1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = dev->data->dev_private; 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 struct sfc_adapter *sa = dev->data->dev_private; 88 struct sfc_rss *rss = &sa->rss; 89 uint64_t txq_offloads_def = 0; 90 91 sfc_log_init(sa, "entry"); 92 93 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 94 95 /* Autonegotiation may be disabled */ 96 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 97 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 98 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 99 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 100 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 101 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 102 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 103 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 104 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 105 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 106 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 107 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 108 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 109 110 dev_info->max_rx_queues = sa->rxq_max; 111 dev_info->max_tx_queues = sa->txq_max; 112 113 /* By default packets are dropped if no descriptors are available */ 114 dev_info->default_rxconf.rx_drop_en = 1; 115 116 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 117 118 /* 119 * rx_offload_capa includes both device and queue offloads since 120 * the latter may be requested on a per device basis which makes 121 * sense when some offloads are needed to be set on all queues. 122 */ 123 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 124 dev_info->rx_queue_offload_capa; 125 126 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 127 128 /* 129 * tx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 134 dev_info->tx_queue_offload_capa; 135 136 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 137 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 138 139 dev_info->default_txconf.offloads |= txq_offloads_def; 140 141 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 142 uint64_t rte_hf = 0; 143 unsigned int i; 144 145 for (i = 0; i < rss->hf_map_nb_entries; ++i) 146 rte_hf |= rss->hf_map[i].rte; 147 148 dev_info->reta_size = EFX_RSS_TBL_SIZE; 149 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 150 dev_info->flow_type_rss_offloads = rte_hf; 151 } 152 153 /* Initialize to hardware limits */ 154 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 155 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 156 /* The RXQ hardware requires that the descriptor count is a power 157 * of 2, but rx_desc_lim cannot properly describe that constraint. 158 */ 159 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 160 161 /* Initialize to hardware limits */ 162 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 163 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 164 /* 165 * The TXQ hardware requires that the descriptor count is a power 166 * of 2, but tx_desc_lim cannot properly describe that constraint 167 */ 168 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 169 170 if (sa->dp_rx->get_dev_info != NULL) 171 sa->dp_rx->get_dev_info(dev_info); 172 if (sa->dp_tx->get_dev_info != NULL) 173 sa->dp_tx->get_dev_info(dev_info); 174 175 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 176 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 177 } 178 179 static const uint32_t * 180 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 181 { 182 struct sfc_adapter *sa = dev->data->dev_private; 183 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 184 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 185 186 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 187 } 188 189 static int 190 sfc_dev_configure(struct rte_eth_dev *dev) 191 { 192 struct rte_eth_dev_data *dev_data = dev->data; 193 struct sfc_adapter *sa = dev_data->dev_private; 194 int rc; 195 196 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 197 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 198 199 sfc_adapter_lock(sa); 200 switch (sa->state) { 201 case SFC_ADAPTER_CONFIGURED: 202 /* FALLTHROUGH */ 203 case SFC_ADAPTER_INITIALIZED: 204 rc = sfc_configure(sa); 205 break; 206 default: 207 sfc_err(sa, "unexpected adapter state %u to configure", 208 sa->state); 209 rc = EINVAL; 210 break; 211 } 212 sfc_adapter_unlock(sa); 213 214 sfc_log_init(sa, "done %d", rc); 215 SFC_ASSERT(rc >= 0); 216 return -rc; 217 } 218 219 static int 220 sfc_dev_start(struct rte_eth_dev *dev) 221 { 222 struct sfc_adapter *sa = dev->data->dev_private; 223 int rc; 224 225 sfc_log_init(sa, "entry"); 226 227 sfc_adapter_lock(sa); 228 rc = sfc_start(sa); 229 sfc_adapter_unlock(sa); 230 231 sfc_log_init(sa, "done %d", rc); 232 SFC_ASSERT(rc >= 0); 233 return -rc; 234 } 235 236 static int 237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 238 { 239 struct sfc_adapter *sa = dev->data->dev_private; 240 struct rte_eth_link current_link; 241 int ret; 242 243 sfc_log_init(sa, "entry"); 244 245 if (sa->state != SFC_ADAPTER_STARTED) { 246 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 247 } else if (wait_to_complete) { 248 efx_link_mode_t link_mode; 249 250 if (efx_port_poll(sa->nic, &link_mode) != 0) 251 link_mode = EFX_LINK_UNKNOWN; 252 sfc_port_link_mode_to_info(link_mode, ¤t_link); 253 254 } else { 255 sfc_ev_mgmt_qpoll(sa); 256 rte_eth_linkstatus_get(dev, ¤t_link); 257 } 258 259 ret = rte_eth_linkstatus_set(dev, ¤t_link); 260 if (ret == 0) 261 sfc_notice(sa, "Link status is %s", 262 current_link.link_status ? "UP" : "DOWN"); 263 264 return ret; 265 } 266 267 static void 268 sfc_dev_stop(struct rte_eth_dev *dev) 269 { 270 struct sfc_adapter *sa = dev->data->dev_private; 271 272 sfc_log_init(sa, "entry"); 273 274 sfc_adapter_lock(sa); 275 sfc_stop(sa); 276 sfc_adapter_unlock(sa); 277 278 sfc_log_init(sa, "done"); 279 } 280 281 static int 282 sfc_dev_set_link_up(struct rte_eth_dev *dev) 283 { 284 struct sfc_adapter *sa = dev->data->dev_private; 285 int rc; 286 287 sfc_log_init(sa, "entry"); 288 289 sfc_adapter_lock(sa); 290 rc = sfc_start(sa); 291 sfc_adapter_unlock(sa); 292 293 SFC_ASSERT(rc >= 0); 294 return -rc; 295 } 296 297 static int 298 sfc_dev_set_link_down(struct rte_eth_dev *dev) 299 { 300 struct sfc_adapter *sa = dev->data->dev_private; 301 302 sfc_log_init(sa, "entry"); 303 304 sfc_adapter_lock(sa); 305 sfc_stop(sa); 306 sfc_adapter_unlock(sa); 307 308 return 0; 309 } 310 311 static void 312 sfc_dev_close(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = dev->data->dev_private; 315 316 sfc_log_init(sa, "entry"); 317 318 sfc_adapter_lock(sa); 319 switch (sa->state) { 320 case SFC_ADAPTER_STARTED: 321 sfc_stop(sa); 322 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 323 /* FALLTHROUGH */ 324 case SFC_ADAPTER_CONFIGURED: 325 sfc_close(sa); 326 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 327 /* FALLTHROUGH */ 328 case SFC_ADAPTER_INITIALIZED: 329 break; 330 default: 331 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 332 break; 333 } 334 sfc_adapter_unlock(sa); 335 336 sfc_log_init(sa, "done"); 337 } 338 339 static void 340 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 341 boolean_t enabled) 342 { 343 struct sfc_port *port; 344 boolean_t *toggle; 345 struct sfc_adapter *sa = dev->data->dev_private; 346 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 347 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 348 349 sfc_adapter_lock(sa); 350 351 port = &sa->port; 352 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 353 354 if (*toggle != enabled) { 355 *toggle = enabled; 356 357 if (port->isolated) { 358 sfc_warn(sa, "isolated mode is active on the port"); 359 sfc_warn(sa, "the change is to be applied on the next " 360 "start provided that isolated mode is " 361 "disabled prior the next start"); 362 } else if ((sa->state == SFC_ADAPTER_STARTED) && 363 (sfc_set_rx_mode(sa) != 0)) { 364 *toggle = !