1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2020 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 /* 50 * Return value of the callback is likely supposed to be 51 * equal to or greater than 0, nevertheless, if an error 52 * occurs, it will be desirable to pass it to the caller 53 */ 54 if ((fw_version == NULL) || (fw_size == 0)) 55 return -EINVAL; 56 57 rc = efx_nic_get_fw_version(sa->nic, &enfi); 58 if (rc != 0) 59 return -rc; 60 61 ret = snprintf(fw_version, fw_size, 62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 65 if (ret < 0) 66 return ret; 67 68 if (enfi.enfi_dpcpu_fw_ids_valid) { 69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 70 int ret_extra; 71 72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 73 fw_size - dpcpu_fw_ids_offset, 74 " rx%" PRIx16 " tx%" PRIx16, 75 enfi.enfi_rx_dpcpu_fw_id, 76 enfi.enfi_tx_dpcpu_fw_id); 77 if (ret_extra < 0) 78 return ret_extra; 79 80 ret += ret_extra; 81 } 82 83 if (fw_size < (size_t)(++ret)) 84 return ret; 85 else 86 return 0; 87 } 88 89 static int 90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 91 { 92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 95 struct sfc_rss *rss = &sas->rss; 96 uint64_t txq_offloads_def = 0; 97 98 sfc_log_init(sa, "entry"); 99 100 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 101 dev_info->max_mtu = EFX_MAC_SDU_MAX; 102 103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 104 105 dev_info->max_vfs = sa->sriov.num_vfs; 106 107 /* Autonegotiation may be disabled */ 108 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 116 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 118 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 119 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 120 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 121 122 dev_info->max_rx_queues = sa->rxq_max; 123 dev_info->max_tx_queues = sa->txq_max; 124 125 /* By default packets are dropped if no descriptors are available */ 126 dev_info->default_rxconf.rx_drop_en = 1; 127 128 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 129 130 /* 131 * rx_offload_capa includes both device and queue offloads since 132 * the latter may be requested on a per device basis which makes 133 * sense when some offloads are needed to be set on all queues. 134 */ 135 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 136 dev_info->rx_queue_offload_capa; 137 138 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 139 140 /* 141 * tx_offload_capa includes both device and queue offloads since 142 * the latter may be requested on a per device basis which makes 143 * sense when some offloads are needed to be set on all queues. 144 */ 145 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 146 dev_info->tx_queue_offload_capa; 147 148 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 149 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 150 151 dev_info->default_txconf.offloads |= txq_offloads_def; 152 153 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 154 uint64_t rte_hf = 0; 155 unsigned int i; 156 157 for (i = 0; i < rss->hf_map_nb_entries; ++i) 158 rte_hf |= rss->hf_map[i].rte; 159 160 dev_info->reta_size = EFX_RSS_TBL_SIZE; 161 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 162 dev_info->flow_type_rss_offloads = rte_hf; 163 } 164 165 /* Initialize to hardware limits */ 166 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 167 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 168 /* The RXQ hardware requires that the descriptor count is a power 169 * of 2, but rx_desc_lim cannot properly describe that constraint. 170 */ 171 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 172 173 /* Initialize to hardware limits */ 174 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 175 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 176 /* 177 * The TXQ hardware requires that the descriptor count is a power 178 * of 2, but tx_desc_lim cannot properly describe that constraint 179 */ 180 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 181 182 if (sap->dp_rx->get_dev_info != NULL) 183 sap->dp_rx->get_dev_info(dev_info); 184 if (sap->dp_tx->get_dev_info != NULL) 185 sap->dp_tx->get_dev_info(dev_info); 186 187 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 188 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 189 190 return 0; 191 } 192 193 static const uint32_t * 194 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 195 { 196 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 197 198 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 199 } 200 201 static int 202 sfc_dev_configure(struct rte_eth_dev *dev) 203 { 204 struct rte_eth_dev_data *dev_data = dev->data; 205 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 206 int rc; 207 208 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 209 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 210 211 sfc_adapter_lock(sa); 212 switch (sa->state) { 213 case SFC_ADAPTER_CONFIGURED: 214 /* FALLTHROUGH */ 215 case SFC_ADAPTER_INITIALIZED: 216 rc = sfc_configure(sa); 217 break; 218 default: 219 sfc_err(sa, "unexpected adapter state %u to configure", 220 sa->state); 221 rc = EINVAL; 222 break; 223 } 224 sfc_adapter_unlock(sa); 225 226 sfc_log_init(sa, "done %d", rc); 227 SFC_ASSERT(rc >= 0); 228 return -rc; 229 } 230 231 static int 232 sfc_dev_start(struct rte_eth_dev *dev) 233 { 234 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 235 int rc; 236 237 sfc_log_init(sa, "entry"); 238 239 sfc_adapter_lock(sa); 240 rc = sfc_start(sa); 241 sfc_adapter_unlock(sa); 242 243 sfc_log_init(sa, "done %d", rc); 244 SFC_ASSERT(rc >= 0); 245 return -rc; 246 } 247 248 static int 249 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 250 { 251 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 252 struct rte_eth_link current_link; 253 int ret; 254 255 sfc_log_init(sa, "entry"); 256 257 if (sa->state != SFC_ADAPTER_STARTED) { 258 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 259 } else if (wait_to_complete) { 260 efx_link_mode_t link_mode; 261 262 if (efx_port_poll(sa->nic, &link_mode) != 0) 263 link_mode = EFX_LINK_UNKNOWN; 264 sfc_port_link_mode_to_info(link_mode, ¤t_link); 265 266 } else { 267 sfc_ev_mgmt_qpoll(sa); 268 rte_eth_linkstatus_get(dev, ¤t_link); 269 } 270 271 ret = rte_eth_linkstatus_set(dev, ¤t_link); 272 if (ret == 0) 273 sfc_notice(sa, "Link status is %s", 274 current_link.link_status ? "UP" : "DOWN"); 275 276 return ret; 277 } 278 279 static void 280 sfc_dev_stop(struct rte_eth_dev *dev) 281 { 282 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 283 284 sfc_log_init(sa, "entry"); 285 286 sfc_adapter_lock(sa); 287 sfc_stop(sa); 288 sfc_adapter_unlock(sa); 289 290 sfc_log_init(sa, "done"); 291 } 292 293 static int 294 sfc_dev_set_link_up(struct rte_eth_dev *dev) 295 { 296 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 297 int rc; 298 299 sfc_log_init(sa, "entry"); 300 301 sfc_adapter_lock(sa); 302 rc = sfc_start(sa); 303 sfc_adapter_unlock(sa); 304 305 SFC_ASSERT(rc >= 0); 306 return -rc; 307 } 308 309 static int 310 sfc_dev_set_link_down(struct rte_eth_dev *dev) 311 { 312 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 313 314 sfc_log_init(sa, "entry"); 315 316 sfc_adapter_lock(sa); 317 sfc_stop(sa); 318 sfc_adapter_unlock(sa); 319 320 return 0; 321 } 322 323 static void 324 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 325 { 326 free(dev->process_private); 327 dev->process_private = NULL; 328 dev->dev_ops = NULL; 329 dev->tx_pkt_prepare = NULL; 330 dev->tx_pkt_burst = NULL; 331 dev->rx_pkt_burst = NULL; 332 } 333 334 static int 335 sfc_dev_close(struct rte_eth_dev *dev) 336 { 337 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 338 339 sfc_log_init(sa, "entry"); 340 341 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 342 sfc_eth_dev_secondary_clear_ops(dev); 343 return 0; 344 } 345 346 sfc_adapter_lock(sa); 347 switch (sa->state) { 348 case SFC_ADAPTER_STARTED: 349 sfc_stop(sa); 350 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 351 /* FALLTHROUGH */ 352 case SFC_ADAPTER_CONFIGURED: 353 sfc_close(sa); 354 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 355 /* FALLTHROUGH */ 356 case SFC_ADAPTER_INITIALIZED: 357 break; 358 default: 359 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 360 break; 361 } 362 363 /* 364 * Cleanup all resources. 