_RESPOND: 770 fc_conf->mode = RTE_FC_RX_PAUSE; 771 break; 772 case EFX_FCNTL_GENERATE: 773 fc_conf->mode = RTE_FC_TX_PAUSE; 774 break; 775 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 776 fc_conf->mode = RTE_FC_FULL; 777 break; 778 default: 779 sfc_err(sa, "%s: unexpected flow control value %#x", 780 __func__, link_fc); 781 } 782 783 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 784 785 sfc_adapter_unlock(sa); 786 787 return 0; 788 } 789 790 static int 791 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 792 { 793 struct sfc_adapter *sa = dev->data->dev_private; 794 struct sfc_port *port = &sa->port; 795 unsigned int fcntl; 796 int rc; 797 798 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 799 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 800 fc_conf->mac_ctrl_frame_fwd != 0) { 801 sfc_err(sa, "unsupported flow control settings specified"); 802 rc = EINVAL; 803 goto fail_inval; 804 } 805 806 switch (fc_conf->mode) { 807 case RTE_FC_NONE: 808 fcntl = 0; 809 break; 810 case RTE_FC_RX_PAUSE: 811 fcntl = EFX_FCNTL_RESPOND; 812 break; 813 case RTE_FC_TX_PAUSE: 814 fcntl = EFX_FCNTL_GENERATE; 815 break; 816 case RTE_FC_FULL: 817 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 818 break; 819 default: 820 rc = EINVAL; 821 goto fail_inval; 822 } 823 824 sfc_adapter_lock(sa); 825 826 if (sa->state == SFC_ADAPTER_STARTED) { 827 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 828 if (rc != 0) 829 goto fail_mac_fcntl_set; 830 } 831 832 port->flow_ctrl = fcntl; 833 port->flow_ctrl_autoneg = fc_conf->autoneg; 834 835 sfc_adapter_unlock(sa); 836 837 return 0; 838 839 fail_mac_fcntl_set: 840 sfc_adapter_unlock(sa); 841 fail_inval: 842 SFC_ASSERT(rc > 0); 843 return -rc; 844 } 845 846 static int 847 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 848 { 849 struct sfc_adapter *sa = dev->data->dev_private; 850 size_t pdu = EFX_MAC_PDU(mtu); 851 size_t old_pdu; 852 int rc; 853 854 sfc_log_init(sa, "mtu=%u", mtu); 855 856 rc = EINVAL; 857 if (pdu < EFX_MAC_PDU_MIN) { 858 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 859 (unsigned int)mtu, (unsigned int)pdu, 860 EFX_MAC_PDU_MIN); 861 goto fail_inval; 862 } 863 if (pdu > EFX_MAC_PDU_MAX) { 864 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 865 (unsigned int)mtu, (unsigned int)pdu, 866 EFX_MAC_PDU_MAX); 867 goto fail_inval; 868 } 869 870 sfc_adapter_lock(sa); 871 872 if (pdu != sa->port.pdu) { 873 if (sa->state == SFC_ADAPTER_STARTED) { 874 sfc_stop(sa); 875 876 old_pdu = sa->port.pdu; 877 sa->port.pdu = pdu; 878 rc = sfc_start(sa); 879 if (rc != 0) 880 goto fail_start; 881 } else { 882 sa->port.pdu = pdu; 883 } 884 } 885 886 /* 887 * The driver does not use it, but other PMDs update jumbo_frame 888 * flag and max_rx_pkt_len when MTU is set. 889 */ 890 if (mtu > ETHER_MAX_LEN) { 891 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 892 893 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 894 rxmode->jumbo_frame = 1; 895 } 896 897 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 898 899 sfc_adapter_unlock(sa); 900 901 sfc_log_init(sa, "done"); 902 return 0; 903 904 fail_start: 905 sa->port.pdu = old_pdu; 906 if (sfc_start(sa) != 0) 907 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 908 "PDU max size - port is stopped", 909 (unsigned int)pdu, (unsigned int)old_pdu); 910 sfc_adapter_unlock(sa); 911 912 fail_inval: 913 sfc_log_init(sa, "failed %d", rc); 914 SFC_ASSERT(rc > 0); 915 return -rc; 916 } 917 static int 918 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 919 { 920 struct sfc_adapter *sa = dev->data->dev_private; 921 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 922 struct sfc_port *port = &sa->port; 923 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 924 int rc = 0; 925 926 sfc_adapter_lock(sa); 927 928 /* 929 * Copy the address to the device private data so that 930 * it could be recalled in the case of adapter restart. 931 */ 932 ether_addr_copy(mac_addr, &port->default_mac_addr); 933 934 /* 935 * Neither of the two following checks can return 936 * an error. The new MAC address is preserved in 937 * the device private data and can be activated 938 * on the next port start if the user prevents 939 * isolated mode from being enabled. 