xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 55509e3a49fb28317c1e56a534cdcc4a3849df79)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 
32 uint32_t sfc_logtype_driver;
33 
34 static struct sfc_dp_list sfc_dp_head =
35 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36 
37 
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
39 
40 
41 static int
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
43 {
44 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 	efx_nic_fw_info_t enfi;
46 	int ret;
47 	int rc;
48 
49 	/*
50 	 * Return value of the callback is likely supposed to be
51 	 * equal to or greater than 0, nevertheless, if an error
52 	 * occurs, it will be desirable to pass it to the caller
53 	 */
54 	if ((fw_version == NULL) || (fw_size == 0))
55 		return -EINVAL;
56 
57 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
58 	if (rc != 0)
59 		return -rc;
60 
61 	ret = snprintf(fw_version, fw_size,
62 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
65 	if (ret < 0)
66 		return ret;
67 
68 	if (enfi.enfi_dpcpu_fw_ids_valid) {
69 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
70 		int ret_extra;
71 
72 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 				     fw_size - dpcpu_fw_ids_offset,
74 				     " rx%" PRIx16 " tx%" PRIx16,
75 				     enfi.enfi_rx_dpcpu_fw_id,
76 				     enfi.enfi_tx_dpcpu_fw_id);
77 		if (ret_extra < 0)
78 			return ret_extra;
79 
80 		ret += ret_extra;
81 	}
82 
83 	if (fw_size < (size_t)(++ret))
84 		return ret;
85 	else
86 		return 0;
87 }
88 
89 static int
90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
91 {
92 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 	struct sfc_rss *rss = &sas->rss;
96 	uint64_t txq_offloads_def = 0;
97 
98 	sfc_log_init(sa, "entry");
99 
100 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
102 
103 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
104 
105 	dev_info->max_vfs = sa->sriov.num_vfs;
106 
107 	/* Autonegotiation may be disabled */
108 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
109 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
110 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
111 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
112 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
113 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
114 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
115 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
116 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
117 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
118 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
119 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
120 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
121 
122 	dev_info->max_rx_queues = sa->rxq_max;
123 	dev_info->max_tx_queues = sa->txq_max;
124 
125 	/* By default packets are dropped if no descriptors are available */
126 	dev_info->default_rxconf.rx_drop_en = 1;
127 
128 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
129 
130 	/*
131 	 * rx_offload_capa includes both device and queue offloads since
132 	 * the latter may be requested on a per device basis which makes
133 	 * sense when some offloads are needed to be set on all queues.
134 	 */
135 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
136 				    dev_info->rx_queue_offload_capa;
137 
138 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
139 
140 	/*
141 	 * tx_offload_capa includes both device and queue offloads since
142 	 * the latter may be requested on a per device basis which makes
143 	 * sense when some offloads are needed to be set on all queues.
144 	 */
145 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
146 				    dev_info->tx_queue_offload_capa;
147 
148 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
149 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
150 
151 	dev_info->default_txconf.offloads |= txq_offloads_def;
152 
153 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
154 		uint64_t rte_hf = 0;
155 		unsigned int i;
156 
157 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
158 			rte_hf |= rss->hf_map[i].rte;
159 
160 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
161 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
162 		dev_info->flow_type_rss_offloads = rte_hf;
163 	}
164 
165 	/* Initialize to hardware limits */
166 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
167 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
168 	/* The RXQ hardware requires that the descriptor count is a power
169 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
170 	 */
171 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
172 
173 	/* Initialize to hardware limits */
174 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
175 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
176 	/*
177 	 * The TXQ hardware requires that the descriptor count is a power
178 	 * of 2, but tx_desc_lim cannot properly describe that constraint
179 	 */
180 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
181 
182 	if (sap->dp_rx->get_dev_info != NULL)
183 		sap->dp_rx->get_dev_info(dev_info);
184 	if (sap->dp_tx->get_dev_info != NULL)
185 		sap->dp_tx->get_dev_info(dev_info);
186 
187 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
188 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
189 
190 	return 0;
191 }
192 
193 static const uint32_t *
194 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
195 {
196 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
197 
198 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
199 }
200 
201 static int
202 sfc_dev_configure(struct rte_eth_dev *dev)
203 {
204 	struct rte_eth_dev_data *dev_data = dev->data;
205 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
206 	int rc;
207 
208 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
209 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
210 
211 	sfc_adapter_lock(sa);
212 	switch (sa->state) {
213 	case SFC_ADAPTER_CONFIGURED:
214 		/* FALLTHROUGH */
215 	case SFC_ADAPTER_INITIALIZED:
216 		rc = sfc_configure(sa);
217 		break;
218 	default:
219 		sfc_err(sa, "unexpected adapter state %u to configure",
220 			sa->state);
221 		rc = EINVAL;
222 		break;
223 	}
224 	sfc_adapter_unlock(sa);
225 
226 	sfc_log_init(sa, "done %d", rc);
227 	SFC_ASSERT(rc >= 0);
228 	return -rc;
229 }
230 
231 static int
232 sfc_dev_start(struct rte_eth_dev *dev)
233 {
234 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
235 	int rc;
236 
237 	sfc_log_init(sa, "entry");
238 
239 	sfc_adapter_lock(sa);
240 	rc = sfc_start(sa);
241 	sfc_adapter_unlock(sa);
242 
243 	sfc_log_init(sa, "done %d", rc);
244 	SFC_ASSERT(rc >= 0);
245 	return -rc;
246 }
247 
248 static int
249 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
250 {
251 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
252 	struct rte_eth_link current_link;
253 	int ret;
254 
255 	sfc_log_init(sa, "entry");
256 
257 	if (sa->state != SFC_ADAPTER_STARTED) {
258 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
259 	} else if (wait_to_complete) {
260 		efx_link_mode_t link_mode;
261 
262 		if (efx_port_poll(sa->nic, &link_mode) != 0)
263 			link_mode = EFX_LINK_UNKNOWN;
264 		sfc_port_link_mode_to_info(link_mode, &current_link);
265 
266 	} else {
267 		sfc_ev_mgmt_qpoll(sa);
268 		rte_eth_linkstatus_get(dev, &current_link);
269 	}
270 
271 	ret = rte_eth_linkstatus_set(dev, &current_link);
272 	if (ret == 0)
273 		sfc_notice(sa, "Link status is %s",
274 			   current_link.link_status ? "UP" : "DOWN");
275 
276 	return ret;
277 }
278 
279 static void
280 sfc_dev_stop(struct rte_eth_dev *dev)
281 {
282 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
283 
284 	sfc_log_init(sa, "entry");
285 
286 	sfc_adapter_lock(sa);
287 	sfc_stop(sa);
288 	sfc_adapter_unlock(sa);
289 
290 	sfc_log_init(sa, "done");
291 }
292 
293 static int
294 sfc_dev_set_link_up(struct rte_eth_dev *dev)
295 {
296 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
297 	int rc;
298 
299 	sfc_log_init(sa, "entry");
300 
301 	sfc_adapter_lock(sa);
302 	rc = sfc_start(sa);
303 	sfc_adapter_unlock(sa);
304 
305 	SFC_ASSERT(rc >= 0);
306 	return -rc;
307 }
308 
309 static int
310 sfc_dev_set_link_down(struct rte_eth_dev *dev)
311 {
312 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
313 
314 	sfc_log_init(sa, "entry");
315 
316 	sfc_adapter_lock(sa);
317 	sfc_stop(sa);
318 	sfc_adapter_unlock(sa);
319 
320 	return 0;
321 }
322 
323 static void
324 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
325 {
326 	free(dev->process_private);
327 	dev->process_private = NULL;
328 	dev->dev_ops = NULL;
329 	dev->tx_pkt_prepare = NULL;
330 	dev->tx_pkt_burst = NULL;
331 	dev->rx_pkt_burst = NULL;
332 }
333 
334 static int
335 sfc_dev_close(struct rte_eth_dev *dev)
336 {
337 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
338 
339 	sfc_log_init(sa, "entry");
340 
341 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
342 		sfc_eth_dev_secondary_clear_ops(dev);
343 		return 0;
344 	}
345 
346 	sfc_adapter_lock(sa);
347 	switch (sa->state) {
348 	case SFC_ADAPTER_STARTED:
349 		sfc_stop(sa);
350 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
351 		/* FALLTHROUGH */
352 	case SFC_ADAPTER_CONFIGURED:
353 		sfc_close(sa);
354 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
355 		/* FALLTHROUGH */
356 	case SFC_ADAPTER_INITIALIZED:
357 		break;
358 	default:
359 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
360 		break;
361 	}
362 
363 	/*
364 	 * Cleanup all resources.
