1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 static int 38 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 39 { 40 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 41 efx_nic_fw_info_t enfi; 42 int ret; 43 int rc; 44 45 /* 46 * Return value of the callback is likely supposed to be 47 * equal to or greater than 0, nevertheless, if an error 48 * occurs, it will be desirable to pass it to the caller 49 */ 50 if ((fw_version == NULL) || (fw_size == 0)) 51 return -EINVAL; 52 53 rc = efx_nic_get_fw_version(sa->nic, &enfi); 54 if (rc != 0) 55 return -rc; 56 57 ret = snprintf(fw_version, fw_size, 58 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 59 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 60 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 61 if (ret < 0) 62 return ret; 63 64 if (enfi.enfi_dpcpu_fw_ids_valid) { 65 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 66 int ret_extra; 67 68 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 69 fw_size - dpcpu_fw_ids_offset, 70 " rx%" PRIx16 " tx%" PRIx16, 71 enfi.enfi_rx_dpcpu_fw_id, 72 enfi.enfi_tx_dpcpu_fw_id); 73 if (ret_extra < 0) 74 return ret_extra; 75 76 ret += ret_extra; 77 } 78 79 if (fw_size < (size_t)(++ret)) 80 return ret; 81 else 82 return 0; 83 } 84 85 static void 86 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 87 { 88 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 89 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 90 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 91 struct sfc_rss *rss = &sas->rss; 92 uint64_t txq_offloads_def = 0; 93 94 sfc_log_init(sa, "entry"); 95 96 dev_info->min_mtu = ETHER_MIN_MTU; 97 dev_info->max_mtu = EFX_MAC_SDU_MAX; 98 99 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 100 101 /* Autonegotiation may be disabled */ 102 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 103 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 104 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 105 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 106 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 108 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 115 116 dev_info->max_rx_queues = sa->rxq_max; 117 dev_info->max_tx_queues = sa->txq_max; 118 119 /* By default packets are dropped if no descriptors are available */ 120 dev_info->default_rxconf.rx_drop_en = 1; 121 122 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 123 124 /* 125 * rx_offload_capa includes both device and queue offloads since 126 * the latter may be requested on a per device basis which makes 127 * sense when some offloads are needed to be set on all queues. 128 */ 129 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 130 dev_info->rx_queue_offload_capa; 131 132 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 133 134 /* 135 * tx_offload_capa includes both device and queue offloads since 136 * the latter may be requested on a per device basis which makes 137 * sense when some offloads are needed to be set on all queues. 138 */ 139 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 140 dev_info->tx_queue_offload_capa; 141 142 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 143 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 144 145 dev_info->default_txconf.offloads |= txq_offloads_def; 146 147 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 148 uint64_t rte_hf = 0; 149 unsigned int i; 150 151 for (i = 0; i < rss->hf_map_nb_entries; ++i) 152 rte_hf |= rss->hf_map[i].rte; 153 154 dev_info->reta_size = EFX_RSS_TBL_SIZE; 155 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 156 dev_info->flow_type_rss_offloads = rte_hf; 157 } 158 159 /* Initialize to hardware limits */ 160 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 161 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 162 /* The RXQ hardware requires that the descriptor count is a power 163 * of 2, but rx_desc_lim cannot properly describe that constraint. 164 */ 165 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 166 167 /* Initialize to hardware limits */ 168 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 169 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 170 /* 171 * The TXQ hardware requires that the descriptor count is a power 172 * of 2, but tx_desc_lim cannot properly describe that constraint 173 */ 174 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 175 176 if (sap->dp_rx->get_dev_info != NULL) 177 sap->dp_rx->get_dev_info(dev_info); 178 if (sap->dp_tx->get_dev_info != NULL) 179 sap->dp_tx->get_dev_info(dev_info); 180 181 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 182 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 183 } 184 185 static const uint32_t * 186 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 187 { 188 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 189 190 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 191 } 192 193 static int 194 sfc_dev_configure(struct rte_eth_dev *dev) 195 { 196 struct rte_eth_dev_data *dev_data = dev->data; 197 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 198 int rc; 199 200 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 201 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 202 203 sfc_adapter_lock(sa); 204 switch (sa->state) { 205 case SFC_ADAPTER_CONFIGURED: 206 /* FALLTHROUGH */ 207 case SFC_ADAPTER_INITIALIZED: 208 rc = sfc_configure(sa); 209 break; 210 default: 211 sfc_err(sa, "unexpected adapter state %u to configure", 212 sa->state); 213 rc = EINVAL; 214 break; 215 } 216 sfc_adapter_unlock(sa); 217 218 sfc_log_init(sa, "done %d", rc); 219 SFC_ASSERT(rc >= 0); 220 return -rc; 221 } 222 223 static int 224 sfc_dev_start(struct rte_eth_dev *dev) 225 { 226 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 227 int rc; 228 229 sfc_log_init(sa, "entry"); 230 231 sfc_adapter_lock(sa); 232 rc = sfc_start(sa); 233 sfc_adapter_unlock(sa); 234 235 sfc_log_init(sa, "done %d", rc); 236 SFC_ASSERT(rc >= 0); 237 return -rc; 238 } 239 240 static int 241 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 242 { 243 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 244 struct rte_eth_link current_link; 245 int ret; 246 247 sfc_log_init(sa, "entry"); 248 249 if (sa->state != SFC_ADAPTER_STARTED) { 250 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 251 } else if (wait_to_complete) { 252 efx_link_mode_t link_mode; 253 254 if (efx_port_poll(sa->nic, &link_mode) != 0) 255 link_mode = EFX_LINK_UNKNOWN; 256 sfc_port_link_mode_to_info(link_mode, ¤t_link); 257 258 } else { 259 sfc_ev_mgmt_qpoll(sa); 260 rte_eth_linkstatus_get(dev, ¤t_link); 261 } 262 263 ret = rte_eth_linkstatus_set(dev, ¤t_link); 264 if (ret == 0) 265 sfc_notice(sa, "Link status is %s", 266 current_link.link_status ? "UP" : "DOWN"); 267 268 return ret; 269 } 270 271 static void 272 sfc_dev_stop(struct rte_eth_dev *dev) 273 { 274 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 275 276 sfc_log_init(sa, "entry"); 277 278 sfc_adapter_lock(sa); 279 sfc_stop(sa); 280 sfc_adapter_unlock(sa); 281 282 sfc_log_init(sa, "done"); 283 } 284 285 static int 286 sfc_dev_set_link_up(struct rte_eth_dev *dev) 287 { 288 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 289 int rc; 290 291 sfc_log_init(sa, "entry"); 292 293 sfc_adapter_lock(sa); 294 rc = sfc_start(sa); 295 sfc_adapter_unlock(sa); 296 297 SFC_ASSERT(rc >= 0); 298 return -rc; 299 } 300 301 static int 302 sfc_dev_set_link_down(struct rte_eth_dev *dev) 303 { 304 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 305 306 sfc_log_init(sa, "entry"); 