365 * Rollback primary process sfc_eth_dev_init() below. 366 */ 367 368 sfc_eth_dev_clear_ops(dev); 369 370 sfc_detach(sa); 371 sfc_unprobe(sa); 372 373 sfc_kvargs_cleanup(sa); 374 375 sfc_adapter_unlock(sa); 376 sfc_adapter_lock_fini(sa); 377 378 sfc_log_init(sa, "done"); 379 380 /* Required for logging, so cleanup last */ 381 sa->eth_dev = NULL; 382 383 dev->process_private = NULL; 384 free(sa); 385 386 return 0; 387 } 388 389 static int 390 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 391 boolean_t enabled) 392 { 393 struct sfc_port *port; 394 boolean_t *toggle; 395 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 396 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 397 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 398 int rc = 0; 399 400 sfc_adapter_lock(sa); 401 402 port = &sa->port; 403 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 404 405 if (*toggle != enabled) { 406 *toggle = enabled; 407 408 if (sfc_sa2shared(sa)->isolated) { 409 sfc_warn(sa, "isolated mode is active on the port"); 410 sfc_warn(sa, "the change is to be applied on the next " 411 "start provided that isolated mode is " 412 "disabled prior the next start"); 413 } else if ((sa->state == SFC_ADAPTER_STARTED) && 414 ((rc = sfc_set_rx_mode(sa)) != 0)) { 415 *toggle = !(enabled); 416 sfc_warn(sa, "Failed to %s %s mode, rc = %d", 417 ((enabled) ? "enable" : "disable"), desc, rc); 418 419 /* 420 * For promiscuous and all-multicast filters a 421 * permission failure should be reported as an 422 * unsupported filter. 423 */ 424 if (rc == EPERM) 425 rc = ENOTSUP; 426 } 427 } 428 429 sfc_adapter_unlock(sa); 430 return rc; 431 } 432 433 static int 434 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 435 { 436 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 437 438 SFC_ASSERT(rc >= 0); 439 return -rc; 440 } 441 442 static int 443 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 444 { 445 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 446 447 SFC_ASSERT(rc >= 0); 448 return -rc; 449 } 450 451 static int 452 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 453 { 454 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 455 456 SFC_ASSERT(rc >= 0); 457 return -rc; 458 } 459 460 static int 461 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 462 { 463 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 464 465 SFC_ASSERT(rc >= 0); 466 return -rc; 467 } 468 469 static int 470 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 471 uint16_t nb_rx_desc, unsigned int socket_id, 472 const struct rte_eth_rxconf *rx_conf, 473 struct rte_mempool *mb_pool) 474 { 475 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 476 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 477 int rc; 478 479 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 480 rx_queue_id, nb_rx_desc, socket_id); 481 482 sfc_adapter_lock(sa); 483 484 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 485 rx_conf, mb_pool); 486 if (rc != 0) 487 goto fail_rx_qinit; 488 489 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 490 491 sfc_adapter_unlock(sa); 492 493 return 0; 494 495 fail_rx_qinit: 496 sfc_adapter_unlock(sa); 497 SFC_ASSERT(rc > 0); 498 return -rc; 499 } 500 501 static void 502 sfc_rx_queue_release(void *queue) 503 { 504 struct sfc_dp_rxq *dp_rxq = queue; 505 struct sfc_rxq *rxq; 506 struct sfc_adapter *sa; 507 unsigned int sw_index; 508 509 if (dp_rxq == NULL) 510 return; 511 512 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 513 sa = rxq->evq->sa; 514 sfc_adapter_lock(sa); 515 516 sw_index = dp_rxq->dpq.queue_id; 517 518 sfc_log_init(sa, "RxQ=%u", sw_index); 519 520 sfc_rx_qfini(sa, sw_index); 521 522 sfc_adapter_unlock(sa); 523 } 524 525 static int 526 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 527 uint16_t nb_tx_desc, unsigned int socket_id, 528 const struct rte_eth_txconf *tx_conf) 529 { 530 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 531 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 532 int rc; 533 534 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 535 tx_queue_id, nb_tx_desc, socket_id); 536 537 sfc_adapter_lock(sa); 538 539 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 540 if (rc != 0) 541 goto fail_tx_qinit; 542 543 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 544 545 sfc_adapter_unlock(sa); 546 return 0; 547 548 fail_tx_qinit: 549 sfc_adapter_unlock(sa); 550 SFC_ASSERT(rc > 0); 551 return -rc; 552 } 553 554 static void 555 sfc_tx_queue_release(void *queue) 556 { 557 struct sfc_dp_txq *dp_txq = queue; 558 struct sfc_txq *txq; 559 unsigned int sw_index; 560 struct sfc_adapter *sa; 561 562 if (dp_txq == NULL) 563 return; 564 565 txq = sfc_txq_by_dp_txq(dp_txq); 566 sw_index = dp_txq->dpq.queue_id; 567 568 SFC_ASSERT(txq->evq != NULL); 569 sa = txq->evq->sa; 570 571 sfc_log_init(sa, "TxQ = %u", sw_index); 572 573 sfc_adapter_lock(sa); 574 575 sfc_tx_qfini(sa, sw_index); 576 577 sfc_adapter_unlock(sa); 578 } 579 580 /* 581 * Some statistics are computed as A - B where A and B each increase 582 * monotonically with some hardware counter(s) and the counters are read 583 * asynchronously. 584 * 585 * If packet X is counted in A, but not counted in B yet, computed value is 586 * greater than real. 587 * 588 * If packet X is not counted in A at the moment of reading the counter, 589 * but counted in B at the moment of reading the counter, computed value 590 * is less than real. 591 * 592 * However, counter which grows backward is worse evil than slightly wrong 593 * value. So, let's try to guarantee that it never happens except may be 594 * the case when the MAC stats are zeroed as a result of a NIC reset. 595 */ 596 static void 597 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 598 { 599 if ((int64_t)(newval - *stat) > 0 || newval == 0) 600 *stat = newval; 601 } 602 603 static int 604 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 605 { 606 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 607 struct sfc_port *port = &sa->port; 608 uint64_t *mac_stats; 609 int ret; 610 611 rte_spinlock_lock(&port->mac_stats_lock); 612 613 ret = sfc_port_update_mac_stats(sa); 614 if (ret != 0) 615 goto unlock; 616 617 mac_stats = port->mac_stats_buf; 618 619 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 620 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 621 stats->ipackets = 622 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 623 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 624 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 625 stats->opackets = 626 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 627 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 628 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 629 stats->ibytes = 630 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 631 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 632 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 633 stats->obytes = 634 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 635 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 636 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 637 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 638 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 639 } else { 640 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 641 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 642 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 643 /* 644 * Take into account stats which are whenever supported 645 * on EF10. If some stat is not supported by current 646 * firmware variant or HW revision, it is guaranteed 647 * to be zero in mac_stats. 