xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 6491dbbecebb1e4f07fc970ef90b34119d8be2e3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 
17 #include "efx.h"
18 
19 #include "sfc.h"
20 #include "sfc_debug.h"
21 #include "sfc_log.h"
22 #include "sfc_kvargs.h"
23 #include "sfc_ev.h"
24 #include "sfc_rx.h"
25 #include "sfc_tx.h"
26 #include "sfc_flow.h"
27 #include "sfc_dp.h"
28 #include "sfc_dp_rx.h"
29 
30 uint32_t sfc_logtype_driver;
31 
32 static struct sfc_dp_list sfc_dp_head =
33 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
34 
35 static int
36 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
37 {
38 	struct sfc_adapter *sa = dev->data->dev_private;
39 	efx_nic_fw_info_t enfi;
40 	int ret;
41 	int rc;
42 
43 	/*
44 	 * Return value of the callback is likely supposed to be
45 	 * equal to or greater than 0, nevertheless, if an error
46 	 * occurs, it will be desirable to pass it to the caller
47 	 */
48 	if ((fw_version == NULL) || (fw_size == 0))
49 		return -EINVAL;
50 
51 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
52 	if (rc != 0)
53 		return -rc;
54 
55 	ret = snprintf(fw_version, fw_size,
56 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
57 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
58 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
59 	if (ret < 0)
60 		return ret;
61 
62 	if (enfi.enfi_dpcpu_fw_ids_valid) {
63 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
64 		int ret_extra;
65 
66 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
67 				     fw_size - dpcpu_fw_ids_offset,
68 				     " rx%" PRIx16 " tx%" PRIx16,
69 				     enfi.enfi_rx_dpcpu_fw_id,
70 				     enfi.enfi_tx_dpcpu_fw_id);
71 		if (ret_extra < 0)
72 			return ret_extra;
73 
74 		ret += ret_extra;
75 	}
76 
77 	if (fw_size < (size_t)(++ret))
78 		return ret;
79 	else
80 		return 0;
81 }
82 
83 static void
84 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
85 {
86 	struct sfc_adapter *sa = dev->data->dev_private;
87 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
88 	uint64_t txq_offloads_def = 0;
89 
90 	sfc_log_init(sa, "entry");
91 
92 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
93 
94 	/* Autonegotiation may be disabled */
95 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
96 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
97 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
98 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
99 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
100 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX)
101 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
102 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
103 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
104 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX)
105 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
106 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX)
107 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
108 
109 	dev_info->max_rx_queues = sa->rxq_max;
110 	dev_info->max_tx_queues = sa->txq_max;
111 
112 	/* By default packets are dropped if no descriptors are available */
113 	dev_info->default_rxconf.rx_drop_en = 1;
114 
115 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
116 
117 	/*
118 	 * rx_offload_capa includes both device and queue offloads since
119 	 * the latter may be requested on a per device basis which makes
120 	 * sense when some offloads are needed to be set on all queues.
121 	 */
122 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
123 				    dev_info->rx_queue_offload_capa;
124 
125 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
126 
127 	/*
128 	 * tx_offload_capa includes both device and queue offloads since
129 	 * the latter may be requested on a per device basis which makes
130 	 * sense when some offloads are needed to be set on all queues.
131 	 */
132 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
133 				    dev_info->tx_queue_offload_capa;
134 
135 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
136 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
137 
138 	dev_info->default_txconf.offloads |= txq_offloads_def;
139 
140 	dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP;
141 	if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) ||
142 	    !encp->enc_hw_tx_insert_vlan_enabled)
143 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL;
144 
145 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG)
146 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS;
147 
148 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL)
149 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP;
150 
151 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT)
152 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT;
153 
154 #if EFSYS_OPT_RX_SCALE
155 	if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) {
156 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
157 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
158 		dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS;
159 	}
160 #endif
161 
162 	/* Initialize to hardware limits */
163 	dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
164 	dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
165 	/* The RXQ hardware requires that the descriptor count is a power
166 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
167 	 */
168 	dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
169 
170 	/* Initialize to hardware limits */
171 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
172 	dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
173 	/*
174 	 * The TXQ hardware requires that the descriptor count is a power
175 	 * of 2, but tx_desc_lim cannot properly describe that constraint
176 	 */
177 	dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
178 
179 	if (sa->dp_rx->get_dev_info != NULL)
180 		sa->dp_rx->get_dev_info(dev_info);
181 	if (sa->dp_tx->get_dev_info != NULL)
182 		sa->dp_tx->get_dev_info(dev_info);
183 }
184 
185 static const uint32_t *
186 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
187 {
188 	struct sfc_adapter *sa = dev->data->dev_private;
189 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
190 	uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported;
191 
192 	return sa->dp_rx->supported_ptypes_get(tunnel_encaps);
193 }
194 
195 static int
196 sfc_dev_configure(struct rte_eth_dev *dev)
197 {
198 	struct rte_eth_dev_data *dev_data = dev->data;
199 	struct sfc_adapter *sa = dev_data->dev_private;
200 	int rc;
201 
202 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
203 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
204 
205 	sfc_adapter_lock(sa);
206 	switch (sa->state) {
207 	case SFC_ADAPTER_CONFIGURED:
208 		/* FALLTHROUGH */
209 	case SFC_ADAPTER_INITIALIZED:
210 		rc = sfc_configure(sa);
211 		break;
212 	default:
213 		sfc_err(sa, "unexpected adapter state %u to configure",
214 			sa->state);
215 		rc = EINVAL;
216 		break;
217 	}
218 	sfc_adapter_unlock(sa);
219 
220 	sfc_log_init(sa, "done %d", rc);
221 	SFC_ASSERT(rc >= 0);
222 	return -rc;
223 }
224 
225 static int
226 sfc_dev_start(struct rte_eth_dev *dev)
227 {
228 	struct sfc_adapter *sa = dev->data->dev_private;
229 	int rc;
230 
231 	sfc_log_init(sa, "entry");
232 
233 	sfc_adapter_lock(sa);
234 	rc = sfc_start(sa);
235 	sfc_adapter_unlock(sa);
236 
237 	sfc_log_init(sa, "done %d", rc);
238 	SFC_ASSERT(rc >= 0);
239 	return -rc;
240 }
241 
242 static int
243 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
244 {
245 	struct sfc_adapter *sa = dev->data->dev_private;
246 	struct rte_eth_link current_link;
247 	int ret;
248 
249 	sfc_log_init(sa, "entry");
250 
251 	if (sa->state != SFC_ADAPTER_STARTED) {
252 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
253 	} else if (wait_to_complete) {
254 		efx_link_mode_t link_mode;
255 
256 		if (efx_port_poll(sa->nic, &link_mode) != 0)
257 			link_mode = EFX_LINK_UNKNOWN;
258 		sfc_port_link_mode_to_info(link_mode, &current_link);
259 
260 	} else {
261 		sfc_ev_mgmt_qpoll(sa);
262 		rte_eth_linkstatus_get(dev, &current_link);