(enabled); 365 sfc_warn(sa, "Failed to %s %s mode", 366 ((enabled) ? "enable" : "disable"), desc); 367 } 368 } 369 370 sfc_adapter_unlock(sa); 371 } 372 373 static void 374 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 375 { 376 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 377 } 378 379 static void 380 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 381 { 382 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 383 } 384 385 static void 386 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 387 { 388 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 389 } 390 391 static void 392 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 393 { 394 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 395 } 396 397 static int 398 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 399 uint16_t nb_rx_desc, unsigned int socket_id, 400 const struct rte_eth_rxconf *rx_conf, 401 struct rte_mempool *mb_pool) 402 { 403 struct sfc_adapter *sa = dev->data->dev_private; 404 int rc; 405 406 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 407 rx_queue_id, nb_rx_desc, socket_id); 408 409 sfc_adapter_lock(sa); 410 411 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 412 rx_conf, mb_pool); 413 if (rc != 0) 414 goto fail_rx_qinit; 415 416 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 417 418 sfc_adapter_unlock(sa); 419 420 return 0; 421 422 fail_rx_qinit: 423 sfc_adapter_unlock(sa); 424 SFC_ASSERT(rc > 0); 425 return -rc; 426 } 427 428 static void 429 sfc_rx_queue_release(void *queue) 430 { 431 struct sfc_dp_rxq *dp_rxq = queue; 432 struct sfc_rxq *rxq; 433 struct sfc_adapter *sa; 434 unsigned int sw_index; 435 436 if (dp_rxq == NULL) 437 return; 438 439 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 440 sa = rxq->evq->sa; 441 sfc_adapter_lock(sa); 442 443 sw_index = sfc_rxq_sw_index(rxq); 444 445 sfc_log_init(sa, "RxQ=%u", sw_index); 446 447 sfc_rx_qfini(sa, sw_index); 448 449 sfc_adapter_unlock(sa); 450 } 451 452 static int 453 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 454 uint16_t nb_tx_desc, unsigned int socket_id, 455 const struct rte_eth_txconf *tx_conf) 456 { 457 struct sfc_adapter *sa = dev->data->dev_private; 458 int rc; 459 460 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 461 tx_queue_id, nb_tx_desc, socket_id); 462 463 sfc_adapter_lock(sa); 464 465 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 466 if (rc != 0) 467 goto fail_tx_qinit; 468 469 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 470 471 sfc_adapter_unlock(sa); 472 return 0; 473 474 fail_tx_qinit: 475 sfc_adapter_unlock(sa); 476 SFC_ASSERT(rc > 0); 477 return -rc; 478 } 479 480 static void 481 sfc_tx_queue_release(void *queue) 482 { 483 struct sfc_dp_txq *dp_txq = queue; 484 struct sfc_txq *txq; 485 unsigned int sw_index; 486 struct sfc_adapter *sa; 487 488 if (dp_txq == NULL) 489 return; 490 491 txq = sfc_txq_by_dp_txq(dp_txq); 492 sw_index = sfc_txq_sw_index(txq); 493 494 SFC_ASSERT(txq->evq != NULL); 495 sa = txq->evq->sa; 496 497 sfc_log_init(sa, "TxQ = %u", sw_index); 498 499 sfc_adapter_lock(sa); 500 501 sfc_tx_qfini(sa, sw_index); 502 503 sfc_adapter_unlock(sa); 504 } 505 506 /* 507 * Some statistics are computed as A - B where A and B each increase 508 * monotonically with some hardware counter(s) and the counters are read 509 * asynchronously. 510 * 511 * If packet X is counted in A, but not counted in B yet, computed value is 512 * greater than real. 513 * 514 * If packet X is not counted in A at the moment of reading the counter, 515 * but counted in B at the moment of reading the counter, computed value 516 * is less than real. 517 * 518 * However, counter which grows backward is worse evil than slightly wrong 519 * value. So, let's try to guarantee that it never happens except may be 520 * the case when the MAC stats are zeroed as a result of a NIC reset. 521 */ 522 static void 523 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 524 { 525 if ((int64_t)(newval - *stat) > 0 || newval == 0) 526 *stat = newval; 527 } 528 529 static int 530 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 531 { 532 struct sfc_adapter *sa = dev->data->dev_private; 533 struct sfc_port *port = &sa->port; 534 uint64_t *mac_stats; 535 int ret; 536 537 rte_spinlock_lock(&port->mac_stats_lock); 538 539 ret = sfc_port_update_mac_stats(sa); 540 if (ret != 0) 541 goto unlock; 542 543 mac_stats = port->mac_stats_buf; 544 545 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 546 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 547 stats->ipackets = 548 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 549 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 550 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 551 stats->opackets = 552 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 553 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 554 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 555 stats->ibytes = 556 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 557 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 558 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 559 stats->obytes = 560 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 561 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 562 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 563 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 564 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 565 } else { 566 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 567 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 568 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 569 /* 570 * Take into account stats which are whenever supported 571 * on EF10. If some stat is not supported by current 572 * firmware variant or HW revision, it is guaranteed 573 * to be zero in mac_stats. 