940 */ 941 if (port->isolated) { 942 sfc_warn(sa, "isolated mode is active on the port"); 943 sfc_warn(sa, "will not set MAC address"); 944 goto unlock; 945 } 946 947 if (sa->state != SFC_ADAPTER_STARTED) { 948 sfc_notice(sa, "the port is not started"); 949 sfc_notice(sa, "the new MAC address will be set on port start"); 950 951 goto unlock; 952 } 953 954 if (encp->enc_allow_set_mac_with_installed_filters) { 955 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 956 if (rc != 0) { 957 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 958 goto unlock; 959 } 960 961 /* 962 * Changing the MAC address by means of MCDI request 963 * has no effect on received traffic, therefore 964 * we also need to update unicast filters 965 */ 966 rc = sfc_set_rx_mode(sa); 967 if (rc != 0) { 968 sfc_err(sa, "cannot set filter (rc = %u)", rc); 969 /* Rollback the old address */ 970 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 971 (void)sfc_set_rx_mode(sa); 972 } 973 } else { 974 sfc_warn(sa, "cannot set MAC address with filters installed"); 975 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 976 sfc_warn(sa, "(some traffic may be dropped)"); 977 978 /* 979 * Since setting MAC address with filters installed is not 980 * allowed on the adapter, the new MAC address will be set 981 * by means of adapter restart. sfc_start() shall retrieve 982 * the new address from the device private data and set it. 983 */ 984 sfc_stop(sa); 985 rc = sfc_start(sa); 986 if (rc != 0) 987 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 988 } 989 990 unlock: 991 if (rc != 0) 992 ether_addr_copy(old_addr, &port->default_mac_addr); 993 994 sfc_adapter_unlock(sa); 995 996 SFC_ASSERT(rc >= 0); 997 return -rc; 998 } 999 1000 1001 static int 1002 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1003 uint32_t nb_mc_addr) 1004 { 1005 struct sfc_adapter *sa = dev->data->dev_private; 1006 struct sfc_port *port = &sa->port; 1007 uint8_t *mc_addrs = port->mcast_addrs; 1008 int rc; 1009 unsigned int i; 1010 1011 if (port->isolated) { 1012 sfc_err(sa, "isolated mode is active on the port"); 1013 sfc_err(sa, "will not set multicast address list"); 1014 return -ENOTSUP; 1015 } 1016 1017 if (mc_addrs == NULL) 1018 return -ENOBUFS; 1019 1020 if (nb_mc_addr > port->max_mcast_addrs) { 1021 sfc_err(sa, "too many multicast addresses: %u > %u", 1022 nb_mc_addr, port->max_mcast_addrs); 1023 return -EINVAL; 1024 } 1025 1026 for (i = 0; i < nb_mc_addr; ++i) { 1027 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1028 EFX_MAC_ADDR_LEN); 1029 mc_addrs += EFX_MAC_ADDR_LEN; 1030 } 1031 1032 port->nb_mcast_addrs = nb_mc_addr; 1033 1034 if (sa->state != SFC_ADAPTER_STARTED) 1035 return 0; 1036 1037 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1038 port->nb_mcast_addrs); 1039 if (rc != 0) 1040 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1041 1042 SFC_ASSERT(rc > 0); 1043 return -rc; 1044 } 1045 1046 /* 1047 * The function is used by the secondary process as well. It must not 1048 * use any process-local pointers from the adapter data. 1049 */ 1050 static void 1051 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1052 struct rte_eth_rxq_info *qinfo) 1053 { 1054 struct sfc_adapter *sa = dev->data->dev_private; 1055 struct sfc_rxq_info *rxq_info; 1056 struct sfc_rxq *rxq; 1057 1058 sfc_adapter_lock(sa); 1059 1060 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1061 1062 rxq_info = &sa->rxq_info[rx_queue_id]; 1063 rxq = rxq_info->rxq; 1064 SFC_ASSERT(rxq != NULL); 1065 1066 qinfo->mp = rxq->refill_mb_pool; 1067 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1068 qinfo->conf.rx_drop_en = 1; 1069 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1070 qinfo->conf.offloads = DEV_RX_OFFLOAD_IPV4_CKSUM | 1071 DEV_RX_OFFLOAD_UDP_CKSUM | 1072 DEV_RX_OFFLOAD_TCP_CKSUM; 1073 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1074 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1075 qinfo->scattered_rx = 1; 1076 } 1077 qinfo->nb_desc = rxq_info->entries; 1078 1079 sfc_adapter_unlock(sa); 1080 } 1081 1082 /* 1083 * The function is used by the secondary process as well. It must not 1084 * use any process-local pointers from the adapter data. 1085 */ 1086 static void 1087 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1088 struct rte_eth_txq_info *qinfo) 1089 { 1090 struct sfc_adapter *sa = dev->data->dev_private; 1091 struct sfc_txq_info *txq_info; 1092 1093 sfc_adapter_lock(sa); 1094 1095 SFC_ASSERT(tx_queue_id < sa->txq_count); 1096 1097 txq_info = &sa->txq_info[tx_queue_id]; 1098 SFC_ASSERT(txq_info->txq != NULL); 1099 1100 memset(qinfo, 0, sizeof(*qinfo)); 1101 1102 qinfo->conf.txq_flags = txq_info->txq->flags; 1103 qinfo->conf.offloads = txq_info->txq->offloads; 1104 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1105 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1106 qinfo->nb_desc = txq_info->entries; 1107 1108 sfc_adapter_unlock(sa); 1109 } 1110 1111 static uint32_t 1112 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1113 { 1114 struct sfc_adapter *sa = dev->data->dev_private; 1115 1116 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1117 1118 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1119 } 1120 1121 static int 1122 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1123 { 1124 struct sfc_dp_rxq *dp_rxq = queue; 1125 1126 return sfc_rx_qdesc_done(dp_rxq, offset); 1127 } 1128 1129 static int 1130 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1131 { 1132 struct sfc_dp_rxq *dp_rxq = queue; 1133 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1134 1135 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1136 } 1137 1138 static int 1139 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1140 { 1141 struct sfc_dp_txq *dp_txq = queue; 1142 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1143 1144 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1145 } 1146 1147 static int 1148 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1149 { 1150 struct sfc_adapter *sa = dev->data->dev_private; 1151 int rc; 1152 1153 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1154 1155 sfc_adapter_lock(sa); 1156 1157 rc = EINVAL; 1158 if (sa->state != SFC_ADAPTER_STARTED) 1159 goto fail_not_started; 1160 1161 rc = sfc_rx_qstart(sa, rx_queue_id); 1162 if (rc != 0) 1163 goto fail_rx_qstart; 1164 1165 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1166 1167 sfc_adapter_unlock(sa); 1168 1169 return 0; 1170 1171 fail_rx_qstart: 1172 fail_not_started: 1173 sfc_adapter_unlock(sa); 1174 SFC_ASSERT(rc > 0); 1175 return -rc; 1176 } 1177 1178 static int 1179 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1180 { 1181 struct sfc_adapter *sa = dev->data->dev_private; 1182 1183 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1184 1185 sfc_adapter_lock(sa); 1186 sfc_rx_qstop(sa, rx_queue_id); 1187 1188 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1189 1190 sfc_adapter_unlock(sa); 1191 1192 return 0; 1193 } 1194 1195 static int 1196 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1197 { 1198 struct sfc_adapter *sa = dev->data->dev_private; 1199 int rc; 1200 1201 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1202 1203 sfc_adapter_lock(sa); 1204 1205 rc = EINVAL; 1206 if (sa->state != SFC_ADAPTER_STARTED) 1207 goto fail_not_started; 1208 1209 rc = sfc_tx_qstart(sa, tx_queue_id); 1210 if (rc != 0) 1211 goto fail_tx_qstart; 1212 1213 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1214 1215 sfc_adapter_unlock(sa); 1216 return 0; 1217 1218 fail_tx_qstart: 1219 1220 fail_not_started: 1221 sfc_adapter_unlock(sa); 1222 SFC_ASSERT(rc > 0); 1223 return -rc; 1224 } 1225 1226 static int 1227 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1228 { 1229 struct sfc_adapter *sa = dev->data->dev_private; 1230 1231 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1232 1233 sfc_adapter_lock(sa); 1234 1235 sfc_tx_qstop(sa, tx_queue_id); 1236 1237 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1238 1239 sfc_adapter_unlock(sa); 1240 return 0; 1241 } 1242 1243 static efx_tunnel_protocol_t 1244 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1245 { 1246 switch (rte_type) { 1247 case RTE_TUNNEL_TYPE_VXLAN: 1248 return EFX_TUNNEL_PROTOCOL_VXLAN; 1249 case RTE_TUNNEL_TYPE_GENEVE: 1250 return EFX_TUNNEL_PROTOCOL_GENEVE; 1251 default: 1252 return EFX_TUNNEL_NPROTOS; 1253 } 1254 } 1255 1256 enum sfc_udp_tunnel_op_e { 1257 SFC_UDP_TUNNEL_ADD_PORT, 1258 SFC_UDP_TUNNEL_DEL_PORT, 1259 }; 1260 1261 static int 1262 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1263 struct rte_eth_udp_tunnel *tunnel_udp, 1264 enum sfc_udp_tunnel_op_e op) 1265 { 1266 struct sfc_adapter *sa = dev->data->dev_private; 1267 efx_tunnel_protocol_t tunnel_proto; 1268 int rc; 1269 1270 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1271 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1272 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1273 tunnel_udp->udp_port, tunnel_udp->prot_type); 1274 1275 tunnel_proto = 1276 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1277 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1278 rc = ENOTSUP; 1279 goto fail_bad_proto; 1280 } 1281 1282 sfc_adapter_lock(sa); 