1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2021 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <ethdev_driver.h> 12 #include <ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 #include "sfc_sw_stats.h" 32 33 #define SFC_XSTAT_ID_INVALID_VAL UINT64_MAX 34 #define SFC_XSTAT_ID_INVALID_NAME '\0' 35 36 uint32_t sfc_logtype_driver; 37 38 static struct sfc_dp_list sfc_dp_head = 39 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 40 41 42 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 43 44 45 static int 46 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 47 { 48 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 49 efx_nic_fw_info_t enfi; 50 int ret; 51 int rc; 52 53 rc = efx_nic_get_fw_version(sa->nic, &enfi); 54 if (rc != 0) 55 return -rc; 56 57 ret = snprintf(fw_version, fw_size, 58 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 59 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 60 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 61 if (ret < 0) 62 return ret; 63 64 if (enfi.enfi_dpcpu_fw_ids_valid) { 65 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 66 int ret_extra; 67 68 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 69 fw_size - dpcpu_fw_ids_offset, 70 " rx%" PRIx16 " tx%" PRIx16, 71 enfi.enfi_rx_dpcpu_fw_id, 72 enfi.enfi_tx_dpcpu_fw_id); 73 if (ret_extra < 0) 74 return ret_extra; 75 76 ret += ret_extra; 77 } 78 79 if (fw_size < (size_t)(++ret)) 80 return ret; 81 else 82 return 0; 83 } 84 85 static int 86 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 87 { 88 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 89 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 90 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 91 struct sfc_rss *rss = &sas->rss; 92 struct sfc_mae *mae = &sa->mae; 93 uint64_t txq_offloads_def = 0; 94 95 sfc_log_init(sa, "entry"); 96 97 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 98 dev_info->max_mtu = EFX_MAC_SDU_MAX; 99 100 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 101 102 dev_info->max_vfs = sa->sriov.num_vfs; 103 104 /* Autonegotiation may be disabled */ 105 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 106 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 107 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 108 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 109 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 110 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 111 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 112 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 113 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 114 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 115 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 116 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 117 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 118 119 dev_info->max_rx_queues = sa->rxq_max; 120 dev_info->max_tx_queues = sa->txq_max; 121 122 /* By default packets are dropped if no descriptors are available */ 123 dev_info->default_rxconf.rx_drop_en = 1; 124 125 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 126 127 /* 128 * rx_offload_capa includes both device and queue offloads since 129 * the latter may be requested on a per device basis which makes 130 * sense when some offloads are needed to be set on all queues. 131 */ 132 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 133 dev_info->rx_queue_offload_capa; 134 135 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 136 137 /* 138 * tx_offload_capa includes both device and queue offloads since 139 * the latter may be requested on a per device basis which makes 140 * sense when some offloads are needed to be set on all queues. 141 */ 142 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 143 dev_info->tx_queue_offload_capa; 144 145 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 146 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 147 148 dev_info->default_txconf.offloads |= txq_offloads_def; 149 150 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 151 uint64_t rte_hf = 0; 152 unsigned int i; 153 154 for (i = 0; i < rss->hf_map_nb_entries; ++i) 155 rte_hf |= rss->hf_map[i].rte; 156 157 dev_info->reta_size = EFX_RSS_TBL_SIZE; 158 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 159 dev_info->flow_type_rss_offloads = rte_hf; 160 } 161 162 /* Initialize to hardware limits */ 163 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 164 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 165 /* The RXQ hardware requires that the descriptor count is a power 166 * of 2, but rx_desc_lim cannot properly describe that constraint. 