574 */ 575 stats->imissed = 576 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 577 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 578 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 579 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 580 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 581 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 582 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 583 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 584 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 585 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 586 stats->ierrors = 587 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 588 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 589 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 590 /* no oerrors counters supported on EF10 */ 591 592 /* Exclude missed, errors and pauses from Rx packets */ 593 sfc_update_diff_stat(&port->ipackets, 594 mac_stats[EFX_MAC_RX_PKTS] - 595 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 596 stats->imissed - stats->ierrors); 597 stats->ipackets = port->ipackets; 598 } 599 600 unlock: 601 rte_spinlock_unlock(&port->mac_stats_lock); 602 SFC_ASSERT(ret >= 0); 603 return -ret; 604 } 605 606 static void 607 sfc_stats_reset(struct rte_eth_dev *dev) 608 { 609 struct sfc_adapter *sa = dev->data->dev_private; 610 struct sfc_port *port = &sa->port; 611 int rc; 612 613 if (sa->state != SFC_ADAPTER_STARTED) { 614 /* 615 * The operation cannot be done if port is not started; it 616 * will be scheduled to be done during the next port start 617 */ 618 port->mac_stats_reset_pending = B_TRUE; 619 return; 620 } 621 622 rc = sfc_port_reset_mac_stats(sa); 623 if (rc != 0) 624 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 625 } 626 627 static int 628 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 629 unsigned int xstats_count) 630 { 631 struct sfc_adapter *sa = dev->data->dev_private; 632 struct sfc_port *port = &sa->port; 633 uint64_t *mac_stats; 634 int rc; 635 unsigned int i; 636 int nstats = 0; 637 638 rte_spinlock_lock(&port->mac_stats_lock); 639 640 rc = sfc_port_update_mac_stats(sa); 641 if (rc != 0) { 642 SFC_ASSERT(rc > 0); 643 nstats = -rc; 644 goto unlock; 645 } 646 647 mac_stats = port->mac_stats_buf; 648 649 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 650 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 651 if (xstats != NULL && nstats < (int)xstats_count) { 652 xstats[nstats].id = nstats; 653 xstats[nstats].value = mac_stats[i]; 654 } 655 nstats++; 656 } 657 } 658 659 unlock: 660 rte_spinlock_unlock(&port->mac_stats_lock); 661 662 return nstats; 663 } 664 665 static int 666 sfc_xstats_get_names(struct rte_eth_dev *dev, 667 struct rte_eth_xstat_name *xstats_names, 668 unsigned int xstats_count) 669 { 670 struct sfc_adapter *sa = dev->data->dev_private; 671 struct sfc_port *port = &sa->port; 672 unsigned int i; 673 unsigned int nstats = 0; 674 675 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 676 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 677 if (xstats_names != NULL && nstats < xstats_count) 678 strlcpy(xstats_names[nstats].name, 679 efx_mac_stat_name(sa->nic, i), 680 sizeof(xstats_names[0].name)); 681 nstats++; 682 } 683 } 684 685 return nstats; 686 } 687 688 static int 689 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 690 uint64_t *values, unsigned int n) 691 { 692 struct sfc_adapter *sa = dev->data->dev_private; 693 struct sfc_port *port = &sa->port; 694 uint64_t *mac_stats; 695 unsigned int nb_supported = 0; 696 unsigned int nb_written = 0; 697 unsigned int i; 698 int ret; 699 int rc; 700 701 if (unlikely(values == NULL) || 702 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 703 return port->mac_stats_nb_supported; 704 705 rte_spinlock_lock(&port->mac_stats_lock); 706 707 rc = sfc_port_update_mac_stats(sa); 708 if (rc != 0) { 709 SFC_ASSERT(rc > 0); 710 ret = -rc; 711 goto unlock; 712 } 713 714 mac_stats = port->mac_stats_buf; 715 716 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 717 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 718 continue; 719 720 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 721 values[nb_written++] = mac_stats[i]; 722 723 ++nb_supported; 724 } 725 726 ret = nb_written; 727 728 unlock: 729 rte_spinlock_unlock(&port->mac_stats_lock); 730 731 return ret; 732 } 733 734 static int 735 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 736 struct rte_eth_xstat_name *xstats_names, 737 const uint64_t *ids, unsigned int size) 738 { 739 struct sfc_adapter *sa = dev->data->dev_private; 740 struct sfc_port *port = &sa->port; 741 unsigned int nb_supported = 0; 742 unsigned int nb_written = 0; 743 unsigned int i; 744 745 if (unlikely(xstats_names == NULL) || 746 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 747 return port->mac_stats_nb_supported; 748 749 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 750 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 751 continue; 752 753 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 754 char *name = xstats_names[nb_written++].name; 755 756 strlcpy(name, efx_mac_stat_name(sa->nic, i), 757 sizeof(xstats_names[0].name)); 758 } 759 760 ++nb_supported; 761 } 762 763 return nb_written; 764 } 765 766 static int 767 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 768 { 769 struct sfc_adapter *sa = dev->data->dev_private; 770 unsigned int wanted_fc, link_fc; 771 772 memset(fc_conf, 0, sizeof(*fc_conf)); 773 774 sfc_adapter_lock(sa); 775 776 if (sa->state == SFC_ADAPTER_STARTED) 777 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 778 else 779 link_fc = sa->port.flow_ctrl; 780 781 switch (link_fc) { 782 case 0: 783 fc_conf->mode = RTE_FC_NONE; 784 break; 785 case EFX_FCNTL_RESPOND: 786 fc_conf->mode = RTE_FC_RX_PAUSE; 787 break; 788 case EFX_FCNTL_GENERATE: 789 fc_conf->mode = RTE_FC_TX_PAUSE; 790 break; 791 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 792 fc_conf->mode = RTE_FC_FULL; 793 break; 794 default: 795 sfc_err(sa, "%s: unexpected flow control value %#x", 796 __func__, link_fc); 797 } 798 799 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 800 801 sfc_adapter_unlock(sa); 802 803 return 0; 804 } 805 806 static int 807 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 808 { 809 struct sfc_adapter *sa = dev->data->dev_private; 810 struct sfc_port *port = &sa->port; 811 unsigned int fcntl; 812 int rc; 813 814 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 815 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 816 fc_conf->mac_ctrl_frame_fwd != 0) { 817 sfc_err(sa, "unsupported flow control settings specified"); 818 rc = EINVAL; 819 goto fail_inval; 820 } 821 822 switch (fc_conf->mode) { 823 case RTE_FC_NONE: 824 fcntl = 0; 825 break; 826 case RTE_FC_RX_PAUSE: 827 fcntl = EFX_FCNTL_RESPOND; 828 break; 829 case RTE_FC_TX_PAUSE: 830 fcntl = EFX_FCNTL_GENERATE; 831 break; 832 case RTE_FC_FULL: 833 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 834 break; 835 default: 836 rc = EINVAL; 837 goto fail_inval; 838 } 839 840 sfc_adapter_lock(sa); 841 842 if (sa->state == SFC_ADAPTER_STARTED) { 843 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 844 if (rc != 0) 845 goto fail_mac_fcntl_set; 846 } 847 848 port->flow_ctrl = fcntl; 849 port->flow_ctrl_autoneg = fc_conf->autoneg; 850 851 sfc_adapter_unlock(sa); 852 853 return 0; 854 855 fail_mac_fcntl_set: 856 sfc_adapter_unlock(sa); 857 fail_inval: 858 SFC_ASSERT(rc > 0); 859 return -rc; 860 } 861 862 static int 863 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 864 { 865 struct sfc_adapter *sa = dev->data->dev_private; 866 size_t pdu = EFX_MAC_PDU(mtu); 867 size_t old_pdu; 868 int rc; 869 870 sfc_log_init(sa, "mtu=%u", mtu); 871 872 rc = EINVAL; 873 if (pdu < EFX_MAC_PDU_MIN) { 874 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 875 (unsigned int)mtu, (unsigned int)pdu, 876 EFX_MAC_PDU_MIN); 877 goto fail_inval; 878 } 879 if (pdu > EFX_MAC_PDU_MAX) { 880 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 881 (unsigned int)mtu, (unsigned int)pdu, 882 EFX_MAC_PDU_MAX); 883 goto fail_inval; 884 } 885 886 sfc_adapter_lock(sa); 887 888 if (pdu != sa->port.pdu) { 889 if (sa->state == SFC_ADAPTER_STARTED) { 890 sfc_stop(sa); 891 892 old_pdu = sa->port.pdu; 893 sa->port.pdu = pdu; 894 rc = sfc_start(sa); 895 if (rc != 0) 896 goto fail_start; 897 } else { 898 sa->port.pdu = pdu; 899 } 900 } 901 902 /* 903 * The driver does not use it, but other PMDs update jumbo frame 904 * flag and max_rx_pkt_len when MTU is set. 905 */ 906 if (mtu > ETHER_MAX_LEN) { 907 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 908 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 909 } 910 911 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 912 913 sfc_adapter_unlock(sa); 914 915 sfc_log_init(sa, "done"); 916 return 0; 917 918 fail_start: 919 sa->port.pdu = old_pdu; 920 if (sfc_start(sa) != 0) 921 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 922 "PDU max size - port is stopped", 923 (unsigned int)pdu, (unsigned int)old_pdu); 924 sfc_adapter_unlock(sa); 925 926 fail_inval: 927 sfc_log_init(sa, "failed %d", rc); 928 SFC_ASSERT(rc > 0); 929 return -rc; 930 } 931 static int 932 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 933 { 934 struct sfc_adapter *sa = dev->data->dev_private; 935 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 936 struct sfc_port *port = &sa->port; 937 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 938 int rc = 0; 939 940 sfc_adapter_lock(sa); 941 942 /* 943 * Copy the address to the device private data so that 944 * it could be recalled in the case of adapter restart. 945 */ 946 ether_addr_copy(mac_addr, &port->default_mac_addr); 947 948 /* 949 * Neither of the two following checks can return 950 * an error. The new MAC address is preserved in 951 * the device private data and can be activated 952 * on the next port start if the user prevents 953 * isolated mode from being enabled. 954 */ 955 if (port->isolated) { 956 sfc_warn(sa, "isolated mode is active on the port"); 957 sfc_warn(sa, "will not set MAC address"); 958 goto unlock; 959 } 960 961 if (sa->state != SFC_ADAPTER_STARTED) { 962 sfc_notice(sa, "the port is not started"); 963 sfc_notice(sa, "the new MAC address will be set on port start"); 964 965 goto unlock; 966 } 967 968 if (encp->enc_allow_set_mac_with_installed_filters) { 969 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 970 if (rc != 0) { 971 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 972 goto unlock; 973 } 974 975 /* 976 * Changing the MAC address by means of MCDI request 977 * has no effect on received traffic, therefore 978 * we also need to update unicast filters 979 */ 980 rc = sfc_set_rx_mode(sa); 981 if (rc != 0) { 982 sfc_err(sa, "cannot set filter (rc = %u)", rc); 983 /* Rollback the old address */ 984 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 985 (void)sfc_set_rx_mode(sa); 986 } 987 } else { 988 sfc_warn(sa, "cannot set MAC address with filters installed"); 989 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 990 sfc_warn(sa, "(some traffic may be dropped)"); 991 992 /* 993 * Since setting MAC address with filters installed is not 994 * allowed on the adapter, the new MAC address will be set 995 * by means of adapter restart. sfc_start() shall retrieve 996 * the new address from the device private data and set it. 997 */ 998 sfc_stop(sa); 999 rc = sfc_start(sa); 1000 if (rc != 0) 1001 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1002 } 1003 1004 unlock: 1005 if (rc != 0) 1006 ether_addr_copy(old_addr, &port->default_mac_addr); 1007 1008 sfc_adapter_unlock(sa); 1009 1010 SFC_ASSERT(rc >= 0); 1011 return -rc; 1012 } 1013 1014 1015 static int 1016 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1017 uint32_t nb_mc_addr) 1018 { 1019 struct sfc_adapter *sa = dev->data->dev_private; 1020 struct sfc_port *port = &sa->port; 1021 uint8_t *mc_addrs = port->mcast_addrs; 1022 int rc; 1023 unsigned int i; 1024 1025 if (port->isolated) { 1026 sfc_err(sa, "isolated mode is active on the port"); 1027 sfc_err(sa, "will not set multicast address list"); 1028 return -ENOTSUP; 1029 } 1030 1031 if (mc_addrs == NULL) 1032 return -ENOBUFS; 1033 1034 if (nb_mc_addr > port->max_mcast_addrs) { 1035 sfc_err(sa, "too many multicast addresses: %u > %u", 1036 nb_mc_addr, port->max_mcast_addrs); 1037 return -EINVAL; 1038 } 1039 1040 for (i = 0; i < nb_mc_addr; ++i) { 1041 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1042 EFX_MAC_ADDR_LEN); 1043 mc_addrs += EFX_MAC_ADDR_LEN; 1044 } 1045 1046 port->nb_mcast_addrs = nb_mc_addr; 1047 1048 if (sa->state != SFC_ADAPTER_STARTED) 1049 return 0; 1050 1051 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1052 port->nb_mcast_addrs); 1053 if (rc != 0) 1054 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1055 1056 SFC_ASSERT(rc >= 0); 1057 return -rc; 1058 } 1059 1060 /* 1061 * The function is used by the secondary process as well. It must not 1062 * use any process-local pointers from the adapter data. 1063 */ 1064 static void 1065 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1066 struct rte_eth_rxq_info *qinfo) 1067 { 1068 struct sfc_adapter *sa = dev->data->dev_private; 1069 struct sfc_rxq_info *rxq_info; 1070 1071 sfc_adapter_lock(sa); 1072 1073 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1074 1075 rxq_info = &sa->rxq_info[rx_queue_id]; 1076 1077 qinfo->mp = rxq_info->refill_mb_pool; 1078 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1079 qinfo->conf.rx_drop_en = 1; 1080 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1081 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1082 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1083 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1084 qinfo->scattered_rx = 1; 1085 } 1086 qinfo->nb_desc = rxq_info->entries; 1087 1088 sfc_adapter_unlock(sa); 1089 } 1090 1091 /* 1092 * The function is used by the secondary process as well. It must not 1093 * use any process-local pointers from the adapter data. 1094 */ 1095 static void 1096 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1097 struct rte_eth_txq_info *qinfo) 1098 { 1099 struct sfc_adapter *sa = dev->data->dev_private; 