648 */ 649 stats->imissed = 650 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 651 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 652 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 653 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 654 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 655 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 656 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 657 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 658 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 659 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 660 stats->ierrors = 661 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 662 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 663 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 664 /* no oerrors counters supported on EF10 */ 665 666 /* Exclude missed, errors and pauses from Rx packets */ 667 sfc_update_diff_stat(&port->ipackets, 668 mac_stats[EFX_MAC_RX_PKTS] - 669 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 670 stats->imissed - stats->ierrors); 671 stats->ipackets = port->ipackets; 672 } 673 674 unlock: 675 rte_spinlock_unlock(&port->mac_stats_lock); 676 SFC_ASSERT(ret >= 0); 677 return -ret; 678 } 679 680 static int 681 sfc_stats_reset(struct rte_eth_dev *dev) 682 { 683 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 684 struct sfc_port *port = &sa->port; 685 int rc; 686 687 if (sa->state != SFC_ADAPTER_STARTED) { 688 /* 689 * The operation cannot be done if port is not started; it 690 * will be scheduled to be done during the next port start 691 */ 692 port->mac_stats_reset_pending = B_TRUE; 693 return 0; 694 } 695 696 rc = sfc_port_reset_mac_stats(sa); 697 if (rc != 0) 698 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 699 700 SFC_ASSERT(rc >= 0); 701 return -rc; 702 } 703 704 static int 705 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 706 unsigned int xstats_count) 707 { 708 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 709 struct sfc_port *port = &sa->port; 710 uint64_t *mac_stats; 711 int rc; 712 unsigned int i; 713 int nstats = 0; 714 715 rte_spinlock_lock(&port->mac_stats_lock); 716 717 rc = sfc_port_update_mac_stats(sa); 718 if (rc != 0) { 719 SFC_ASSERT(rc > 0); 720 nstats = -rc; 721 goto unlock; 722 } 723 724 mac_stats = port->mac_stats_buf; 725 726 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 727 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 728 if (xstats != NULL && nstats < (int)xstats_count) { 729 xstats[nstats].id = nstats; 730 xstats[nstats].value = mac_stats[i]; 731 } 732 nstats++; 733 } 734 } 735 736 unlock: 737 rte_spinlock_unlock(&port->mac_stats_lock); 738 739 return nstats; 740 } 741 742 static int 743 sfc_xstats_get_names(struct rte_eth_dev *dev, 744 struct rte_eth_xstat_name *xstats_names, 745 unsigned int xstats_count) 746 { 747 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 748 struct sfc_port *port = &sa->port; 749 unsigned int i; 750 unsigned int nstats = 0; 751 752 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 753 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 754 if (xstats_names != NULL && nstats < xstats_count) 755 strlcpy(xstats_names[nstats].name, 756 efx_mac_stat_name(sa->nic, i), 757 sizeof(xstats_names[0].name)); 758 nstats++; 759 } 760 } 761 762 return nstats; 763 } 764 765 static int 766 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 767 uint64_t *values, unsigned int n) 768 { 769 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 770 struct sfc_port *port = &sa->port; 771 uint64_t *mac_stats; 772 unsigned int nb_supported = 0; 773 unsigned int nb_written = 0; 774 unsigned int i; 775 int ret; 776 int rc; 777 778 if (unlikely(values == NULL) || 779 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 780 return port->mac_stats_nb_supported; 781 782 rte_spinlock_lock(&port->mac_stats_lock); 783 784 rc = sfc_port_update_mac_stats(sa); 785 if (rc != 0) { 786 SFC_ASSERT(rc > 0); 787 ret = -rc; 788 goto unlock; 789 } 790 791 mac_stats = port->mac_stats_buf; 792 793 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 794 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 795 continue; 796 797 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 798 values[nb_written++] = mac_stats[i]; 799 800 ++nb_supported; 801 } 802 803 ret = nb_written; 804 805 unlock: 806 rte_spinlock_unlock(&port->mac_stats_lock); 807 808 return ret; 809 } 810 811 static int 812 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 813 struct rte_eth_xstat_name *xstats_names, 814 const uint64_t *ids, unsigned int size) 815 { 816 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 817 struct sfc_port *port = &sa->port; 818 unsigned int nb_supported = 0; 819 unsigned int nb_written = 0; 820 unsigned int i; 821 822 if (unlikely(xstats_names == NULL) || 823 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 824 return port->mac_stats_nb_supported; 825 826 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 827 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 828 continue; 829 830 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 831 char *name = xstats_names[nb_written++].name; 832 833 strlcpy(name, efx_mac_stat_name(sa->nic, i), 834 sizeof(xstats_names[0].name)); 835 } 836 837 ++nb_supported; 838 } 839 840 return nb_written; 841 } 842 843 static int 844 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 845 { 846 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 847 unsigned int wanted_fc, link_fc; 848 849 memset(fc_conf, 0, sizeof(*fc_conf)); 850 851 sfc_adapter_lock(sa); 852 853 if (sa->state == SFC_ADAPTER_STARTED) 854 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 855 else 856 link_fc = sa->port.flow_ctrl; 857 858 switch (link_fc) { 859 case 0: 860 fc_conf->mode = RTE_FC_NONE; 861 break; 862 case EFX_FCNTL_RESPOND: 863 fc_conf->mode = RTE_FC_RX_PAUSE; 864 break; 865 case EFX_FCNTL_GENERATE: 866 fc_conf->mode = RTE_FC_TX_PAUSE; 867 break; 868 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 869 fc_conf->mode = RTE_FC_FULL; 870 break; 871 default: 872 sfc_err(sa, "%s: unexpected flow control value %#x", 873 __func__, link_fc); 874 } 875 876 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 877 878 sfc_adapter_unlock(sa); 879 880 return 0; 881 } 882 883 static int 884 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 885 { 886 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 887 struct sfc_port *port = &sa->port; 888 unsigned int fcntl; 889 int rc; 890 891 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 892 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 893 fc_conf->mac_ctrl_frame_fwd != 0) { 894 sfc_err(sa, "unsupported flow control settings specified"); 895 rc = EINVAL; 896 goto fail_inval; 897 } 898 899 switch (fc_conf->mode) { 900 case RTE_FC_NONE: 901 fcntl = 0; 902 break; 903 case RTE_FC_RX_PAUSE: 904 fcntl = EFX_FCNTL_RESPOND; 905 break; 906 case RTE_FC_TX_PAUSE: 907 fcntl = EFX_FCNTL_GENERATE; 908 break; 909 case RTE_FC_FULL: 910 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 911 break; 912 default: 913 rc = EINVAL; 914 goto fail_inval; 915 } 916 917 sfc_adapter_lock(sa); 918 919 if (sa->state == SFC_ADAPTER_STARTED) { 920 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 921 if (rc != 0) 922 goto fail_mac_fcntl_set; 923 } 924 925 port->flow_ctrl = fcntl; 926 port->flow_ctrl_autoneg = fc_conf->autoneg; 927 928 sfc_adapter_unlock(sa); 929 930 return 0; 931 932 fail_mac_fcntl_set: 933 sfc_adapter_unlock(sa); 934 fail_inval: 935 SFC_ASSERT(rc > 0); 936 return -rc; 937 } 938 939 static int 940 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 941 { 942 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 943 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 944 boolean_t scatter_enabled; 945 const char *error; 946 unsigned int i; 947 948 for (i = 0; i < sas->rxq_count; i++) { 949 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 950 continue; 951 952 scatter_enabled = (sas->rxq_info[i].type_flags & 953 EFX_RXQ_FLAG_SCATTER); 954 955 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 956 encp->enc_rx_prefix_size, 957 scatter_enabled, 958 encp->enc_rx_scatter_max, &error)) { 959 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 960 error); 961 return EINVAL; 962 } 963 } 964 965 return 0; 966 } 967 968 static int 969 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 970 { 971 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 972 size_t pdu = EFX_MAC_PDU(mtu); 973 size_t old_pdu; 974 int rc; 975 976 sfc_log_init(sa, "mtu=%u", mtu); 977 978 rc = EINVAL; 979 if (pdu < EFX_MAC_PDU_MIN) { 980 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 981 (unsigned int)mtu, (unsigned int)pdu, 982 EFX_MAC_PDU_MIN); 983 goto fail_inval; 984 } 985 if (pdu > EFX_MAC_PDU_MAX) { 986 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 987 (unsigned int)mtu, (unsigned int)pdu, 988 (unsigned int)EFX_MAC_PDU_MAX); 989 goto fail_inval; 990 } 991 992 sfc_adapter_lock(sa); 993 994 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 995 if (rc != 0) 996 goto fail_check_scatter; 997 998 if (pdu != sa->port.pdu) { 999 if (sa->state == SFC_ADAPTER_STARTED) { 1000 sfc_stop(sa); 1001 1002 old_pdu = sa->port.pdu; 1003 sa->port.pdu = pdu; 1004 rc = sfc_start(sa); 1005 if (rc != 0) 1006 goto fail_start; 1007 } else { 1008 sa->port.pdu = pdu; 1009 } 1010 } 1011 1012 /* 1013 * The driver does not use it, but other PMDs update jumbo frame 1014 * flag and max_rx_pkt_len when MTU is set. 1015 */ 1016 if (mtu > RTE_ETHER_MAX_LEN) { 1017 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 1018 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1019 } 1020 1021 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 1022 1023 sfc_adapter_unlock(sa); 1024 1025 sfc_log_init(sa, "done"); 1026 return 0; 1027 1028 fail_start: 1029 sa->port.pdu = old_pdu; 1030 if (sfc_start(sa) != 0) 1031 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1032 "PDU max size - port is stopped", 1033 (unsigned int)pdu, (unsigned int)old_pdu); 1034 1035 fail_check_scatter: 1036 sfc_adapter_unlock(sa); 1037 1038 fail_inval: 1039 sfc_log_init(sa, "failed %d", rc); 1040 SFC_ASSERT(rc > 0); 1041 return -rc; 1042 } 1043 static int 1044 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1045 { 1046 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1047 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1048 struct sfc_port *port = &sa->port; 1049 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1050 int rc = 0; 1051 1052 sfc_adapter_lock(sa); 1053 1054 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr)) 1055 goto unlock; 1056 1057 /* 1058 * Copy the address to the device private data so that 1059 * it could be recalled in the case of adapter restart. 1060 */ 1061 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1062 1063 /* 1064 * Neither of the two following checks can return 1065 * an error. The new MAC address is preserved in 1066 * the device private data and can be activated 1067 * on the next port start if the user prevents 1068 * isolated mode from being enabled. 1069 */ 1070 if (sfc_sa2shared(sa)->isolated) { 1071 sfc_warn(sa, "isolated mode is active on the port"); 1072 sfc_warn(sa, "will not set MAC address"); 1073 goto unlock; 1074 } 1075 1076 if (sa->state != SFC_ADAPTER_STARTED) { 1077 sfc_notice(sa, "the port is not started"); 1078 sfc_notice(sa, "the new MAC address will be set on port start"); 1079 1080 goto unlock; 1081 } 1082 1083 if (encp->enc_allow_set_mac_with_installed_filters) { 1084 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1085 if (rc != 0) { 1086 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1087 goto unlock; 1088 } 1089 1090 /* 1091 * Changing the MAC address by means of MCDI request 1092 * has no effect on received traffic, therefore 1093 * we also need to update unicast filters 1094 */ 1095 rc = sfc_set_rx_mode_unchecked(sa); 1096 if (rc != 0) { 1097 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1098 /* Rollback the old address */ 1099 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1100 (void)sfc_set_rx_mode_unchecked(sa); 1101 } 1102 } else { 1103 sfc_warn(sa, "cannot set MAC address with filters installed"); 1104 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1105 sfc_warn(sa, "(some traffic may be dropped)"); 1106 1107 /* 1108 * Since setting MAC address with filters installed is not 1109 * allowed on the adapter, the new MAC address will be set 1110 * by means of adapter restart. sfc_start() shall retrieve 1111 * the new address from the device private data and set it. 1112 */ 1113 sfc_stop(sa); 1114 rc = sfc_start(sa); 1115 if (rc != 0) 1116 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1117 } 1118 1119 unlock: 1120 if (rc != 0) 1121 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1122 1123 sfc_adapter_unlock(sa); 1124 1125 SFC_ASSERT(rc >= 0); 1126 return -rc; 1127 } 1128 1129 1130 static int 1131 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1132 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1133 { 1134 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1135 struct sfc_port *port = &sa->port; 1136 uint8_t *mc_addrs = port->mcast_addrs; 1137 int rc; 1138 unsigned int i; 1139 1140 if (sfc_sa2shared(sa)->isolated) { 1141 sfc_err(sa, "isolated mode is active on the port"); 1142 sfc_err(sa, "will not set multicast address list"); 1143 return -ENOTSUP; 1144 } 1145 1146 if (mc_addrs == NULL) 1147 return -ENOBUFS; 1148 1149 if (nb_mc_addr > port->max_mcast_addrs) { 1150 sfc_err(sa, "too many multicast addresses: %u > %u", 1151 nb_mc_addr, port->max_mcast_addrs); 1152 return -EINVAL; 1153 } 1154 1155 for (i = 0; i < nb_mc_addr; ++i) { 1156 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1157 EFX_MAC_ADDR_LEN); 1158 mc_addrs += EFX_MAC_ADDR_LEN; 1159 } 1160 1161 port->nb_mcast_addrs = nb_mc_addr; 1162 1163 if (sa->state != SFC_ADAPTER_STARTED) 1164 return 0; 1165 1166 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1167 port->nb_mcast_addrs); 1168 if (rc != 0) 1169 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1170 1171 SFC_ASSERT(rc >= 0); 1172 return -rc; 1173 } 1174 1175 /* 1176 * The function is used by the secondary process as well. It must not 1177 * use any process-local pointers from the adapter data. 1178 */ 1179 static void 1180 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1181 struct rte_eth_rxq_info *qinfo) 1182 { 1183 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1184 struct sfc_rxq_info *rxq_info; 1185 1186 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1187 1188 rxq_info = &sas->rxq_info[rx_queue_id]; 1189 1190 qinfo->mp = rxq_info->refill_mb_pool; 1191 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1192 qinfo->conf.rx_drop_en = 1; 1193 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1194 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1195 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1196 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1197 qinfo->scattered_rx = 1; 1198 } 1199 qinfo->nb_desc = rxq_info->entries; 1200 } 1201 1202 /* 1203 * The function is used by the secondary process as well. It must not 1204 * use any process-local pointers from the adapter data. 1205 */ 1206 static void 1207 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1208 struct rte_eth_txq_info *qinfo) 1209 { 1210 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1211 struct sfc_txq_info *txq_info; 1212 1213 SFC_ASSERT(tx_queue_id < sas->txq_count); 1214 1215 txq_info = &sas->txq_info[tx_queue_id]; 1216 1217 memset(qinfo, 0, sizeof(*qinfo)); 1218 1219 qinfo->conf.offloads = txq_info->offloads; 1220 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1221 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1222 qinfo->nb_desc = txq_info->entries; 1223 } 1224 1225 /* 1226 * The function is used by the secondary process as well. It must not 1227 * use any process-local pointers from the adapter data. 1228 */ 1229 static uint32_t 