365 	 * Rollback primary process sfc_eth_dev_init() below.
366 	 */
367 
368 	sfc_eth_dev_clear_ops(dev);
369 
370 	sfc_detach(sa);
371 	sfc_unprobe(sa);
372 
373 	sfc_kvargs_cleanup(sa);
374 
375 	sfc_adapter_unlock(sa);
376 	sfc_adapter_lock_fini(sa);
377 
378 	sfc_log_init(sa, "done");
379 
380 	/* Required for logging, so cleanup last */
381 	sa->eth_dev = NULL;
382 
383 	dev->process_private = NULL;
384 	free(sa);
385 
386 	return 0;
387 }
388 
389 static int
390 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
391 		   boolean_t enabled)
392 {
393 	struct sfc_port *port;
394 	boolean_t *toggle;
395 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
396 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
397 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
398 	int rc = 0;
399 
400 	sfc_adapter_lock(sa);
401 
402 	port = &sa->port;
403 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
404 
405 	if (*toggle != enabled) {
406 		*toggle = enabled;
407 
408 		if (sfc_sa2shared(sa)->isolated) {
409 			sfc_warn(sa, "isolated mode is active on the port");
410 			sfc_warn(sa, "the change is to be applied on the next "
411 				     "start provided that isolated mode is "
412 				     "disabled prior the next start");
413 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
414 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
415 			*toggle = !(enabled);
416 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
417 				 ((enabled) ? "enable" : "disable"), desc, rc);
418 
419 			/*
420 			 * For promiscuous and all-multicast filters a
421 			 * permission failure should be reported as an
422 			 * unsupported filter.
423 			 */
424 			if (rc == EPERM)
425 				rc = ENOTSUP;
426 		}
427 	}
428 
429 	sfc_adapter_unlock(sa);
430 	return rc;
431 }
432 
433 static int
434 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
435 {
436 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
437 
438 	SFC_ASSERT(rc >= 0);
439 	return -rc;
440 }
441 
442 static int
443 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
444 {
445 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
446 
447 	SFC_ASSERT(rc >= 0);
448 	return -rc;
449 }
450 
451 static int
452 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
453 {
454 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
455 
456 	SFC_ASSERT(rc >= 0);
457 	return -rc;
458 }
459 
460 static int
461 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
462 {
463 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
464 
465 	SFC_ASSERT(rc >= 0);
466 	return -rc;
467 }
468 
469 static int
470 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
471 		   uint16_t nb_rx_desc, unsigned int socket_id,
472 		   const struct rte_eth_rxconf *rx_conf,
473 		   struct rte_mempool *mb_pool)
474 {
475 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
476 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
477 	int rc;
478 
479 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
480 		     rx_queue_id, nb_rx_desc, socket_id);
481 
482 	sfc_adapter_lock(sa);
483 
484 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
485 			  rx_conf, mb_pool);
486 	if (rc != 0)
487 		goto fail_rx_qinit;
488 
489 	dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
490 
491 	sfc_adapter_unlock(sa);
492 
493 	return 0;
494 
495 fail_rx_qinit:
496 	sfc_adapter_unlock(sa);
497 	SFC_ASSERT(rc > 0);
498 	return -rc;
499 }
500 
501 static void
502 sfc_rx_queue_release(void *queue)
503 {
504 	struct sfc_dp_rxq *dp_rxq = queue;
505 	struct sfc_rxq *rxq;
506 	struct sfc_adapter *sa;
507 	unsigned int sw_index;
508 
509 	if (dp_rxq == NULL)
510 		return;
511 
512 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
513 	sa = rxq->evq->sa;
514 	sfc_adapter_lock(sa);
515 
516 	sw_index = dp_rxq->dpq.queue_id;
517 
518 	sfc_log_init(sa, "RxQ=%u", sw_index);
519 
520 	sfc_rx_qfini(sa, sw_index);
521 
522 	sfc_adapter_unlock(sa);
523 }
524 
525 static int
526 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
527 		   uint16_t nb_tx_desc, unsigned int socket_id,
528 		   const struct rte_eth_txconf *tx_conf)
529 {
530 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
531 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
532 	int rc;
533 
534 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
535 		     tx_queue_id, nb_tx_desc, socket_id);
536 
537 	sfc_adapter_lock(sa);
538 
539 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
540 	if (rc != 0)
541 		goto fail_tx_qinit;
542 
543 	dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
544 
545 	sfc_adapter_unlock(sa);
546 	return 0;
547 
548 fail_tx_qinit:
549 	sfc_adapter_unlock(sa);
550 	SFC_ASSERT(rc > 0);
551 	return -rc;
552 }
553 
554 static void
555 sfc_tx_queue_release(void *queue)
556 {
557 	struct sfc_dp_txq *dp_txq = queue;
558 	struct sfc_txq *txq;
559 	unsigned int sw_index;
560 	struct sfc_adapter *sa;
561 
562 	if (dp_txq == NULL)
563 		return;
564 
565 	txq = sfc_txq_by_dp_txq(dp_txq);
566 	sw_index = dp_txq->dpq.queue_id;
567 
568 	SFC_ASSERT(txq->evq != NULL);
569 	sa = txq->evq->sa;
570 
571 	sfc_log_init(sa, "TxQ = %u", sw_index);
572 
573 	sfc_adapter_lock(sa);
574 
575 	sfc_tx_qfini(sa, sw_index);
576 
577 	sfc_adapter_unlock(sa);
578 }
579 
580 /*
581  * Some statistics are computed as A - B where A and B each increase
582  * monotonically with some hardware counter(s) and the counters are read
583  * asynchronously.
584  *
585  * If packet X is counted in A, but not counted in B yet, computed value is
586  * greater than real.
587  *
588  * If packet X is not counted in A at the moment of reading the counter,
589  * but counted in B at the moment of reading the counter, computed value
590  * is less than real.
591  *
592  * However, counter which grows backward is worse evil than slightly wrong
593  * value. So, let's try to guarantee that it never happens except may be
594  * the case when the MAC stats are zeroed as a result of a NIC reset.
595  */
596 static void
597 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
598 {
599 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
600 		*stat = newval;
601 }
602 
603 static int
604 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
605 {
606 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
607 	struct sfc_port *port = &sa->port;
608 	uint64_t *mac_stats;
609 	int ret;
610 
611 	rte_spinlock_lock(&port->mac_stats_lock);
612 
613 	ret = sfc_port_update_mac_stats(sa);
614 	if (ret != 0)
615 		goto unlock;
616 
617 	mac_stats = port->mac_stats_buf;
618 
619 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
620 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
621 		stats->ipackets =
622 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
623 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
624 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
625 		stats->opackets =
626 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
627 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
628 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
629 		stats->ibytes =
630 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
631 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
632 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
633 		stats->obytes =
634 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
635 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
636 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
637 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
638 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
639 	} else {
640 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
641 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
642 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
643 		/*
644 		 * Take into account stats which are whenever supported
645 		 * on EF10. If some stat is not supported by current
646 		 * firmware variant or HW revision, it is guaranteed
647 		 * to be zero in mac_stats.