307 308 sfc_adapter_lock(sa); 309 sfc_stop(sa); 310 sfc_adapter_unlock(sa); 311 312 return 0; 313 } 314 315 static void 316 sfc_dev_close(struct rte_eth_dev *dev) 317 { 318 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 319 320 sfc_log_init(sa, "entry"); 321 322 sfc_adapter_lock(sa); 323 switch (sa->state) { 324 case SFC_ADAPTER_STARTED: 325 sfc_stop(sa); 326 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 327 /* FALLTHROUGH */ 328 case SFC_ADAPTER_CONFIGURED: 329 sfc_close(sa); 330 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 331 /* FALLTHROUGH */ 332 case SFC_ADAPTER_INITIALIZED: 333 break; 334 default: 335 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 336 break; 337 } 338 sfc_adapter_unlock(sa); 339 340 sfc_log_init(sa, "done"); 341 } 342 343 static void 344 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 345 boolean_t enabled) 346 { 347 struct sfc_port *port; 348 boolean_t *toggle; 349 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 350 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 351 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 352 353 sfc_adapter_lock(sa); 354 355 port = &sa->port; 356 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 357 358 if (*toggle != enabled) { 359 *toggle = enabled; 360 361 if (sfc_sa2shared(sa)->isolated) { 362 sfc_warn(sa, "isolated mode is active on the port"); 363 sfc_warn(sa, "the change is to be applied on the next " 364 "start provided that isolated mode is " 365 "disabled prior the next start"); 366 } else if ((sa->state == SFC_ADAPTER_STARTED) && 367 (sfc_set_rx_mode(sa) != 0)) { 368 *toggle = !(enabled); 369 sfc_warn(sa, "Failed to %s %s mode", 370 ((enabled) ? "enable" : "disable"), desc); 371 } 372 } 373 374 sfc_adapter_unlock(sa); 375 } 376 377 static void 378 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 379 { 380 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 381 } 382 383 static void 384 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 385 { 386 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 387 } 388 389 static void 390 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 391 { 392 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 393 } 394 395 static void 396 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 397 { 398 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 399 } 400 401 static int 402 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 403 uint16_t nb_rx_desc, unsigned int socket_id, 404 const struct rte_eth_rxconf *rx_conf, 405 struct rte_mempool *mb_pool) 406 { 407 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 408 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 409 int rc; 410 411 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 412 rx_queue_id, nb_rx_desc, socket_id); 413 414 sfc_adapter_lock(sa); 415 416 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 417 rx_conf, mb_pool); 418 if (rc != 0) 419 goto fail_rx_qinit; 420 421 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 422 423 sfc_adapter_unlock(sa); 424 425 return 0; 426 427 fail_rx_qinit: 428 sfc_adapter_unlock(sa); 429 SFC_ASSERT(rc > 0); 430 return -rc; 431 } 432 433 static void 434 sfc_rx_queue_release(void *queue) 435 { 436 struct sfc_dp_rxq *dp_rxq = queue; 437 struct sfc_rxq *rxq; 438 struct sfc_adapter *sa; 439 unsigned int sw_index; 440 441 if (dp_rxq == NULL) 442 return; 443 444 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 445 sa = rxq->evq->sa; 446 sfc_adapter_lock(sa); 447 448 sw_index = dp_rxq->dpq.queue_id; 449 450 sfc_log_init(sa, "RxQ=%u", sw_index); 451 452 sfc_rx_qfini(sa, sw_index); 453 454 sfc_adapter_unlock(sa); 455 } 456 457 static int 458 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 459 uint16_t nb_tx_desc, unsigned int socket_id, 460 const struct rte_eth_txconf *tx_conf) 461 { 462 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 463 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 464 int rc; 465 466 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 467 tx_queue_id, nb_tx_desc, socket_id); 468 469 sfc_adapter_lock(sa); 470 471 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 472 if (rc != 0) 473 goto fail_tx_qinit; 474 475 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 476 477 sfc_adapter_unlock(sa); 478 return 0; 479 480 fail_tx_qinit: 481 sfc_adapter_unlock(sa); 482 SFC_ASSERT(rc > 0); 483 return -rc; 484 } 485 486 static void 487 sfc_tx_queue_release(void *queue) 488 { 489 struct sfc_dp_txq *dp_txq = queue; 490 struct sfc_txq *txq; 491 unsigned int sw_index; 492 struct sfc_adapter *sa; 493 494 if (dp_txq == NULL) 495 return; 496 497 txq = sfc_txq_by_dp_txq(dp_txq); 498 sw_index = dp_txq->dpq.queue_id; 499 500 SFC_ASSERT(txq->evq != NULL); 501 sa = txq->evq->sa; 502 503 sfc_log_init(sa, "TxQ = %u", sw_index); 504 505 sfc_adapter_lock(sa); 506 507 sfc_tx_qfini(sa, sw_index); 508 509 sfc_adapter_unlock(sa); 510 } 511 512 /* 513 * Some statistics are computed as A - B where A and B each increase 514 * monotonically with some hardware counter(s) and the counters are read 515 * asynchronously. 516 * 517 * If packet X is counted in A, but not counted in B yet, computed value is 518 * greater than real. 519 * 520 * If packet X is not counted in A at the moment of reading the counter, 521 * but counted in B at the moment of reading the counter, computed value 522 * is less than real. 523 * 524 * However, counter which grows backward is worse evil than slightly wrong 525 * value. So, let's try to guarantee that it never happens except may be 526 * the case when the MAC stats are zeroed as a result of a NIC reset. 527 */ 528 static void 529 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 530 { 531 if ((int64_t)(newval - *stat) > 0 || newval == 0) 532 *stat = newval; 533 } 534 535 static int 536 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 537 { 538 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 539 struct sfc_port *port = &sa->port; 540 uint64_t *mac_stats; 541 int ret; 542 543 rte_spinlock_lock(&port->mac_stats_lock); 544 545 ret = sfc_port_update_mac_stats(sa); 546 if (ret != 0) 547 goto unlock; 548 549 mac_stats = port->mac_stats_buf; 550 551 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 552 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 553 stats->ipackets = 554 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 555 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 556 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 557 stats->opackets = 558 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 559 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 560 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 561 stats->ibytes = 562 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 563 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 564 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 565 stats->obytes = 566 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 567 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 568 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 569 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 570 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 571 } else { 572 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 573 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 574 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 575 /* 576 * Take into account stats which are whenever supported 577 * on EF10. If some stat is not supported by current 578 * firmware variant or HW revision, it is guaranteed 579 * to be zero in mac_stats. 