167 */ 168 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 169 170 /* Initialize to hardware limits */ 171 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 172 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 173 /* 174 * The TXQ hardware requires that the descriptor count is a power 175 * of 2, but tx_desc_lim cannot properly describe that constraint 176 */ 177 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 178 179 if (sap->dp_rx->get_dev_info != NULL) 180 sap->dp_rx->get_dev_info(dev_info); 181 if (sap->dp_tx->get_dev_info != NULL) 182 sap->dp_tx->get_dev_info(dev_info); 183 184 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 185 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 186 187 if (mae->status == SFC_MAE_STATUS_SUPPORTED) { 188 dev_info->switch_info.name = dev->device->driver->name; 189 dev_info->switch_info.domain_id = mae->switch_domain_id; 190 dev_info->switch_info.port_id = mae->switch_port_id; 191 } 192 193 return 0; 194 } 195 196 static const uint32_t * 197 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 198 { 199 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 200 201 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 202 } 203 204 static int 205 sfc_dev_configure(struct rte_eth_dev *dev) 206 { 207 struct rte_eth_dev_data *dev_data = dev->data; 208 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 209 int rc; 210 211 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 212 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 213 214 sfc_adapter_lock(sa); 215 switch (sa->state) { 216 case SFC_ADAPTER_CONFIGURED: 217 /* FALLTHROUGH */ 218 case SFC_ADAPTER_INITIALIZED: 219 rc = sfc_configure(sa); 220 break; 221 default: 222 sfc_err(sa, "unexpected adapter state %u to configure", 223 sa->state); 224 rc = EINVAL; 225 break; 226 } 227 sfc_adapter_unlock(sa); 228 229 sfc_log_init(sa, "done %d", rc); 230 SFC_ASSERT(rc >= 0); 231 return -rc; 232 } 233 234 static int 235 sfc_dev_start(struct rte_eth_dev *dev) 236 { 237 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 238 int rc; 239 240 sfc_log_init(sa, "entry"); 241 242 sfc_adapter_lock(sa); 243 rc = sfc_start(sa); 244 sfc_adapter_unlock(sa); 245 246 sfc_log_init(sa, "done %d", rc); 247 SFC_ASSERT(rc >= 0); 248 return -rc; 249 } 250 251 static int 252 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 253 { 254 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 255 struct rte_eth_link current_link; 256 int ret; 257 258 sfc_log_init(sa, "entry"); 259 260 if (sa->state != SFC_ADAPTER_STARTED) { 261 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 262 } else if (wait_to_complete) { 263 efx_link_mode_t link_mode; 264 265 if (efx_port_poll(sa->nic, &link_mode) != 0) 266 link_mode = EFX_LINK_UNKNOWN; 267 sfc_port_link_mode_to_info(link_mode, ¤t_link); 268 269 } else { 270 sfc_ev_mgmt_qpoll(sa); 271 rte_eth_linkstatus_get(dev, ¤t_link); 272 } 273 274 ret = rte_eth_linkstatus_set(dev, ¤t_link); 275 if (ret == 0) 276 sfc_notice(sa, "Link status is %s", 277 current_link.link_status ? "UP" : "DOWN"); 278 279 return ret; 280 } 281 282 static int 283 sfc_dev_stop(struct rte_eth_dev *dev) 284 { 285 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 286 287 sfc_log_init(sa, "entry"); 288 289 sfc_adapter_lock(sa); 290 sfc_stop(sa); 291 sfc_adapter_unlock(sa); 292 293 sfc_log_init(sa, "done"); 294 295 return 0; 296 } 297 298 static int 299 sfc_dev_set_link_up(struct rte_eth_dev *dev) 300 { 301 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 302 int rc; 303 304 sfc_log_init(sa, "entry"); 305 306 sfc_adapter_lock(sa); 307 rc = sfc_start(sa); 308 sfc_adapter_unlock(sa); 309 310 SFC_ASSERT(rc >= 0); 311 return -rc; 312 } 313 314 static int 315 sfc_dev_set_link_down(struct rte_eth_dev *dev) 316 { 317 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 318 319 sfc_log_init(sa, "entry"); 320 321 sfc_adapter_lock(sa); 322 sfc_stop(sa); 323 sfc_adapter_unlock(sa); 