648 		 */
649 		stats->imissed =
650 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
651 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
652 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
653 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
654 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
655 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
656 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
657 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
658 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
659 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
660 		stats->ierrors =
661 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
662 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
663 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
664 		/* no oerrors counters supported on EF10 */
665 
666 		/* Exclude missed, errors and pauses from Rx packets */
667 		sfc_update_diff_stat(&port->ipackets,
668 			mac_stats[EFX_MAC_RX_PKTS] -
669 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
670 			stats->imissed - stats->ierrors);
671 		stats->ipackets = port->ipackets;
672 	}
673 
674 unlock:
675 	rte_spinlock_unlock(&port->mac_stats_lock);
676 	SFC_ASSERT(ret >= 0);
677 	return -ret;
678 }
679 
680 static int
681 sfc_stats_reset(struct rte_eth_dev *dev)
682 {
683 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
684 	struct sfc_port *port = &sa->port;
685 	int rc;
686 
687 	if (sa->state != SFC_ADAPTER_STARTED) {
688 		/*
689 		 * The operation cannot be done if port is not started; it
690 		 * will be scheduled to be done during the next port start
691 		 */
692 		port->mac_stats_reset_pending = B_TRUE;
693 		return 0;
694 	}
695 
696 	rc = sfc_port_reset_mac_stats(sa);
697 	if (rc != 0)
698 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
699 
700 	SFC_ASSERT(rc >= 0);
701 	return -rc;
702 }
703 
704 static int
705 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
706 	       unsigned int xstats_count)
707 {
708 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
709 	struct sfc_port *port = &sa->port;
710 	uint64_t *mac_stats;
711 	int rc;
712 	unsigned int i;
713 	int nstats = 0;
714 
715 	rte_spinlock_lock(&port->mac_stats_lock);
716 
717 	rc = sfc_port_update_mac_stats(sa);
718 	if (rc != 0) {
719 		SFC_ASSERT(rc > 0);
720 		nstats = -rc;
721 		goto unlock;
722 	}
723 
724 	mac_stats = port->mac_stats_buf;
725 
726 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
727 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
728 			if (xstats != NULL && nstats < (int)xstats_count) {
729 				xstats[nstats].id = nstats;
730 				xstats[nstats].value = mac_stats[i];
731 			}
732 			nstats++;
733 		}
734 	}
735 
736 unlock:
737 	rte_spinlock_unlock(&port->mac_stats_lock);
738 
739 	return nstats;
740 }
741 
742 static int
743 sfc_xstats_get_names(struct rte_eth_dev *dev,
744 		     struct rte_eth_xstat_name *xstats_names,
745 		     unsigned int xstats_count)
746 {
747 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
748 	struct sfc_port *port = &sa->port;
749 	unsigned int i;
750 	unsigned int nstats = 0;
751 
752 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
753 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
754 			if (xstats_names != NULL && nstats < xstats_count)
755 				strlcpy(xstats_names[nstats].name,
756 					efx_mac_stat_name(sa->nic, i),
757 					sizeof(xstats_names[0].name));
758 			nstats++;
759 		}
760 	}
761 
762 	return nstats;
763 }
764 
765 static int
766 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
767 		     uint64_t *values, unsigned int n)
768 {
769 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
770 	struct sfc_port *port = &sa->port;
771 	uint64_t *mac_stats;
772 	unsigned int nb_supported = 0;
773 	unsigned int nb_written = 0;
774 	unsigned int i;
775 	int ret;
776 	int rc;
777 
778 	if (unlikely(values == NULL) ||
779 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
780 		return port->mac_stats_nb_supported;
781 
782 	rte_spinlock_lock(&port->mac_stats_lock);
783 
784 	rc = sfc_port_update_mac_stats(sa);
785 	if (rc != 0) {
786 		SFC_ASSERT(rc > 0);
787 		ret = -rc;
788 		goto unlock;
789 	}
790 
791 	mac_stats = port->mac_stats_buf;
792 
793 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
794 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
795 			continue;
796 
797 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
798 			values[nb_written++] = mac_stats[i];
799 
800 		++nb_supported;
801 	}
802 
803 	ret = nb_written;
804 
805 unlock:
806 	rte_spinlock_unlock(&port->mac_stats_lock);
807 
808 	return ret;
809 }
810 
811 static int
812 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
813 			   struct rte_eth_xstat_name *xstats_names,
814 			   const uint64_t *ids, unsigned int size)
815 {
816 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
817 	struct sfc_port *port = &sa->port;
818 	unsigned int nb_supported = 0;
819 	unsigned int nb_written = 0;
820 	unsigned int i;
821 
822 	if (unlikely(xstats_names == NULL) ||
823 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
824 		return port->mac_stats_nb_supported;
825 
826 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
827 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
828 			continue;
829 
830 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
831 			char *name = xstats_names[nb_written++].name;
832 
833 			strlcpy(name, efx_mac_stat_name(sa->nic, i),
834 				sizeof(xstats_names[0].name));
835 		}
836 
837 		++nb_supported;
838 	}
839 
840 	return nb_written;
841 }
842 
843 static int
844 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
845 {
846 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
847 	unsigned int wanted_fc, link_fc;
848 
849 	memset(fc_conf, 0, sizeof(*fc_conf));
850 
851 	sfc_adapter_lock(sa);
852 
853 	if (sa->state == SFC_ADAPTER_STARTED)
854 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
855 	else
856 		link_fc = sa->port.flow_ctrl;
857 
858 	switch (link_fc) {
859 	case 0:
860 		fc_conf->mode = RTE_FC_NONE;
861 		break;
862 	case EFX_FCNTL_RESPOND:
863 		fc_conf->mode = RTE_FC_RX_PAUSE;
864 		break;
865 	case EFX_FCNTL_GENERATE:
866 		fc_conf->mode = RTE_FC_TX_PAUSE;
867 		break;
868 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
869 		fc_conf->mode = RTE_FC_FULL;
870 		break;
871 	default:
872 		sfc_err(sa, "%s: unexpected flow control value %#x",
873 			__func__, link_fc);
874 	}
875 
876 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
877 
878 	sfc_adapter_unlock(sa);
879 
880 	return 0;
881 }
882 
883 static int
884 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
885 {
886 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
887 	struct sfc_port *port = &sa->port;
888 	unsigned int fcntl;
889 	int rc;
890 
891 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
892 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
893 	    fc_conf->mac_ctrl_frame_fwd != 0) {
894 		sfc_err(sa, "unsupported flow control settings specified");
895 		rc = EINVAL;
896 		goto fail_inval;
897 	}
898 
899 	switch (fc_conf->mode) {
900 	case RTE_FC_NONE:
901 		fcntl = 0;
902 		break;
903 	case RTE_FC_RX_PAUSE:
904 		fcntl = EFX_FCNTL_RESPOND;
905 		break;
906 	case RTE_FC_TX_PAUSE:
907 		fcntl = EFX_FCNTL_GENERATE;
908 		break;
909 	case RTE_FC_FULL:
910 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
911 		break;
912 	default:
913 		rc = EINVAL;
914 		goto fail_inval;
915 	}
916 
917 	sfc_adapter_lock(sa);
918 
919 	if (sa->state == SFC_ADAPTER_STARTED) {
920 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
921 		if (rc != 0)
922 			goto fail_mac_fcntl_set;
923 	}
924 
925 	port->flow_ctrl = fcntl;
926 	port->flow_ctrl_autoneg = fc_conf->autoneg;
927 
928 	sfc_adapter_unlock(sa);
929 
930 	return 0;
931 
932 fail_mac_fcntl_set:
933 	sfc_adapter_unlock(sa);
934 fail_inval:
935 	SFC_ASSERT(rc > 0);
936 	return -rc;
937 }
938 
939 static int
940 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
941 {
942 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
943 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
944 	boolean_t scatter_enabled;
945 	const char *error;
946 	unsigned int i;
947 
948 	for (i = 0; i < sas->rxq_count; i++) {
949 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
950 			continue;
951 
952 		scatter_enabled = (sas->rxq_info[i].type_flags &
953 				   EFX_RXQ_FLAG_SCATTER);
954 
955 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
956 					  encp->enc_rx_prefix_size,
957 					  scatter_enabled,
958 					  encp->enc_rx_scatter_max, &error)) {
959 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
960 				error);
961 			return EINVAL;
962 		}
963 	}
964 
965 	return 0;
966 }
967 
968 static int
969 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
970 {
971 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
972 	size_t pdu = EFX_MAC_PDU(mtu);
973 	size_t old_pdu;
974 	int rc;
975 
976 	sfc_log_init(sa, "mtu=%u", mtu);
977 
978 	rc = EINVAL;
979 	if (pdu < EFX_MAC_PDU_MIN) {
980 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
981 			(unsigned int)mtu, (unsigned int)pdu,
982 			EFX_MAC_PDU_MIN);
983 		goto fail_inval;
984 	}
985 	if (pdu > EFX_MAC_PDU_MAX) {
986 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
987 			(unsigned int)mtu, (unsigned int)pdu,
988 			(unsigned int)EFX_MAC_PDU_MAX);
989 		goto fail_inval;
990 	}
991 
992 	sfc_adapter_lock(sa);
993 
994 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
995 	if (rc != 0)
996 		goto fail_check_scatter;
997 
998 	if (pdu != sa->port.pdu) {
999 		if (sa->state == SFC_ADAPTER_STARTED) {
1000 			sfc_stop(sa);
1001 
1002 			old_pdu = sa->port.pdu;
1003 			sa->port.pdu = pdu;
1004 			rc = sfc_start(sa);
1005 			if (rc != 0)
1006 				goto fail_start;
1007 		} else {
1008 			sa->port.pdu = pdu;
1009 		}
1010 	}
1011 
1012 	/*
1013 	 * The driver does not use it, but other PMDs update jumbo frame
1014 	 * flag and max_rx_pkt_len when MTU is set.