580 */ 581 stats->imissed = 582 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 583 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 584 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 585 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 586 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 587 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 588 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 589 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 590 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 591 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 592 stats->ierrors = 593 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 594 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 595 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 596 /* no oerrors counters supported on EF10 */ 597 598 /* Exclude missed, errors and pauses from Rx packets */ 599 sfc_update_diff_stat(&port->ipackets, 600 mac_stats[EFX_MAC_RX_PKTS] - 601 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 602 stats->imissed - stats->ierrors); 603 stats->ipackets = port->ipackets; 604 } 605 606 unlock: 607 rte_spinlock_unlock(&port->mac_stats_lock); 608 SFC_ASSERT(ret >= 0); 609 return -ret; 610 } 611 612 static void 613 sfc_stats_reset(struct rte_eth_dev *dev) 614 { 615 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 616 struct sfc_port *port = &sa->port; 617 int rc; 618 619 if (sa->state != SFC_ADAPTER_STARTED) { 620 /* 621 * The operation cannot be done if port is not started; it 622 * will be scheduled to be done during the next port start 623 */ 624 port->mac_stats_reset_pending = B_TRUE; 625 return; 626 } 627 628 rc = sfc_port_reset_mac_stats(sa); 629 if (rc != 0) 630 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 631 } 632 633 static int 634 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 635 unsigned int xstats_count) 636 { 637 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 638 struct sfc_port *port = &sa->port; 639 uint64_t *mac_stats; 640 int rc; 641 unsigned int i; 642 int nstats = 0; 643 644 rte_spinlock_lock(&port->mac_stats_lock); 645 646 rc = sfc_port_update_mac_stats(sa); 647 if (rc != 0) { 648 SFC_ASSERT(rc > 0); 649 nstats = -rc; 650 goto unlock; 651 } 652 653 mac_stats = port->mac_stats_buf; 654 655 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 656 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 657 if (xstats != NULL && nstats < (int)xstats_count) { 658 xstats[nstats].id = nstats; 659 xstats[nstats].value = mac_stats[i]; 660 } 661 nstats++; 662 } 663 } 664 665 unlock: 666 rte_spinlock_unlock(&port->mac_stats_lock); 667 668 return nstats; 669 } 670 671 static int 672 sfc_xstats_get_names(struct rte_eth_dev *dev, 673 struct rte_eth_xstat_name *xstats_names, 674 unsigned int xstats_count) 675 { 676 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 677 struct sfc_port *port = &sa->port; 678 unsigned int i; 679 unsigned int nstats = 0; 680 681 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 682 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 683 if (xstats_names != NULL && nstats < xstats_count) 684 strlcpy(xstats_names[nstats].name, 685 efx_mac_stat_name(sa->nic, i), 686 sizeof(xstats_names[0].name)); 687 nstats++; 688 } 689 } 690 691 return nstats; 692 } 693 694 static int 695 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 696 uint64_t *values, unsigned int n) 697 { 698 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 699 struct sfc_port *port = &sa->port; 700 uint64_t *mac_stats; 701 unsigned int nb_supported = 0; 702 unsigned int nb_written = 0; 703 unsigned int i; 704 int ret; 705 int rc; 706 707 if (unlikely(values == NULL) || 708 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 709 return port->mac_stats_nb_supported; 710 711 rte_spinlock_lock(&port->mac_stats_lock); 712 713 rc = sfc_port_update_mac_stats(sa); 714 if (rc != 0) { 715 SFC_ASSERT(rc > 0); 716 ret = -rc; 717 goto unlock; 718 } 719 720 mac_stats = port->mac_stats_buf; 721 722 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 723 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 724 continue; 725 726 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 727 values[nb_written++] = mac_stats[i]; 728 729 ++nb_supported; 730 } 731 732 ret = nb_written; 733 734 unlock: 735 rte_spinlock_unlock(&port->mac_stats_lock); 736 737 return ret; 738 } 739 740 static int 741 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 742 struct rte_eth_xstat_name *xstats_names, 743 const uint64_t *ids, unsigned int size) 744 { 745 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 746 struct sfc_port *port = &sa->port; 747 unsigned int nb_supported = 0; 748 unsigned int nb_written = 0; 749 unsigned int i; 750 751 if (unlikely(xstats_names == NULL) || 752 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 753 return port->mac_stats_nb_supported; 754 755 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 756 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 757 continue; 758 759 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 760 char *name = xstats_names[nb_written++].name; 761 762 strlcpy(name, efx_mac_stat_name(sa->nic, i), 763 sizeof(xstats_names[0].name)); 764 } 765 766 ++nb_supported; 767 } 768 769 return nb_written; 770 } 771 772 static int 773 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 774 { 775 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 776 unsigned int wanted_fc, link_fc; 777 778 memset(fc_conf, 0, sizeof(*fc_conf)); 779 780 sfc_adapter_lock(sa); 781 782 if (sa->state == SFC_ADAPTER_STARTED) 783 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 784 else 785 link_fc = sa->port.flow_ctrl; 786 787 switch (link_fc) { 788 case 0: 789 fc_conf->mode = RTE_FC_NONE; 790 break; 791 case EFX_FCNTL_RESPOND: 792 fc_conf->mode = RTE_FC_RX_PAUSE; 793 break; 794 case EFX_FCNTL_GENERATE: 795 fc_conf->mode = RTE_FC_TX_PAUSE; 796 break; 797 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 798 fc_conf->mode = RTE_FC_FULL; 799 break; 800 default: 801 sfc_err(sa, "%s: unexpected flow control value %#x", 802 __func__, link_fc); 803 } 804 805 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 806 807 sfc_adapter_unlock(sa); 808 809 return 0; 810 } 811 812 static int 813 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 814 { 815 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 816 struct sfc_port *port = &sa->port; 817 unsigned int fcntl; 818 int rc; 819 820 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 821 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 822 fc_conf->mac_ctrl_frame_fwd != 0) { 823 sfc_err(sa, "unsupported flow control settings specified"); 824 rc = EINVAL; 825 goto fail_inval; 826 } 827 828 switch (fc_conf->mode) { 829 case RTE_FC_NONE: 830 fcntl = 0; 831 break; 832 case RTE_FC_RX_PAUSE: 833 fcntl = EFX_FCNTL_RESPOND; 834 break; 835 case RTE_FC_TX_PAUSE: 836 fcntl = EFX_FCNTL_GENERATE; 837 break; 838 case RTE_FC_FULL: 839 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 840 break; 841 default: 842 rc = EINVAL; 843 goto fail_inval; 844 } 845 846 sfc_adapter_lock(sa); 847 848 if (sa->state == SFC_ADAPTER_STARTED) { 849 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 850 if (rc != 0) 851 goto fail_mac_fcntl_set; 852 } 853 854 port->flow_ctrl = fcntl; 855 port->flow_ctrl_autoneg = fc_conf->autoneg; 856 857 sfc_adapter_unlock(sa); 858 859 return 0; 860 861 fail_mac_fcntl_set: 862 sfc_adapter_unlock(sa); 863 fail_inval: 864 SFC_ASSERT(rc > 0); 865 