1283 1284 switch (op) { 1285 case SFC_UDP_TUNNEL_ADD_PORT: 1286 rc = efx_tunnel_config_udp_add(sa->nic, 1287 tunnel_udp->udp_port, 1288 tunnel_proto); 1289 break; 1290 case SFC_UDP_TUNNEL_DEL_PORT: 1291 rc = efx_tunnel_config_udp_remove(sa->nic, 1292 tunnel_udp->udp_port, 1293 tunnel_proto); 1294 break; 1295 default: 1296 rc = EINVAL; 1297 goto fail_bad_op; 1298 } 1299 1300 if (rc != 0) 1301 goto fail_op; 1302 1303 if (sa->state == SFC_ADAPTER_STARTED) { 1304 rc = efx_tunnel_reconfigure(sa->nic); 1305 if (rc == EAGAIN) { 1306 /* 1307 * Configuration is accepted by FW and MC reboot 1308 * is initiated to apply the changes. MC reboot 1309 * will be handled in a usual way (MC reboot 1310 * event on management event queue and adapter 1311 * restart). 1312 */ 1313 rc = 0; 1314 } else if (rc != 0) { 1315 goto fail_reconfigure; 1316 } 1317 } 1318 1319 sfc_adapter_unlock(sa); 1320 return 0; 1321 1322 fail_reconfigure: 1323 /* Remove/restore entry since the change makes the trouble */ 1324 switch (op) { 1325 case SFC_UDP_TUNNEL_ADD_PORT: 1326 (void)efx_tunnel_config_udp_remove(sa->nic, 1327 tunnel_udp->udp_port, 1328 tunnel_proto); 1329 break; 1330 case SFC_UDP_TUNNEL_DEL_PORT: 1331 (void)efx_tunnel_config_udp_add(sa->nic, 1332 tunnel_udp->udp_port, 1333 tunnel_proto); 1334 break; 1335 } 1336 1337 fail_op: 1338 fail_bad_op: 1339 sfc_adapter_unlock(sa); 1340 1341 fail_bad_proto: 1342 SFC_ASSERT(rc > 0); 1343 return -rc; 1344 } 1345 1346 static int 1347 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1348 struct rte_eth_udp_tunnel *tunnel_udp) 1349 { 1350 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1351 } 1352 1353 static int 1354 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1355 struct rte_eth_udp_tunnel *tunnel_udp) 1356 { 1357 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1358 } 1359 1360 #if EFSYS_OPT_RX_SCALE 1361 static int 1362 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1363 struct rte_eth_rss_conf *rss_conf) 1364 { 1365 struct sfc_adapter *sa = dev->data->dev_private; 1366 struct sfc_port *port = &sa->port; 1367 1368 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1369 return -ENOTSUP; 1370 1371 if (sa->rss_channels == 0) 1372 return -EINVAL; 1373 1374 sfc_adapter_lock(sa); 1375 1376 /* 1377 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1378 * hence, conversion is done here to derive a correct set of ETH_RSS 1379 * flags which corresponds to the active EFX configuration stored 1380 * locally in 'sfc_adapter' and kept up-to-date 1381 */ 1382 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types); 1383 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1384 if (rss_conf->rss_key != NULL) 1385 rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE); 1386 1387 sfc_adapter_unlock(sa); 1388 1389 return 0; 1390 } 1391 1392 static int 1393 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1394 struct rte_eth_rss_conf *rss_conf) 1395 { 1396 struct sfc_adapter *sa = dev->data->dev_private; 1397 struct sfc_port *port = &sa->port; 1398 unsigned int efx_hash_types; 1399 int rc = 0; 1400 1401 if (port->isolated) 1402 return -ENOTSUP; 1403 1404 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1405 sfc_err(sa, "RSS is not available"); 1406 return -ENOTSUP; 1407 } 1408 1409 if (sa->rss_channels == 0) { 1410 sfc_err(sa, "RSS is not configured"); 1411 return -EINVAL; 1412 } 1413 1414 if ((rss_conf->rss_key != NULL) && 1415 (rss_conf->rss_key_len != sizeof(sa->rss_key))) { 1416 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1417 sizeof(sa->rss_key)); 1418 return -EINVAL; 1419 } 1420 1421 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1422 sfc_err(sa, "unsupported hash functions requested"); 1423 return -EINVAL; 1424 } 1425 1426 sfc_adapter_lock(sa); 1427 1428 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1429 1430 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1431 EFX_RX_HASHALG_TOEPLITZ, 1432 efx_hash_types, B_TRUE); 1433 if (rc != 0) 1434 goto fail_scale_mode_set; 1435 1436 if (rss_conf->rss_key != NULL) { 1437 if (sa->state == SFC_ADAPTER_STARTED) { 1438 rc = efx_rx_scale_key_set(sa->nic, 1439 EFX_RSS_CONTEXT_DEFAULT, 1440 rss_conf->rss_key, 1441 sizeof(sa->rss_key)); 1442 if (rc != 0) 1443 goto fail_scale_key_set; 1444 } 1445 1446 rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key)); 1447 } 1448 1449 sa->rss_hash_types = efx_hash_types; 1450 1451 sfc_adapter_unlock(sa); 1452 1453 return 0; 1454 1455 fail_scale_key_set: 