1015 	 */
1016 	if (mtu > RTE_ETHER_MAX_LEN) {
1017 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1018 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1019 	}
1020 
1021 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1022 
1023 	sfc_adapter_unlock(sa);
1024 
1025 	sfc_log_init(sa, "done");
1026 	return 0;
1027 
1028 fail_start:
1029 	sa->port.pdu = old_pdu;
1030 	if (sfc_start(sa) != 0)
1031 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1032 			"PDU max size - port is stopped",
1033 			(unsigned int)pdu, (unsigned int)old_pdu);
1034 
1035 fail_check_scatter:
1036 	sfc_adapter_unlock(sa);
1037 
1038 fail_inval:
1039 	sfc_log_init(sa, "failed %d", rc);
1040 	SFC_ASSERT(rc > 0);
1041 	return -rc;
1042 }
1043 static int
1044 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1045 {
1046 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1047 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1048 	struct sfc_port *port = &sa->port;
1049 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1050 	int rc = 0;
1051 
1052 	sfc_adapter_lock(sa);
1053 
1054 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1055 		goto unlock;
1056 
1057 	/*
1058 	 * Copy the address to the device private data so that
1059 	 * it could be recalled in the case of adapter restart.
1060 	 */
1061 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1062 
1063 	/*
1064 	 * Neither of the two following checks can return
1065 	 * an error. The new MAC address is preserved in
1066 	 * the device private data and can be activated
1067 	 * on the next port start if the user prevents
1068 	 * isolated mode from being enabled.
1069 	 */
1070 	if (sfc_sa2shared(sa)->isolated) {
1071 		sfc_warn(sa, "isolated mode is active on the port");
1072 		sfc_warn(sa, "will not set MAC address");
1073 		goto unlock;
1074 	}
1075 
1076 	if (sa->state != SFC_ADAPTER_STARTED) {
1077 		sfc_notice(sa, "the port is not started");
1078 		sfc_notice(sa, "the new MAC address will be set on port start");
1079 
1080 		goto unlock;
1081 	}
1082 
1083 	if (encp->enc_allow_set_mac_with_installed_filters) {
1084 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1085 		if (rc != 0) {
1086 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1087 			goto unlock;
1088 		}
1089 
1090 		/*
1091 		 * Changing the MAC address by means of MCDI request
1092 		 * has no effect on received traffic, therefore
1093 		 * we also need to update unicast filters
1094 		 */
1095 		rc = sfc_set_rx_mode_unchecked(sa);
1096 		if (rc != 0) {
1097 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1098 			/* Rollback the old address */
1099 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1100 			(void)sfc_set_rx_mode_unchecked(sa);
1101 		}
1102 	} else {
1103 		sfc_warn(sa, "cannot set MAC address with filters installed");
1104 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1105 		sfc_warn(sa, "(some traffic may be dropped)");
1106 
1107 		/*
1108 		 * Since setting MAC address with filters installed is not
1109 		 * allowed on the adapter, the new MAC address will be set
1110 		 * by means of adapter restart. sfc_start() shall retrieve
1111 		 * the new address from the device private data and set it.
1112 		 */
1113 		sfc_stop(sa);
1114 		rc = sfc_start(sa);
1115 		if (rc != 0)
1116 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1117 	}
1118 
1119 unlock:
1120 	if (rc != 0)
1121 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1122 
1123 	sfc_adapter_unlock(sa);
1124 
1125 	SFC_ASSERT(rc >= 0);
1126 	return -rc;
1127 }
1128 
1129 
1130 static int
1131 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1132 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1133 {
1134 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1135 	struct sfc_port *port = &sa->port;
1136 	uint8_t *mc_addrs = port->mcast_addrs;
1137 	int rc;
1138 	unsigned int i;
1139 
1140 	if (sfc_sa2shared(sa)->isolated) {
1141 		sfc_err(sa, "isolated mode is active on the port");
1142 		sfc_err(sa, "will not set multicast address list");
1143 		return -ENOTSUP;
1144 	}
1145 
1146 	if (mc_addrs == NULL)
1147 		return -ENOBUFS;
1148 
1149 	if (nb_mc_addr > port->max_mcast_addrs) {
1150 		sfc_err(sa, "too many multicast addresses: %u > %u",
1151 			 nb_mc_addr, port->max_mcast_addrs);
1152 		return -EINVAL;
1153 	}
1154 
1155 	for (i = 0; i < nb_mc_addr; ++i) {
1156 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1157 				 EFX_MAC_ADDR_LEN);
1158 		mc_addrs += EFX_MAC_ADDR_LEN;
1159 	}
1160 
1161 	port->nb_mcast_addrs = nb_mc_addr;
1162 
1163 	if (sa->state != SFC_ADAPTER_STARTED)
1164 		return 0;
1165 
1166 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1167 					port->nb_mcast_addrs);
1168 	if (rc != 0)
1169 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1170 
1171 	SFC_ASSERT(rc >= 0);
1172 	return -rc;
1173 }
1174 
1175 /*
1176  * The function is used by the secondary process as well. It must not
1177  * use any process-local pointers from the adapter data.
1178  */
1179 static void
1180 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1181 		      struct rte_eth_rxq_info *qinfo)
1182 {
1183 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1184 	struct sfc_rxq_info *rxq_info;
1185 
1186 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1187 
1188 	rxq_info = &sas->rxq_info[rx_queue_id];
1189 
1190 	qinfo->mp = rxq_info->refill_mb_pool;
1191 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1192 	qinfo->conf.rx_drop_en = 1;
1193 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1194 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1195 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1196 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1197 		qinfo->scattered_rx = 1;
1198 	}
1199 	qinfo->nb_desc = rxq_info->entries;
1200 }
1201 
1202 /*
1203  * The function is used by the secondary process as well. It must not
1204  * use any process-local pointers from the adapter data.
1205  */
1206 static void
1207 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1208 		      struct rte_eth_txq_info *qinfo)
1209 {
1210 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1211 	struct sfc_txq_info *txq_info;
1212 
1213 	SFC_ASSERT(tx_queue_id < sas->txq_count);
1214 
1215 	txq_info = &sas->txq_info[tx_queue_id];
1216 
1217 	memset(qinfo, 0, sizeof(*qinfo));
1218 
1219 	qinfo->conf.offloads = txq_info->offloads;
1220 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1221 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1222 	qinfo->nb_desc = txq_info->entries;
1223 }
1224 
1225 /*
1226  * The function is used by the secondary process as well. It must not
1227  * use any process-local pointers from the adapter data.
1228  */
1229 static uint32_t
1230 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1231 {
1232 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1233 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1234 	struct sfc_rxq_info *rxq_info;
1235 
1236 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1237 	rxq_info = &sas->rxq_info[rx_queue_id];
1238 
1239 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1240 		return 0;
1241 
1242 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1243 }
1244 
1245 /*
1246  * The function is used by the secondary process as well. It must not
1247  * use any process-local pointers from the adapter data.