return -rc; 866 } 867 868 static int 869 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 870 { 871 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 872 size_t pdu = EFX_MAC_PDU(mtu); 873 size_t old_pdu; 874 int rc; 875 876 sfc_log_init(sa, "mtu=%u", mtu); 877 878 rc = EINVAL; 879 if (pdu < EFX_MAC_PDU_MIN) { 880 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 881 (unsigned int)mtu, (unsigned int)pdu, 882 EFX_MAC_PDU_MIN); 883 goto fail_inval; 884 } 885 if (pdu > EFX_MAC_PDU_MAX) { 886 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 887 (unsigned int)mtu, (unsigned int)pdu, 888 EFX_MAC_PDU_MAX); 889 goto fail_inval; 890 } 891 892 sfc_adapter_lock(sa); 893 894 if (pdu != sa->port.pdu) { 895 if (sa->state == SFC_ADAPTER_STARTED) { 896 sfc_stop(sa); 897 898 old_pdu = sa->port.pdu; 899 sa->port.pdu = pdu; 900 rc = sfc_start(sa); 901 if (rc != 0) 902 goto fail_start; 903 } else { 904 sa->port.pdu = pdu; 905 } 906 } 907 908 /* 909 * The driver does not use it, but other PMDs update jumbo frame 910 * flag and max_rx_pkt_len when MTU is set. 911 */ 912 if (mtu > ETHER_MAX_LEN) { 913 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 914 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 915 } 916 917 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 918 919 sfc_adapter_unlock(sa); 920 921 sfc_log_init(sa, "done"); 922 return 0; 923 924 fail_start: 925 sa->port.pdu = old_pdu; 926 if (sfc_start(sa) != 0) 927 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 928 "PDU max size - port is stopped", 929 (unsigned int)pdu, (unsigned int)old_pdu); 930 sfc_adapter_unlock(sa); 931 932 fail_inval: 933 sfc_log_init(sa, "failed %d", rc); 934 SFC_ASSERT(rc > 0); 935 return -rc; 936 } 937 static int 938 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 939 { 940 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 941 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 942 struct sfc_port *port = &sa->port; 943 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 944 int rc = 0; 945 946 sfc_adapter_lock(sa); 947 948 /* 949 * Copy the address to the device private data so that 950 * it could be recalled in the case of adapter restart. 951 */ 952 ether_addr_copy(mac_addr, &port->default_mac_addr); 953 954 /* 955 * Neither of the two following checks can return 956 * an error. The new MAC address is preserved in 957 * the device private data and can be activated 958 * on the next port start if the user prevents 959 * isolated mode from being enabled. 960 */ 961 if (sfc_sa2shared(sa)->isolated) { 962 sfc_warn(sa, "isolated mode is active on the port"); 963 sfc_warn(sa, "will not set MAC address"); 964 goto unlock; 965 } 966 967 if (sa->state != SFC_ADAPTER_STARTED) { 968 sfc_notice(sa, "the port is not started"); 969 sfc_notice(sa, "the new MAC address will be set on port start"); 970 971 goto unlock; 972 } 973 974 if (encp->enc_allow_set_mac_with_installed_filters) { 975 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 976 if (rc != 0) { 977 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 978 goto unlock; 979 } 980 981 /* 982 * Changing the MAC address by means of MCDI request 983 * has no effect on received traffic, therefore 984 * we also need to update unicast filters 985 */ 986 rc = sfc_set_rx_mode(sa); 987 if (rc != 0) { 988 sfc_err(sa, "cannot set filter (rc = %u)", rc); 989 /* Rollback the old address */ 990 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 991 (void)sfc_set_rx_mode(sa); 992 } 993 } else { 994 sfc_warn(sa, "cannot set MAC address with filters installed"); 995 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 996 sfc_warn(sa, "(some traffic may be dropped)"); 997 998 /* 999 * Since setting MAC address with filters installed is not 1000 * allowed on the adapter, the new MAC address will be set 1001 * by means of adapter restart. sfc_start() shall retrieve 1002 * the new address from the device private data and set it. 1003 */ 1004 sfc_stop(sa); 1005 rc = sfc_start(sa); 1006 if (rc != 0) 1007 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1008 } 1009 1010 unlock: 1011 if (rc != 0) 1012 ether_addr_copy(old_addr, &port->default_mac_addr); 1013 1014 sfc_adapter_unlock(sa); 1015 1016 SFC_ASSERT(rc >= 0); 1017 return -rc; 1018 } 1019 1020 1021 static int 1022 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1023 uint32_t nb_mc_addr) 1024 { 1025 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1026 struct sfc_port *port = &sa->port; 1027 uint8_t *mc_addrs = port->mcast_addrs; 1028 int rc; 1029 unsigned int i; 1030 1031 if (sfc_sa2shared(sa)->isolated) { 1032 sfc_err(sa, "isolated mode is active on the port"); 1033 sfc_err(sa, "will not set multicast address list"); 1034 return -ENOTSUP; 1035 } 1036 1037 if (mc_addrs == NULL) 1038 return -ENOBUFS; 1039 1040 if (nb_mc_addr > port->max_mcast_addrs) { 1041 sfc_err(sa, "too many multicast addresses: %u > %u", 1042 nb_mc_addr, port->max_mcast_addrs); 1043 return -EINVAL; 1044 } 1045 1046 for (i = 0; i < nb_mc_addr; ++i) { 1047 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1048 EFX_MAC_ADDR_LEN); 1049 mc_addrs += EFX_MAC_ADDR_LEN; 1050 } 1051 1052 port->nb_mcast_addrs = nb_mc_addr; 1053 1054 if (sa->state != SFC_ADAPTER_STARTED) 1055 return 0; 1056 1057 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1058 port->nb_mcast_addrs); 1059 if (rc != 0) 1060 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1061 1062 SFC_ASSERT(rc >= 0); 1063 return -rc; 1064 } 1065 1066 /* 1067 * The function is used by the secondary process as well. It must not 1068 * use any process-local pointers from the adapter data. 1069 */ 1070 static void 1071 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1072 struct rte_eth_rxq_info *qinfo) 1073 { 1074 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1075 struct sfc_rxq_info *rxq_info; 1076 1077 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1078 1079 rxq_info = &sas->rxq_info[rx_queue_id]; 1080 1081 qinfo->mp = rxq_info->refill_mb_pool; 1082 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1083 qinfo->conf.rx_drop_en = 1; 1084 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1085 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1086 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1087 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1088 qinfo->scattered_rx = 1; 1089 } 1090 qinfo->nb_desc = rxq_info->entries; 1091 } 1092 1093 /* 1094 * The function is used by the secondary process as well. It must not 1095 * use any process-local pointers from the adapter data. 1096 */ 1097 static void 1098 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1099 struct rte_eth_txq_info *qinfo) 1100 { 1101 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1102 struct sfc_txq_info *txq_info; 1103 1104 SFC_ASSERT(tx_queue_id < sas->txq_count); 1105 1106 txq_info = &sas->txq_info[tx_queue_id]; 1107 1108 memset(qinfo, 0, sizeof(*qinfo)); 1109 1110 qinfo->conf.offloads = txq_info->offloads; 1111 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1112 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1113 qinfo->nb_desc = txq_info->entries; 1114 } 1115 1116 /* 1117 * The function is used by the secondary process as well. It must not 1118 * use any process-local pointers from the adapter data. 1119 */ 1120 static uint32_t 1121 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1122 { 1123 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1124 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1125 struct sfc_rxq_info *rxq_info; 1126 1127 