1456 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1457 EFX_RX_HASHALG_TOEPLITZ, 1458 sa->rss_hash_types, B_TRUE) != 0) 1459 sfc_err(sa, "failed to restore RSS mode"); 1460 1461 fail_scale_mode_set: 1462 sfc_adapter_unlock(sa); 1463 return -rc; 1464 } 1465 1466 static int 1467 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1468 struct rte_eth_rss_reta_entry64 *reta_conf, 1469 uint16_t reta_size) 1470 { 1471 struct sfc_adapter *sa = dev->data->dev_private; 1472 struct sfc_port *port = &sa->port; 1473 int entry; 1474 1475 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1476 return -ENOTSUP; 1477 1478 if (sa->rss_channels == 0) 1479 return -EINVAL; 1480 1481 if (reta_size != EFX_RSS_TBL_SIZE) 1482 return -EINVAL; 1483 1484 sfc_adapter_lock(sa); 1485 1486 for (entry = 0; entry < reta_size; entry++) { 1487 int grp = entry / RTE_RETA_GROUP_SIZE; 1488 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1489 1490 if ((reta_conf[grp].mask >> grp_idx) & 1) 1491 reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry]; 1492 } 1493 1494 sfc_adapter_unlock(sa); 1495 1496 return 0; 1497 } 1498 1499 static int 1500 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1501 struct rte_eth_rss_reta_entry64 *reta_conf, 1502 uint16_t reta_size) 1503 { 1504 struct sfc_adapter *sa = dev->data->dev_private; 1505 struct sfc_port *port = &sa->port; 1506 unsigned int *rss_tbl_new; 1507 uint16_t entry; 1508 int rc = 0; 1509 1510 1511 if (port->isolated) 1512 return -ENOTSUP; 1513 1514 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1515 sfc_err(sa, "RSS is not available"); 1516 return -ENOTSUP; 1517 } 1518 1519 if (sa->rss_channels == 0) { 1520 sfc_err(sa, "RSS is not configured"); 1521 return -EINVAL; 1522 } 1523 1524 if (reta_size != EFX_RSS_TBL_SIZE) { 1525 sfc_err(sa, "RETA size is wrong (should be %u)", 1526 EFX_RSS_TBL_SIZE); 1527 return -EINVAL; 1528 } 1529 1530 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0); 1531 if (rss_tbl_new == NULL) 1532 return -ENOMEM; 1533 1534 sfc_adapter_lock(sa); 1535 1536 rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl)); 1537 1538 for (entry = 0; entry < reta_size; entry++) { 1539 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1540 struct rte_eth_rss_reta_entry64 *grp; 1541 1542 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1543 1544 if (grp->mask & (1ull << grp_idx)) { 1545 if (grp->reta[grp_idx] >= sa->rss_channels) { 1546 rc = EINVAL; 1547 goto bad_reta_entry; 1548 } 1549 rss_tbl_new[entry] = grp->reta[grp_idx]; 1550 } 1551 } 1552 1553 if (sa->state == SFC_ADAPTER_STARTED) { 1554 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1555 rss_tbl_new, EFX_RSS_TBL_SIZE); 1556 if (rc != 0) 1557 goto fail_scale_tbl_set; 1558 } 1559 1560 rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl)); 1561 1562 fail_scale_tbl_set: 1563 bad_reta_entry: 1564 sfc_adapter_unlock(sa); 1565 1566 rte_free(rss_tbl_new); 1567 1568 SFC_ASSERT(rc >= 0); 1569 return -rc; 1570 } 1571 #endif 1572 1573 static int 1574 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1575 enum rte_filter_op filter_op, 1576 void *arg) 1577 { 1578 struct sfc_adapter *sa = dev->data->dev_private; 1579 int rc = ENOTSUP; 1580 1581 sfc_log_init(sa, "entry"); 1582 1583 switch (filter_type) { 1584 case RTE_ETH_FILTER_NONE: 1585 sfc_err(sa, "Global filters configuration not supported"); 1586 break; 1587 case RTE_ETH_FILTER_MACVLAN: 1588 sfc_err(sa, "MACVLAN filters not supported"); 1589 break; 1590 case RTE_ETH_FILTER_ETHERTYPE: 1591 sfc_err(sa, "EtherType filters not supported"); 1592 break; 1593 case RTE_ETH_FILTER_FLEXIBLE: 1594 sfc_err(sa, "Flexible filters not supported"); 1595 break; 1596 case RTE_ETH_FILTER_SYN: 1597 sfc_err(sa, "SYN filters not supported"); 1598 break; 1599 case RTE_ETH_FILTER_NTUPLE: 1600 sfc_err(sa, "NTUPLE filters not supported"); 1601 break; 1602 case RTE_ETH_FILTER_TUNNEL: 1603 sfc_err(sa, "Tunnel filters not supported"); 1604 break; 1605 case RTE_ETH_FILTER_FDIR: 1606 sfc_err(sa, "Flow Director filters not supported"); 1607 break; 1608 case RTE_ETH_FILTER_HASH: 1609 sfc_err(sa, "Hash filters not supported"); 1610 break; 1611 case RTE_ETH_FILTER_GENERIC: 1612 if (filter_op != RTE_ETH_FILTER_GET) { 1613 rc = EINVAL; 1614 } else { 1615 *(const void **)arg = &sfc_flow_ops; 1616 rc = 0; 1617 } 1618 break; 1619 default: 1620 sfc_err(sa, "Unknown filter type %u", filter_type); 1621 break; 1622 } 1623 1624 sfc_log_init(sa, "exit: %d", -rc); 1625 SFC_ASSERT(rc >= 0); 