324 325 return 0; 326 } 327 328 static void 329 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 330 { 331 free(dev->process_private); 332 rte_eth_dev_release_port(dev); 333 } 334 335 static int 336 sfc_dev_close(struct rte_eth_dev *dev) 337 { 338 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 339 340 sfc_log_init(sa, "entry"); 341 342 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 343 sfc_eth_dev_secondary_clear_ops(dev); 344 return 0; 345 } 346 347 sfc_adapter_lock(sa); 348 switch (sa->state) { 349 case SFC_ADAPTER_STARTED: 350 sfc_stop(sa); 351 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 352 /* FALLTHROUGH */ 353 case SFC_ADAPTER_CONFIGURED: 354 sfc_close(sa); 355 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 356 /* FALLTHROUGH */ 357 case SFC_ADAPTER_INITIALIZED: 358 break; 359 default: 360 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 361 break; 362 } 363 364 /* 365 * Cleanup all resources. 366 * Rollback primary process sfc_eth_dev_init() below. 367 */ 368 369 sfc_eth_dev_clear_ops(dev); 370 371 sfc_detach(sa); 372 sfc_unprobe(sa); 373 374 sfc_kvargs_cleanup(sa); 375 376 sfc_adapter_unlock(sa); 377 sfc_adapter_lock_fini(sa); 378 379 sfc_log_init(sa, "done"); 380 381 /* Required for logging, so cleanup last */ 382 sa->eth_dev = NULL; 383 384 free(sa); 385 386 return 0; 387 } 388 389 static int 390 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 391 boolean_t enabled) 392 { 393 struct sfc_port *port; 394 boolean_t *toggle; 395 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 396 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 397 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 398 int rc = 0; 399 400 sfc_adapter_lock(sa); 401 402 port = &sa->port; 403 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 404 405 if (*toggle != enabled) { 406 *toggle = enabled; 407 408 if (sfc_sa2shared(sa)->isolated) { 409 sfc_warn(sa, "isolated mode is active on the port"); 410 sfc_warn(sa, "the change is to be applied on the next " 411 "start provided that isolated mode is " 412 "disabled prior the next start"); 413 } else if ((sa->state == SFC_ADAPTER_STARTED) && 414 ((rc = sfc_set_rx_mode(sa)) != 0)) { 415 *toggle = !(enabled); 416 sfc_warn(sa, "Failed to %s %s mode, rc = %d", 417 ((enabled) ? "enable" : "disable"), desc, rc); 418 419 /* 420 * For promiscuous and all-multicast filters a 421 * permission failure should be reported as an 422 * unsupported filter. 423 */ 424 if (rc == EPERM) 425 rc = ENOTSUP; 426 } 427 } 428 429 sfc_adapter_unlock(sa); 430 return rc; 431 } 432 433 static int 434 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 435 { 436 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 437 438 SFC_ASSERT(rc >= 0); 439 return -rc; 440 } 441 442 static int 443 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 444 { 445 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 446 447 SFC_ASSERT(rc >= 0); 448 return -rc; 449 } 450 451 static int 452 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 453 { 454 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 455 456 SFC_ASSERT(rc >= 0); 457 return -rc; 458 } 459 460 static int 461 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 462 { 463 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 464 465 SFC_ASSERT(rc >= 0); 466 return -rc; 467 } 468 469 static int 470 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid, 471 uint16_t nb_rx_desc, unsigned int socket_id, 472 const struct rte_eth_rxconf *rx_conf, 473 struct rte_mempool *mb_pool) 474 { 475 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 476 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 477 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 478 struct sfc_rxq_info *rxq_info; 479 sfc_sw_index_t sw_index; 480 int rc; 481 482 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 483 ethdev_qid, nb_rx_desc, socket_id); 484 485 sfc_adapter_lock(sa); 486 487 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid); 488 rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id, 489 rx_conf, mb_pool); 490 if (rc != 0) 491 goto fail_rx_qinit; 492 493 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 494 dev->data->rx_queues[ethdev_qid] = rxq_info->dp; 495 496 sfc_adapter_unlock(sa); 497 498 return 0; 499 500 