263 	}
264 
265 	ret = rte_eth_linkstatus_set(dev, &current_link);
266 	if (ret == 0)
267 		sfc_notice(sa, "Link status is %s",
268 			   current_link.link_status ? "UP" : "DOWN");
269 
270 	return ret;
271 }
272 
273 static void
274 sfc_dev_stop(struct rte_eth_dev *dev)
275 {
276 	struct sfc_adapter *sa = dev->data->dev_private;
277 
278 	sfc_log_init(sa, "entry");
279 
280 	sfc_adapter_lock(sa);
281 	sfc_stop(sa);
282 	sfc_adapter_unlock(sa);
283 
284 	sfc_log_init(sa, "done");
285 }
286 
287 static int
288 sfc_dev_set_link_up(struct rte_eth_dev *dev)
289 {
290 	struct sfc_adapter *sa = dev->data->dev_private;
291 	int rc;
292 
293 	sfc_log_init(sa, "entry");
294 
295 	sfc_adapter_lock(sa);
296 	rc = sfc_start(sa);
297 	sfc_adapter_unlock(sa);
298 
299 	SFC_ASSERT(rc >= 0);
300 	return -rc;
301 }
302 
303 static int
304 sfc_dev_set_link_down(struct rte_eth_dev *dev)
305 {
306 	struct sfc_adapter *sa = dev->data->dev_private;
307 
308 	sfc_log_init(sa, "entry");
309 
310 	sfc_adapter_lock(sa);
311 	sfc_stop(sa);
312 	sfc_adapter_unlock(sa);
313 
314 	return 0;
315 }
316 
317 static void
318 sfc_dev_close(struct rte_eth_dev *dev)
319 {
320 	struct sfc_adapter *sa = dev->data->dev_private;
321 
322 	sfc_log_init(sa, "entry");
323 
324 	sfc_adapter_lock(sa);
325 	switch (sa->state) {
326 	case SFC_ADAPTER_STARTED:
327 		sfc_stop(sa);
328 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
329 		/* FALLTHROUGH */
330 	case SFC_ADAPTER_CONFIGURED:
331 		sfc_close(sa);
332 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
333 		/* FALLTHROUGH */
334 	case SFC_ADAPTER_INITIALIZED:
335 		break;
336 	default:
337 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
338 		break;
339 	}
340 	sfc_adapter_unlock(sa);
341 
342 	sfc_log_init(sa, "done");
343 }
344 
345 static void
346 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
347 		   boolean_t enabled)
348 {
349 	struct sfc_port *port;
350 	boolean_t *toggle;
351 	struct sfc_adapter *sa = dev->data->dev_private;
352 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
353 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
354 
355 	sfc_adapter_lock(sa);
356 
357 	port = &sa->port;
358 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
359 
360 	if (*toggle != enabled) {
361 		*toggle = enabled;
362 
363 		if (port->isolated) {
364 			sfc_warn(sa, "isolated mode is active on the port");
365 			sfc_warn(sa, "the change is to be applied on the next "
366 				     "start provided that isolated mode is "
367 				     "disabled prior the next start");
368 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
369 			   (sfc_set_rx_mode(sa) != 0)) {
370 			*toggle = !(enabled);
371 			sfc_warn(sa, "Failed to %s %s mode",
372 				 ((enabled) ? "enable" : "disable"), desc);
373 		}
374 	}
375 
376 	sfc_adapter_unlock(sa);
377 }
378 
379 static void
380 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
381 {
382 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
383 }
384 
385 static void
386 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
387 {
388 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
389 }
390 
391 static void
392 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
393 {
394 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
395 }
396 
397 static void
398 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
399 {
400 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
401 }
402 
403 static int
404 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
405 		   uint16_t nb_rx_desc, unsigned int socket_id,
406 		   const struct rte_eth_rxconf *rx_conf,
407 		   struct rte_mempool *mb_pool)
408 {
409 	struct sfc_adapter *sa = dev->data->dev_private;
410 	int rc;
411 
412 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
413 		     rx_queue_id, nb_rx_desc, socket_id);
414 
415 	sfc_adapter_lock(sa);
416 
417 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
418 			  rx_conf, mb_pool);
419 	if (rc != 0)
420 		goto fail_rx_qinit;
421 
422 	dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp;
423 
424 	sfc_adapter_unlock(sa);
425 
426 	return 0;
427 
428 fail_rx_qinit:
429 	sfc_adapter_unlock(sa);
430 	SFC_ASSERT(rc > 0);
431 	return -rc;
432 }
433 
434 static void
435 sfc_rx_queue_release(void *queue)
436 {
437 	struct sfc_dp_rxq *dp_rxq = queue;
438 	struct sfc_rxq *rxq;
439 	struct sfc_adapter *sa;
440 	unsigned int sw_index;
441 
442 	if (dp_rxq == NULL)
443 		return;
444 
445 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
446 	sa = rxq->evq->sa;
447 	sfc_adapter_lock(sa);
448 
449 	sw_index = sfc_rxq_sw_index(rxq);
450 
451 	sfc_log_init(sa, "RxQ=%u", sw_index);
452 
453 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
454 
455 	sfc_rx_qfini(sa, sw_index);
456 
457 	sfc_adapter_unlock(sa);
458 }
459 
460 static int
461 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
462 		   uint16_t nb_tx_desc, unsigned int socket_id,
463 		   const struct rte_eth_txconf *tx_conf)
464 {
465 	struct sfc_adapter *sa = dev->data->dev_private;
466 	int rc;
467 
468 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
469 		     tx_queue_id, nb_tx_desc, socket_id);
470 
471 	sfc_adapter_lock(sa);
472 
473 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
474 	if (rc != 0)
475 		goto fail_tx_qinit;
476 
477 	dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp;
478 
479 	sfc_adapter_unlock(sa);
480 	return 0;
481 
482 fail_tx_qinit:
483 	sfc_adapter_unlock(sa);
484 	SFC_ASSERT(rc > 0);
485 	return -rc;
486 }
487 
488 static void
489 sfc_tx_queue_release(void *queue)
490 {
491 	struct sfc_dp_txq *dp_txq = queue;
492 	struct sfc_txq *txq;
493 	unsigned int sw_index;
494 	struct sfc_adapter *sa;
495 
496 	if (dp_txq == NULL)
497 		return;
498 
499 	txq = sfc_txq_by_dp_txq(dp_txq);
500 	sw_index = sfc_txq_sw_index(txq);
501 
502 	SFC_ASSERT(txq->evq != NULL);
503 	sa = txq->evq->sa;
504 
505 	sfc_log_init(sa, "TxQ = %u", sw_index);
506 
507 	sfc_adapter_lock(sa);
508 
509 	SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues);
510 	sa->eth_dev->data->tx_queues[sw_index] = NULL;
511 
512 	sfc_tx_qfini(sa, sw_index);
513 
514 	sfc_adapter_unlock(sa);
515 }
516 
517 static int
518 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
519 {
520 	struct sfc_adapter *sa = dev->data->dev_private;
521 	struct sfc_port *port = &sa->port;
522 	uint64_t *mac_stats;
523 	int ret;
524 
525 	rte_spinlock_lock(&port->mac_stats_lock);
526 
527 	ret = sfc_port_update_mac_stats(sa);
528 	if (ret != 0)
529 		goto unlock;
530 
531 	mac_stats = port->mac_stats_buf;
532 
533 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
534 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
535 		stats->ipackets =
536 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
537 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
538 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
539 		stats->opackets =
540 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
541 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
542 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
543 		stats->ibytes =
544 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
545 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
546 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
547 		stats->obytes =
548 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
549 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
550 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
551 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW];
552 		stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
553 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
554 	} else {
555 		stats->ipackets = mac_stats[EFX_MAC_RX_PKTS];
556 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
557 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
558 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
559 		/*
560 		 * Take into account stats which are whenever supported
561 		 * on EF10. If some stat is not supported by current
562 		 * firmware variant or HW revision, it is guaranteed
563 		 * to be zero in mac_stats.