1230 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1231 { 1232 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1233 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1234 struct sfc_rxq_info *rxq_info; 1235 1236 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1237 rxq_info = &sas->rxq_info[rx_queue_id]; 1238 1239 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1240 return 0; 1241 1242 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1243 } 1244 1245 /* 1246 * The function is used by the secondary process as well. It must not 1247 * use any process-local pointers from the adapter data. 1248 */ 1249 static int 1250 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1251 { 1252 struct sfc_dp_rxq *dp_rxq = queue; 1253 const struct sfc_dp_rx *dp_rx; 1254 1255 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1256 1257 return offset < dp_rx->qdesc_npending(dp_rxq); 1258 } 1259 1260 /* 1261 * The function is used by the secondary process as well. It must not 1262 * use any process-local pointers from the adapter data. 1263 */ 1264 static int 1265 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1266 { 1267 struct sfc_dp_rxq *dp_rxq = queue; 1268 const struct sfc_dp_rx *dp_rx; 1269 1270 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1271 1272 return dp_rx->qdesc_status(dp_rxq, offset); 1273 } 1274 1275 /* 1276 * The function is used by the secondary process as well. It must not 1277 * use any process-local pointers from the adapter data. 1278 */ 1279 static int 1280 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1281 { 1282 struct sfc_dp_txq *dp_txq = queue; 1283 const struct sfc_dp_tx *dp_tx; 1284 1285 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1286 1287 return dp_tx->qdesc_status(dp_txq, offset); 1288 } 1289 1290 static int 1291 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1292 { 1293 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1294 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1295 int rc; 1296 1297 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1298 1299 sfc_adapter_lock(sa); 1300 1301 rc = EINVAL; 1302 if (sa->state != SFC_ADAPTER_STARTED) 1303 goto fail_not_started; 1304 1305 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1306 goto fail_not_setup; 1307 1308 rc = sfc_rx_qstart(sa, rx_queue_id); 1309 if (rc != 0) 1310 goto fail_rx_qstart; 1311 1312 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1313 1314 sfc_adapter_unlock(sa); 1315 1316 return 0; 1317 1318 fail_rx_qstart: 1319 fail_not_setup: 1320 fail_not_started: 1321 sfc_adapter_unlock(sa); 1322 SFC_ASSERT(rc > 0); 1323 return -rc; 1324 } 1325 1326 static int 1327 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1328 { 1329 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1330 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1331 1332 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1333 1334 sfc_adapter_lock(sa); 1335 sfc_rx_qstop(sa, rx_queue_id); 1336 1337 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1338 1339 sfc_adapter_unlock(sa); 1340 1341 return 0; 1342 } 1343 1344 static int 1345 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1346 { 1347 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1348 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1349 int rc; 1350 1351 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1352 1353 sfc_adapter_lock(sa); 1354 1355 rc = EINVAL; 1356 if (sa->state != SFC_ADAPTER_STARTED) 1357 goto fail_not_started; 1358 1359 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1360 goto fail_not_setup; 1361 1362 rc = sfc_tx_qstart(sa, tx_queue_id); 1363 if (rc != 0) 1364 goto fail_tx_qstart; 1365 1366 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1367 1368 sfc_adapter_unlock(sa); 1369 return 0; 1370 1371 fail_tx_qstart: 1372 1373 fail_not_setup: 1374 fail_not_started: 1375 sfc_adapter_unlock(sa); 1376 SFC_ASSERT(rc > 0); 1377 return -rc; 1378 } 1379 1380 static int 1381 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1382 { 1383 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1384 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1385 1386 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1387 1388 sfc_adapter_lock(sa); 1389 1390 sfc_tx_qstop(sa, tx_queue_id); 1391 1392 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1393 1394 sfc_adapter_unlock(sa); 1395 return 0; 1396 } 1397 1398 static efx_tunnel_protocol_t 1399 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1400 { 1401 switch (rte_type) { 1402 case RTE_TUNNEL_TYPE_VXLAN: 1403 return EFX_TUNNEL_PROTOCOL_VXLAN; 1404 case RTE_TUNNEL_TYPE_GENEVE: 1405 return EFX_TUNNEL_PROTOCOL_GENEVE; 1406 default: 1407 return EFX_TUNNEL_NPROTOS; 1408 } 1409 } 1410 1411 enum sfc_udp_tunnel_op_e { 1412 SFC_UDP_TUNNEL_ADD_PORT, 1413 SFC_UDP_TUNNEL_DEL_PORT, 1414 }; 1415 1416 static int 1417 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1418 struct rte_eth_udp_tunnel *tunnel_udp, 1419 enum sfc_udp_tunnel_op_e op) 1420 { 1421 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1422 efx_tunnel_protocol_t tunnel_proto; 1423 int rc; 1424 1425 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1426 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1427 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1428 tunnel_udp->udp_port, tunnel_udp->prot_type); 1429 1430 tunnel_proto = 1431 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1432 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1433 rc = ENOTSUP; 1434 goto fail_bad_proto; 1435 } 1436 1437 sfc_adapter_lock(sa); 1438 1439 switch (op) { 1440 case SFC_UDP_TUNNEL_ADD_PORT: 1441 rc = efx_tunnel_config_udp_add(sa->nic, 1442 tunnel_udp->udp_port, 1443 tunnel_proto); 1444 break; 1445 case SFC_UDP_TUNNEL_DEL_PORT: 1446 rc = efx_tunnel_config_udp_remove(sa->nic, 1447 tunnel_udp->udp_port, 1448 tunnel_proto); 1449 break; 1450 default: 1451 rc = EINVAL; 1452 goto fail_bad_op; 1453 } 1454 1455 if (rc != 0) 1456 goto fail_op; 1457 1458 if (sa->state == SFC_ADAPTER_STARTED) { 1459 rc = efx_tunnel_reconfigure(sa->nic); 1460 if (rc == EAGAIN) { 1461 /* 1462 * Configuration is accepted by FW and MC reboot 1463 * is initiated to apply the changes. MC reboot 1464 * will be handled in a usual way (MC reboot 1465 * event on management event queue and adapter 1466 * restart). 1467 */ 1468 rc = 0; 1469 } else if (rc != 0) { 1470 goto fail_reconfigure; 1471 } 1472 } 1473 1474 sfc_adapter_unlock(sa); 1475 return 0; 1476 1477 fail_reconfigure: 1478 /* Remove/restore entry since the change makes the trouble */ 1479 switch (op) { 1480 case SFC_UDP_TUNNEL_ADD_PORT: 1481 (void)efx_tunnel_config_udp_remove(sa->nic, 1482 tunnel_udp->udp_port, 1483 tunnel_proto); 1484 break; 1485 case SFC_UDP_TUNNEL_DEL_PORT: 1486 (void)efx_tunnel_config_udp_add(sa->nic, 1487 tunnel_udp->udp_port, 1488 tunnel_proto); 1489 break; 1490 } 1491 1492 fail_op: 1493 fail_bad_op: 1494 sfc_adapter_unlock(sa); 1495 1496 fail_bad_proto: 1497 SFC_ASSERT(rc > 0); 1498 return -rc; 1499 } 1500 1501 static int 1502 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1503 struct rte_eth_udp_tunnel *tunnel_udp) 1504 { 1505 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1506 } 1507 1508 static int 1509 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1510 struct rte_eth_udp_tunnel *tunnel_udp) 1511 { 1512 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1513 } 1514 1515 /* 1516 * The function is used by the secondary process as well. It must not 1517 * use any process-local pointers from the adapter data. 1518 */ 1519 static int 1520 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1521 struct rte_eth_rss_conf *rss_conf) 1522 { 1523 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1524 struct sfc_rss *rss = &sas->rss; 1525 1526 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1527 return -ENOTSUP; 1528 1529 /* 1530 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1531 * hence, conversion is done here to derive a correct set of ETH_RSS 1532 * flags which