1100 struct sfc_txq_info *txq_info; 1101 1102 sfc_adapter_lock(sa); 1103 1104 SFC_ASSERT(tx_queue_id < sa->txq_count); 1105 1106 txq_info = &sa->txq_info[tx_queue_id]; 1107 SFC_ASSERT(txq_info->txq != NULL); 1108 1109 memset(qinfo, 0, sizeof(*qinfo)); 1110 1111 qinfo->conf.offloads = txq_info->txq->offloads; 1112 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1113 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1114 qinfo->nb_desc = txq_info->entries; 1115 1116 sfc_adapter_unlock(sa); 1117 } 1118 1119 static uint32_t 1120 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1121 { 1122 struct sfc_adapter *sa = dev->data->dev_private; 1123 1124 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1125 } 1126 1127 static int 1128 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1129 { 1130 struct sfc_dp_rxq *dp_rxq = queue; 1131 1132 return sfc_rx_qdesc_done(dp_rxq, offset); 1133 } 1134 1135 static int 1136 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1137 { 1138 struct sfc_dp_rxq *dp_rxq = queue; 1139 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1140 1141 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1142 } 1143 1144 static int 1145 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1146 { 1147 struct sfc_dp_txq *dp_txq = queue; 1148 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1149 1150 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1151 } 1152 1153 static int 1154 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1155 { 1156 struct sfc_adapter *sa = dev->data->dev_private; 1157 int rc; 1158 1159 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1160 1161 sfc_adapter_lock(sa); 1162 1163 rc = EINVAL; 1164 if (sa->state != SFC_ADAPTER_STARTED) 1165 goto fail_not_started; 1166 1167 if (sa->rxq_info[rx_queue_id].rxq == NULL) 1168 goto fail_not_setup; 1169 1170 rc = sfc_rx_qstart(sa, rx_queue_id); 1171 if (rc != 0) 1172 goto fail_rx_qstart; 1173 1174 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1175 1176 sfc_adapter_unlock(sa); 1177 1178 return 0; 1179 1180 fail_rx_qstart: 1181 fail_not_setup: 1182 fail_not_started: 1183 sfc_adapter_unlock(sa); 1184 SFC_ASSERT(rc > 0); 1185 return -rc; 1186 } 1187 1188 static int 1189 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1190 { 1191 struct sfc_adapter *sa = dev->data->dev_private; 1192 1193 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1194 1195 sfc_adapter_lock(sa); 1196 sfc_rx_qstop(sa, rx_queue_id); 1197 1198 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1199 1200 sfc_adapter_unlock(sa); 1201 1202 return 0; 1203 } 1204 1205 static int 1206 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1207 { 1208 struct sfc_adapter *sa = dev->data->dev_private; 1209 int rc; 1210 1211 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1212 1213 sfc_adapter_lock(sa); 1214 1215 rc = EINVAL; 1216 if (sa->state != SFC_ADAPTER_STARTED) 1217 goto fail_not_started; 1218 1219 if (sa->txq_info[tx_queue_id].txq == NULL) 1220 goto fail_not_setup; 1221 1222 rc = sfc_tx_qstart(sa, tx_queue_id); 1223 if (rc != 0) 1224 goto fail_tx_qstart; 1225 1226 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1227 1228 sfc_adapter_unlock(sa); 1229 return 0; 1230 1231 fail_tx_qstart: 1232 1233 fail_not_setup: 1234 fail_not_started: 1235 sfc_adapter_unlock(sa); 1236 SFC_ASSERT(rc > 0); 1237 return -rc; 1238 } 1239 1240 static int 1241 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1242 { 1243 struct sfc_adapter *sa = dev->data->dev_private; 1244 1245 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1246 1247 sfc_adapter_lock(sa); 1248 1249 sfc_tx_qstop(sa, tx_queue_id); 1250 1251 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1252 1253 sfc_adapter_unlock(sa); 1254 return 0; 1255 } 1256 1257 static efx_tunnel_protocol_t 1258 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1259 { 1260 switch (rte_type) { 1261 case RTE_TUNNEL_TYPE_VXLAN: 1262 return EFX_TUNNEL_PROTOCOL_VXLAN; 1263 case RTE_TUNNEL_TYPE_GENEVE: 1264 return EFX_TUNNEL_PROTOCOL_GENEVE; 1265 default: 1266 return EFX_TUNNEL_NPROTOS; 1267 } 1268 } 1269 1270 enum sfc_udp_tunnel_op_e { 1271 SFC_UDP_TUNNEL_ADD_PORT, 1272 SFC_UDP_TUNNEL_DEL_PORT, 1273 }; 1274 1275 static int 1276 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1277 struct rte_eth_udp_tunnel *tunnel_udp, 1278 enum sfc_udp_tunnel_op_e op) 1279 { 1280 struct sfc_adapter *sa = dev->data->dev_private; 1281 efx_tunnel_protocol_t tunnel_proto; 1282 int rc; 1283 1284 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1285 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1286 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1287 tunnel_udp->udp_port, tunnel_udp->prot_type); 1288 1289 tunnel_proto = 1290 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1291 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1292 rc = ENOTSUP; 1293 goto fail_bad_proto; 1294 } 1295 1296 sfc_adapter_lock(sa); 1297 1298 switch (op) { 1299 case SFC_UDP_TUNNEL_ADD_PORT: 1300 rc = efx_tunnel_config_udp_add(sa->nic, 1301 tunnel_udp->udp_port, 1302 tunnel_proto); 1303 break; 1304 case SFC_UDP_TUNNEL_DEL_PORT: 1305 rc = efx_tunnel_config_udp_remove(sa->nic, 1306 tunnel_udp->udp_port, 1307 tunnel_proto); 1308 break; 1309 default: 1310 rc = EINVAL; 1311 goto fail_bad_op; 1312 } 1313 1314 if (rc != 0) 1315 goto fail_op; 1316 1317 if (sa->state == SFC_ADAPTER_STARTED) { 1318 rc = efx_tunnel_reconfigure(sa->nic); 1319 if (rc == EAGAIN) { 1320 /* 1321 * Configuration is accepted by FW and MC reboot 1322 * is initiated to apply the changes. MC reboot 1323 * will be handled in a usual way (MC reboot 1324 * event on management event queue and adapter 1325 * restart). 1326 */ 1327 rc = 0; 1328 } else if (rc != 0) { 1329 goto fail_reconfigure; 1330 } 1331 } 1332 1333 sfc_adapter_unlock(sa); 1334 return 0; 1335 1336 fail_reconfigure: 1337 /* Remove/restore entry since the change makes the trouble */ 1338 switch (op) { 1339 case SFC_UDP_TUNNEL_ADD_PORT: 1340 (void)efx_tunnel_config_udp_remove(sa->nic, 1341 tunnel_udp->udp_port, 1342 tunnel_proto); 1343 break; 1344 case SFC_UDP_TUNNEL_DEL_PORT: 1345 (void)efx_tunnel_config_udp_add(sa->nic, 1346 tunnel_udp->udp_port, 1347 tunnel_proto); 1348 break; 1349 } 1350 1351 fail_op: 1352 fail_bad_op: 1353 sfc_adapter_unlock(sa); 1354 1355 fail_bad_proto: 1356 SFC_ASSERT(rc > 0); 1357 return -rc; 1358 } 1359 1360 static int 1361 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1362 struct rte_eth_udp_tunnel *tunnel_udp) 1363 { 1364 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1365 } 1366 1367 static int 1368 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1369 struct rte_eth_udp_tunnel *tunnel_udp) 1370 { 1371 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1372 } 1373 1374 static int 1375 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1376 struct rte_eth_rss_conf *rss_conf) 1377 { 1378 struct sfc_adapter *sa = dev->data->dev_private; 1379 struct sfc_rss *rss = &sa->rss; 1380 1381 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1382 