564 		 */
565 		stats->imissed =
566 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
567 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
568 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
569 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
570 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
571 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
572 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
573 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
574 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
575 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
576 		stats->ierrors =
577 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
578 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
579 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
580 		/* no oerrors counters supported on EF10 */
581 	}
582 
583 unlock:
584 	rte_spinlock_unlock(&port->mac_stats_lock);
585 	SFC_ASSERT(ret >= 0);
586 	return -ret;
587 }
588 
589 static void
590 sfc_stats_reset(struct rte_eth_dev *dev)
591 {
592 	struct sfc_adapter *sa = dev->data->dev_private;
593 	struct sfc_port *port = &sa->port;
594 	int rc;
595 
596 	if (sa->state != SFC_ADAPTER_STARTED) {
597 		/*
598 		 * The operation cannot be done if port is not started; it
599 		 * will be scheduled to be done during the next port start
600 		 */
601 		port->mac_stats_reset_pending = B_TRUE;
602 		return;
603 	}
604 
605 	rc = sfc_port_reset_mac_stats(sa);
606 	if (rc != 0)
607 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
608 }
609 
610 static int
611 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
612 	       unsigned int xstats_count)
613 {
614 	struct sfc_adapter *sa = dev->data->dev_private;
615 	struct sfc_port *port = &sa->port;
616 	uint64_t *mac_stats;
617 	int rc;
618 	unsigned int i;
619 	int nstats = 0;
620 
621 	rte_spinlock_lock(&port->mac_stats_lock);
622 
623 	rc = sfc_port_update_mac_stats(sa);
624 	if (rc != 0) {
625 		SFC_ASSERT(rc > 0);
626 		nstats = -rc;
627 		goto unlock;
628 	}
629 
630 	mac_stats = port->mac_stats_buf;
631 
632 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
633 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
634 			if (xstats != NULL && nstats < (int)xstats_count) {
635 				xstats[nstats].id = nstats;
636 				xstats[nstats].value = mac_stats[i];
637 			}
638 			nstats++;
639 		}
640 	}
641 
642 unlock:
643 	rte_spinlock_unlock(&port->mac_stats_lock);
644 
645 	return nstats;
646 }
647 
648 static int
649 sfc_xstats_get_names(struct rte_eth_dev *dev,
650 		     struct rte_eth_xstat_name *xstats_names,
651 		     unsigned int xstats_count)
652 {
653 	struct sfc_adapter *sa = dev->data->dev_private;
654 	struct sfc_port *port = &sa->port;
655 	unsigned int i;
656 	unsigned int nstats = 0;
657 
658 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
659 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
660 			if (xstats_names != NULL && nstats < xstats_count)
661 				strncpy(xstats_names[nstats].name,
662 					efx_mac_stat_name(sa->nic, i),
663 					sizeof(xstats_names[0].name));
664 			nstats++;
665 		}
666 	}
667 
668 	return nstats;
669 }
670 
671 static int
672 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
673 		     uint64_t *values, unsigned int n)
674 {
675 	struct sfc_adapter *sa = dev->data->dev_private;
676 	struct sfc_port *port = &sa->port;
677 	uint64_t *mac_stats;
678 	unsigned int nb_supported = 0;
679 	unsigned int nb_written = 0;
680 	unsigned int i;
681 	int ret;
682 	int rc;
683 
684 	if (unlikely(values == NULL) ||
685 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
686 		return port->mac_stats_nb_supported;
687 
688 	rte_spinlock_lock(&port->mac_stats_lock);
689 
690 	rc = sfc_port_update_mac_stats(sa);
691 	if (rc != 0) {
692 		SFC_ASSERT(rc > 0);
693 		ret = -rc;
694 		goto unlock;
695 	}
696 
697 	mac_stats = port->mac_stats_buf;
698 
699 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
700 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
701 			continue;
702 
703 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
704 			values[nb_written++] = mac_stats[i];
705 
706 		++nb_supported;
707 	}
708 
709 	ret = nb_written;
710 
711 unlock:
712 	rte_spinlock_unlock(&port->mac_stats_lock);
713 
714 	return ret;
715 }
716 
717 static int
718 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
719 			   struct rte_eth_xstat_name *xstats_names,
720 			   const uint64_t *ids, unsigned int size)
721 {
722 	struct sfc_adapter *sa = dev->data->dev_private;
723 	struct sfc_port *port = &sa->port;
724 	unsigned int nb_supported = 0;
725 	unsigned int nb_written = 0;
726 	unsigned int i;
727 
728 	if (unlikely(xstats_names == NULL) ||
729 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
730 		return port->mac_stats_nb_supported;
731 
732 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
733 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
734 			continue;
735 
736 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
737 			char *name = xstats_names[nb_written++].name;
738 
739 			strncpy(name, efx_mac_stat_name(sa->nic, i),
740 				sizeof(xstats_names[0].name));
741 			name[sizeof(xstats_names[0].name) - 1] = '\0';
742 		}
743 
744 		++nb_supported;
745 	}
746 
747 	return nb_written;
748 }
749 
750 static int
751 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
752 {
753 	struct sfc_adapter *sa = dev->data->dev_private;
754 	unsigned int wanted_fc, link_fc;
755 
756 	memset(fc_conf, 0, sizeof(*fc_conf));
757 
758 	sfc_adapter_lock(sa);
759 
760 	if (sa->state == SFC_ADAPTER_STARTED)
761 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
762 	else
763 		link_fc = sa->port.flow_ctrl;
764 
765 	switch (link_fc) {
766 	case 0:
767 		fc_conf->mode = RTE_FC_NONE;
768 		break;
769 	case EFX_FCNTL_RESPOND:
770 		fc_conf->mode = RTE_FC_RX_PAUSE;
771 		break;
772 	case EFX_FCNTL_GENERATE:
773 		fc_conf->mode = RTE_FC_TX_PAUSE;
774 		break;
775 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
776 		fc_conf->mode = RTE_FC_FULL;
777 		break;
778 	default:
779 		sfc_err(sa, "%s: unexpected flow control value %#x",
780 			__func__, link_fc);
781 	}
782 
783 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
784 
785 	sfc_adapter_unlock(sa);
786 
787 	return 0;
788 }
789 
790 static int
791 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
792 {
793 	struct sfc_adapter *sa = dev->data->dev_private;
794 	struct sfc_port *port = &sa->port;
795 	unsigned int fcntl;
796 	int rc;
797 
798 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
799 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
800 	    fc_conf->mac_ctrl_frame_fwd != 0) {
801 		sfc_err(sa, "unsupported flow control settings specified");
802 		rc = EINVAL;
803 		goto fail_inval;
804 	}
805 
806 	switch (fc_conf->mode) {
807 	case RTE_FC_NONE:
808 		fcntl = 0;
809 		break;
810 	case RTE_FC_RX_PAUSE:
811 		fcntl = EFX_FCNTL_RESPOND;
812 		break;
813 	case RTE_FC_TX_PAUSE:
814 		fcntl = EFX_FCNTL_GENERATE;
815 		break;
816 	case RTE_FC_FULL:
817 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
818 		break;
819 	default:
820 		rc = EINVAL;
821 		goto fail_inval;
822 	}
823 
824 	sfc_adapter_lock(sa);
825 
826 	if (sa->state == SFC_ADAPTER_STARTED) {
827 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
828 		if (rc != 0)
829 			goto fail_mac_fcntl_set;
830 	}
831 
832 	port->flow_ctrl = fcntl;
833 	port->flow_ctrl_autoneg = fc_conf->autoneg;
834 
835 	sfc_adapter_unlock(sa);
836 
837 	return 0;
838 
839 fail_mac_fcntl_set:
840 	sfc_adapter_unlock(sa);
841 fail_inval:
842 	SFC_ASSERT(rc > 0);
843 	return -rc;
844 }
845 
846 static int
847 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
848 {
849 	struct sfc_adapter *sa = dev->data->dev_private;
850 	size_t pdu = EFX_MAC_PDU(mtu);
851 	size_t old_pdu;
852 	int rc;
853 
854 	sfc_log_init(sa, "mtu=%u", mtu);
855 
856 	rc = EINVAL;
857 	if (pdu < EFX_MAC_PDU_MIN) {
858 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
859 			(unsigned int)mtu, (unsigned int)pdu,
860 			EFX_MAC_PDU_MIN);
861 		goto fail_inval;
862 	}
863 	if (pdu > EFX_MAC_PDU_MAX) {
864 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
865 			(unsigned int)mtu, (unsigned int)pdu,
866 			EFX_MAC_PDU_MAX);
867 		goto fail_inval;
868 	}
869 
870 	sfc_adapter_lock(sa);
871 
872 	if (pdu != sa->port.pdu) {
873 		if (sa->state == SFC_ADAPTER_STARTED) {
874 			sfc_stop(sa);
875 
876 			old_pdu = sa->port.pdu;
877 			sa->port.pdu = pdu;
878 			rc = sfc_start(sa);
879 			if (rc != 0)
880 				goto fail_start;
881 		} else {
882 			sa->port.pdu = pdu;
883 		}
884 	}
885 
886 	/*
887 	 * The driver does not use it, but other PMDs update jumbo_frame
888 	 * flag and max_rx_pkt_len when MTU is set.