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1128 rxq_info = &sas->rxq_info[rx_queue_id]; 1129 1130 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1131 return 0; 1132 1133 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1134 } 1135 1136 /* 1137 * The function is used by the secondary process as well. It must not 1138 * use any process-local pointers from the adapter data. 1139 */ 1140 static int 1141 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1142 { 1143 struct sfc_dp_rxq *dp_rxq = queue; 1144 const struct sfc_dp_rx *dp_rx; 1145 1146 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1147 1148 return offset < dp_rx->qdesc_npending(dp_rxq); 1149 } 1150 1151 /* 1152 * The function is used by the secondary process as well. It must not 1153 * use any process-local pointers from the adapter data. 1154 */ 1155 static int 1156 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1157 { 1158 struct sfc_dp_rxq *dp_rxq = queue; 1159 const struct sfc_dp_rx *dp_rx; 1160 1161 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1162 1163 return dp_rx->qdesc_status(dp_rxq, offset); 1164 } 1165 1166 /* 1167 * The function is used by the secondary process as well. It must not 1168 * use any process-local pointers from the adapter data. 1169 */ 1170 static int 1171 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1172 { 1173 struct sfc_dp_txq *dp_txq = queue; 1174 const struct sfc_dp_tx *dp_tx; 1175 1176 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1177 1178 return dp_tx->qdesc_status(dp_txq, offset); 1179 } 1180 1181 static int 1182 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1183 { 1184 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1185 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1186 int rc; 1187 1188 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1189 1190 sfc_adapter_lock(sa); 1191 1192 rc = EINVAL; 1193 if (sa->state != SFC_ADAPTER_STARTED) 1194 goto fail_not_started; 1195 1196 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1197 goto fail_not_setup; 1198 1199 rc = sfc_rx_qstart(sa, rx_queue_id); 1200 if (rc != 0) 1201 goto fail_rx_qstart; 1202 1203 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1204 1205 sfc_adapter_unlock(sa); 1206 1207 return 0; 1208 1209 fail_rx_qstart: 1210 fail_not_setup: 1211 fail_not_started: 1212 sfc_adapter_unlock(sa); 1213 SFC_ASSERT(rc > 0); 1214 return -rc; 1215 } 1216 1217 static int 1218 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1219 { 1220 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1221 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1222 1223 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1224 1225 sfc_adapter_lock(sa); 1226 sfc_rx_qstop(sa, rx_queue_id); 1227 1228 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1229 1230 sfc_adapter_unlock(sa); 1231 1232 return 0; 1233 } 1234 1235 static int 1236 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1237 { 1238 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1239 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1240 int rc; 1241 1242 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1243 1244 sfc_adapter_lock(sa); 1245 1246 rc = EINVAL; 1247 if (sa->state != SFC_ADAPTER_STARTED) 1248 goto fail_not_started; 1249 1250 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1251 goto fail_not_setup; 1252 1253 rc = sfc_tx_qstart(sa, tx_queue_id); 1254 if (rc != 0) 1255 goto fail_tx_qstart; 1256 1257 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1258 1259 sfc_adapter_unlock(sa); 1260 return 0; 1261 1262 fail_tx_qstart: 1263 1264 fail_not_setup: 1265 fail_not_started: 1266 sfc_adapter_unlock(sa); 1267 SFC_ASSERT(rc > 0); 1268 return -rc; 1269 } 1270 1271 static int 1272 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1273 { 1274 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1275 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1276 1277 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1278 1279 sfc_adapter_lock(sa); 1280 1281 sfc_tx_qstop(sa, tx_queue_id); 1282 1283 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1284 1285 sfc_adapter_unlock(sa); 1286 return 0; 1287 } 1288 1289 static efx_tunnel_protocol_t 1290 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1291 { 1292 switch (rte_type) { 1293 case RTE_TUNNEL_TYPE_VXLAN: 1294 return EFX_TUNNEL_PROTOCOL_VXLAN; 1295 case RTE_TUNNEL_TYPE_GENEVE: 1296 return EFX_TUNNEL_PROTOCOL_GENEVE; 1297 default: 1298 return EFX_TUNNEL_NPROTOS; 1299 } 1300 } 1301 1302 enum sfc_udp_tunnel_op_e { 1303 SFC_UDP_TUNNEL_ADD_PORT, 1304 SFC_UDP_TUNNEL_DEL_PORT, 1305 }; 1306 1307 static int 1308 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1309 struct rte_eth_udp_tunnel *tunnel_udp, 1310 enum sfc_udp_tunnel_op_e op) 1311 { 1312 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1313 efx_tunnel_protocol_t tunnel_proto; 1314 int rc; 1315 1316 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1317 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1318 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1319 tunnel_udp->udp_port, tunnel_udp->prot_type); 1320 1321 tunnel_proto = 1322 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1323 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1324 rc = ENOTSUP; 1325 goto fail_bad_proto; 1326 } 1327 1328 sfc_adapter_lock(sa); 1329 1330 switch (op) { 1331 case SFC_UDP_TUNNEL_ADD_PORT: 1332 rc = efx_tunnel_config_udp_add(sa->nic, 1333 tunnel_udp->udp_port, 1334 tunnel_proto); 1335 break; 1336 case SFC_UDP_TUNNEL_DEL_PORT: 1337 rc = efx_tunnel_config_udp_remove(sa->nic, 1338 tunnel_udp->udp_port, 1339 tunnel_proto); 1340 break; 1341 default: 1342 rc = EINVAL; 1343 goto fail_bad_op; 1344 } 1345 1346 if (rc != 0) 1347 goto fail_op; 1348 1349 if (sa->state == SFC_ADAPTER_STARTED) { 1350 rc = efx_tunnel_reconfigure(sa->nic); 1351 if (rc == EAGAIN) { 1352 /* 1353 * Configuration is accepted by FW and MC reboot 1354 * is initiated to apply the changes. MC reboot 1355 * will be handled in a usual way (MC reboot 1356 * event on management event queue and adapter 1357 * restart). 1358 */ 1359 rc = 0; 1360 } else if (rc != 0) { 1361 goto fail_reconfigure; 1362 } 1363 } 1364 1365 sfc_adapter_unlock(sa); 1366 return 0; 1367 1368 fail_reconfigure: 1369 /* Remove/restore entry since the change makes the trouble */ 1370 switch (op) { 1371 case SFC_UDP_TUNNEL_ADD_PORT: 1372 (void)efx_tunnel_config_udp_remove(sa->nic, 1373 tunnel_udp->udp_port, 1374 tunnel_proto); 1375 break; 1376 case SFC_UDP_TUNNEL_DEL_PORT: 1377 (void)efx_tunnel_config_udp_add(sa->nic, 1378 tunnel_udp->udp_port, 1379 tunnel_proto); 1380 break; 1381 } 1382 1383 fail_op: 1384 fail_bad_op: 1385 sfc_adapter_unlock(sa); 1386 1387 fail_bad_proto: 1388 SFC_ASSERT(rc > 0); 1389 return -rc; 1390 } 1391 1392 static int 1393 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1394 struct rte_eth_udp_tunnel *tunnel_udp) 1395 { 1396 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1397 } 1398 1399 static int 1400 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1401 struct rte_eth_udp_tunnel *tunnel_udp) 1402 { 1403 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1404 } 1405 1406 /* 1407 * The function is used by the secondary process as well. It must not 1408 * use any process-local pointers from the adapter data. 1409 */ 1410 static int 1411 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1412 struct rte_eth_rss_conf *rss_conf) 1413 { 1414 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1415 struct sfc_rss *rss = &sas->rss; 1416 1417 