1248  */
1249 static int
1250 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1251 {
1252 	struct sfc_dp_rxq *dp_rxq = queue;
1253 	const struct sfc_dp_rx *dp_rx;
1254 
1255 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1256 
1257 	return offset < dp_rx->qdesc_npending(dp_rxq);
1258 }
1259 
1260 /*
1261  * The function is used by the secondary process as well. It must not
1262  * use any process-local pointers from the adapter data.
1263  */
1264 static int
1265 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1266 {
1267 	struct sfc_dp_rxq *dp_rxq = queue;
1268 	const struct sfc_dp_rx *dp_rx;
1269 
1270 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1271 
1272 	return dp_rx->qdesc_status(dp_rxq, offset);
1273 }
1274 
1275 /*
1276  * The function is used by the secondary process as well. It must not
1277  * use any process-local pointers from the adapter data.
1278  */
1279 static int
1280 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1281 {
1282 	struct sfc_dp_txq *dp_txq = queue;
1283 	const struct sfc_dp_tx *dp_tx;
1284 
1285 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1286 
1287 	return dp_tx->qdesc_status(dp_txq, offset);
1288 }
1289 
1290 static int
1291 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1292 {
1293 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1294 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1295 	int rc;
1296 
1297 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1298 
1299 	sfc_adapter_lock(sa);
1300 
1301 	rc = EINVAL;
1302 	if (sa->state != SFC_ADAPTER_STARTED)
1303 		goto fail_not_started;
1304 
1305 	if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1306 		goto fail_not_setup;
1307 
1308 	rc = sfc_rx_qstart(sa, rx_queue_id);
1309 	if (rc != 0)
1310 		goto fail_rx_qstart;
1311 
1312 	sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1313 
1314 	sfc_adapter_unlock(sa);
1315 
1316 	return 0;
1317 
1318 fail_rx_qstart:
1319 fail_not_setup:
1320 fail_not_started:
1321 	sfc_adapter_unlock(sa);
1322 	SFC_ASSERT(rc > 0);
1323 	return -rc;
1324 }
1325 
1326 static int
1327 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1328 {
1329 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1330 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1331 
1332 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1333 
1334 	sfc_adapter_lock(sa);
1335 	sfc_rx_qstop(sa, rx_queue_id);
1336 
1337 	sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1338 
1339 	sfc_adapter_unlock(sa);
1340 
1341 	return 0;
1342 }
1343 
1344 static int
1345 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1346 {
1347 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1348 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1349 	int rc;
1350 
1351 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1352 
1353 	sfc_adapter_lock(sa);
1354 
1355 	rc = EINVAL;
1356 	if (sa->state != SFC_ADAPTER_STARTED)
1357 		goto fail_not_started;
1358 
1359 	if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1360 		goto fail_not_setup;
1361 
1362 	rc = sfc_tx_qstart(sa, tx_queue_id);
1363 	if (rc != 0)
1364 		goto fail_tx_qstart;
1365 
1366 	sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1367 
1368 	sfc_adapter_unlock(sa);
1369 	return 0;
1370 
1371 fail_tx_qstart:
1372 
1373 fail_not_setup:
1374 fail_not_started:
1375 	sfc_adapter_unlock(sa);
1376 	SFC_ASSERT(rc > 0);
1377 	return -rc;
1378 }
1379 
1380 static int
1381 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1382 {
1383 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1384 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1385 
1386 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1387 
1388 	sfc_adapter_lock(sa);
1389 
1390 	sfc_tx_qstop(sa, tx_queue_id);
1391 
1392 	sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1393 
1394 	sfc_adapter_unlock(sa);
1395 	return 0;
1396 }
1397 
1398 static efx_tunnel_protocol_t
1399 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1400 {
1401 	switch (rte_type) {
1402 	case RTE_TUNNEL_TYPE_VXLAN:
1403 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1404 	case RTE_TUNNEL_TYPE_GENEVE:
1405 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1406 	default:
1407 		return EFX_TUNNEL_NPROTOS;
1408 	}
1409 }
1410 
1411 enum sfc_udp_tunnel_op_e {
1412 	SFC_UDP_TUNNEL_ADD_PORT,
1413 	SFC_UDP_TUNNEL_DEL_PORT,
1414 };
1415 
1416 static int
1417 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1418 		      struct rte_eth_udp_tunnel *tunnel_udp,
1419 		      enum sfc_udp_tunnel_op_e op)
1420 {
1421 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1422 	efx_tunnel_protocol_t tunnel_proto;
1423 	int rc;
1424 
1425 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1426 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1427 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1428 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1429 
1430 	tunnel_proto =
1431 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1432 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1433 		rc = ENOTSUP;
1434 		goto fail_bad_proto;
1435 	}
1436 
1437 	sfc_adapter_lock(sa);
1438 
1439 	switch (op) {
1440 	case SFC_UDP_TUNNEL_ADD_PORT:
1441 		rc = efx_tunnel_config_udp_add(sa->nic,
1442 					       tunnel_udp->udp_port,
1443 					       tunnel_proto);
1444 		break;
1445 	case SFC_UDP_TUNNEL_DEL_PORT:
1446 		rc = efx_tunnel_config_udp_remove(sa->nic,
1447 						  tunnel_udp->udp_port,
1448 						  tunnel_proto);
1449 		break;
1450 	default:
1451 		rc = EINVAL;
1452 		goto fail_bad_op;
1453 	}
1454 
1455 	if (rc != 0)
1456 		goto fail_op;
1457 
1458 	if (sa->state == SFC_ADAPTER_STARTED) {
1459 		rc = efx_tunnel_reconfigure(sa->nic);
1460 		if (rc == EAGAIN) {
1461 			/*
1462 			 * Configuration is accepted by FW and MC reboot
1463 			 * is initiated to apply the changes. MC reboot
1464 			 * will be handled in a usual way (MC reboot
1465 			 * event on management event queue and adapter
1466 			 * restart).
1467 			 */
1468 			rc = 0;
1469 		} else if (rc != 0) {
1470 			goto fail_reconfigure;
1471 		}
1472 	}
1473 
1474 	sfc_adapter_unlock(sa);
1475 	return 0;
1476 
1477 fail_reconfigure:
1478 	/* Remove/restore entry since the change makes the trouble */
1479 	switch (op) {
1480 	case SFC_UDP_TUNNEL_ADD_PORT:
1481 		(void)efx_tunnel_config_udp_remove(sa->nic,
1482 						   tunnel_udp->udp_port,
1483 						   tunnel_proto);
1484 		break;
1485 	case SFC_UDP_TUNNEL_DEL_PORT:
1486 		(void)efx_tunnel_config_udp_add(sa->nic,
1487 						tunnel_udp->udp_port,
1488 						tunnel_proto);
1489 		break;
1490 	}
1491 
1492 fail_op:
1493 fail_bad_op:
1494 	sfc_adapter_unlock(sa);
1495 
1496 fail_bad_proto:
1497 	SFC_ASSERT(rc > 0);
1498 	return -rc;
1499 }
1500 
1501 static int
1502 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1503 			    struct rte_eth_udp_tunnel *tunnel_udp)
1504 {
1505 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1506 }
1507 
1508 static int
1509 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1510 			    struct rte_eth_udp_tunnel *tunnel_udp)
1511 {
1512 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1513 }
1514 
1515 /*
1516  * The function is used by the secondary process as well. It must not
1517  * use any process-local pointers from the adapter data.