889 	 */
890 	if (mtu > ETHER_MAX_LEN) {
891 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
892 
893 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
894 		rxmode->jumbo_frame = 1;
895 	}
896 
897 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
898 
899 	sfc_adapter_unlock(sa);
900 
901 	sfc_log_init(sa, "done");
902 	return 0;
903 
904 fail_start:
905 	sa->port.pdu = old_pdu;
906 	if (sfc_start(sa) != 0)
907 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
908 			"PDU max size - port is stopped",
909 			(unsigned int)pdu, (unsigned int)old_pdu);
910 	sfc_adapter_unlock(sa);
911 
912 fail_inval:
913 	sfc_log_init(sa, "failed %d", rc);
914 	SFC_ASSERT(rc > 0);
915 	return -rc;
916 }
917 static int
918 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
919 {
920 	struct sfc_adapter *sa = dev->data->dev_private;
921 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
922 	struct sfc_port *port = &sa->port;
923 	struct ether_addr *old_addr = &dev->data->mac_addrs[0];
924 	int rc = 0;
925 
926 	sfc_adapter_lock(sa);
927 
928 	/*
929 	 * Copy the address to the device private data so that
930 	 * it could be recalled in the case of adapter restart.
931 	 */
932 	ether_addr_copy(mac_addr, &port->default_mac_addr);
933 
934 	/*
935 	 * Neither of the two following checks can return
936 	 * an error. The new MAC address is preserved in
937 	 * the device private data and can be activated
938 	 * on the next port start if the user prevents
939 	 * isolated mode from being enabled.
940 	 */
941 	if (port->isolated) {
942 		sfc_warn(sa, "isolated mode is active on the port");
943 		sfc_warn(sa, "will not set MAC address");
944 		goto unlock;
945 	}
946 
947 	if (sa->state != SFC_ADAPTER_STARTED) {
948 		sfc_notice(sa, "the port is not started");
949 		sfc_notice(sa, "the new MAC address will be set on port start");
950 
951 		goto unlock;
952 	}
953 
954 	if (encp->enc_allow_set_mac_with_installed_filters) {
955 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
956 		if (rc != 0) {
957 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
958 			goto unlock;
959 		}
960 
961 		/*
962 		 * Changing the MAC address by means of MCDI request
963 		 * has no effect on received traffic, therefore
964 		 * we also need to update unicast filters
965 		 */
966 		rc = sfc_set_rx_mode(sa);
967 		if (rc != 0) {
968 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
969 			/* Rollback the old address */
970 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
971 			(void)sfc_set_rx_mode(sa);
972 		}
973 	} else {
974 		sfc_warn(sa, "cannot set MAC address with filters installed");
975 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
976 		sfc_warn(sa, "(some traffic may be dropped)");
977 
978 		/*
979 		 * Since setting MAC address with filters installed is not
980 		 * allowed on the adapter, the new MAC address will be set
981 		 * by means of adapter restart. sfc_start() shall retrieve
982 		 * the new address from the device private data and set it.
983 		 */
984 		sfc_stop(sa);
985 		rc = sfc_start(sa);
986 		if (rc != 0)
987 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
988 	}
989 
990 unlock:
991 	if (rc != 0)
992 		ether_addr_copy(old_addr, &port->default_mac_addr);
993 
994 	sfc_adapter_unlock(sa);
995 
996 	SFC_ASSERT(rc >= 0);
997 	return -rc;
998 }
999 
1000 
1001 static int
1002 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
1003 		     uint32_t nb_mc_addr)
1004 {
1005 	struct sfc_adapter *sa = dev->data->dev_private;
1006 	struct sfc_port *port = &sa->port;
1007 	uint8_t *mc_addrs = port->mcast_addrs;
1008 	int rc;
1009 	unsigned int i;
1010 
1011 	if (port->isolated) {
1012 		sfc_err(sa, "isolated mode is active on the port");
1013 		sfc_err(sa, "will not set multicast address list");
1014 		return -ENOTSUP;
1015 	}
1016 
1017 	if (mc_addrs == NULL)
1018 		return -ENOBUFS;
1019 
1020 	if (nb_mc_addr > port->max_mcast_addrs) {
1021 		sfc_err(sa, "too many multicast addresses: %u > %u",
1022 			 nb_mc_addr, port->max_mcast_addrs);
1023 		return -EINVAL;
1024 	}
1025 
1026 	for (i = 0; i < nb_mc_addr; ++i) {
1027 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1028 				 EFX_MAC_ADDR_LEN);
1029 		mc_addrs += EFX_MAC_ADDR_LEN;
1030 	}
1031 
1032 	port->nb_mcast_addrs = nb_mc_addr;
1033 
1034 	if (sa->state != SFC_ADAPTER_STARTED)
1035 		return 0;
1036 
1037 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1038 					port->nb_mcast_addrs);
1039 	if (rc != 0)
1040 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1041 
1042 	SFC_ASSERT(rc > 0);
1043 	return -rc;
1044 }
1045 
1046 /*
1047  * The function is used by the secondary process as well. It must not
1048  * use any process-local pointers from the adapter data.
1049  */
1050 static void
1051 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1052 		      struct rte_eth_rxq_info *qinfo)
1053 {
1054 	struct sfc_adapter *sa = dev->data->dev_private;
1055 	struct sfc_rxq_info *rxq_info;
1056 	struct sfc_rxq *rxq;
1057 
1058 	sfc_adapter_lock(sa);
1059 
1060 	SFC_ASSERT(rx_queue_id < sa->rxq_count);
1061 
1062 	rxq_info = &sa->rxq_info[rx_queue_id];
1063 	rxq = rxq_info->rxq;
1064 	SFC_ASSERT(rxq != NULL);
1065 
1066 	qinfo->mp = rxq->refill_mb_pool;
1067 	qinfo->conf.rx_free_thresh = rxq->refill_threshold;
1068 	qinfo->conf.rx_drop_en = 1;
1069 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1070 	qinfo->conf.offloads = DEV_RX_OFFLOAD_IPV4_CKSUM |
1071 			       DEV_RX_OFFLOAD_UDP_CKSUM |
1072 			       DEV_RX_OFFLOAD_TCP_CKSUM;
1073 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1074 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1075 		qinfo->scattered_rx = 1;
1076 	}
1077 	qinfo->nb_desc = rxq_info->entries;
1078 
1079 	sfc_adapter_unlock(sa);
1080 }
1081 
1082 /*
1083  * The function is used by the secondary process as well. It must not
1084  * use any process-local pointers from the adapter data.