corresponds to the active EFX configuration stored 1533 * locally in 'sfc_adapter' and kept up-to-date 1534 */ 1535 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1536 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1537 if (rss_conf->rss_key != NULL) 1538 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1539 1540 return 0; 1541 } 1542 1543 static int 1544 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1545 struct rte_eth_rss_conf *rss_conf) 1546 { 1547 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1548 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1549 unsigned int efx_hash_types; 1550 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context}; 1551 unsigned int n_contexts; 1552 unsigned int mode_i = 0; 1553 unsigned int key_i = 0; 1554 unsigned int i = 0; 1555 int rc = 0; 1556 1557 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2; 1558 1559 if (sfc_sa2shared(sa)->isolated) 1560 return -ENOTSUP; 1561 1562 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1563 sfc_err(sa, "RSS is not available"); 1564 return -ENOTSUP; 1565 } 1566 1567 if (rss->channels == 0) { 1568 sfc_err(sa, "RSS is not configured"); 1569 return -EINVAL; 1570 } 1571 1572 if ((rss_conf->rss_key != NULL) && 1573 (rss_conf->rss_key_len != sizeof(rss->key))) { 1574 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1575 sizeof(rss->key)); 1576 return -EINVAL; 1577 } 1578 1579 sfc_adapter_lock(sa); 1580 1581 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1582 if (rc != 0) 1583 goto fail_rx_hf_rte_to_efx; 1584 1585 for (mode_i = 0; mode_i < n_contexts; mode_i++) { 1586 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i], 1587 rss->hash_alg, efx_hash_types, 1588 B_TRUE); 1589 if (rc != 0) 1590 goto fail_scale_mode_set; 1591 } 1592 1593 if (rss_conf->rss_key != NULL) { 1594 if (sa->state == SFC_ADAPTER_STARTED) { 1595 for (key_i = 0; key_i < n_contexts; key_i++) { 1596 rc = efx_rx_scale_key_set(sa->nic, 1597 contexts[key_i], 1598 rss_conf->rss_key, 1599 sizeof(rss->key)); 1600 if (rc != 0) 1601 goto fail_scale_key_set; 1602 } 1603 } 1604 1605 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1606 } 1607 1608 rss->hash_types = efx_hash_types; 1609 1610 sfc_adapter_unlock(sa); 1611 1612 return 0; 1613 1614 fail_scale_key_set: 1615 for (i = 0; i < key_i; i++) { 1616 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key, 1617 sizeof(rss->key)) != 0) 1618 sfc_err(sa, "failed to restore RSS key"); 1619 } 1620 1621 fail_scale_mode_set: 1622 for (i = 0; i < mode_i; i++) { 1623 if (efx_rx_scale_mode_set(sa->nic, contexts[i], 1624 EFX_RX_HASHALG_TOEPLITZ, 1625 rss->hash_types, B_TRUE) != 0) 1626 sfc_err(sa, "failed to restore RSS mode"); 1627 } 1628 1629 fail_rx_hf_rte_to_efx: 1630 sfc_adapter_unlock(sa); 1631 return -rc; 1632 } 1633 1634 /* 1635 * The function is used by the secondary process as well. It must not 1636 * use any process-local pointers from the adapter data. 1637 */ 1638 static int 1639 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1640 struct rte_eth_rss_reta_entry64 *reta_conf, 1641 uint16_t reta_size) 1642 { 1643 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1644 struct sfc_rss *rss = &sas->rss; 1645 int entry; 1646 1647 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1648 return -ENOTSUP; 1649 1650 if (rss->channels == 0) 1651 return -EINVAL; 1652 1653 if (reta_size != EFX_RSS_TBL_SIZE) 1654 return -EINVAL; 1655 1656 for (entry = 0; entry < reta_size; entry++) { 1657 int grp = entry / RTE_RETA_GROUP_SIZE; 1658 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1659 1660 if ((reta_conf[grp].mask >> grp_idx) & 1) 1661 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1662 } 1663 1664 return 0; 1665 } 1666 1667 static int 1668 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1669 struct rte_eth_rss_reta_entry64 *reta_conf, 1670 uint16_t reta_size) 1671 { 1672 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1673 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1674 unsigned int *rss_tbl_new; 1675 uint16_t entry; 1676 int rc = 0; 1677 1678 1679 if (sfc_sa2shared(sa)->isolated) 1680 return -ENOTSUP; 1681 1682 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1683 sfc_err(sa, "RSS is not available"); 1684 return -ENOTSUP; 1685 } 1686 1687 if (rss->channels == 0) { 1688 sfc_err(sa, "RSS is not configured"); 1689 return -EINVAL; 1690 } 1691 1692 if (reta_size != EFX_RSS_TBL_SIZE) { 1693 sfc_err(sa, "RETA size is wrong (should be %u)", 1694 EFX_RSS_TBL_SIZE); 1695 return -EINVAL; 1696 } 1697 1698 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1699 if (rss_tbl_new == NULL) 1700 return -ENOMEM; 1701 1702 sfc_adapter_lock(sa); 1703 1704 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1705 1706 for (entry = 0; entry < reta_size; entry++) { 1707 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1708 struct rte_eth_rss_reta_entry64 *grp; 1709 1710 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1711 1712 if (grp->mask & (1ull << grp_idx)) { 1713 if (grp->reta[grp_idx] >= rss->channels) { 1714 rc = EINVAL; 1715 goto bad_reta_entry; 1716 } 1717 rss_tbl_new[entry] = grp->reta[grp_idx]; 1718 } 1719 } 1720 1721 if (sa->state == SFC_ADAPTER_STARTED) { 1722 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1723 rss_tbl_new, EFX_RSS_TBL_SIZE); 1724 if (rc != 0) 1725 goto fail_scale_tbl_set; 1726 } 1727 1728 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1729 1730 fail_scale_tbl_set: 1731 bad_reta_entry: 1732 sfc_adapter_unlock(sa); 1733 1734 rte_free(rss_tbl_new); 1735 1736 SFC_ASSERT(rc >= 0); 1737 return -rc; 1738 } 1739 1740 static int 1741 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1742 enum rte_filter_op filter_op, 1743 void *arg) 1744 { 1745 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1746 int rc = ENOTSUP; 1747 1748 sfc_log_init(sa, "entry"); 1749 1750 switch (filter_type) { 1751 case RTE_ETH_FILTER_NONE: 1752 sfc_err(sa, "Global filters configuration not supported"); 1753 break; 1754 case RTE_ETH_FILTER_MACVLAN: 1755 sfc_err(sa, "MACVLAN filters not supported"); 1756 break; 1757 case RTE_ETH_FILTER_ETHERTYPE: 1758 sfc_err(sa, "EtherType filters not supported"); 1759 break; 1760 case RTE_ETH_FILTER_FLEXIBLE: 1761 sfc_err(sa, "Flexible filters not supported"); 1762 break; 1763 case RTE_ETH_FILTER_SYN: 1764 sfc_err(sa, "SYN filters not supported"); 1765 break; 1766 case RTE_ETH_FILTER_NTUPLE: 1767 sfc_err(sa, "NTUPLE filters not supported"); 1768 break; 1769 case RTE_ETH_FILTER_TUNNEL: 1770 sfc_err(sa, "Tunnel filters not supported"); 1771 break; 1772 case RTE_ETH_FILTER_FDIR: 1773 sfc_err(sa, "Flow Director filters not supported"); 1774 break; 1775 case RTE_ETH_FILTER_HASH: 1776 sfc_err(sa, "Hash filters not supported"); 1777 break; 1778 case RTE_ETH_FILTER_GENERIC: 1779 if (filter_op != RTE_ETH_FILTER_GET) { 1780 rc = EINVAL; 1781 } else { 1782 *(const void **)arg = &sfc_flow_ops; 1783 rc = 0; 1784 } 1785 break; 1786 default: 1787 sfc_err(sa, "Unknown filter type %u", filter_type); 1788 break; 1789 } 1790 1791 sfc_log_init(sa, "exit: %d", -rc); 1792 SFC_ASSERT(rc >= 0); 1793 return -rc; 1794 } 1795 1796 static int 1797 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1798 { 1799 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1800 1801 /* 1802 * If Rx datapath does not provide callback to check mempool, 1803 * all pools are supported. 