return -ENOTSUP; 1383 1384 sfc_adapter_lock(sa); 1385 1386 /* 1387 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1388 * hence, conversion is done here to derive a correct set of ETH_RSS 1389 * flags which corresponds to the active EFX configuration stored 1390 * locally in 'sfc_adapter' and kept up-to-date 1391 */ 1392 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1393 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1394 if (rss_conf->rss_key != NULL) 1395 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1396 1397 sfc_adapter_unlock(sa); 1398 1399 return 0; 1400 } 1401 1402 static int 1403 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1404 struct rte_eth_rss_conf *rss_conf) 1405 { 1406 struct sfc_adapter *sa = dev->data->dev_private; 1407 struct sfc_rss *rss = &sa->rss; 1408 struct sfc_port *port = &sa->port; 1409 unsigned int efx_hash_types; 1410 int rc = 0; 1411 1412 if (port->isolated) 1413 return -ENOTSUP; 1414 1415 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1416 sfc_err(sa, "RSS is not available"); 1417 return -ENOTSUP; 1418 } 1419 1420 if (rss->channels == 0) { 1421 sfc_err(sa, "RSS is not configured"); 1422 return -EINVAL; 1423 } 1424 1425 if ((rss_conf->rss_key != NULL) && 1426 (rss_conf->rss_key_len != sizeof(rss->key))) { 1427 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1428 sizeof(rss->key)); 1429 return -EINVAL; 1430 } 1431 1432 sfc_adapter_lock(sa); 1433 1434 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1435 if (rc != 0) 1436 goto fail_rx_hf_rte_to_efx; 1437 1438 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1439 rss->hash_alg, efx_hash_types, B_TRUE); 1440 if (rc != 0) 1441 goto fail_scale_mode_set; 1442 1443 if (rss_conf->rss_key != NULL) { 1444 if (sa->state == SFC_ADAPTER_STARTED) { 1445 rc = efx_rx_scale_key_set(sa->nic, 1446 EFX_RSS_CONTEXT_DEFAULT, 1447 rss_conf->rss_key, 1448 sizeof(rss->key)); 1449 if (rc != 0) 1450 goto fail_scale_key_set; 1451 } 1452 1453 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1454 } 1455 1456 rss->hash_types = efx_hash_types; 1457 1458 sfc_adapter_unlock(sa); 1459 1460 return 0; 1461 1462 fail_scale_key_set: 1463 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1464 EFX_RX_HASHALG_TOEPLITZ, 1465 rss->hash_types, B_TRUE) != 0) 1466 sfc_err(sa, "failed to restore RSS mode"); 1467 1468 fail_scale_mode_set: 1469 fail_rx_hf_rte_to_efx: 1470 sfc_adapter_unlock(sa); 1471 return -rc; 1472 } 1473 1474 static int 1475 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1476 struct rte_eth_rss_reta_entry64 *reta_conf, 1477 uint16_t reta_size) 1478 { 1479 struct sfc_adapter *sa = dev->data->dev_private; 1480 struct sfc_rss *rss = &sa->rss; 1481 struct sfc_port *port = &sa->port; 1482 int entry; 1483 1484 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1485 return -ENOTSUP; 1486 1487 if (rss->channels == 0) 1488 return -EINVAL; 1489 1490 if (reta_size != EFX_RSS_TBL_SIZE) 1491 return -EINVAL; 1492 1493 sfc_adapter_lock(sa); 1494 1495 for (entry = 0; entry < reta_size; entry++) { 1496 int grp = entry / RTE_RETA_GROUP_SIZE; 1497 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1498 1499 if ((reta_conf[grp].mask >> grp_idx) & 1) 1500 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1501 } 1502 1503 sfc_adapter_unlock(sa); 1504 1505 return 0; 1506 } 1507 1508 static int 1509 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1510 struct rte_eth_rss_reta_entry64 *reta_conf, 1511 uint16_t reta_size) 1512 { 1513 struct sfc_adapter *sa = dev->data->dev_private; 1514 struct sfc_rss *rss = &sa->rss; 1515 struct sfc_port *port = &sa->port; 1516 unsigned int *rss_tbl_new; 1517 uint16_t entry; 1518 int rc = 0; 1519 1520 1521 if (port->isolated) 1522 return -ENOTSUP; 1523 1524 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1525 sfc_err(sa, "RSS is not available"); 1526 return -ENOTSUP; 1527 } 1528 1529 if (rss->channels == 0) { 1530 sfc_err(sa, "RSS is not configured"); 1531 return -EINVAL; 1532 } 1533 1534 if (reta_size != EFX_RSS_TBL_SIZE) { 1535 sfc_err(sa, "RETA size is wrong (should be %u)", 1536 EFX_RSS_TBL_SIZE); 1537 return -EINVAL; 1538 } 1539 1540 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1541 if (rss_tbl_new == NULL) 1542 return -ENOMEM; 1543 1544 sfc_adapter_lock(sa); 1545 1546 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1547 1548 for (entry = 0; entry < reta_size; entry++) { 1549 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1550 struct rte_eth_rss_reta_entry64 *grp; 1551 1552 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1553 1554 if (grp->mask & (1ull << grp_idx)) { 1555 if (grp->reta[grp_idx] >= rss->channels) { 1556 rc = EINVAL; 1557 goto bad_reta_entry; 1558 } 1559 rss_tbl_new[entry] = grp->reta[grp_idx]; 1560 } 1561 } 1562 1563 if (sa->state == SFC_ADAPTER_STARTED) { 1564 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1565 rss_tbl_new, EFX_RSS_TBL_SIZE); 1566 if (rc != 0) 1567 goto fail_scale_tbl_set; 1568 } 1569 1570 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1571 1572 fail_scale_tbl_set: 1573 bad_reta_entry: 1574 sfc_adapter_unlock(sa); 1575 1576 rte_free(rss_tbl_new); 1577 1578 SFC_ASSERT(rc >= 0); 1579 return -rc; 1580 } 1581 1582 static int 1583 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1584 enum rte_filter_op filter_op, 1585 void *arg) 1586 { 1587 struct sfc_adapter *sa = dev->data->dev_private; 1588 int rc = ENOTSUP; 1589 1590 sfc_log_init(sa, "entry"); 1591 1592 switch (filter_type) { 1593 case RTE_ETH_FILTER_NONE: 1594 sfc_err(sa, "Global filters configuration not supported"); 1595 break; 1596 case RTE_ETH_FILTER_MACVLAN: 1597 sfc_err(sa, "MACVLAN filters not supported"); 1598 break; 1599 case RTE_ETH_FILTER_ETHERTYPE: 1600 sfc_err(sa, "EtherType filters not supported"); 1601 break; 1602 case RTE_ETH_FILTER_FLEXIBLE: 1603 sfc_err(sa, "Flexible filters not supported"); 1604 break; 1605 case RTE_ETH_FILTER_SYN: 1606 sfc_err(sa, "SYN filters not supported"); 1607 break; 1608 case RTE_ETH_FILTER_NTUPLE: 1609 sfc_err(sa, "NTUPLE filters not supported"); 1610 break; 1611 case RTE_ETH_FILTER_TUNNEL: 1612 sfc_err(sa, "Tunnel filters not supported"); 1613 break; 1614 case RTE_ETH_FILTER_FDIR: 1615 sfc_err(sa, "Flow Director filters not supported"); 1616 break; 1617 case RTE_ETH_FILTER_HASH: 1618 sfc_err(sa, "Hash filters not supported"); 1619 break; 1620 case RTE_ETH_FILTER_GENERIC: 1621 if (filter_op != RTE_ETH_FILTER_GET) { 1622 rc = EINVAL; 1623 } else { 1624 *(const void **)arg = &sfc_flow_ops; 1625 rc = 0; 1626 } 1627 break; 1628 default: 1629 sfc_err(sa, "Unknown filter type %u", filter_type); 1630 break; 1631 } 1632 1633 sfc_log_init(sa, "exit: %d", -rc); 1634 SFC_ASSERT(rc >= 0); 1635 return -rc; 1636 } 1637 1638 static int 1639 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1640 { 1641 struct sfc_adapter *sa = dev->data->dev_private; 1642 1643 /* 1644 * If Rx datapath does not provide callback to check mempool, 1645 * all pools are supported. 