1085  */
1086 static void
1087 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1088 		      struct rte_eth_txq_info *qinfo)
1089 {
1090 	struct sfc_adapter *sa = dev->data->dev_private;
1091 	struct sfc_txq_info *txq_info;
1092 
1093 	sfc_adapter_lock(sa);
1094 
1095 	SFC_ASSERT(tx_queue_id < sa->txq_count);
1096 
1097 	txq_info = &sa->txq_info[tx_queue_id];
1098 	SFC_ASSERT(txq_info->txq != NULL);
1099 
1100 	memset(qinfo, 0, sizeof(*qinfo));
1101 
1102 	qinfo->conf.txq_flags = txq_info->txq->flags;
1103 	qinfo->conf.offloads = txq_info->txq->offloads;
1104 	qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
1105 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1106 	qinfo->nb_desc = txq_info->entries;
1107 
1108 	sfc_adapter_unlock(sa);
1109 }
1110 
1111 static uint32_t
1112 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1113 {
1114 	struct sfc_adapter *sa = dev->data->dev_private;
1115 
1116 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1117 
1118 	return sfc_rx_qdesc_npending(sa, rx_queue_id);
1119 }
1120 
1121 static int
1122 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1123 {
1124 	struct sfc_dp_rxq *dp_rxq = queue;
1125 
1126 	return sfc_rx_qdesc_done(dp_rxq, offset);
1127 }
1128 
1129 static int
1130 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1131 {
1132 	struct sfc_dp_rxq *dp_rxq = queue;
1133 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
1134 
1135 	return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset);
1136 }
1137 
1138 static int
1139 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1140 {
1141 	struct sfc_dp_txq *dp_txq = queue;
1142 	struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
1143 
1144 	return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset);
1145 }
1146 
1147 static int
1148 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1149 {
1150 	struct sfc_adapter *sa = dev->data->dev_private;
1151 	int rc;
1152 
1153 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1154 
1155 	sfc_adapter_lock(sa);
1156 
1157 	rc = EINVAL;
1158 	if (sa->state != SFC_ADAPTER_STARTED)
1159 		goto fail_not_started;
1160 
1161 	rc = sfc_rx_qstart(sa, rx_queue_id);
1162 	if (rc != 0)
1163 		goto fail_rx_qstart;
1164 
1165 	sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1166 
1167 	sfc_adapter_unlock(sa);
1168 
1169 	return 0;
1170 
1171 fail_rx_qstart:
1172 fail_not_started:
1173 	sfc_adapter_unlock(sa);
1174 	SFC_ASSERT(rc > 0);
1175 	return -rc;
1176 }
1177 
1178 static int
1179 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1180 {
1181 	struct sfc_adapter *sa = dev->data->dev_private;
1182 
1183 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1184 
1185 	sfc_adapter_lock(sa);
1186 	sfc_rx_qstop(sa, rx_queue_id);
1187 
1188 	sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1189 
1190 	sfc_adapter_unlock(sa);
1191 
1192 	return 0;
1193 }
1194 
1195 static int
1196 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1197 {
1198 	struct sfc_adapter *sa = dev->data->dev_private;
1199 	int rc;
1200 
1201 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1202 
1203 	sfc_adapter_lock(sa);
1204 
1205 	rc = EINVAL;
1206 	if (sa->state != SFC_ADAPTER_STARTED)
1207 		goto fail_not_started;
1208 
1209 	rc = sfc_tx_qstart(sa, tx_queue_id);
1210 	if (rc != 0)
1211 		goto fail_tx_qstart;
1212 
1213 	sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
1214 
1215 	sfc_adapter_unlock(sa);
1216 	return 0;
1217 
1218 fail_tx_qstart:
1219 
1220 fail_not_started:
1221 	sfc_adapter_unlock(sa);
1222 	SFC_ASSERT(rc > 0);
1223 	return -rc;
1224 }
1225 
1226 static int
1227 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1228 {
1229 	struct sfc_adapter *sa = dev->data->dev_private;
1230 
1231 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1232 
1233 	sfc_adapter_lock(sa);
1234 
1235 	sfc_tx_qstop(sa, tx_queue_id);
1236 
1237 	sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1238 
1239 	sfc_adapter_unlock(sa);
1240 	return 0;
1241 }
1242 
1243 static efx_tunnel_protocol_t
1244 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1245 {
1246 	switch (rte_type) {
1247 	case RTE_TUNNEL_TYPE_VXLAN:
1248 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1249 	case RTE_TUNNEL_TYPE_GENEVE:
1250 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1251 	default:
1252 		return EFX_TUNNEL_NPROTOS;
1253 	}
1254 }
1255 
1256 enum sfc_udp_tunnel_op_e {
1257 	SFC_UDP_TUNNEL_ADD_PORT,
1258 	SFC_UDP_TUNNEL_DEL_PORT,
1259 };
1260 
1261 static int
1262 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1263 		      struct rte_eth_udp_tunnel *tunnel_udp,
1264 		      enum sfc_udp_tunnel_op_e op)
1265 {
1266 	struct sfc_adapter *sa = dev->data->dev_private;
1267 	efx_tunnel_protocol_t tunnel_proto;
1268 	int rc;
1269 
1270 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1271 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1272 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1273 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1274 
1275 	tunnel_proto =
1276 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1277 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1278 		rc = ENOTSUP;
1279 		goto fail_bad_proto;
1280 	}
1281 
1282 	sfc_adapter_lock(sa);
1283 
1284 	switch (op) {
1285 	case SFC_UDP_TUNNEL_ADD_PORT:
1286 		rc = efx_tunnel_config_udp_add(sa->nic,
1287 					       tunnel_udp->udp_port,
1288 					       tunnel_proto);
1289 		break;
1290 	case SFC_UDP_TUNNEL_DEL_PORT:
1291 		rc = efx_tunnel_config_udp_remove(sa->nic,
1292 						  tunnel_udp->udp_port,
1293 						  tunnel_proto);
1294 		break;
1295 	default:
1296 		rc = EINVAL;
1297 		goto fail_bad_op;
1298 	}
1299 
1300 	if (rc != 0)
1301 		goto fail_op;
1302 
1303 	if (sa->state == SFC_ADAPTER_STARTED) {
1304 		rc = efx_tunnel_reconfigure(sa->nic);
1305 		if (rc == EAGAIN) {
1306 			/*
1307 			 * Configuration is accepted by FW and MC reboot
1308 			 * is initiated to apply the changes. MC reboot
1309 			 * will be handled in a usual way (MC reboot
1310 			 * event on management event queue and adapter
1311 			 * restart).