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1418 return -ENOTSUP; 1419 1420 /* 1421 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1422 * hence, conversion is done here to derive a correct set of ETH_RSS 1423 * flags which corresponds to the active EFX configuration stored 1424 * locally in 'sfc_adapter' and kept up-to-date 1425 */ 1426 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1427 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1428 if (rss_conf->rss_key != NULL) 1429 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1430 1431 return 0; 1432 } 1433 1434 static int 1435 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1436 struct rte_eth_rss_conf *rss_conf) 1437 { 1438 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1439 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1440 unsigned int efx_hash_types; 1441 int rc = 0; 1442 1443 if (sfc_sa2shared(sa)->isolated) 1444 return -ENOTSUP; 1445 1446 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1447 sfc_err(sa, "RSS is not available"); 1448 return -ENOTSUP; 1449 } 1450 1451 if (rss->channels == 0) { 1452 sfc_err(sa, "RSS is not configured"); 1453 return -EINVAL; 1454 } 1455 1456 if ((rss_conf->rss_key != NULL) && 1457 (rss_conf->rss_key_len != sizeof(rss->key))) { 1458 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1459 sizeof(rss->key)); 1460 return -EINVAL; 1461 } 1462 1463 sfc_adapter_lock(sa); 1464 1465 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1466 if (rc != 0) 1467 goto fail_rx_hf_rte_to_efx; 1468 1469 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1470 rss->hash_alg, efx_hash_types, B_TRUE); 1471 if (rc != 0) 1472 goto fail_scale_mode_set; 1473 1474 if (rss_conf->rss_key != NULL) { 1475 if (sa->state == SFC_ADAPTER_STARTED) { 1476 rc = efx_rx_scale_key_set(sa->nic, 1477 EFX_RSS_CONTEXT_DEFAULT, 1478 rss_conf->rss_key, 1479 sizeof(rss->key)); 1480 if (rc != 0) 1481 goto fail_scale_key_set; 1482 } 1483 1484 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1485 } 1486 1487 rss->hash_types = efx_hash_types; 1488 1489 sfc_adapter_unlock(sa); 1490 1491 return 0; 1492 1493 fail_scale_key_set: 1494 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1495 EFX_RX_HASHALG_TOEPLITZ, 1496 rss->hash_types, B_TRUE) != 0) 1497 sfc_err(sa, "failed to restore RSS mode"); 1498 1499 fail_scale_mode_set: 1500 fail_rx_hf_rte_to_efx: 1501 sfc_adapter_unlock(sa); 1502 return -rc; 1503 } 1504 1505 /* 1506 * The function is used by the secondary process as well. It must not 1507 * use any process-local pointers from the adapter data. 1508 */ 1509 static int 1510 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1511 struct rte_eth_rss_reta_entry64 *reta_conf, 1512 uint16_t reta_size) 1513 { 1514 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1515 struct sfc_rss *rss = &sas->rss; 1516 int entry; 1517 1518 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1519 return -ENOTSUP; 1520 1521 if (rss->channels == 0) 1522 return -EINVAL; 1523 1524 if (reta_size != EFX_RSS_TBL_SIZE) 1525 return -EINVAL; 1526 1527 for (entry = 0; entry < reta_size; entry++) { 1528 int grp = entry / RTE_RETA_GROUP_SIZE; 1529 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1530 1531 if ((reta_conf[grp].mask >> grp_idx) & 1) 1532 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1533 } 1534 1535 return 0; 1536 } 1537 1538 static int 1539 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1540 struct rte_eth_rss_reta_entry64 *reta_conf, 1541 uint16_t reta_size) 1542 { 1543 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1544 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1545 unsigned int *rss_tbl_new; 1546 uint16_t entry; 1547 int rc = 0; 1548 1549 1550 if (sfc_sa2shared(sa)->isolated) 1551 return -ENOTSUP; 1552 1553 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1554 sfc_err(sa, "RSS is not available"); 1555 return -ENOTSUP; 1556 } 1557 1558 if (rss->channels == 0) { 1559 sfc_err(sa, "RSS is not configured"); 1560 return -EINVAL; 1561 } 1562 1563 if (reta_size != EFX_RSS_TBL_SIZE) { 1564 sfc_err(sa, "RETA size is wrong (should be %u)", 1565 EFX_RSS_TBL_SIZE); 1566 return -EINVAL; 1567 } 1568 1569 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1570 if (rss_tbl_new == NULL) 1571 return -ENOMEM; 1572 1573 sfc_adapter_lock(sa); 1574 1575 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1576 1577 for (entry = 0; entry < reta_size; entry++) { 1578 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1579 struct rte_eth_rss_reta_entry64 *grp; 1580 1581 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1582 1583 if (grp->mask & (1ull << grp_idx)) { 1584 if (grp->reta[grp_idx] >= rss->channels) { 1585 rc = EINVAL; 1586 goto bad_reta_entry; 1587 } 1588 rss_tbl_new[entry] = grp->reta[grp_idx]; 1589 } 1590 } 1591 1592 if (sa->state == SFC_ADAPTER_STARTED) { 1593 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1594 rss_tbl_new, EFX_RSS_TBL_SIZE); 1595 if (rc != 0) 1596 goto fail_scale_tbl_set; 1597 } 1598 1599 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1600 1601 fail_scale_tbl_set: 1602 bad_reta_entry: 1603 sfc_adapter_unlock(sa); 1604 1605 rte_free(rss_tbl_new); 1606 1607 SFC_ASSERT(rc >= 0); 1608 return -rc; 1609 } 1610 1611 static int 1612 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1613 enum rte_filter_op filter_op, 1614 void *arg) 1615 { 1616 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1617 int rc = ENOTSUP; 1618 1619 sfc_log_init(sa, "entry"); 1620 1621 switch (filter_type) { 1622 case RTE_ETH_FILTER_NONE: 1623 sfc_err(sa, "Global filters configuration not supported"); 1624 break; 1625 case RTE_ETH_FILTER_MACVLAN: 1626 sfc_err(sa, "MACVLAN filters not supported"); 1627 break; 1628 case RTE_ETH_FILTER_ETHERTYPE: 1629 sfc_err(sa, "EtherType filters not supported"); 1630 break; 1631 case RTE_ETH_FILTER_FLEXIBLE: 1632 sfc_err(sa, "Flexible filters not supported"); 1633 break; 1634 case RTE_ETH_FILTER_SYN: 1635 sfc_err(sa, "SYN filters not supported"); 1636 break; 1637 case RTE_ETH_FILTER_NTUPLE: 1638 sfc_err(sa, "NTUPLE filters not supported"); 1639 break; 1640 case RTE_ETH_FILTER_TUNNEL: 1641 sfc_err(sa, "Tunnel filters not supported"); 1642 break; 1643 case RTE_ETH_FILTER_FDIR: 1644 sfc_err(sa, "Flow Director filters not supported"); 1645 break; 1646 case RTE_ETH_FILTER_HASH: 1647 sfc_err(sa, "Hash filters not supported"); 1648 break; 1649 case RTE_ETH_FILTER_GENERIC: 1650 if (filter_op != RTE_ETH_FILTER_GET) { 1651 rc = EINVAL; 1652 } else { 1653 *(const void **)arg = &sfc_flow_ops; 1654 rc = 0; 1655 } 1656 break; 1657 default: 1658 sfc_err(sa, "Unknown filter type %u", filter_type); 1659 break; 1660 } 1661 1662 sfc_log_init(sa, "exit: %d", -rc); 1663 SFC_ASSERT(rc >= 0); 1664 return -rc; 1665 } 1666 1667 static int 1668 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1669 { 1670 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1671 1672 /* 1673 * If Rx datapath does not provide callback to check mempool, 1674 * all pools are supported. 