1626 return -rc; 1627 } 1628 1629 static const struct eth_dev_ops sfc_eth_dev_ops = { 1630 .dev_configure = sfc_dev_configure, 1631 .dev_start = sfc_dev_start, 1632 .dev_stop = sfc_dev_stop, 1633 .dev_set_link_up = sfc_dev_set_link_up, 1634 .dev_set_link_down = sfc_dev_set_link_down, 1635 .dev_close = sfc_dev_close, 1636 .promiscuous_enable = sfc_dev_promisc_enable, 1637 .promiscuous_disable = sfc_dev_promisc_disable, 1638 .allmulticast_enable = sfc_dev_allmulti_enable, 1639 .allmulticast_disable = sfc_dev_allmulti_disable, 1640 .link_update = sfc_dev_link_update, 1641 .stats_get = sfc_stats_get, 1642 .stats_reset = sfc_stats_reset, 1643 .xstats_get = sfc_xstats_get, 1644 .xstats_reset = sfc_stats_reset, 1645 .xstats_get_names = sfc_xstats_get_names, 1646 .dev_infos_get = sfc_dev_infos_get, 1647 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1648 .mtu_set = sfc_dev_set_mtu, 1649 .rx_queue_start = sfc_rx_queue_start, 1650 .rx_queue_stop = sfc_rx_queue_stop, 1651 .tx_queue_start = sfc_tx_queue_start, 1652 .tx_queue_stop = sfc_tx_queue_stop, 1653 .rx_queue_setup = sfc_rx_queue_setup, 1654 .rx_queue_release = sfc_rx_queue_release, 1655 .rx_queue_count = sfc_rx_queue_count, 1656 .rx_descriptor_done = sfc_rx_descriptor_done, 1657 .rx_descriptor_status = sfc_rx_descriptor_status, 1658 .tx_descriptor_status = sfc_tx_descriptor_status, 1659 .tx_queue_setup = sfc_tx_queue_setup, 1660 .tx_queue_release = sfc_tx_queue_release, 1661 .flow_ctrl_get = sfc_flow_ctrl_get, 1662 .flow_ctrl_set = sfc_flow_ctrl_set, 1663 .mac_addr_set = sfc_mac_addr_set, 1664 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1665 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1666 #if EFSYS_OPT_RX_SCALE 1667 .reta_update = sfc_dev_rss_reta_update, 1668 .reta_query = sfc_dev_rss_reta_query, 1669 .rss_hash_update = sfc_dev_rss_hash_update, 1670 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1671 #endif 1672 .filter_ctrl = sfc_dev_filter_ctrl, 1673 .set_mc_addr_list = sfc_set_mc_addr_list, 1674 .rxq_info_get = sfc_rx_queue_info_get, 1675 .txq_info_get = sfc_tx_queue_info_get, 1676 .fw_version_get = sfc_fw_version_get, 1677 .xstats_get_by_id = sfc_xstats_get_by_id, 1678 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1679 }; 1680 1681 /** 1682 * Duplicate a string in potentially shared memory required for 1683 * multi-process support. 1684 * 1685 * strdup() allocates from process-local heap/memory. 1686 */ 1687 static char * 1688 sfc_strdup(const char *str) 1689 { 1690 size_t size; 1691 char *copy; 1692 1693 if (str == NULL) 1694 return NULL; 1695 1696 size = strlen(str) + 1; 1697 copy = rte_malloc(__func__, size, 0); 1698 if (copy != NULL) 1699 rte_memcpy(copy, str, size); 1700 1701 return copy; 1702 } 1703 1704 static int 1705 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1706 { 1707 struct sfc_adapter *sa = dev->data->dev_private; 1708 unsigned int avail_caps = 0; 1709 const char *rx_name = NULL; 1710 const char *tx_name = NULL; 1711 int rc; 1712 1713 switch (sa->family) { 1714 case EFX_FAMILY_HUNTINGTON: 1715 case EFX_FAMILY_MEDFORD: 1716 case EFX_FAMILY_MEDFORD2: 1717 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1718 break; 1719 default: 1720 break; 1721 } 1722 1723 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1724 sfc_kvarg_string_handler, &rx_name); 1725 if (rc != 0) 1726 goto fail_kvarg_rx_datapath; 1727 1728 if (rx_name != NULL) { 1729 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1730 if (sa->dp_rx == NULL) { 1731 sfc_err(sa, "Rx datapath %s not found", rx_name); 1732 rc = ENOENT; 1733 goto fail_dp_rx; 1734 } 1735 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1736 sfc_err(sa, 1737 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1738 rx_name); 1739 rc = EINVAL; 1740 goto fail_dp_rx_caps; 1741 } 1742 } else { 1743 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1744 if (sa->dp_rx == NULL) { 1745 sfc_err(sa, "Rx datapath by caps %#x not found", 1746 avail_caps); 1747 rc = ENOENT; 1748 goto fail_dp_rx; 1749 } 1750 } 1751 1752 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1753 if (sa->dp_rx_name == NULL) { 1754 rc = ENOMEM; 1755 goto fail_dp_rx_name; 1756 } 1757 1758 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1759 1760 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1761 1762 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1763 sfc_kvarg_string_handler, &tx_name); 1764 if (rc != 0) 1765 goto fail_kvarg_tx_datapath; 1766 1767 if (tx_name != NULL) { 