1312 			 */
1313 			rc = 0;
1314 		} else if (rc != 0) {
1315 			goto fail_reconfigure;
1316 		}
1317 	}
1318 
1319 	sfc_adapter_unlock(sa);
1320 	return 0;
1321 
1322 fail_reconfigure:
1323 	/* Remove/restore entry since the change makes the trouble */
1324 	switch (op) {
1325 	case SFC_UDP_TUNNEL_ADD_PORT:
1326 		(void)efx_tunnel_config_udp_remove(sa->nic,
1327 						   tunnel_udp->udp_port,
1328 						   tunnel_proto);
1329 		break;
1330 	case SFC_UDP_TUNNEL_DEL_PORT:
1331 		(void)efx_tunnel_config_udp_add(sa->nic,
1332 						tunnel_udp->udp_port,
1333 						tunnel_proto);
1334 		break;
1335 	}
1336 
1337 fail_op:
1338 fail_bad_op:
1339 	sfc_adapter_unlock(sa);
1340 
1341 fail_bad_proto:
1342 	SFC_ASSERT(rc > 0);
1343 	return -rc;
1344 }
1345 
1346 static int
1347 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1348 			    struct rte_eth_udp_tunnel *tunnel_udp)
1349 {
1350 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1351 }
1352 
1353 static int
1354 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1355 			    struct rte_eth_udp_tunnel *tunnel_udp)
1356 {
1357 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1358 }
1359 
1360 #if EFSYS_OPT_RX_SCALE
1361 static int
1362 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1363 			  struct rte_eth_rss_conf *rss_conf)
1364 {
1365 	struct sfc_adapter *sa = dev->data->dev_private;
1366 	struct sfc_port *port = &sa->port;
1367 
1368 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1369 		return -ENOTSUP;
1370 
1371 	if (sa->rss_channels == 0)
1372 		return -EINVAL;
1373 
1374 	sfc_adapter_lock(sa);
1375 
1376 	/*
1377 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1378 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1379 	 * flags which corresponds to the active EFX configuration stored
1380 	 * locally in 'sfc_adapter' and kept up-to-date
1381 	 */
1382 	rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types);
1383 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1384 	if (rss_conf->rss_key != NULL)
1385 		rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE);
1386 
1387 	sfc_adapter_unlock(sa);
1388 
1389 	return 0;
1390 }
1391 
1392 static int
1393 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1394 			struct rte_eth_rss_conf *rss_conf)
1395 {
1396 	struct sfc_adapter *sa = dev->data->dev_private;
1397 	struct sfc_port *port = &sa->port;
1398 	unsigned int efx_hash_types;
1399 	int rc = 0;
1400 
1401 	if (port->isolated)
1402 		return -ENOTSUP;
1403 
1404 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1405 		sfc_err(sa, "RSS is not available");
1406 		return -ENOTSUP;
1407 	}
1408 
1409 	if (sa->rss_channels == 0) {
1410 		sfc_err(sa, "RSS is not configured");
1411 		return -EINVAL;
1412 	}
1413 
1414 	if ((rss_conf->rss_key != NULL) &&
1415 	    (rss_conf->rss_key_len != sizeof(sa->rss_key))) {
1416 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1417 			sizeof(sa->rss_key));
1418 		return -EINVAL;
1419 	}
1420 
1421 	if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) {
1422 		sfc_err(sa, "unsupported hash functions requested");
1423 		return -EINVAL;
1424 	}
1425 
1426 	sfc_adapter_lock(sa);
1427 
1428 	efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf);
1429 
1430 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1431 				   EFX_RX_HASHALG_TOEPLITZ,
1432 				   efx_hash_types, B_TRUE);
1433 	if (rc != 0)
1434 		goto fail_scale_mode_set;
1435 
1436 	if (rss_conf->rss_key != NULL) {
1437 		if (sa->state == SFC_ADAPTER_STARTED) {
1438 			rc = efx_rx_scale_key_set(sa->nic,
1439 						  EFX_RSS_CONTEXT_DEFAULT,
1440 						  rss_conf->rss_key,
1441 						  sizeof(sa->rss_key));
1442 			if (rc != 0)
1443 				goto fail_scale_key_set;
1444 		}
1445 
1446 		rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key));
1447 	}
1448 
1449 	sa->rss_hash_types = efx_hash_types;
1450 
1451 	sfc_adapter_unlock(sa);
1452 
1453 	return 0;
1454 
1455 fail_scale_key_set:
1456 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1457 				  EFX_RX_HASHALG_TOEPLITZ,
1458 				  sa->rss_hash_types, B_TRUE) != 0)
1459 		sfc_err(sa, "failed to restore RSS mode");
1460 
1461 fail_scale_mode_set:
1462 	sfc_adapter_unlock(sa);
1463 	return -rc;
1464 }
1465 
1466 static int
1467 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1468 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1469 		       uint16_t reta_size)
1470 {
1471 	struct sfc_adapter *sa = dev->data->dev_private;
1472 	struct sfc_port *port = &sa->port;
1473 	int entry;
1474 
1475 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1476 		return -ENOTSUP;
1477 
1478 	if (sa->rss_channels == 0)
1479 		return -EINVAL;
1480 
1481 	if (reta_size != EFX_RSS_TBL_SIZE)
1482 		return -EINVAL;
1483 
1484 	sfc_adapter_lock(sa);
1485 
1486 	for (entry = 0; entry < reta_size; entry++) {
1487 		int grp = entry / RTE_RETA_GROUP_SIZE;
1488 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1489 
1490 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1491 			reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry];
1492 	}
1493 
1494 	sfc_adapter_unlock(sa);
1495 
1496 	return 0;
1497 }
1498 
1499 static int
1500 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1501 			struct rte_eth_rss_reta_entry64 *reta_conf,
1502 			uint16_t reta_size)
1503 {
1504 	struct sfc_adapter *sa = dev->data->dev_private;
1505 	struct sfc_port *port = &sa->port;
1506 	unsigned int *rss_tbl_new;
1507 	uint16_t entry;
1508 	int rc = 0;
1509 
1510 
1511 	if (port->isolated)
1512 		return -ENOTSUP;
1513 
1514 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1515 		sfc_err(sa, "RSS is not available");
1516 		return -ENOTSUP;
1517 	}
1518 
1519 	if (sa->rss_channels == 0) {
1520 		sfc_err(sa, "RSS is not configured");
1521 		return -EINVAL;
1522 	}
1523 
1524 	if (reta_size != EFX_RSS_TBL_SIZE) {
1525 		sfc_err(sa, "RETA size is wrong (should be %u)",
1526 			EFX_RSS_TBL_SIZE);
1527 		return -EINVAL;
1528 	}
1529 
1530 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0);
1531 	if (rss_tbl_new == NULL)
1532 		return -ENOMEM;
1533 
1534 	sfc_adapter_lock(sa);
1535 
1536 	rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl));
1537 
1538 	for (entry = 0; entry < reta_size; entry++) {
1539 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1540 		struct rte_eth_rss_reta_entry64 *grp;
1541 
1542 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1543 
1544 		if (grp->mask & (1ull << grp_idx)) {
1545 			if (grp->reta[grp_idx] >= sa->rss_channels) {
1546 				rc = EINVAL;
1547 				goto bad_reta_entry;
1548 			}
1549 			rss_tbl_new[entry] = grp->reta[grp_idx];
1550 		}
1551 	}
1552 
1553 	if (sa->state == SFC_ADAPTER_STARTED) {
1554 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1555 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1556 		if (rc != 0)
1557 			goto fail_scale_tbl_set;
1558 	}
1559 
1560 	rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl));
1561 
1562 fail_scale_tbl_set:
1563 bad_reta_entry:
1564 	sfc_adapter_unlock(sa);
1565 
1566 	rte_free(rss_tbl_new);
1567 
1568 	SFC_ASSERT(rc >= 0);
1569 	return -rc;
1570 }
1571 #endif
1572 
1573 static int
1574 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1575 		    enum rte_filter_op filter_op,
1576 		    void *arg)
1577 {
1578 	struct sfc_adapter *sa = dev->data->dev_private;
1579 	int rc = ENOTSUP;
1580 
1581 	sfc_log_init(sa, "entry");
1582 
1583 	switch (filter_type) {
1584 	case RTE_ETH_FILTER_NONE:
1585 		sfc_err(sa, "Global filters configuration not supported");
1586 		break;
1587 	case RTE_ETH_FILTER_MACVLAN:
1588 		sfc_err(sa, "MACVLAN filters not supported");
1589 		break;
1590 	case RTE_ETH_FILTER_ETHERTYPE:
1591 		sfc_err(sa, "EtherType filters not supported");
1592 		break;
1593 	case RTE_ETH_FILTER_FLEXIBLE:
1594 		sfc_err(sa, "Flexible filters not supported");