1675 */ 1676 if (sap->dp_rx->pool_ops_supported == NULL) 1677 return 1; 1678 1679 return sap->dp_rx->pool_ops_supported(pool); 1680 } 1681 1682 static const struct eth_dev_ops sfc_eth_dev_ops = { 1683 .dev_configure = sfc_dev_configure, 1684 .dev_start = sfc_dev_start, 1685 .dev_stop = sfc_dev_stop, 1686 .dev_set_link_up = sfc_dev_set_link_up, 1687 .dev_set_link_down = sfc_dev_set_link_down, 1688 .dev_close = sfc_dev_close, 1689 .promiscuous_enable = sfc_dev_promisc_enable, 1690 .promiscuous_disable = sfc_dev_promisc_disable, 1691 .allmulticast_enable = sfc_dev_allmulti_enable, 1692 .allmulticast_disable = sfc_dev_allmulti_disable, 1693 .link_update = sfc_dev_link_update, 1694 .stats_get = sfc_stats_get, 1695 .stats_reset = sfc_stats_reset, 1696 .xstats_get = sfc_xstats_get, 1697 .xstats_reset = sfc_stats_reset, 1698 .xstats_get_names = sfc_xstats_get_names, 1699 .dev_infos_get = sfc_dev_infos_get, 1700 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1701 .mtu_set = sfc_dev_set_mtu, 1702 .rx_queue_start = sfc_rx_queue_start, 1703 .rx_queue_stop = sfc_rx_queue_stop, 1704 .tx_queue_start = sfc_tx_queue_start, 1705 .tx_queue_stop = sfc_tx_queue_stop, 1706 .rx_queue_setup = sfc_rx_queue_setup, 1707 .rx_queue_release = sfc_rx_queue_release, 1708 .rx_queue_count = sfc_rx_queue_count, 1709 .rx_descriptor_done = sfc_rx_descriptor_done, 1710 .rx_descriptor_status = sfc_rx_descriptor_status, 1711 .tx_descriptor_status = sfc_tx_descriptor_status, 1712 .tx_queue_setup = sfc_tx_queue_setup, 1713 .tx_queue_release = sfc_tx_queue_release, 1714 .flow_ctrl_get = sfc_flow_ctrl_get, 1715 .flow_ctrl_set = sfc_flow_ctrl_set, 1716 .mac_addr_set = sfc_mac_addr_set, 1717 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1718 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1719 .reta_update = sfc_dev_rss_reta_update, 1720 .reta_query = sfc_dev_rss_reta_query, 1721 .rss_hash_update = sfc_dev_rss_hash_update, 1722 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1723 .filter_ctrl = sfc_dev_filter_ctrl, 1724 .set_mc_addr_list = sfc_set_mc_addr_list, 1725 .rxq_info_get = sfc_rx_queue_info_get, 1726 .txq_info_get = sfc_tx_queue_info_get, 1727 .fw_version_get = sfc_fw_version_get, 1728 .xstats_get_by_id = sfc_xstats_get_by_id, 1729 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1730 .pool_ops_supported = sfc_pool_ops_supported, 1731 }; 1732 1733 /** 1734 * Duplicate a string in potentially shared memory required for 1735 * multi-process support. 1736 * 1737 * strdup() allocates from process-local heap/memory. 1738 */ 1739 static char * 1740 sfc_strdup(const char *str) 1741 { 1742 size_t size; 1743 char *copy; 1744 1745 if (str == NULL) 1746 return NULL; 1747 1748 size = strlen(str) + 1; 1749 copy = rte_malloc(__func__, size, 0); 1750 if (copy != NULL) 1751 rte_memcpy(copy, str, size); 1752 1753 return copy; 1754 } 1755 1756 static int 1757 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1758 { 1759 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1760 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1761 const struct sfc_dp_rx *dp_rx; 1762 const struct sfc_dp_tx *dp_tx; 1763 const efx_nic_cfg_t *encp; 1764 unsigned int avail_caps = 0; 1765 const char *rx_name = NULL; 1766 const char *tx_name = NULL; 1767 int rc; 1768 1769 switch (sa->family) { 1770 case EFX_FAMILY_HUNTINGTON: 1771 case EFX_FAMILY_MEDFORD: 1772 case EFX_FAMILY_MEDFORD2: 1773 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1774 break; 1775 default: 1776 break; 1777 } 1778 1779 encp = efx_nic_cfg_get(sa->nic); 1780 if (encp->enc_rx_es_super_buffer_supported) 1781 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1782 1783 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1784 sfc_kvarg_string_handler, &rx_name); 1785 if (rc != 0) 1786 goto fail_kvarg_rx_datapath; 1787 1788 if (rx_name != NULL) { 1789 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1790 if (dp_rx == NULL) { 1791 sfc_err(sa, "Rx datapath %s not found", rx_name); 1792 rc = ENOENT; 1793 goto fail_dp_rx; 1794 } 1795 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1796 sfc_err(sa, 1797 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1798 rx_name); 1799 rc = EINVAL; 1800 goto fail_dp_rx_caps; 1801 } 1802 } else { 1803 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1804 if (dp_rx == NULL) { 1805 sfc_err(sa, "Rx datapath by caps %#x not found", 1806 avail_caps); 1807 rc = ENOENT; 1808 goto fail_dp_rx; 1809 } 1810 } 1811 1812 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1813 if (sas->dp_rx_name == NULL) { 1814 rc = ENOMEM; 1815 goto fail_dp_rx_name; 1816 } 1817 1818 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1819 1820 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1821 sfc_kvarg_string_handler, &tx_name); 1822 if (rc != 0) 1823 goto fail_kvarg_tx_datapath; 1824 1825 if (tx_name != NULL) { 1826 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1827 if (dp_tx == NULL) { 1828 sfc_err(sa, "Tx datapath %s not found", tx_name); 1829 rc = ENOENT; 1830 goto fail_dp_tx; 1831 } 1832 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1833 sfc_err(sa, 1834 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1835 tx_name); 1836 rc = EINVAL; 1837 goto fail_dp_tx_caps; 1838 } 1839 } else { 1840 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1841 if (dp_tx == NULL) { 1842 sfc_err(sa, "Tx datapath by caps %#x not found", 1843 avail_caps); 1844 rc = ENOENT; 1845 goto fail_dp_tx; 1846 } 1847 } 1848 1849 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1850 if (sas->dp_tx_name == NULL) { 1851 rc = ENOMEM; 1852 goto fail_dp_tx_name; 1853 } 1854 1855 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1856 1857 sa->priv.dp_rx = dp_rx; 1858 sa->priv.dp_tx = dp_tx; 1859 1860 dev->rx_pkt_burst = dp_rx->pkt_burst; 1861 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 1862 dev->tx_pkt_burst = dp_tx->pkt_burst; 1863 1864 dev->dev_ops = &sfc_eth_dev_ops; 1865 1866 return 0; 1867 1868 fail_dp_tx_name: 1869 fail_dp_tx_caps: 1870 fail_dp_tx: 1871 fail_kvarg_tx_datapath: 1872 rte_free(sas->dp_rx_name); 1873 sas->dp_rx_name = NULL; 1874 1875 fail_dp_rx_name: 1876 fail_dp_rx_caps: 1877 fail_dp_rx: 1878 fail_kvarg_rx_datapath: 1879 return rc; 1880 } 1881 1882 static void 1883 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1884 { 1885 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1886 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1887 1888 dev->dev_ops = NULL; 1889 dev->tx_pkt_prepare = NULL; 1890 dev->rx_pkt_burst = NULL; 1891 dev->tx_pkt_burst = NULL; 1892 1893 rte_free(sas->dp_tx_name); 1894 sas->dp_tx_name = NULL; 1895 sa->priv.dp_tx = NULL; 1896 1897 rte_free(sas->dp_rx_name); 1898 sas->dp_rx_name = NULL; 1899 sa->priv.dp_rx = NULL; 1900 } 1901 1902 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1903 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1904 .rx_queue_count = sfc_rx_queue_count, 1905 .rx_descriptor_done = sfc_rx_descriptor_done, 1906 .rx_descriptor_status = sfc_rx_descriptor_status, 1907 .tx_descriptor_status = sfc_tx_descriptor_status, 1908 .reta_query = sfc_dev_rss_reta_query, 1909 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1910 .rxq_info_get = sfc_rx_queue_info_get, 1911 .txq_info_get = sfc_tx_queue_info_get, 1912 }; 1913 1914 static int 1915 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 1916 { 1917 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1918 struct sfc_adapter_priv *sap; 1919 const struct sfc_dp_rx *dp_rx; 1920 const struct sfc_dp_tx *dp_tx; 1921 int rc; 1922 1923 /* 1924 * Allocate process private data from heap, since it should not 1925 * be located in shared memory allocated using rte_malloc() API. 1926 */ 1927 sap = calloc(1, sizeof(*sap)); 1928 if (sap == NULL) { 1929 rc = ENOMEM; 1930 goto fail_alloc_priv; 1931 } 1932 1933 sap->logtype_main = logtype_main; 1934 1935 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 1936 if (dp_rx == NULL) { 1937 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1938 "cannot find %s Rx datapath", sas->dp_rx_name); 1939 rc = ENOENT; 1940 goto fail_dp_rx; 1941 } 1942 