1646 */ 1647 if (sa->dp_rx->pool_ops_supported == NULL) 1648 return 1; 1649 1650 return sa->dp_rx->pool_ops_supported(pool); 1651 } 1652 1653 static const struct eth_dev_ops sfc_eth_dev_ops = { 1654 .dev_configure = sfc_dev_configure, 1655 .dev_start = sfc_dev_start, 1656 .dev_stop = sfc_dev_stop, 1657 .dev_set_link_up = sfc_dev_set_link_up, 1658 .dev_set_link_down = sfc_dev_set_link_down, 1659 .dev_close = sfc_dev_close, 1660 .promiscuous_enable = sfc_dev_promisc_enable, 1661 .promiscuous_disable = sfc_dev_promisc_disable, 1662 .allmulticast_enable = sfc_dev_allmulti_enable, 1663 .allmulticast_disable = sfc_dev_allmulti_disable, 1664 .link_update = sfc_dev_link_update, 1665 .stats_get = sfc_stats_get, 1666 .stats_reset = sfc_stats_reset, 1667 .xstats_get = sfc_xstats_get, 1668 .xstats_reset = sfc_stats_reset, 1669 .xstats_get_names = sfc_xstats_get_names, 1670 .dev_infos_get = sfc_dev_infos_get, 1671 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1672 .mtu_set = sfc_dev_set_mtu, 1673 .rx_queue_start = sfc_rx_queue_start, 1674 .rx_queue_stop = sfc_rx_queue_stop, 1675 .tx_queue_start = sfc_tx_queue_start, 1676 .tx_queue_stop = sfc_tx_queue_stop, 1677 .rx_queue_setup = sfc_rx_queue_setup, 1678 .rx_queue_release = sfc_rx_queue_release, 1679 .rx_queue_count = sfc_rx_queue_count, 1680 .rx_descriptor_done = sfc_rx_descriptor_done, 1681 .rx_descriptor_status = sfc_rx_descriptor_status, 1682 .tx_descriptor_status = sfc_tx_descriptor_status, 1683 .tx_queue_setup = sfc_tx_queue_setup, 1684 .tx_queue_release = sfc_tx_queue_release, 1685 .flow_ctrl_get = sfc_flow_ctrl_get, 1686 .flow_ctrl_set = sfc_flow_ctrl_set, 1687 .mac_addr_set = sfc_mac_addr_set, 1688 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1689 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1690 .reta_update = sfc_dev_rss_reta_update, 1691 .reta_query = sfc_dev_rss_reta_query, 1692 .rss_hash_update = sfc_dev_rss_hash_update, 1693 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1694 .filter_ctrl = sfc_dev_filter_ctrl, 1695 .set_mc_addr_list = sfc_set_mc_addr_list, 1696 .rxq_info_get = sfc_rx_queue_info_get, 1697 .txq_info_get = sfc_tx_queue_info_get, 1698 .fw_version_get = sfc_fw_version_get, 1699 .xstats_get_by_id = sfc_xstats_get_by_id, 1700 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1701 .pool_ops_supported = sfc_pool_ops_supported, 1702 }; 1703 1704 /** 1705 * Duplicate a string in potentially shared memory required for 1706 * multi-process support. 1707 * 1708 * strdup() allocates from process-local heap/memory. 1709 */ 1710 static char * 1711 sfc_strdup(const char *str) 1712 { 1713 size_t size; 1714 char *copy; 1715 1716 if (str == NULL) 1717 return NULL; 1718 1719 size = strlen(str) + 1; 1720 copy = rte_malloc(__func__, size, 0); 1721 if (copy != NULL) 1722 rte_memcpy(copy, str, size); 1723 1724 return copy; 1725 } 1726 1727 static int 1728 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1729 { 1730 struct sfc_adapter *sa = dev->data->dev_private; 1731 const efx_nic_cfg_t *encp; 1732 unsigned int avail_caps = 0; 1733 const char *rx_name = NULL; 1734 const char *tx_name = NULL; 1735 int rc; 1736 1737 switch (sa->family) { 1738 case EFX_FAMILY_HUNTINGTON: 1739 case EFX_FAMILY_MEDFORD: 1740 case EFX_FAMILY_MEDFORD2: 1741 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1742 break; 1743 default: 1744 break; 1745 } 1746 1747 encp = efx_nic_cfg_get(sa->nic); 1748 if (encp->enc_rx_es_super_buffer_supported) 1749 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1750 1751 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1752 sfc_kvarg_string_handler, &rx_name); 1753 if (rc != 0) 1754 goto fail_kvarg_rx_datapath; 1755 1756 if (rx_name != NULL) { 1757 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1758 if (sa->dp_rx == NULL) { 1759 sfc_err(sa, "Rx datapath %s not found", rx_name); 1760 rc = ENOENT; 1761 goto fail_dp_rx; 1762 } 1763 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1764 sfc_err(sa, 1765 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1766 rx_name); 1767 rc = EINVAL; 1768 goto fail_dp_rx_caps; 1769 } 1770 } else { 1771 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1772 if (sa->dp_rx == NULL) { 1773 sfc_err(sa, "Rx datapath by caps %#x not found", 1774 avail_caps); 1775 rc = ENOENT; 1776 goto fail_dp_rx; 1777 } 1778 } 1779 1780 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1781 if (sa->dp_rx_name == NULL) { 1782 rc = ENOMEM; 1783 goto fail_dp_rx_name; 1784 } 1785 1786 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1787 1788 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1789 1790 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1791 sfc_kvarg_string_handler, &tx_name); 1792 if (rc != 0) 1793 goto fail_kvarg_tx_datapath; 1794 1795 if (tx_name != NULL) { 1796 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1797 if (sa->dp_tx == NULL) { 1798 sfc_err(sa, "Tx datapath %s not found", tx_name); 1799 rc = ENOENT; 1800 goto fail_dp_tx; 1801 } 1802 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1803 sfc_err(sa, 1804 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1805 tx_name); 1806 rc = EINVAL; 1807 goto fail_dp_tx_caps; 1808 } 1809 } else { 1810 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1811 if (sa->dp_tx == NULL) { 1812 sfc_err(sa, "Tx datapath by caps %#x not found", 1813 avail_caps); 1814 rc = ENOENT; 1815 goto fail_dp_tx; 1816 } 1817 } 1818 1819 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1820 if (sa->dp_tx_name == NULL) { 1821 rc = ENOMEM; 1822 goto fail_dp_tx_name; 1823 } 1824 1825 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1826 1827 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1828 1829 dev->dev_ops = &sfc_eth_dev_ops; 1830 1831 return 0; 1832 1833 fail_dp_tx_name: 1834 fail_dp_tx_caps: 1835 sa->dp_tx = NULL; 1836 1837 fail_dp_tx: 1838 fail_kvarg_tx_datapath: 1839 rte_free(sa->dp_rx_name); 1840 sa->dp_rx_name = NULL; 1841 1842 fail_dp_rx_name: 1843 fail_dp_rx_caps: 1844 sa->dp_rx = NULL; 1845 1846 fail_dp_rx: 1847 fail_kvarg_rx_datapath: 1848 return rc; 1849 } 1850 1851 static void 1852 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1853 { 1854 struct sfc_adapter *sa = dev->data->dev_private; 1855 1856 dev->dev_ops = NULL; 1857 dev->rx_pkt_burst = NULL; 1858 dev->tx_pkt_burst = NULL; 1859 1860 rte_free(sa->dp_tx_name); 1861 sa->dp_tx_name = NULL; 1862 sa->dp_tx = NULL; 1863 1864 rte_free(sa->dp_rx_name); 1865 sa->dp_rx_name = NULL; 1866 sa->dp_rx = NULL; 1867 } 1868 1869 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1870 .rxq_info_get = sfc_rx_queue_info_get, 1871 .txq_info_get = sfc_tx_queue_info_get, 1872 }; 1873 1874 static int 1875 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev, uint32_t logtype_main) 1876 { 1877 /* 1878 * Device private data has really many process-local pointers. 