1595 		break;
1596 	case RTE_ETH_FILTER_SYN:
1597 		sfc_err(sa, "SYN filters not supported");
1598 		break;
1599 	case RTE_ETH_FILTER_NTUPLE:
1600 		sfc_err(sa, "NTUPLE filters not supported");
1601 		break;
1602 	case RTE_ETH_FILTER_TUNNEL:
1603 		sfc_err(sa, "Tunnel filters not supported");
1604 		break;
1605 	case RTE_ETH_FILTER_FDIR:
1606 		sfc_err(sa, "Flow Director filters not supported");
1607 		break;
1608 	case RTE_ETH_FILTER_HASH:
1609 		sfc_err(sa, "Hash filters not supported");
1610 		break;
1611 	case RTE_ETH_FILTER_GENERIC:
1612 		if (filter_op != RTE_ETH_FILTER_GET) {
1613 			rc = EINVAL;
1614 		} else {
1615 			*(const void **)arg = &sfc_flow_ops;
1616 			rc = 0;
1617 		}
1618 		break;
1619 	default:
1620 		sfc_err(sa, "Unknown filter type %u", filter_type);
1621 		break;
1622 	}
1623 
1624 	sfc_log_init(sa, "exit: %d", -rc);
1625 	SFC_ASSERT(rc >= 0);
1626 	return -rc;
1627 }
1628 
1629 static const struct eth_dev_ops sfc_eth_dev_ops = {
1630 	.dev_configure			= sfc_dev_configure,
1631 	.dev_start			= sfc_dev_start,
1632 	.dev_stop			= sfc_dev_stop,
1633 	.dev_set_link_up		= sfc_dev_set_link_up,
1634 	.dev_set_link_down		= sfc_dev_set_link_down,
1635 	.dev_close			= sfc_dev_close,
1636 	.promiscuous_enable		= sfc_dev_promisc_enable,
1637 	.promiscuous_disable		= sfc_dev_promisc_disable,
1638 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1639 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1640 	.link_update			= sfc_dev_link_update,
1641 	.stats_get			= sfc_stats_get,
1642 	.stats_reset			= sfc_stats_reset,
1643 	.xstats_get			= sfc_xstats_get,
1644 	.xstats_reset			= sfc_stats_reset,
1645 	.xstats_get_names		= sfc_xstats_get_names,
1646 	.dev_infos_get			= sfc_dev_infos_get,
1647 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1648 	.mtu_set			= sfc_dev_set_mtu,
1649 	.rx_queue_start			= sfc_rx_queue_start,
1650 	.rx_queue_stop			= sfc_rx_queue_stop,
1651 	.tx_queue_start			= sfc_tx_queue_start,
1652 	.tx_queue_stop			= sfc_tx_queue_stop,
1653 	.rx_queue_setup			= sfc_rx_queue_setup,
1654 	.rx_queue_release		= sfc_rx_queue_release,
1655 	.rx_queue_count			= sfc_rx_queue_count,
1656 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1657 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1658 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1659 	.tx_queue_setup			= sfc_tx_queue_setup,
1660 	.tx_queue_release		= sfc_tx_queue_release,
1661 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1662 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1663 	.mac_addr_set			= sfc_mac_addr_set,
1664 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1665 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1666 #if EFSYS_OPT_RX_SCALE
1667 	.reta_update			= sfc_dev_rss_reta_update,
1668 	.reta_query			= sfc_dev_rss_reta_query,
1669 	.rss_hash_update		= sfc_dev_rss_hash_update,
1670 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1671 #endif
1672 	.filter_ctrl			= sfc_dev_filter_ctrl,
1673 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1674 	.rxq_info_get			= sfc_rx_queue_info_get,
1675 	.txq_info_get			= sfc_tx_queue_info_get,
1676 	.fw_version_get			= sfc_fw_version_get,
1677 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1678 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1679 };
1680 
1681 /**
1682  * Duplicate a string in potentially shared memory required for
1683  * multi-process support.
1684  *
1685  * strdup() allocates from process-local heap/memory.
1686  */
1687 static char *
1688 sfc_strdup(const char *str)
1689 {
1690 	size_t size;
1691 	char *copy;
1692 
1693 	if (str == NULL)
1694 		return NULL;
1695 
1696 	size = strlen(str) + 1;
1697 	copy = rte_malloc(__func__, size, 0);
1698 	if (copy != NULL)
1699 		rte_memcpy(copy, str, size);
1700 
1701 	return copy;
1702 }
1703 
1704 static int
1705 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1706 {
1707 	struct sfc_adapter *sa = dev->data->dev_private;
1708 	unsigned int avail_caps = 0;
1709 	const char *rx_name = NULL;
1710 	const char *tx_name = NULL;
1711 	int rc;
1712 
1713 	switch (sa->family) {
1714 	case EFX_FAMILY_HUNTINGTON:
1715 	case EFX_FAMILY_MEDFORD:
1716 	case EFX_FAMILY_MEDFORD2:
1717 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1718 		break;
1719 	default:
1720 		break;
1721 	}
1722 
1723 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1724 				sfc_kvarg_string_handler, &rx_name);
1725 	if (rc != 0)
1726 		goto fail_kvarg_rx_datapath;
1727 
1728 	if (rx_name != NULL) {
1729 		sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1730 		if (sa->dp_rx == NULL) {
1731 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1732 			rc = ENOENT;
1733 			goto fail_dp_rx;
1734 		}
1735 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) {
1736 			sfc_err(sa,
1737 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1738 				rx_name);
1739 			rc = EINVAL;
1740 			goto fail_dp_rx_caps;
1741 		}
1742 	} else {
1743 		sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1744 		if (sa->dp_rx == NULL) {
1745 			sfc_err(sa, "Rx datapath by caps %#x not found",
1746 				avail_caps);
1747 			rc = ENOENT;
1748 			goto fail_dp_rx;
1749 		}
1750 	}
1751 
1752 	sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name);
1753 	if (sa->dp_rx_name == NULL) {
1754 		rc = ENOMEM;
1755 		goto fail_dp_rx_name;
1756 	}
1757 
1758 	sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name);
1759 
1760 	dev->rx_pkt_burst = sa->dp_rx->pkt_burst;
1761 
1762 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1763 				sfc_kvarg_string_handler, &tx_name);
1764 	if (rc != 0)
1765 		goto fail_kvarg_tx_datapath;
1766 
1767 	if (tx_name != NULL) {
1768 		sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1769 		if (sa->dp_tx == NULL) {
1770 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1771 			rc = ENOENT;
1772 			goto fail_dp_tx;
1773 		}
1774 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) {
1775 			sfc_err(sa,
1776 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1777 				tx_name);
1778 			rc = EINVAL;
1779 			goto fail_dp_tx_caps;
1780 		}
1781 	} else {
1782 		sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1783 		if (sa->dp_tx == NULL) {
1784 			sfc_err(sa, "Tx datapath by caps %#x not found",
1785 				avail_caps);
1786 			rc = ENOENT;
1787 			goto fail_dp_tx;
1788 		}
1789 	}
1790 
1791 	sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name);
1792 	if (sa->dp_tx_name == NULL) {
1793 		rc = ENOMEM;
1794 		goto fail_dp_tx_name;
1795 	}
1796 
1797 	sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name);
1798 
1799 	dev->tx_pkt_burst = sa->dp_tx->pkt_burst;
1800 
1801 	dev->dev_ops = &sfc_eth_dev_ops;
1802 
1803 	return 0;
1804 
1805 fail_dp_tx_name:
1806 fail_dp_tx_caps:
1807 	sa->dp_tx = NULL;
1808 
1809 fail_dp_tx:
1810 fail_kvarg_tx_datapath:
1811 	rte_free(sa->dp_rx_name);
1812 	sa->dp_rx_name = NULL;
1813 
1814 fail_dp_rx_name:
1815 fail_dp_rx_caps:
1816 	sa->dp_rx = NULL;
1817 
1818 fail_dp_rx:
1819 fail_kvarg_rx_datapath:
1820 	return rc;
1821 }
1822 
1823 static void
1824 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1825 {
1826 	struct sfc_adapter *sa = dev->data->dev_private;
1827 
1828 	dev->dev_ops = NULL;
1829 	dev->rx_pkt_burst = NULL;
1830 	dev->tx_pkt_burst = NULL;
1831 
1832 	rte_free(sa->dp_tx_name);
1833 	sa->dp_tx_name = NULL;
1834 	sa->dp_tx = NULL;
1835 
1836 	rte_free(sa->dp_rx_name);
1837 	sa->dp_rx_name = NULL;
1838 	sa->dp_rx = NULL;
1839 }
1840 
1841 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1842 	.rxq_info_get			= sfc_rx_queue_info_get,
1843 	.txq_info_get			= sfc_tx_queue_info_get,
1844 };
1845 
1846 static int
1847 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev)
1848 {
1849 	/*
1850 	 * Device private data has really many process-local pointers.