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1943 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1944 "%s Rx datapath does not support multi-process", 1945 sas->dp_rx_name); 1946 rc = EINVAL; 1947 goto fail_dp_rx_multi_process; 1948 } 1949 1950 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 1951 if (dp_tx == NULL) { 1952 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1953 "cannot find %s Tx datapath", sas->dp_tx_name); 1954 rc = ENOENT; 1955 goto fail_dp_tx; 1956 } 1957 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1958 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1959 "%s Tx datapath does not support multi-process", 1960 sas->dp_tx_name); 1961 rc = EINVAL; 1962 goto fail_dp_tx_multi_process; 1963 } 1964 1965 sap->dp_rx = dp_rx; 1966 sap->dp_tx = dp_tx; 1967 1968 dev->process_private = sap; 1969 dev->rx_pkt_burst = dp_rx->pkt_burst; 1970 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 1971 dev->tx_pkt_burst = dp_tx->pkt_burst; 1972 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1973 1974 return 0; 1975 1976 fail_dp_tx_multi_process: 1977 fail_dp_tx: 1978 fail_dp_rx_multi_process: 1979 fail_dp_rx: 1980 free(sap); 1981 1982 fail_alloc_priv: 1983 return rc; 1984 } 1985 1986 static void 1987 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1988 { 1989 free(dev->process_private); 1990 dev->process_private = NULL; 1991 dev->dev_ops = NULL; 1992 dev->tx_pkt_prepare = NULL; 1993 dev->tx_pkt_burst = NULL; 1994 dev->rx_pkt_burst = NULL; 1995 } 1996 1997 static void 1998 sfc_register_dp(void) 1999 { 2000 /* Register once */ 2001 if (TAILQ_EMPTY(&sfc_dp_head)) { 2002 /* Prefer EF10 datapath */ 2003 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2004 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2005 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2006 2007 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2008 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2009 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2010 } 2011 } 2012 2013 static int 2014 sfc_eth_dev_init(struct rte_eth_dev *dev) 2015 { 2016 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2017 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2018 uint32_t logtype_main; 2019 struct sfc_adapter *sa; 2020 int rc; 2021 const efx_nic_cfg_t *encp; 2022 const struct ether_addr *from; 2023 2024 sfc_register_dp(); 2025 2026 logtype_main = sfc_register_logtype(&pci_dev->addr, 2027 SFC_LOGTYPE_MAIN_STR, 2028 RTE_LOG_NOTICE); 2029 2030 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2031 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2032 2033 /* Required for logging */ 2034 sas->pci_addr = pci_dev->addr; 2035 sas->port_id = dev->data->port_id; 2036 2037 /* 2038 * Allocate process private data from heap, since it should not 2039 * be located in shared memory allocated using rte_malloc() API. 2040 */ 2041 sa = calloc(1, sizeof(*sa)); 2042 if (sa == NULL) { 2043 rc = ENOMEM; 2044 goto fail_alloc_sa; 2045 } 2046 2047 dev->process_private = sa; 2048 2049 /* Required for logging */ 2050 sa->priv.shared = sas; 2051 sa->priv.logtype_main = logtype_main; 2052 2053 sa->eth_dev = dev; 2054 2055 /* Copy PCI device info to the dev->data */ 2056 rte_eth_copy_pci_info(dev, pci_dev); 2057 2058 rc = sfc_kvargs_parse(sa); 2059 if (rc != 0) 2060 goto fail_kvargs_parse; 2061 2062 sfc_log_init(sa, "entry"); 2063 2064 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 2065 if (dev->data->mac_addrs == NULL) { 2066 rc = ENOMEM; 2067 goto fail_mac_addrs; 2068 } 2069 2070 sfc_adapter_lock_init(sa); 2071 sfc_adapter_lock(sa); 2072 2073 sfc_log_init(sa, "probing"); 2074 rc = sfc_probe(sa); 2075 if (rc != 0) 2076 goto fail_probe; 2077 2078 sfc_log_init(sa, "set device ops"); 2079 rc = sfc_eth_dev_set_ops(dev); 2080 if (rc != 0) 2081 goto fail_set_ops; 2082 2083 sfc_log_init(sa, "attaching"); 2084 rc = sfc_attach(sa); 2085 if (rc != 0) 2086 goto fail_attach; 2087 2088 encp = efx_nic_cfg_get(sa->nic); 2089 2090 /* 2091 * The arguments are really reverse order in comparison to 2092 * Linux kernel. Copy from NIC config to Ethernet device data. 2093 */ 2094 from = (const struct ether_addr *)(encp->enc_mac_addr); 2095 ether_addr_copy(from, &dev->data->mac_addrs[0]); 2096 2097 sfc_adapter_unlock(sa); 2098 2099 sfc_log_init(sa, "done"); 2100 return 0; 2101 2102 fail_attach: 2103 sfc_eth_dev_clear_ops(dev); 2104 2105 fail_set_ops: 2106 sfc_unprobe(sa); 2107 2108 fail_probe: 2109 sfc_adapter_unlock(sa); 2110 sfc_adapter_lock_fini(sa); 2111 rte_free(dev->data->mac_addrs); 2112 dev->data->mac_addrs = NULL; 2113 2114 fail_mac_addrs: 2115 sfc_kvargs_cleanup(sa); 2116 2117 fail_kvargs_parse: 2118 sfc_log_init(sa, "failed %d", rc); 2119 dev->process_private = NULL; 2120 free(sa); 2121 2122 fail_alloc_sa: 2123 SFC_ASSERT(rc > 0); 2124 return -rc; 2125 } 2126 2127 static int 2128 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2129 { 2130 struct sfc_adapter *sa; 2131 2132 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2133 sfc_eth_dev_secondary_clear_ops(dev); 2134 return 0; 2135 } 2136 2137 sa = sfc_adapter_by_eth_dev(dev); 2138 sfc_log_init(sa, "entry"); 2139 2140 sfc_adapter_lock(sa); 2141 2142 sfc_eth_dev_clear_ops(dev); 2143 2144 sfc_detach(sa); 2145 sfc_unprobe(sa); 2146 2147 sfc_kvargs_cleanup(sa); 2148 2149 sfc_adapter_unlock(sa); 2150 sfc_adapter_lock_fini(sa); 2151 2152 sfc_log_init(sa, "done"); 2153 2154 /* Required for logging, so cleanup last */ 2155 sa->eth_dev = NULL; 2156 2157 dev->process_private = NULL; 2158 free(sa); 2159 2160 return 0; 2161 } 2162 2163 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2164 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2165 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2166 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2167 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2168 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2169 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2170 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2171 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2172 { .vendor_id = 0 /* sentinel */ } 2173 }; 2174 2175 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2176 struct rte_pci_device *pci_dev) 2177 { 2178 return rte_eth_dev_pci_generic_probe(pci_dev, 2179 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2180 } 2181 2182 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2183 { 2184 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2185 } 2186 2187 static struct rte_pci_driver sfc_efx_pmd = { 2188 .id_table = pci_id_sfc_efx_map, 2189 .drv_flags = 2190 RTE_PCI_DRV_INTR_LSC | 2191 RTE_PCI_DRV_NEED_MAPPING, 2192 .probe = sfc_eth_dev_pci_probe, 2193 .remove = sfc_eth_dev_pci_remove, 2194 }; 2195 2196 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2197 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2198 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2199 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2200 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2201 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2202 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2203 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2204 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2205 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2206 2207 RTE_INIT(sfc_driver_register_logtype) 2208 { 2209 int ret; 2210 2211 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2212 RTE_LOG_NOTICE); 2213 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2214 } 2215