1518  */
1519 static int
1520 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1521 			  struct rte_eth_rss_conf *rss_conf)
1522 {
1523 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1524 	struct sfc_rss *rss = &sas->rss;
1525 
1526 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1527 		return -ENOTSUP;
1528 
1529 	/*
1530 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1531 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1532 	 * flags which corresponds to the active EFX configuration stored
1533 	 * locally in 'sfc_adapter' and kept up-to-date
1534 	 */
1535 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1536 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1537 	if (rss_conf->rss_key != NULL)
1538 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1539 
1540 	return 0;
1541 }
1542 
1543 static int
1544 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1545 			struct rte_eth_rss_conf *rss_conf)
1546 {
1547 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1548 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1549 	unsigned int efx_hash_types;
1550 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1551 	unsigned int n_contexts;
1552 	unsigned int mode_i = 0;
1553 	unsigned int key_i = 0;
1554 	unsigned int i = 0;
1555 	int rc = 0;
1556 
1557 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1558 
1559 	if (sfc_sa2shared(sa)->isolated)
1560 		return -ENOTSUP;
1561 
1562 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1563 		sfc_err(sa, "RSS is not available");
1564 		return -ENOTSUP;
1565 	}
1566 
1567 	if (rss->channels == 0) {
1568 		sfc_err(sa, "RSS is not configured");
1569 		return -EINVAL;
1570 	}
1571 
1572 	if ((rss_conf->rss_key != NULL) &&
1573 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1574 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1575 			sizeof(rss->key));
1576 		return -EINVAL;
1577 	}
1578 
1579 	sfc_adapter_lock(sa);
1580 
1581 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1582 	if (rc != 0)
1583 		goto fail_rx_hf_rte_to_efx;
1584 
1585 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1586 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1587 					   rss->hash_alg, efx_hash_types,
1588 					   B_TRUE);
1589 		if (rc != 0)
1590 			goto fail_scale_mode_set;
1591 	}
1592 
1593 	if (rss_conf->rss_key != NULL) {
1594 		if (sa->state == SFC_ADAPTER_STARTED) {
1595 			for (key_i = 0; key_i < n_contexts; key_i++) {
1596 				rc = efx_rx_scale_key_set(sa->nic,
1597 							  contexts[key_i],
1598 							  rss_conf->rss_key,
1599 							  sizeof(rss->key));
1600 				if (rc != 0)
1601 					goto fail_scale_key_set;
1602 			}
1603 		}
1604 
1605 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1606 	}
1607 
1608 	rss->hash_types = efx_hash_types;
1609 
1610 	sfc_adapter_unlock(sa);
1611 
1612 	return 0;
1613 
1614 fail_scale_key_set:
1615 	for (i = 0; i < key_i; i++) {
1616 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1617 					 sizeof(rss->key)) != 0)
1618 			sfc_err(sa, "failed to restore RSS key");
1619 	}
1620 
1621 fail_scale_mode_set:
1622 	for (i = 0; i < mode_i; i++) {
1623 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1624 					  EFX_RX_HASHALG_TOEPLITZ,
1625 					  rss->hash_types, B_TRUE) != 0)
1626 			sfc_err(sa, "failed to restore RSS mode");
1627 	}
1628 
1629 fail_rx_hf_rte_to_efx:
1630 	sfc_adapter_unlock(sa);
1631 	return -rc;
1632 }
1633 
1634 /*
1635  * The function is used by the secondary process as well. It must not
1636  * use any process-local pointers from the adapter data.
1637  */
1638 static int
1639 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1640 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1641 		       uint16_t reta_size)
1642 {
1643 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1644 	struct sfc_rss *rss = &sas->rss;
1645 	int entry;
1646 
1647 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1648 		return -ENOTSUP;
1649 
1650 	if (rss->channels == 0)
1651 		return -EINVAL;
1652 
1653 	if (reta_size != EFX_RSS_TBL_SIZE)
1654 		return -EINVAL;
1655 
1656 	for (entry = 0; entry < reta_size; entry++) {
1657 		int grp = entry / RTE_RETA_GROUP_SIZE;
1658 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1659 
1660 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1661 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static int
1668 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1669 			struct rte_eth_rss_reta_entry64 *reta_conf,
1670 			uint16_t reta_size)
1671 {
1672 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1673 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1674 	unsigned int *rss_tbl_new;
1675 	uint16_t entry;
1676 	int rc = 0;
1677 
1678 
1679 	if (sfc_sa2shared(sa)->isolated)
1680 		return -ENOTSUP;
1681 
1682 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1683 		sfc_err(sa, "RSS is not available");
1684 		return -ENOTSUP;
1685 	}
1686 
1687 	if (rss->channels == 0) {
1688 		sfc_err(sa, "RSS is not configured");
1689 		return -EINVAL;
1690 	}
1691 
1692 	if (reta_size != EFX_RSS_TBL_SIZE) {
1693 		sfc_err(sa, "RETA size is wrong (should be %u)",
1694 			EFX_RSS_TBL_SIZE);
1695 		return -EINVAL;
1696 	}
1697 
1698 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1699 	if (rss_tbl_new == NULL)
1700 		return -ENOMEM;
1701 
1702 	sfc_adapter_lock(sa);
1703 
1704 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1705 
1706 	for (entry = 0; entry < reta_size; entry++) {
1707 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1708 		struct rte_eth_rss_reta_entry64 *grp;
1709 
1710 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1711 
1712 		if (grp->mask & (1ull << grp_idx)) {
1713 			if (grp->reta[grp_idx] >= rss->channels) {
1714 				rc = EINVAL;
1715 				goto bad_reta_entry;
1716 			}
1717 			rss_tbl_new[entry] = grp->reta[grp_idx];
1718 		}
1719 	}
1720 
1721 	if (sa->state == SFC_ADAPTER_STARTED) {
1722 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1723 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1724 		if (rc != 0)
1725 			goto fail_scale_tbl_set;
1726 	}
1727 
1728 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1729 
1730 fail_scale_tbl_set:
1731 bad_reta_entry:
1732 	sfc_adapter_unlock(sa);
1733 
1734 	rte_free(rss_tbl_new);
1735 
1736 	SFC_ASSERT(rc >= 0);
1737 	return -rc;
1738 }
1739 
1740 static int
1741 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1742 		    enum rte_filter_op filter_op,
1743 		    void *arg)
1744 {
1745 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1746 	int rc = ENOTSUP;
1747 
1748 	sfc_log_init(sa, "entry");
1749 
1750 	switch (filter_type) {
1751 	case RTE_ETH_FILTER_NONE:
1752 		sfc_err(sa, "Global filters configuration not supported");
1753 		break;
1754 	case RTE_ETH_FILTER_MACVLAN:
1755 		sfc_err(sa, "MACVLAN filters not supported");
1756 		break;
1757 	case RTE_ETH_FILTER_ETHERTYPE:
1758 		sfc_err(sa, "EtherType filters not supported");
1759 		break;
1760 	case RTE_ETH_FILTER_FLEXIBLE:
1761 		sfc_err(sa, "Flexible filters not supported");
1762 		break;
1763 	case RTE_ETH_FILTER_SYN:
1764 		sfc_err(sa, "SYN filters not supported");
1765 		break;
1766 	case RTE_ETH_FILTER_NTUPLE:
1767 		sfc_err(sa, "NTUPLE filters not supported");
1768 		break;
1769 	case RTE_ETH_FILTER_TUNNEL:
1770 		sfc_err(sa, "Tunnel filters not supported");
1771 		break;
1772 	case RTE_ETH_FILTER_FDIR:
1773 		sfc_err(sa, "Flow Director filters not supported");
1774 		break;
1775 	case RTE_ETH_FILTER_HASH:
1776 		sfc_err(sa, "Hash filters not supported");
1777 		break;
1778 	case RTE_ETH_FILTER_GENERIC:
1779 		if (filter_op != RTE_ETH_FILTER_GET) {
1780 			rc = EINVAL;
1781 		} else {
1782 			*(const void **)arg = &sfc_flow_ops;
1783 			rc = 0;
1784 		}
1785 		break;
1786 	default:
1787 		sfc_err(sa, "Unknown filter type %u", filter_type);
1788 		break;
1789 	}
1790 
1791 	sfc_log_init(sa, "exit: %d", -rc);
1792 	SFC_ASSERT(rc >= 0);
1793 	return -rc;
1794 }
1795 
1796 static int
1797 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1798 {
1799 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1800 
1801 	/*
1802 	 * If Rx datapath does not provide callback to check mempool,
1803 	 * all pools are supported.