1851 	 * Below code should be extremely careful to use data located
1852 	 * in shared memory only.
1853 	 */
1854 	struct sfc_adapter *sa = dev->data->dev_private;
1855 	const struct sfc_dp_rx *dp_rx;
1856 	const struct sfc_dp_tx *dp_tx;
1857 	int rc;
1858 
1859 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
1860 	if (dp_rx == NULL) {
1861 		sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name);
1862 		rc = ENOENT;
1863 		goto fail_dp_rx;
1864 	}
1865 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1866 		sfc_err(sa, "%s Rx datapath does not support multi-process",
1867 			sa->dp_tx_name);
1868 		rc = EINVAL;
1869 		goto fail_dp_rx_multi_process;
1870 	}
1871 
1872 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
1873 	if (dp_tx == NULL) {
1874 		sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name);
1875 		rc = ENOENT;
1876 		goto fail_dp_tx;
1877 	}
1878 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1879 		sfc_err(sa, "%s Tx datapath does not support multi-process",
1880 			sa->dp_tx_name);
1881 		rc = EINVAL;
1882 		goto fail_dp_tx_multi_process;
1883 	}
1884 
1885 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1886 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1887 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
1888 
1889 	return 0;
1890 
1891 fail_dp_tx_multi_process:
1892 fail_dp_tx:
1893 fail_dp_rx_multi_process:
1894 fail_dp_rx:
1895 	return rc;
1896 }
1897 
1898 static void
1899 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
1900 {
1901 	dev->dev_ops = NULL;
1902 	dev->tx_pkt_burst = NULL;
1903 	dev->rx_pkt_burst = NULL;
1904 }
1905 
1906 static void
1907 sfc_register_dp(void)
1908 {
1909 	/* Register once */
1910 	if (TAILQ_EMPTY(&sfc_dp_head)) {
1911 		/* Prefer EF10 datapath */
1912 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
1913 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
1914 
1915 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
1916 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
1917 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
1918 	}
1919 }
1920 
1921 static int
1922 sfc_eth_dev_init(struct rte_eth_dev *dev)
1923 {
1924 	struct sfc_adapter *sa = dev->data->dev_private;
1925 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1926 	int rc;
1927 	const efx_nic_cfg_t *encp;
1928 	const struct ether_addr *from;
1929 
1930 	sfc_register_dp();
1931 
1932 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1933 		return -sfc_eth_dev_secondary_set_ops(dev);
1934 
1935 	/* Required for logging */
1936 	sa->pci_addr = pci_dev->addr;
1937 	sa->port_id = dev->data->port_id;
1938 
1939 	sa->eth_dev = dev;
1940 
1941 	/* Copy PCI device info to the dev->data */
1942 	rte_eth_copy_pci_info(dev, pci_dev);
1943 
1944 	sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR,
1945 						RTE_LOG_NOTICE);
1946 
1947 	rc = sfc_kvargs_parse(sa);
1948 	if (rc != 0)
1949 		goto fail_kvargs_parse;
1950 
1951 	sfc_log_init(sa, "entry");
1952 
1953 	dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
1954 	if (dev->data->mac_addrs == NULL) {
1955 		rc = ENOMEM;
1956 		goto fail_mac_addrs;
1957 	}
1958 
1959 	sfc_adapter_lock_init(sa);
1960 	sfc_adapter_lock(sa);
1961 
1962 	sfc_log_init(sa, "probing");
1963 	rc = sfc_probe(sa);
1964 	if (rc != 0)
1965 		goto fail_probe;
1966 
1967 	sfc_log_init(sa, "set device ops");
1968 	rc = sfc_eth_dev_set_ops(dev);
1969 	if (rc != 0)
1970 		goto fail_set_ops;
1971 
1972 	sfc_log_init(sa, "attaching");
1973 	rc = sfc_attach(sa);
1974 	if (rc != 0)
1975 		goto fail_attach;
1976 
1977 	encp = efx_nic_cfg_get(sa->nic);
1978 
1979 	/*
1980 	 * The arguments are really reverse order in comparison to
1981 	 * Linux kernel. Copy from NIC config to Ethernet device data.
1982 	 */
1983 	from = (const struct ether_addr *)(encp->enc_mac_addr);
1984 	ether_addr_copy(from, &dev->data->mac_addrs[0]);
1985 
1986 	sfc_adapter_unlock(sa);
1987 
1988 	sfc_log_init(sa, "done");
1989 	return 0;
1990 
1991 fail_attach:
1992 	sfc_eth_dev_clear_ops(dev);
1993 
1994 fail_set_ops:
1995 	sfc_unprobe(sa);
1996 
1997 fail_probe:
1998 	sfc_adapter_unlock(sa);
1999 	sfc_adapter_lock_fini(sa);
2000 	rte_free(dev->data->mac_addrs);
2001 	dev->data->mac_addrs = NULL;
2002 
2003 fail_mac_addrs:
2004 	sfc_kvargs_cleanup(sa);
2005 
2006 fail_kvargs_parse:
2007 	sfc_log_init(sa, "failed %d", rc);
2008 	SFC_ASSERT(rc > 0);
2009 	return -rc;
2010 }
2011 
2012 static int
2013 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2014 {
2015 	struct sfc_adapter *sa;
2016 
2017 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2018 		sfc_eth_dev_secondary_clear_ops(dev);
2019 		return 0;
2020 	}
2021 
2022 	sa = dev->data->dev_private;
2023 	sfc_log_init(sa, "entry");
2024 
2025 	sfc_adapter_lock(sa);
2026 
2027 	sfc_eth_dev_clear_ops(dev);
2028 
2029 	sfc_detach(sa);
2030 	sfc_unprobe(sa);
2031 
2032 	rte_free(dev->data->mac_addrs);
2033 	dev->data->mac_addrs = NULL;
2034 
2035 	sfc_kvargs_cleanup(sa);
2036 
2037 	sfc_adapter_unlock(sa);
2038 	sfc_adapter_lock_fini(sa);
2039 
2040 	sfc_log_init(sa, "done");
2041 
2042 	/* Required for logging, so cleanup last */
2043 	sa->eth_dev = NULL;
2044 	return 0;
2045 }
2046 
2047 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2048 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2049 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2050 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2051 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2052 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2053 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2054 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2055 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2056 	{ .vendor_id = 0 /* sentinel */ }
2057 };
2058 
2059 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2060 	struct rte_pci_device *pci_dev)
2061 {
2062 	return rte_eth_dev_pci_generic_probe(pci_dev,
2063 		sizeof(struct sfc_adapter), sfc_eth_dev_init);
2064 }
2065 
2066 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2067 {
2068 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2069 }
2070 
2071 static struct rte_pci_driver sfc_efx_pmd = {
2072 	.id_table = pci_id_sfc_efx_map,
2073 	.drv_flags =
2074 		RTE_PCI_DRV_INTR_LSC |
2075 		RTE_PCI_DRV_NEED_MAPPING,
2076 	.probe = sfc_eth_dev_pci_probe,
2077 	.remove = sfc_eth_dev_pci_remove,
2078 };
2079 
2080 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2081 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2082 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2083 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2084 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2085 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2086 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2087 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2088 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2089 
2090 RTE_INIT(sfc_driver_register_logtype);
2091 static void
2092 sfc_driver_register_logtype(void)
2093 {
2094 	int ret;
2095 
2096 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2097 						   RTE_LOG_NOTICE);
2098 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2099 }
2100