fail_rx_qinit: 501 sfc_adapter_unlock(sa); 502 SFC_ASSERT(rc > 0); 503 return -rc; 504 } 505 506 static void 507 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid) 508 { 509 struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid]; 510 struct sfc_rxq *rxq; 511 struct sfc_adapter *sa; 512 sfc_sw_index_t sw_index; 513 514 if (dp_rxq == NULL) 515 return; 516 517 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 518 sa = rxq->evq->sa; 519 sfc_adapter_lock(sa); 520 521 sw_index = dp_rxq->dpq.queue_id; 522 523 sfc_log_init(sa, "RxQ=%u", sw_index); 524 525 sfc_rx_qfini(sa, sw_index); 526 527 sfc_adapter_unlock(sa); 528 } 529 530 static int 531 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid, 532 uint16_t nb_tx_desc, unsigned int socket_id, 533 const struct rte_eth_txconf *tx_conf) 534 { 535 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 536 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 537 struct sfc_txq_info *txq_info; 538 sfc_sw_index_t sw_index; 539 int rc; 540 541 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 542 ethdev_qid, nb_tx_desc, socket_id); 543 544 sfc_adapter_lock(sa); 545 546 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 547 rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf); 548 if (rc != 0) 549 goto fail_tx_qinit; 550 551 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 552 dev->data->tx_queues[ethdev_qid] = txq_info->dp; 553 554 sfc_adapter_unlock(sa); 555 return 0; 556 557 fail_tx_qinit: 558 sfc_adapter_unlock(sa); 559 SFC_ASSERT(rc > 0); 560 return -rc; 561 } 562 563 static void 564 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid) 565 { 566 struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid]; 567 struct sfc_txq *txq; 568 sfc_sw_index_t sw_index; 569 struct sfc_adapter *sa; 570 571 if (dp_txq == NULL) 572 return; 573 574 txq = sfc_txq_by_dp_txq(dp_txq); 575 sw_index = dp_txq->dpq.queue_id; 576 577 SFC_ASSERT(txq->evq != NULL); 578 sa = txq->evq->sa; 579 580 sfc_log_init(sa, "TxQ = %u", sw_index); 581 582 sfc_adapter_lock(sa); 583 584 sfc_tx_qfini(sa, sw_index); 585 586 sfc_adapter_unlock(sa); 587 } 588 589 static void 590 sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes) 591 { 592 struct sfc_adapter_shared *sas = sfc_sa2shared(sa); 593 uint64_t pkts_sum = 0; 594 uint64_t bytes_sum = 0; 595 unsigned int i; 596 597 for (i = 0; i < sas->ethdev_rxq_count; ++i) { 598 struct sfc_rxq_info *rxq_info; 599 600 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i); 601 if (rxq_info->state & SFC_RXQ_INITIALIZED) { 602 union sfc_pkts_bytes qstats; 603 604 sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats); 605 pkts_sum += qstats.pkts - 606 sa->sw_stats.reset_rx_pkts[i]; 607 bytes_sum += qstats.bytes - 608 sa->sw_stats.reset_rx_bytes[i]; 609 } 610 } 611 612 *pkts = pkts_sum; 613 *bytes = bytes_sum; 614 } 615 616 static void 617 sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes) 618 { 619 struct sfc_adapter_shared *sas = sfc_sa2shared(sa); 620 uint64_t pkts_sum = 0; 621 uint64_t bytes_sum = 0; 622 unsigned int i; 623 624 for (i = 0; i < sas->ethdev_txq_count; ++i) { 625 struct sfc_txq_info *txq_info; 626 627 txq_info = sfc_txq_info_by_ethdev_qid(sas, i); 628 if (txq_info->state & SFC_TXQ_INITIALIZED) { 629 union sfc_pkts_bytes qstats; 630 631 sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats); 632 pkts_sum += qstats.pkts - 633 sa->sw_stats.reset_tx_pkts[i]; 634 bytes_sum += qstats.bytes - 635 sa->sw_stats.reset_tx_bytes[i]; 636 } 637 } 638 639 *pkts = pkts_sum; 640 *bytes = bytes_sum; 641 } 642 643 /* 644 * Some statistics are computed as A - B where A and B each increase 645 * monotonically with some hardware counter(s) and the counters are read 646 * asynchronously. 647 * 648 * If packet X is counted in A, but not counted in B yet, computed value is 649 * greater than real. 650 * 651 * If packet X is not counted in A at the moment of reading the counter, 652 * but counted in B at the moment of reading the counter, computed value 653 * is less than real. 654 * 655 * However, counter which grows backward is worse evil than slightly wrong 656 * value. So, let's try to guarantee that it never happens except may be 657 * the case when the MAC stats are zeroed as a result of a NIC reset. 