1804 	 */
1805 	if (sap->dp_rx->pool_ops_supported == NULL)
1806 		return 1;
1807 
1808 	return sap->dp_rx->pool_ops_supported(pool);
1809 }
1810 
1811 static int
1812 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1813 {
1814 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1815 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1816 	struct sfc_rxq_info *rxq_info;
1817 
1818 	SFC_ASSERT(queue_id < sas->rxq_count);
1819 	rxq_info = &sas->rxq_info[queue_id];
1820 
1821 	return sap->dp_rx->intr_enable(rxq_info->dp);
1822 }
1823 
1824 static int
1825 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1826 {
1827 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1828 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1829 	struct sfc_rxq_info *rxq_info;
1830 
1831 	SFC_ASSERT(queue_id < sas->rxq_count);
1832 	rxq_info = &sas->rxq_info[queue_id];
1833 
1834 	return sap->dp_rx->intr_disable(rxq_info->dp);
1835 }
1836 
1837 static const struct eth_dev_ops sfc_eth_dev_ops = {
1838 	.dev_configure			= sfc_dev_configure,
1839 	.dev_start			= sfc_dev_start,
1840 	.dev_stop			= sfc_dev_stop,
1841 	.dev_set_link_up		= sfc_dev_set_link_up,
1842 	.dev_set_link_down		= sfc_dev_set_link_down,
1843 	.dev_close			= sfc_dev_close,
1844 	.promiscuous_enable		= sfc_dev_promisc_enable,
1845 	.promiscuous_disable		= sfc_dev_promisc_disable,
1846 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1847 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1848 	.link_update			= sfc_dev_link_update,
1849 	.stats_get			= sfc_stats_get,
1850 	.stats_reset			= sfc_stats_reset,
1851 	.xstats_get			= sfc_xstats_get,
1852 	.xstats_reset			= sfc_stats_reset,
1853 	.xstats_get_names		= sfc_xstats_get_names,
1854 	.dev_infos_get			= sfc_dev_infos_get,
1855 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1856 	.mtu_set			= sfc_dev_set_mtu,
1857 	.rx_queue_start			= sfc_rx_queue_start,
1858 	.rx_queue_stop			= sfc_rx_queue_stop,
1859 	.tx_queue_start			= sfc_tx_queue_start,
1860 	.tx_queue_stop			= sfc_tx_queue_stop,
1861 	.rx_queue_setup			= sfc_rx_queue_setup,
1862 	.rx_queue_release		= sfc_rx_queue_release,
1863 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1864 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1865 	.tx_queue_setup			= sfc_tx_queue_setup,
1866 	.tx_queue_release		= sfc_tx_queue_release,
1867 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1868 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1869 	.mac_addr_set			= sfc_mac_addr_set,
1870 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1871 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1872 	.reta_update			= sfc_dev_rss_reta_update,
1873 	.reta_query			= sfc_dev_rss_reta_query,
1874 	.rss_hash_update		= sfc_dev_rss_hash_update,
1875 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1876 	.filter_ctrl			= sfc_dev_filter_ctrl,
1877 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1878 	.rxq_info_get			= sfc_rx_queue_info_get,
1879 	.txq_info_get			= sfc_tx_queue_info_get,
1880 	.fw_version_get			= sfc_fw_version_get,
1881 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1882 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1883 	.pool_ops_supported		= sfc_pool_ops_supported,
1884 };
1885 
1886 /**
1887  * Duplicate a string in potentially shared memory required for
1888  * multi-process support.
1889  *
1890  * strdup() allocates from process-local heap/memory.
1891  */
1892 static char *
1893 sfc_strdup(const char *str)
1894 {
1895 	size_t size;
1896 	char *copy;
1897 
1898 	if (str == NULL)
1899 		return NULL;
1900 
1901 	size = strlen(str) + 1;
1902 	copy = rte_malloc(__func__, size, 0);
1903 	if (copy != NULL)
1904 		rte_memcpy(copy, str, size);
1905 
1906 	return copy;
1907 }
1908 
1909 static int
1910 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1911 {
1912 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1913 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1914 	const struct sfc_dp_rx *dp_rx;
1915 	const struct sfc_dp_tx *dp_tx;
1916 	const efx_nic_cfg_t *encp;
1917 	unsigned int avail_caps = 0;
1918 	const char *rx_name = NULL;
1919 	const char *tx_name = NULL;
1920 	int rc;
1921 
1922 	switch (sa->family) {
1923 	case EFX_FAMILY_HUNTINGTON:
1924 	case EFX_FAMILY_MEDFORD:
1925 	case EFX_FAMILY_MEDFORD2:
1926 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1927 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
1928 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
1929 		break;
1930 	case EFX_FAMILY_RIVERHEAD:
1931 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
1932 		break;
1933 	default:
1934 		break;
1935 	}
1936 
1937 	encp = efx_nic_cfg_get(sa->nic);
1938 	if (encp->enc_rx_es_super_buffer_supported)
1939 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1940 
1941 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1942 				sfc_kvarg_string_handler, &rx_name);
1943 	if (rc != 0)
1944 		goto fail_kvarg_rx_datapath;
1945 
1946 	if (rx_name != NULL) {
1947 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1948 		if (dp_rx == NULL) {
1949 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1950 			rc = ENOENT;
1951 			goto fail_dp_rx;
1952 		}
1953 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1954 			sfc_err(sa,
1955 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1956 				rx_name);
1957 			rc = EINVAL;
1958 			goto fail_dp_rx_caps;
1959 		}
1960 	} else {
1961 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1962 		if (dp_rx == NULL) {
1963 			sfc_err(sa, "Rx datapath by caps %#x not found",
1964 				avail_caps);
1965 			rc = ENOENT;
1966 			goto fail_dp_rx;
1967 		}
1968 	}
1969 
1970 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1971 	if (sas->dp_rx_name == NULL) {
1972 		rc = ENOMEM;
1973 		goto fail_dp_rx_name;
1974 	}
1975 
1976 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1977 
1978 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1979 				sfc_kvarg_string_handler, &tx_name);
1980 	if (rc != 0)
1981 		goto fail_kvarg_tx_datapath;
1982 
1983 	if (tx_name != NULL) {
1984 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1985 		if (dp_tx == NULL) {
1986 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1987 			rc = ENOENT;
1988 			goto fail_dp_tx;
1989 		}
1990 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1991 			sfc_err(sa,
1992 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1993 				tx_name);
1994 			rc = EINVAL;
1995 			goto fail_dp_tx_caps;
1996 		}
1997 	} else {
1998 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1999 		if (dp_tx == NULL) {
2000 			sfc_err(sa, "Tx datapath by caps %#x not found",
2001 				avail_caps);
2002 			rc = ENOENT;
2003 			goto fail_dp_tx;
2004 		}
2005 	}
2006 
2007 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2008 	if (sas->dp_tx_name == NULL) {
2009 		rc = ENOMEM;
2010 		goto fail_dp_tx_name;
2011 	}
2012 
2013 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2014 
2015 	sa->priv.dp_rx = dp_rx;
2016 	sa->priv.dp_tx = dp_tx;
2017 
2018 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2019 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2020 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2021 
2022 	dev->rx_queue_count = sfc_rx_queue_count;
2023 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2024 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2025 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2026 	dev->dev_ops = &sfc_eth_dev_ops;
2027 
2028 	return 0;
2029 
2030 fail_dp_tx_name:
2031 fail_dp_tx_caps:
2032 fail_dp_tx:
2033 fail_kvarg_tx_datapath:
2034 	rte_free(sas->dp_rx_name);
2035 	sas->dp_rx_name = NULL;
2036 
2037 fail_dp_rx_name:
2038 fail_dp_rx_caps:
2039 fail_dp_rx:
2040 fail_kvarg_rx_datapath:
2041 	return rc;
2042 }
2043 
2044 static void
2045 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2046 {
2047 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2048 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2049 
2050 	dev->dev_ops = NULL;
2051 	dev->tx_pkt_prepare = NULL;
2052 	dev->rx_pkt_burst = NULL;
2053 	dev->tx_pkt_burst = NULL;
2054 
2055 	rte_free(sas->dp_tx_name);
2056 	sas->dp_tx_name = NULL;
2057 	sa->priv.dp_tx = NULL;
2058 
2059 	rte_free(sas->dp_rx_name);
2060 	sas->dp_rx_name = NULL;
2061 	sa->priv.dp_rx = NULL;
2062 }
2063 
2064 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2065 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2066 	.reta_query			= sfc_dev_rss_reta_query,
2067 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2068 	.rxq_info_get			= sfc_rx_queue_info_get,
2069 	.txq_info_get			= sfc_tx_queue_info_get,
2070 };
2071 
2072 static int
2073 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2074 {
2075 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2076 	struct sfc_adapter_priv *sap;
2077 	const struct sfc_dp_rx *dp_rx;
2078 	const struct sfc_dp_tx *dp_tx;
2079 	int rc;
2080 
2081 	/*
2082 	 * Allocate process private data from heap, since it should not
2083 	 * be located in shared memory allocated using rte_malloc() API.