1879 * Below code should be extremely careful to use data located 1880 * in shared memory only. 1881 */ 1882 struct sfc_adapter *sa = dev->data->dev_private; 1883 const struct sfc_dp_rx *dp_rx; 1884 const struct sfc_dp_tx *dp_tx; 1885 int rc; 1886 1887 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1888 if (dp_rx == NULL) { 1889 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1890 "cannot find %s Rx datapath", sa->dp_rx_name); 1891 rc = ENOENT; 1892 goto fail_dp_rx; 1893 } 1894 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1895 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1896 "%s Rx datapath does not support multi-process", 1897 sa->dp_rx_name); 1898 rc = EINVAL; 1899 goto fail_dp_rx_multi_process; 1900 } 1901 1902 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1903 if (dp_tx == NULL) { 1904 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1905 "cannot find %s Tx datapath", sa->dp_tx_name); 1906 rc = ENOENT; 1907 goto fail_dp_tx; 1908 } 1909 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1910 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1911 "%s Tx datapath does not support multi-process", 1912 sa->dp_tx_name); 1913 rc = EINVAL; 1914 goto fail_dp_tx_multi_process; 1915 } 1916 1917 dev->rx_pkt_burst = dp_rx->pkt_burst; 1918 dev->tx_pkt_burst = dp_tx->pkt_burst; 1919 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1920 1921 return 0; 1922 1923 fail_dp_tx_multi_process: 1924 fail_dp_tx: 1925 fail_dp_rx_multi_process: 1926 fail_dp_rx: 1927 return rc; 1928 } 1929 1930 static void 1931 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1932 { 1933 dev->dev_ops = NULL; 1934 dev->tx_pkt_burst = NULL; 1935 dev->rx_pkt_burst = NULL; 1936 } 1937 1938 static void 1939 sfc_register_dp(void) 1940 { 1941 /* Register once */ 1942 if (TAILQ_EMPTY(&sfc_dp_head)) { 1943 /* Prefer EF10 datapath */ 1944 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 1945 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1946 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1947 1948 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1949 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1950 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1951 } 1952 } 1953 1954 static int 1955 sfc_eth_dev_init(struct rte_eth_dev *dev) 1956 { 1957 struct sfc_adapter *sa = dev->data->dev_private; 1958 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1959 uint32_t logtype_main; 1960 int rc; 1961 const efx_nic_cfg_t *encp; 1962 const struct ether_addr *from; 1963 1964 sfc_register_dp(); 1965 1966 logtype_main = sfc_register_logtype(&pci_dev->addr, 1967 SFC_LOGTYPE_MAIN_STR, 1968 RTE_LOG_NOTICE); 1969 1970 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1971 return -sfc_eth_dev_secondary_set_ops(dev, logtype_main); 1972 1973 /* Required for logging */ 1974 sa->pci_addr = pci_dev->addr; 1975 sa->port_id = dev->data->port_id; 1976 sa->logtype_main = logtype_main; 1977 1978 sa->eth_dev = dev; 1979 1980 /* Copy PCI device info to the dev->data */ 1981 rte_eth_copy_pci_info(dev, pci_dev); 1982 1983 rc = sfc_kvargs_parse(sa); 1984 if (rc != 0) 1985 goto fail_kvargs_parse; 1986 1987 sfc_log_init(sa, "entry"); 1988 1989 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1990 if (dev->data->mac_addrs == NULL) { 1991 rc = ENOMEM; 1992 goto fail_mac_addrs; 1993 } 1994 1995 sfc_adapter_lock_init(sa); 1996 sfc_adapter_lock(sa); 1997 1998 sfc_log_init(sa, "probing"); 1999 rc = sfc_probe(sa); 2000 if (rc != 0) 2001 goto fail_probe; 2002 2003 sfc_log_init(sa, "set device ops"); 2004 rc = sfc_eth_dev_set_ops(dev); 2005 if (rc != 0) 2006 goto fail_set_ops; 2007 2008 sfc_log_init(sa, "attaching"); 2009 rc = sfc_attach(sa); 2010 if (rc != 0) 2011 goto fail_attach; 2012 2013 encp = efx_nic_cfg_get(sa->nic); 2014 2015 /* 2016 * The arguments are really reverse order in comparison to 2017 * Linux kernel. Copy from NIC config to Ethernet device data. 2018 */ 2019 from = (const struct ether_addr *)(encp->enc_mac_addr); 2020 ether_addr_copy(from, &dev->data->mac_addrs[0]); 2021 2022 sfc_adapter_unlock(sa); 2023 2024 sfc_log_init(sa, "done"); 2025 return 0; 2026 2027 fail_attach: 2028 sfc_eth_dev_clear_ops(dev); 2029 2030 fail_set_ops: 2031 sfc_unprobe(sa); 2032 2033 fail_probe: 2034 sfc_adapter_unlock(sa); 2035 sfc_adapter_lock_fini(sa); 2036 rte_free(dev->data->mac_addrs); 2037 dev->data->mac_addrs = NULL; 2038 2039 fail_mac_addrs: 2040 sfc_kvargs_cleanup(sa); 2041 2042 fail_kvargs_parse: 2043 sfc_log_init(sa, "failed %d", rc); 2044 SFC_ASSERT(rc > 0); 2045 return -rc; 2046 } 2047 2048 static int 2049 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2050 { 2051 struct sfc_adapter *sa; 2052 2053 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2054 sfc_eth_dev_secondary_clear_ops(dev); 2055 return 0; 2056 } 2057 2058 sa = dev->data->dev_private; 2059 sfc_log_init(sa, "entry"); 2060 2061 sfc_adapter_lock(sa); 2062 2063 sfc_eth_dev_clear_ops(dev); 2064 2065 sfc_detach(sa); 2066 sfc_unprobe(sa); 2067 2068 sfc_kvargs_cleanup(sa); 2069 2070 sfc_adapter_unlock(sa); 2071 sfc_adapter_lock_fini(sa); 2072 2073 sfc_log_init(sa, "done"); 2074 2075 /* Required for logging, so cleanup last */ 2076 sa->eth_dev = NULL; 2077 return 0; 2078 } 2079 2080 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2081 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2082 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2083 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2084 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2085 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2086 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2087 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2088 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2089 { .vendor_id = 0 /* sentinel */ } 2090 }; 2091 2092 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2093 struct rte_pci_device *pci_dev) 2094 { 2095 return rte_eth_dev_pci_generic_probe(pci_dev, 2096 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2097 } 2098 2099 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2100 { 2101 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2102 } 2103 2104 static struct rte_pci_driver sfc_efx_pmd = { 2105 .id_table = pci_id_sfc_efx_map, 2106 .drv_flags = 2107 RTE_PCI_DRV_INTR_LSC | 2108 RTE_PCI_DRV_NEED_MAPPING, 2109 .probe = sfc_eth_dev_pci_probe, 2110 .remove = sfc_eth_dev_pci_remove, 2111 }; 2112 2113 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2114 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2115 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2116 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2117 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2118 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2119 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2120 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2121 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2122 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2123 2124 RTE_INIT(sfc_driver_register_logtype) 2125 { 2126 int ret; 2127 2128 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2129 RTE_LOG_NOTICE); 2130 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2131 } 2132