1804 */ 1805 if (sap->dp_rx->pool_ops_supported == NULL) 1806 return 1; 1807 1808 return sap->dp_rx->pool_ops_supported(pool); 1809 } 1810 1811 static int 1812 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1813 { 1814 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1815 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1816 struct sfc_rxq_info *rxq_info; 1817 1818 SFC_ASSERT(queue_id < sas->rxq_count); 1819 rxq_info = &sas->rxq_info[queue_id]; 1820 1821 return sap->dp_rx->intr_enable(rxq_info->dp); 1822 } 1823 1824 static int 1825 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1826 { 1827 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1828 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1829 struct sfc_rxq_info *rxq_info; 1830 1831 SFC_ASSERT(queue_id < sas->rxq_count); 1832 rxq_info = &sas->rxq_info[queue_id]; 1833 1834 return sap->dp_rx->intr_disable(rxq_info->dp); 1835 } 1836 1837 static const struct eth_dev_ops sfc_eth_dev_ops = { 1838 .dev_configure = sfc_dev_configure, 1839 .dev_start = sfc_dev_start, 1840 .dev_stop = sfc_dev_stop, 1841 .dev_set_link_up = sfc_dev_set_link_up, 1842 .dev_set_link_down = sfc_dev_set_link_down, 1843 .dev_close = sfc_dev_close, 1844 .promiscuous_enable = sfc_dev_promisc_enable, 1845 .promiscuous_disable = sfc_dev_promisc_disable, 1846 .allmulticast_enable = sfc_dev_allmulti_enable, 1847 .allmulticast_disable = sfc_dev_allmulti_disable, 1848 .link_update = sfc_dev_link_update, 1849 .stats_get = sfc_stats_get, 1850 .stats_reset = sfc_stats_reset, 1851 .xstats_get = sfc_xstats_get, 1852 .xstats_reset = sfc_stats_reset, 1853 .xstats_get_names = sfc_xstats_get_names, 1854 .dev_infos_get = sfc_dev_infos_get, 1855 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1856 .mtu_set = sfc_dev_set_mtu, 1857 .rx_queue_start = sfc_rx_queue_start, 1858 .rx_queue_stop = sfc_rx_queue_stop, 1859 .tx_queue_start = sfc_tx_queue_start, 1860 .tx_queue_stop = sfc_tx_queue_stop, 1861 .rx_queue_setup = sfc_rx_queue_setup, 1862 .rx_queue_release = sfc_rx_queue_release, 1863 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1864 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1865 .tx_queue_setup = sfc_tx_queue_setup, 1866 .tx_queue_release = sfc_tx_queue_release, 1867 .flow_ctrl_get = sfc_flow_ctrl_get, 1868 .flow_ctrl_set = sfc_flow_ctrl_set, 1869 .mac_addr_set = sfc_mac_addr_set, 1870 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1871 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1872 .reta_update = sfc_dev_rss_reta_update, 1873 .reta_query = sfc_dev_rss_reta_query, 1874 .rss_hash_update = sfc_dev_rss_hash_update, 1875 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1876 .filter_ctrl = sfc_dev_filter_ctrl, 1877 .set_mc_addr_list = sfc_set_mc_addr_list, 1878 .rxq_info_get = sfc_rx_queue_info_get, 1879 .txq_info_get = sfc_tx_queue_info_get, 1880 .fw_version_get = sfc_fw_version_get, 1881 .xstats_get_by_id = sfc_xstats_get_by_id, 1882 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1883 .pool_ops_supported = sfc_pool_ops_supported, 1884 }; 1885 1886 /** 1887 * Duplicate a string in potentially shared memory required for 1888 * multi-process support. 1889 * 1890 * strdup() allocates from process-local heap/memory. 1891 */ 1892 static char * 1893 sfc_strdup(const char *str) 1894 { 1895 size_t size; 1896 char *copy; 1897 1898 if (str == NULL) 1899 return NULL; 1900 1901 size = strlen(str) + 1; 1902 copy = rte_malloc(__func__, size, 0); 1903 if (copy != NULL) 1904 rte_memcpy(copy, str, size); 1905 1906 return copy; 1907 } 1908 1909 static int 1910 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1911 { 1912 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1913 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1914 const struct sfc_dp_rx *dp_rx; 1915 const struct sfc_dp_tx *dp_tx; 1916 const efx_nic_cfg_t *encp; 1917 unsigned int avail_caps = 0; 1918 const char *rx_name = NULL; 1919 const char *tx_name = NULL; 1920 int rc; 1921 1922 switch (sa->family) { 1923 case EFX_FAMILY_HUNTINGTON: 1924 case EFX_FAMILY_MEDFORD: 1925 case EFX_FAMILY_MEDFORD2: 1926 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1927 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX; 1928 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX; 1929 break; 1930 case EFX_FAMILY_RIVERHEAD: 1931 avail_caps |= SFC_DP_HW_FW_CAP_EF100; 1932 break; 1933 default: 1934 break; 1935 } 1936 1937 encp = efx_nic_cfg_get(sa->nic); 1938 if (encp->enc_rx_es_super_buffer_supported) 1939 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1940 1941 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1942 sfc_kvarg_string_handler, &rx_name); 1943 if (rc != 0) 1944 goto fail_kvarg_rx_datapath; 1945 1946 if (rx_name != NULL) { 1947 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1948 if (dp_rx == NULL) { 1949 sfc_err(sa, "Rx datapath %s not found", rx_name); 1950 rc = ENOENT; 1951 goto fail_dp_rx; 1952 } 1953 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1954 sfc_err(sa, 1955 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1956 rx_name); 1957 rc = EINVAL; 1958 goto fail_dp_rx_caps; 1959 } 1960 } else { 1961 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1962 if (dp_rx == NULL) { 1963 sfc_err(sa, "Rx datapath by caps %#x not found", 1964 avail_caps); 1965 rc = ENOENT; 1966 goto fail_dp_rx; 1967 } 1968 } 1969 1970 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1971 if (sas->dp_rx_name == NULL) { 1972 rc = ENOMEM; 1973 goto fail_dp_rx_name; 1974 } 1975 1976 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1977 1978 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1979 sfc_kvarg_string_handler, &tx_name); 1980 if (rc != 0) 1981 goto fail_kvarg_tx_datapath; 1982 1983 if (tx_name != NULL) { 1984 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1985 if (dp_tx == NULL) { 1986 sfc_err(sa, "Tx datapath %s not found", tx_name); 1987 rc = ENOENT; 1988 goto fail_dp_tx; 1989 } 1990 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1991 sfc_err(sa, 1992 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1993 tx_name); 1994 rc = EINVAL; 1995 goto fail_dp_tx_caps; 1996 } 1997 } else { 1998 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1999 if (dp_tx == NULL) { 2000 sfc_err(sa, "Tx datapath by caps %#x not found", 2001 avail_caps); 2002 rc = ENOENT; 2003 goto fail_dp_tx; 2004 } 2005 } 2006 2007 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 2008 if (sas->dp_tx_name == NULL) { 2009 rc = ENOMEM; 2010 goto fail_dp_tx_name; 2011 } 2012 2013 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 2014 2015 sa->priv.dp_rx = dp_rx; 2016 sa->priv.dp_tx = dp_tx; 2017 2018 dev->rx_pkt_burst = dp_rx->pkt_burst; 2019 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2020 dev->tx_pkt_burst = dp_tx->pkt_burst; 2021 2022 dev->rx_queue_count = sfc_rx_queue_count; 2023 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2024 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2025 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2026 dev->dev_ops = &sfc_eth_dev_ops; 2027 2028 return 0; 2029 2030 fail_dp_tx_name: 2031 fail_dp_tx_caps: 2032 fail_dp_tx: 2033 fail_kvarg_tx_datapath: 2034 rte_free(sas->dp_rx_name); 2035 sas->dp_rx_name = NULL; 2036 2037 fail_dp_rx_name: 2038 fail_dp_rx_caps: 2039 fail_dp_rx: 2040 fail_kvarg_rx_datapath: 2041 return rc; 2042 } 2043 2044 static void 2045 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 2046 { 2047 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2048 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2049 2050 dev->dev_ops = NULL; 2051 dev->tx_pkt_prepare = NULL; 2052 dev->rx_pkt_burst = NULL; 2053 dev->tx_pkt_burst = NULL; 2054 2055 rte_free(sas->dp_tx_name); 2056 sas->dp_tx_name = NULL; 2057 sa->priv.dp_tx = NULL; 2058 2059 rte_free(sas->dp_rx_name); 2060 sas->dp_rx_name = NULL; 2061 sa->priv.dp_rx = NULL; 2062 } 2063 2064 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2065 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2066 .reta_query = sfc_dev_rss_reta_query, 2067 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2068 .rxq_info_get = sfc_rx_queue_info_get, 2069 .txq_info_get = sfc_tx_queue_info_get, 2070 }; 2071 2072 static int 2073 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2074 { 2075 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2076 struct sfc_adapter_priv *sap; 2077 const struct sfc_dp_rx *dp_rx; 2078 const struct sfc_dp_tx *dp_tx; 2079 int rc; 2080 2081 /* 2082 * Allocate process private data from heap, since it should not 2083 * be located in shared memory allocated using rte_malloc() API. 2084 */ 2085 sap = calloc(1, sizeof(*sap)); 