2084 	 */
2085 	sap = calloc(1, sizeof(*sap));
2086 	if (sap == NULL) {
2087 		rc = ENOMEM;
2088 		goto fail_alloc_priv;
2089 	}
2090 
2091 	sap->logtype_main = logtype_main;
2092 
2093 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2094 	if (dp_rx == NULL) {
2095 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2096 			"cannot find %s Rx datapath", sas->dp_rx_name);
2097 		rc = ENOENT;
2098 		goto fail_dp_rx;
2099 	}
2100 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2101 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2102 			"%s Rx datapath does not support multi-process",
2103 			sas->dp_rx_name);
2104 		rc = EINVAL;
2105 		goto fail_dp_rx_multi_process;
2106 	}
2107 
2108 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2109 	if (dp_tx == NULL) {
2110 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2111 			"cannot find %s Tx datapath", sas->dp_tx_name);
2112 		rc = ENOENT;
2113 		goto fail_dp_tx;
2114 	}
2115 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2116 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2117 			"%s Tx datapath does not support multi-process",
2118 			sas->dp_tx_name);
2119 		rc = EINVAL;
2120 		goto fail_dp_tx_multi_process;
2121 	}
2122 
2123 	sap->dp_rx = dp_rx;
2124 	sap->dp_tx = dp_tx;
2125 
2126 	dev->process_private = sap;
2127 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2128 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2129 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2130 	dev->rx_queue_count = sfc_rx_queue_count;
2131 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2132 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2133 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2134 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2135 
2136 	return 0;
2137 
2138 fail_dp_tx_multi_process:
2139 fail_dp_tx:
2140 fail_dp_rx_multi_process:
2141 fail_dp_rx:
2142 	free(sap);
2143 
2144 fail_alloc_priv:
2145 	return rc;
2146 }
2147 
2148 static void
2149 sfc_register_dp(void)
2150 {
2151 	/* Register once */
2152 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2153 		/* Prefer EF10 datapath */
2154 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2155 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2156 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2157 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2158 
2159 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2160 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2161 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2162 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2163 	}
2164 }
2165 
2166 static int
2167 sfc_eth_dev_init(struct rte_eth_dev *dev)
2168 {
2169 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2170 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2171 	uint32_t logtype_main;
2172 	struct sfc_adapter *sa;
2173 	int rc;
2174 	const efx_nic_cfg_t *encp;
2175 	const struct rte_ether_addr *from;
2176 	int ret;
2177 
2178 	sfc_register_dp();
2179 
2180 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2181 					    SFC_LOGTYPE_MAIN_STR,
2182 					    RTE_LOG_NOTICE);
2183 
2184 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2185 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2186 
2187 	/* Required for logging */
2188 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2189 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2190 			pci_dev->addr.domain, pci_dev->addr.bus,
2191 			pci_dev->addr.devid, pci_dev->addr.function,
2192 			dev->data->port_id);
2193 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2194 		SFC_GENERIC_LOG(ERR,
2195 			"reserved log prefix is too short for " PCI_PRI_FMT,
2196 			pci_dev->addr.domain, pci_dev->addr.bus,
2197 			pci_dev->addr.devid, pci_dev->addr.function);
2198 		return -EINVAL;
2199 	}
2200 	sas->pci_addr = pci_dev->addr;
2201 	sas->port_id = dev->data->port_id;
2202 
2203 	/*
2204 	 * Allocate process private data from heap, since it should not
2205 	 * be located in shared memory allocated using rte_malloc() API.
2206 	 */
2207 	sa = calloc(1, sizeof(*sa));
2208 	if (sa == NULL) {
2209 		rc = ENOMEM;
2210 		goto fail_alloc_sa;
2211 	}
2212 
2213 	dev->process_private = sa;
2214 
2215 	/* Required for logging */
2216 	sa->priv.shared = sas;
2217 	sa->priv.logtype_main = logtype_main;
2218 
2219 	sa->eth_dev = dev;
2220 
2221 	/* Copy PCI device info to the dev->data */
2222 	rte_eth_copy_pci_info(dev, pci_dev);
2223 
2224 	rc = sfc_kvargs_parse(sa);
2225 	if (rc != 0)
2226 		goto fail_kvargs_parse;
2227 
2228 	sfc_log_init(sa, "entry");
2229 
2230 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2231 	if (dev->data->mac_addrs == NULL) {
2232 		rc = ENOMEM;
2233 		goto fail_mac_addrs;
2234 	}
2235 
2236 	sfc_adapter_lock_init(sa);
2237 	sfc_adapter_lock(sa);
2238 
2239 	sfc_log_init(sa, "probing");
2240 	rc = sfc_probe(sa);
2241 	if (rc != 0)
2242 		goto fail_probe;
2243 
2244 	sfc_log_init(sa, "set device ops");
2245 	rc = sfc_eth_dev_set_ops(dev);
2246 	if (rc != 0)
2247 		goto fail_set_ops;
2248 
2249 	sfc_log_init(sa, "attaching");
2250 	rc = sfc_attach(sa);
2251 	if (rc != 0)
2252 		goto fail_attach;
2253 
2254 	encp = efx_nic_cfg_get(sa->nic);
2255 
2256 	/*
2257 	 * The arguments are really reverse order in comparison to
2258 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2259 	 */
2260 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2261 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2262 
2263 	sfc_adapter_unlock(sa);
2264 
2265 	sfc_log_init(sa, "done");
2266 	return 0;
2267 
2268 fail_attach:
2269 	sfc_eth_dev_clear_ops(dev);
2270 
2271 fail_set_ops:
2272 	sfc_unprobe(sa);
2273 
2274 fail_probe:
2275 	sfc_adapter_unlock(sa);
2276 	sfc_adapter_lock_fini(sa);
2277 	rte_free(dev->data->mac_addrs);
2278 	dev->data->mac_addrs = NULL;
2279 
2280 fail_mac_addrs:
2281 	sfc_kvargs_cleanup(sa);
2282 
2283 fail_kvargs_parse:
2284 	sfc_log_init(sa, "failed %d", rc);
2285 	dev->process_private = NULL;
2286 	free(sa);
2287 
2288 fail_alloc_sa:
2289 	SFC_ASSERT(rc > 0);
2290 	return -rc;
2291 }
2292 
2293 static int
2294 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2295 {
2296 	sfc_dev_close(dev);
2297 
2298 	return 0;
2299 }
2300 
2301 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2302 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2303 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2304 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2305 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2306 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2307 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2308 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2309 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2310 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2311 	{ .vendor_id = 0 /* sentinel */ }
2312 };
2313 
2314 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2315 	struct rte_pci_device *pci_dev)
2316 {
2317 	return rte_eth_dev_pci_generic_probe(pci_dev,
2318 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2319 }
2320 
2321 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2322 {
2323 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2324 }
2325 
2326 static struct rte_pci_driver sfc_efx_pmd = {
2327 	.id_table = pci_id_sfc_efx_map,
2328 	.drv_flags =
2329 		RTE_PCI_DRV_INTR_LSC |
2330 		RTE_PCI_DRV_NEED_MAPPING,
2331 	.probe = sfc_eth_dev_pci_probe,
2332 	.remove = sfc_eth_dev_pci_remove,
2333 };
2334 
2335 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2336 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2337 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2338 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2339 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2340 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2341 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2342 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2343 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2344 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2345 
2346 RTE_INIT(sfc_driver_register_logtype)
2347 {
2348 	int ret;
2349 
2350 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2351 						   RTE_LOG_NOTICE);
2352 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2353 }
2354