658 */ 659 static void 660 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 661 { 662 if ((int64_t)(newval - *stat) > 0 || newval == 0) 663 *stat = newval; 664 } 665 666 static int 667 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 668 { 669 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 670 bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS; 671 bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS; 672 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 673 struct sfc_port *port = &sa->port; 674 uint64_t *mac_stats; 675 int ret; 676 677 sfc_adapter_lock(sa); 678 679 if (have_dp_rx_stats) 680 sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes); 681 if (have_dp_tx_stats) 682 sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes); 683 684 ret = sfc_port_update_mac_stats(sa, B_FALSE); 685 if (ret != 0) 686 goto unlock; 687 688 mac_stats = port->mac_stats_buf; 689 690 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 691 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 692 if (!have_dp_rx_stats) { 693 stats->ipackets = 694 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 695 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 696 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 697 stats->ibytes = 698 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 699 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 700 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 701 702 /* CRC is included in these stats, but shouldn't be */ 703 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN; 704 } 705 if (!have_dp_tx_stats) { 706 stats->opackets = 707 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 708 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 709 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 710 stats->obytes = 711 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 712 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 713 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 714 715 /* CRC is included in these stats, but shouldn't be */ 716 stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN; 717 } 718 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 719 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 720 } else { 721 if (!have_dp_tx_stats) { 722 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 723 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] - 724 mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN; 725 } 726 727 /* 728 * Take into account stats which are whenever supported 729 * on EF10. If some stat is not supported by current 730 * firmware variant or HW revision, it is guaranteed 731 * to be zero in mac_stats. 732 */ 733 stats->imissed = 734 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 735 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 736 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 737 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 738 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 739 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 740 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 741 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 742 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 743 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 744 stats->ierrors = 745 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 746 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 747 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 748 /* no oerrors counters supported on EF10 */ 749 750 if (!have_dp_rx_stats) { 751 /* Exclude missed, errors and pauses from Rx packets */ 752 sfc_update_diff_stat(&port->ipackets, 753 mac_stats[EFX_MAC_RX_PKTS] - 754 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 755 stats->imissed - stats->ierrors); 756 stats->ipackets = port->ipackets; 757 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] - 758 mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN; 759 } 760 } 761 762 unlock: 763 sfc_adapter_unlock(sa); 764 SFC_ASSERT(ret >= 0); 765 return -ret; 766 } 767 768 static int 769 sfc_stats_reset(struct rte_eth_dev *dev) 770 { 771 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 772 struct sfc_port *port = &sa->port; 773 int rc; 774 775 sfc_adapter_lock(sa); 776 777 if (sa->state != SFC_ADAPTER_STARTED) { 778 /* 779 * The operation cannot be done