2086 if (sap == NULL) { 2087 rc = ENOMEM; 2088 goto fail_alloc_priv; 2089 } 2090 2091 sap->logtype_main = logtype_main; 2092 2093 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2094 if (dp_rx == NULL) { 2095 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2096 "cannot find %s Rx datapath", sas->dp_rx_name); 2097 rc = ENOENT; 2098 goto fail_dp_rx; 2099 } 2100 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2101 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2102 "%s Rx datapath does not support multi-process", 2103 sas->dp_rx_name); 2104 rc = EINVAL; 2105 goto fail_dp_rx_multi_process; 2106 } 2107 2108 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2109 if (dp_tx == NULL) { 2110 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2111 "cannot find %s Tx datapath", sas->dp_tx_name); 2112 rc = ENOENT; 2113 goto fail_dp_tx; 2114 } 2115 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2116 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2117 "%s Tx datapath does not support multi-process", 2118 sas->dp_tx_name); 2119 rc = EINVAL; 2120 goto fail_dp_tx_multi_process; 2121 } 2122 2123 sap->dp_rx = dp_rx; 2124 sap->dp_tx = dp_tx; 2125 2126 dev->process_private = sap; 2127 dev->rx_pkt_burst = dp_rx->pkt_burst; 2128 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2129 dev->tx_pkt_burst = dp_tx->pkt_burst; 2130 dev->rx_queue_count = sfc_rx_queue_count; 2131 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2132 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2133 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2134 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2135 2136 return 0; 2137 2138 fail_dp_tx_multi_process: 2139 fail_dp_tx: 2140 fail_dp_rx_multi_process: 2141 fail_dp_rx: 2142 free(sap); 2143 2144 fail_alloc_priv: 2145 return rc; 2146 } 2147 2148 static void 2149 sfc_register_dp(void) 2150 { 2151 /* Register once */ 2152 if (TAILQ_EMPTY(&sfc_dp_head)) { 2153 /* Prefer EF10 datapath */ 2154 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp); 2155 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2156 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2157 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2158 2159 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp); 2160 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2161 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2162 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2163 } 2164 } 2165 2166 static int 2167 sfc_eth_dev_init(struct rte_eth_dev *dev) 2168 { 2169 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2170 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2171 uint32_t logtype_main; 2172 struct sfc_adapter *sa; 2173 int rc; 2174 const efx_nic_cfg_t *encp; 2175 const struct rte_ether_addr *from; 2176 int ret; 2177 2178 sfc_register_dp(); 2179 2180 logtype_main = sfc_register_logtype(&pci_dev->addr, 2181 SFC_LOGTYPE_MAIN_STR, 2182 RTE_LOG_NOTICE); 2183 2184 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2185 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2186 2187 /* Required for logging */ 2188 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix), 2189 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ", 2190 pci_dev->addr.domain, pci_dev->addr.bus, 2191 pci_dev->addr.devid, pci_dev->addr.function, 2192 dev->data->port_id); 2193 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) { 2194 SFC_GENERIC_LOG(ERR, 2195 "reserved log prefix is too short for " PCI_PRI_FMT, 2196 pci_dev->addr.domain, pci_dev->addr.bus, 2197 pci_dev->addr.devid, pci_dev->addr.function); 2198 return -EINVAL; 2199 } 2200 sas->pci_addr = pci_dev->addr; 2201 sas->port_id = dev->data->port_id; 2202 2203 /* 2204 * Allocate process private data from heap, since it should not 2205 * be located in shared memory allocated using rte_malloc() API. 2206 */ 2207 sa = calloc(1, sizeof(*sa)); 2208 if (sa == NULL) { 2209 rc = ENOMEM; 2210 goto fail_alloc_sa; 2211 } 2212 2213 dev->process_private = sa; 2214 2215 /* Required for logging */ 2216 sa->priv.shared = sas; 2217 sa->priv.logtype_main = logtype_main; 2218 2219 sa->eth_dev = dev; 2220 2221 /* Copy PCI device info to the dev->data */ 2222 rte_eth_copy_pci_info(dev, pci_dev); 2223 2224 rc = sfc_kvargs_parse(sa); 2225 if (rc != 0) 2226 goto fail_kvargs_parse; 2227 2228 sfc_log_init(sa, "entry"); 2229 2230 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2231 if (dev->data->mac_addrs == NULL) { 2232 rc = ENOMEM; 2233 goto fail_mac_addrs; 2234 } 2235 2236 sfc_adapter_lock_init(sa); 2237 sfc_adapter_lock(sa); 2238 2239 sfc_log_init(sa, "probing"); 2240 rc = sfc_probe(sa); 2241 if (rc != 0) 2242 goto fail_probe; 2243 2244 sfc_log_init(sa, "set device ops"); 2245 rc = sfc_eth_dev_set_ops(dev); 2246 if (rc != 0) 2247 goto fail_set_ops; 2248 2249 sfc_log_init(sa, "attaching"); 2250 rc = sfc_attach(sa); 2251 if (rc != 0) 2252 goto fail_attach; 2253 2254 encp = efx_nic_cfg_get(sa->nic); 2255 2256 /* 2257 * The arguments are really reverse order in comparison to 2258 * Linux kernel. Copy from NIC config to Ethernet device data. 2259 */ 2260 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2261 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2262 2263 sfc_adapter_unlock(sa); 2264 2265 sfc_log_init(sa, "done"); 2266 return 0; 2267 2268 fail_attach: 2269 sfc_eth_dev_clear_ops(dev); 2270 2271 fail_set_ops: 2272 sfc_unprobe(sa); 2273 2274 fail_probe: 2275 sfc_adapter_unlock(sa); 2276 sfc_adapter_lock_fini(sa); 2277 rte_free(dev->data->mac_addrs); 2278 dev->data->mac_addrs = NULL; 2279 2280 fail_mac_addrs: 2281 sfc_kvargs_cleanup(sa); 2282 2283 fail_kvargs_parse: 2284 sfc_log_init(sa, "failed %d", rc); 2285 dev->process_private = NULL; 2286 free(sa); 2287 2288 fail_alloc_sa: 2289 SFC_ASSERT(rc > 0); 2290 return -rc; 2291 } 2292 2293 static int 2294 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2295 { 2296 sfc_dev_close(dev); 2297 2298 return 0; 2299 } 2300 2301 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2302 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2303 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2304 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2305 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2306 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2307 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2308 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2309 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2310 { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) }, 2311 { .vendor_id = 0 /* sentinel */ } 2312 }; 2313 2314 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2315 struct rte_pci_device *pci_dev) 2316 { 2317 return rte_eth_dev_pci_generic_probe(pci_dev, 2318 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2319 } 2320 2321 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2322 { 2323 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2324 } 2325 2326 static struct rte_pci_driver sfc_efx_pmd = { 2327 .id_table = pci_id_sfc_efx_map, 2328 .drv_flags = 2329 RTE_PCI_DRV_INTR_LSC | 2330 RTE_PCI_DRV_NEED_MAPPING, 2331 .probe = sfc_eth_dev_pci_probe, 2332 .remove = sfc_eth_dev_pci_remove, 2333 }; 2334 2335 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2336 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2337 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2338 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2339 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2340 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2341 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2342 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2343 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2344 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2345 2346 RTE_INIT(sfc_driver_register_logtype) 2347 { 2348 int ret; 2349 2350 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2351 RTE_LOG_NOTICE); 2352 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2353 } 2354