1768 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1769 if (sa->dp_tx == NULL) { 1770 sfc_err(sa, "Tx datapath %s not found", tx_name); 1771 rc = ENOENT; 1772 goto fail_dp_tx; 1773 } 1774 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1775 sfc_err(sa, 1776 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1777 tx_name); 1778 rc = EINVAL; 1779 goto fail_dp_tx_caps; 1780 } 1781 } else { 1782 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1783 if (sa->dp_tx == NULL) { 1784 sfc_err(sa, "Tx datapath by caps %#x not found", 1785 avail_caps); 1786 rc = ENOENT; 1787 goto fail_dp_tx; 1788 } 1789 } 1790 1791 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1792 if (sa->dp_tx_name == NULL) { 1793 rc = ENOMEM; 1794 goto fail_dp_tx_name; 1795 } 1796 1797 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1798 1799 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1800 1801 dev->dev_ops = &sfc_eth_dev_ops; 1802 1803 return 0; 1804 1805 fail_dp_tx_name: 1806 fail_dp_tx_caps: 1807 sa->dp_tx = NULL; 1808 1809 fail_dp_tx: 1810 fail_kvarg_tx_datapath: 1811 rte_free(sa->dp_rx_name); 1812 sa->dp_rx_name = NULL; 1813 1814 fail_dp_rx_name: 1815 fail_dp_rx_caps: 1816 sa->dp_rx = NULL; 1817 1818 fail_dp_rx: 1819 fail_kvarg_rx_datapath: 1820 return rc; 1821 } 1822 1823 static void 1824 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1825 { 1826 struct sfc_adapter *sa = dev->data->dev_private; 1827 1828 dev->dev_ops = NULL; 1829 dev->rx_pkt_burst = NULL; 1830 dev->tx_pkt_burst = NULL; 1831 1832 rte_free(sa->dp_tx_name); 1833 sa->dp_tx_name = NULL; 1834 sa->dp_tx = NULL; 1835 1836 rte_free(sa->dp_rx_name); 1837 sa->dp_rx_name = NULL; 1838 sa->dp_rx = NULL; 1839 } 1840 1841 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1842 .rxq_info_get = sfc_rx_queue_info_get, 1843 .txq_info_get = sfc_tx_queue_info_get, 1844 }; 1845 1846 static int 1847 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1848 { 1849 /* 1850 * Device private data has really many process-local pointers. 1851 * Below code should be extremely careful to use data located 1852 * in shared memory only. 1853 */ 1854 struct sfc_adapter *sa = dev->data->dev_private; 1855 const struct sfc_dp_rx *dp_rx; 1856 const struct sfc_dp_tx *dp_tx; 1857 int rc; 1858 1859 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1860 if (dp_rx == NULL) { 1861 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1862 rc = ENOENT; 1863 goto fail_dp_rx; 1864 } 1865 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1866 sfc_err(sa, "%s Rx datapath does not support multi-process", 1867 sa->dp_tx_name); 1868 rc = EINVAL; 1869 goto fail_dp_rx_multi_process; 1870 } 1871 1872 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1873 if (dp_tx == NULL) { 1874 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1875 rc = ENOENT; 1876 goto fail_dp_tx; 1877 } 1878 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1879 sfc_err(sa, "%s Tx datapath does not support multi-process", 1880 sa->dp_tx_name); 1881 rc = EINVAL; 1882 goto fail_dp_tx_multi_process; 1883 } 1884 1885 dev->rx_pkt_burst = dp_rx->pkt_burst; 1886 dev->tx_pkt_burst = dp_tx->pkt_burst; 1887 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1888 1889 return 0; 1890 1891 fail_dp_tx_multi_process: 1892 fail_dp_tx: 1893 fail_dp_rx_multi_process: 1894 fail_dp_rx: 1895 return rc; 1896 } 1897 1898 static void 1899 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1900 { 1901 dev->dev_ops = NULL; 1902 dev->tx_pkt_burst = NULL; 1903 dev->rx_pkt_burst = NULL; 1904 } 1905 1906 static void 1907 sfc_register_dp(void) 1908 { 1909 /* Register once */ 1910 if (TAILQ_EMPTY(&sfc_dp_head)) { 1911 /* Prefer EF10 datapath */ 1912 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1913 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1914 1915 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1916 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1917 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1918 } 1919 } 1920 1921 static int 1922 sfc_eth_dev_init(struct rte_eth_dev *dev) 1923 { 1924 struct sfc_adapter *sa = dev->data->dev_private; 1925 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1926 int rc; 1927 const efx_nic_cfg_t *encp; 1928 const struct ether_addr *from; 1929 1930 sfc_register_dp(); 1931 1932 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1933 return -sfc_eth_dev_secondary_set_ops(dev); 1934 1935 /* Required for logging */ 1936 sa->pci_addr = pci_dev->addr; 1937 