if port is not started; it 780 * will be scheduled to be done during the next port start 781 */ 782 port->mac_stats_reset_pending = B_TRUE; 783 sfc_adapter_unlock(sa); 784 return 0; 785 } 786 787 rc = sfc_port_reset_mac_stats(sa); 788 if (rc != 0) 789 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 790 791 sfc_sw_xstats_reset(sa); 792 793 sfc_adapter_unlock(sa); 794 795 SFC_ASSERT(rc >= 0); 796 return -rc; 797 } 798 799 static unsigned int 800 sfc_xstats_get_nb_supported(struct sfc_adapter *sa) 801 { 802 struct sfc_port *port = &sa->port; 803 unsigned int nb_supported; 804 805 sfc_adapter_lock(sa); 806 nb_supported = port->mac_stats_nb_supported + 807 sfc_sw_xstats_get_nb_supported(sa); 808 sfc_adapter_unlock(sa); 809 810 return nb_supported; 811 } 812 813 static int 814 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 815 unsigned int xstats_count) 816 { 817 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 818 unsigned int nb_written = 0; 819 unsigned int nb_supported = 0; 820 int rc; 821 822 if (unlikely(xstats == NULL)) 823 return sfc_xstats_get_nb_supported(sa); 824 825 rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written); 826 if (rc < 0) 827 return rc; 828 829 nb_supported = rc; 830 sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written, 831 &nb_supported); 832 833 return nb_supported; 834 } 835 836 static int 837 sfc_xstats_get_names(struct rte_eth_dev *dev, 838 struct rte_eth_xstat_name *xstats_names, 839 unsigned int xstats_count) 840 { 841 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 842 struct sfc_port *port = &sa->port; 843 unsigned int i; 844 unsigned int nstats = 0; 845 unsigned int nb_written = 0; 846 int ret; 847 848 if (unlikely(xstats_names == NULL)) 849 return sfc_xstats_get_nb_supported(sa); 850 851 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 852 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 853 if (nstats < xstats_count) { 854 strlcpy(xstats_names[nstats].name, 855 efx_mac_stat_name(sa->nic, i), 856 sizeof(xstats_names[0].name)); 857 nb_written++; 858 } 859 nstats++; 860 } 861 } 862 863 ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count, 864 &nb_written, &nstats); 865 if (ret != 0) { 866 SFC_ASSERT(ret < 0); 867 return ret; 868 } 869 870 return nstats; 871 } 872 873 static int 874 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 875 uint64_t *values, unsigned int n) 876 { 877 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 878 struct sfc_port *port = &sa->port; 879 unsigned int nb_supported; 880 unsigned int i; 881 int rc; 882 883 if (unlikely(ids == NULL || values == NULL)) 884 return -EINVAL; 885 886 /* 887 * Values array could be filled in nonsequential order. Fill values with 888 * constant indicating invalid ID first. 889 */ 890 for (i = 0; i < n; i++) 891 values[i] = SFC_XSTAT_ID_INVALID_VAL; 892 893 rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n); 894 if (rc != 0) 895 return rc; 896 897 nb_supported = port->mac_stats_nb_supported; 898 sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported); 899 900 /* Return number of written stats before invalid ID is encountered. */ 901 for (i = 0; i < n; i++) { 902 if (values[i] == SFC_XSTAT_ID_INVALID_VAL) 903 return i; 904 } 905 906 return n; 907 } 908 909 static int 910 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 911 const uint64_t *ids, 912 struct rte_eth_xstat_name *xstats_names, 913 unsigned int size) 914 { 915 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 916 struct sfc_port *port = &sa->port; 917 unsigned int nb_supported; 918 unsigned int i; 919 int ret; 920 921 if (unlikely(xstats_names == NULL && ids != NULL) || 922 unlikely(xstats_names != NULL && ids == NULL)) 923 return -EINVAL; 924 925 if (unlikely(xstats_names == NULL && ids == NULL)) 926 return sfc_xstats_get_nb_supported(sa); 927 928 /* 929 * Names array could be filled in nonsequential order. Fill names with 930 * string indicating invalid ID first. 931 */ 932 for (i = 0; i < size; i++) 933 xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME; 934 935 sfc_adapter_lock(sa); 936 937 SFC_ASSERT(port->mac_stats_nb_supported <= 938 RTE_DIM(port->mac_stats_by_id)); 939 940 for (i = 0; i < size; i++) { 941 if (ids[i] < port->mac_stats_nb_supported) { 942 strlcpy(xstats_names[i].name, 943 efx_mac_stat_name(sa->nic, 944 port->mac_stats_by_id[ids[i]]), 945 sizeof(xstats_names[0].name)); 946 } 947 } 948 949 nb_supported = port->mac_stats_nb_supported; 950 951 sfc_adapter_unlock(sa); 952 953 ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size, 954 &nb_supported); 955 if (ret != 0) { 956 SFC_ASSERT(ret < 0); 957 return ret; 958 } 959 960 /* Return number of written names before invalid ID is encountered. */ 961 for (i = 0; i < size; i++) { 962 if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME) 963 return i; 964 } 965 966 return size; 967 } 968 969 static int 970 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 971 { 972 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 973 unsigned int wanted_fc, link_fc; 974 975 memset(fc_conf, 0, sizeof(*fc_conf)); 976 977 sfc_adapter_lock(sa); 978 979 if (sa->state == SFC_ADAPTER_STARTED) 980 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 981 else 982 link_fc = sa->port.flow_ctrl; 983 984 switch (link_fc) { 985 case 0: 986 fc_conf->mode = RTE_FC_NONE; 987 break; 988 case EFX_FCNTL_RESPOND: 989 fc_conf->mode = RTE_FC_RX_PAUSE; 990 break; 991 case EFX_FCNTL_GENERATE: 992 fc_conf->mode = RTE_FC_TX_PAUSE; 993 break; 994 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 995 fc_conf->mode = RTE_FC_FULL; 996 break; 997 default: 998 sfc_err(sa, "%s: unexpected flow control value %#x", 999 __func__, link_fc); 1000 } 1001 1002 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 1003 1004 sfc_adapter_unlock(sa); 1005 1006 return 0; 1007 } 1008 1009 static int 1010 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 1011 { 1012 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1013 struct sfc_port *port = &sa->port; 1014 unsigned int fcntl; 1015 int rc; 1016 1017 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 1018 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 1019 fc_conf->mac_ctrl_frame_fwd != 0) { 1020 sfc_err(sa, "unsupported flow control settings specified"); 1021 rc = EINVAL; 1022 goto fail_inval; 1023 } 1024 1025 switch (fc_conf->mode) { 1026 case RTE_FC_NONE: 1027 fcntl = 0; 1028 break; 1029 case RTE_FC_RX_PAUSE: 1030 fcntl = EFX_FCNTL_RESPOND; 1031 break; 1032 case RTE_FC_TX_PAUSE: 1033 fcntl = EFX_FCNTL_GENERATE; 1034 break; 1035 case RTE_FC_FULL: 1036 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 1037 break; 1038 default: 1039 rc = EINVAL; 1040 goto fail_inval; 1041 } 1042 1043 sfc_adapter_lock(sa); 1044 1045 if (sa->state == SFC_ADAPTER_STARTED) { 1046 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 1047 if (rc != 0) 1048 goto fail_mac_fcntl_set; 1049 } 1050 1051 port->flow_ctrl = fcntl; 1052 port->flow_ctrl_autoneg = fc_conf->autoneg; 1053 1054 sfc_adapter_unlock(sa); 1055 1056 return 0; 1057 1058 fail_mac_fcntl_set: 1059 sfc_adapter_unlock(sa); 1060 fail_inval: 1061 SFC_ASSERT(rc > 0); 1062 return -rc; 1063 } 1064 1065 static int 1066 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 1067 { 1068 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1069 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1070 boolean_t scatter_enabled; 1071 const char *error; 1072 unsigned int i; 1073 1074 for (i = 0; i < sas->rxq_count; i++) { 1075 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 1076 continue; 1077 1078 scatter_enabled = (sas->rxq_info[i].type_flags & 1079 EFX_RXQ_FLAG_SCATTER); 1080 1081 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 1082 encp->enc_rx_prefix_size, 1083 scatter_enabled, 1084 encp->enc_rx_scatter_max, &error)) { 1085 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 1086 error); 1087 return EINVAL; 1088 } 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int 1095 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 1096 { 1097 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1098 size_t pdu = EFX_MAC_PDU(mtu); 1099 size_t old_pdu; 1100 int rc; 1101 1102 sfc_log_init(sa, "mtu=%u", mtu); 1103 1104 rc = EINVAL; 1105 if (pdu < EFX_MAC_PDU_MIN) { 1106 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 1107 (unsigned int)mtu, (unsigned int)pdu, 1108 EFX_MAC_PDU_MIN); 1109 goto fail_inval; 1110 } 1111 if (pdu > EFX_MAC_PDU_MAX) { 1112 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 1113 (unsigned int)mtu, (unsigned int)pdu, 1114 (unsigned int)EFX_MAC_PDU_MAX); 1115 goto fail_inval; 