sa->port_id = dev->data->port_id; 1938 1939 sa->eth_dev = dev; 1940 1941 /* Copy PCI device info to the dev->data */ 1942 rte_eth_copy_pci_info(dev, pci_dev); 1943 1944 sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR, 1945 RTE_LOG_NOTICE); 1946 1947 rc = sfc_kvargs_parse(sa); 1948 if (rc != 0) 1949 goto fail_kvargs_parse; 1950 1951 sfc_log_init(sa, "entry"); 1952 1953 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1954 if (dev->data->mac_addrs == NULL) { 1955 rc = ENOMEM; 1956 goto fail_mac_addrs; 1957 } 1958 1959 sfc_adapter_lock_init(sa); 1960 sfc_adapter_lock(sa); 1961 1962 sfc_log_init(sa, "probing"); 1963 rc = sfc_probe(sa); 1964 if (rc != 0) 1965 goto fail_probe; 1966 1967 sfc_log_init(sa, "set device ops"); 1968 rc = sfc_eth_dev_set_ops(dev); 1969 if (rc != 0) 1970 goto fail_set_ops; 1971 1972 sfc_log_init(sa, "attaching"); 1973 rc = sfc_attach(sa); 1974 if (rc != 0) 1975 goto fail_attach; 1976 1977 encp = efx_nic_cfg_get(sa->nic); 1978 1979 /* 1980 * The arguments are really reverse order in comparison to 1981 * Linux kernel. Copy from NIC config to Ethernet device data. 1982 */ 1983 from = (const struct ether_addr *)(encp->enc_mac_addr); 1984 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1985 1986 sfc_adapter_unlock(sa); 1987 1988 sfc_log_init(sa, "done"); 1989 return 0; 1990 1991 fail_attach: 1992 sfc_eth_dev_clear_ops(dev); 1993 1994 fail_set_ops: 1995 sfc_unprobe(sa); 1996 1997 fail_probe: 1998 sfc_adapter_unlock(sa); 1999 sfc_adapter_lock_fini(sa); 2000 rte_free(dev->data->mac_addrs); 2001 dev->data->mac_addrs = NULL; 2002 2003 fail_mac_addrs: 2004 sfc_kvargs_cleanup(sa); 2005 2006 fail_kvargs_parse: 2007 sfc_log_init(sa, "failed %d", rc); 2008 SFC_ASSERT(rc > 0); 2009 return -rc; 2010 } 2011 2012 static int 2013 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2014 { 2015 struct sfc_adapter *sa; 2016 2017 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2018 sfc_eth_dev_secondary_clear_ops(dev); 2019 return 0; 2020 } 2021 2022 sa = dev->data->dev_private; 2023 sfc_log_init(sa, "entry"); 2024 2025 sfc_adapter_lock(sa); 2026 2027 sfc_eth_dev_clear_ops(dev); 2028 2029 sfc_detach(sa); 2030 sfc_unprobe(sa); 2031 2032 rte_free(dev->data->mac_addrs); 2033 dev->data->mac_addrs = NULL; 2034 2035 sfc_kvargs_cleanup(sa); 2036 2037 sfc_adapter_unlock(sa); 2038 sfc_adapter_lock_fini(sa); 2039 2040 sfc_log_init(sa, "done"); 2041 2042 /* Required for logging, so cleanup last */ 2043 sa->eth_dev = NULL; 2044 return 0; 2045 } 2046 2047 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2048 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2049 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2050 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2051 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2052 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2053 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2054 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2055 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2056 { .vendor_id = 0 /* sentinel */ } 2057 }; 2058 2059 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2060 struct rte_pci_device *pci_dev) 2061 { 2062 return rte_eth_dev_pci_generic_probe(pci_dev, 2063 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2064 } 2065 2066 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2067 { 2068 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2069 } 2070 2071 static struct rte_pci_driver sfc_efx_pmd = { 2072 .id_table = pci_id_sfc_efx_map, 2073 .drv_flags = 2074 RTE_PCI_DRV_INTR_LSC | 2075 RTE_PCI_DRV_NEED_MAPPING, 2076 .probe = sfc_eth_dev_pci_probe, 2077 .remove = sfc_eth_dev_pci_remove, 2078 }; 2079 2080 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2081 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2082 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2083 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2084 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2085 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2086 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2087 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2088 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2089 2090 RTE_INIT(sfc_driver_register_logtype); 2091 static void 2092 sfc_driver_register_logtype(void) 2093 { 2094 int ret; 2095 2096 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2097 RTE_LOG_NOTICE); 2098 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2099 } 2100