1116 } 1117 1118 sfc_adapter_lock(sa); 1119 1120 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 1121 if (rc != 0) 1122 goto fail_check_scatter; 1123 1124 if (pdu != sa->port.pdu) { 1125 if (sa->state == SFC_ADAPTER_STARTED) { 1126 sfc_stop(sa); 1127 1128 old_pdu = sa->port.pdu; 1129 sa->port.pdu = pdu; 1130 rc = sfc_start(sa); 1131 if (rc != 0) 1132 goto fail_start; 1133 } else { 1134 sa->port.pdu = pdu; 1135 } 1136 } 1137 1138 /* 1139 * The driver does not use it, but other PMDs update jumbo frame 1140 * flag and max_rx_pkt_len when MTU is set. 1141 */ 1142 if (mtu > RTE_ETHER_MTU) { 1143 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 1144 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1145 } 1146 1147 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 1148 1149 sfc_adapter_unlock(sa); 1150 1151 sfc_log_init(sa, "done"); 1152 return 0; 1153 1154 fail_start: 1155 sa->port.pdu = old_pdu; 1156 if (sfc_start(sa) != 0) 1157 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1158 "PDU max size - port is stopped", 1159 (unsigned int)pdu, (unsigned int)old_pdu); 1160 1161 fail_check_scatter: 1162 sfc_adapter_unlock(sa); 1163 1164 fail_inval: 1165 sfc_log_init(sa, "failed %d", rc); 1166 SFC_ASSERT(rc > 0); 1167 return -rc; 1168 } 1169 static int 1170 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1171 { 1172 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1173 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1174 struct sfc_port *port = &sa->port; 1175 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1176 int rc = 0; 1177 1178 sfc_adapter_lock(sa); 1179 1180 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr)) 1181 goto unlock; 1182 1183 /* 1184 * Copy the address to the device private data so that 1185 * it could be recalled in the case of adapter restart. 1186 */ 1187 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1188 1189 /* 1190 * Neither of the two following checks can return 1191 * an error. The new MAC address is preserved in 1192 * the device private data and can be activated 1193 * on the next port start if the user prevents 1194 * isolated mode from being enabled. 1195 */ 1196 if (sfc_sa2shared(sa)->isolated) { 1197 sfc_warn(sa, "isolated mode is active on the port"); 1198 sfc_warn(sa, "will not set MAC address"); 1199 goto unlock; 1200 } 1201 1202 if (sa->state != SFC_ADAPTER_STARTED) { 1203 sfc_notice(sa, "the port is not started"); 1204 sfc_notice(sa, "the new MAC address will be set on port start"); 1205 1206 goto unlock; 1207 } 1208 1209 if (encp->enc_allow_set_mac_with_installed_filters) { 1210 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1211 if (rc != 0) { 1212 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1213 goto unlock; 1214 } 1215 1216 /* 1217 * Changing the MAC address by means of MCDI request 1218 * has no effect on received traffic, therefore 1219 * we also need to update unicast filters 1220 */ 1221 rc = sfc_set_rx_mode_unchecked(sa); 1222 if (rc != 0) { 1223 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1224 /* Rollback the old address */ 1225 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1226 (void)sfc_set_rx_mode_unchecked(sa); 1227 } 1228 } else { 1229 sfc_warn(sa, "cannot set MAC address with filters installed"); 1230 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1231 sfc_warn(sa, "(some traffic may be dropped)"); 1232 1233 /* 1234 * Since setting MAC address with filters installed is not 1235 * allowed on the adapter, the new MAC address will be set 1236 * by means of adapter restart. sfc_start() shall retrieve 1237 * the new address from the device private data and set it. 1238 */ 1239 sfc_stop(sa); 1240 rc = sfc_start(sa); 1241 if (rc != 0) 1242 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1243 } 1244 1245 unlock: 1246 if (rc != 0) 1247 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1248 1249 sfc_adapter_unlock(sa); 1250 1251 SFC_ASSERT(rc >= 0); 1252 return -rc; 1253 } 1254 1255 1256 static int 1257 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1258 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1259 { 1260 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1261 struct sfc_port *port = &sa->port; 1262 uint8_t *mc_addrs = port->mcast_addrs; 1263 int rc; 1264 unsigned int i; 1265 1266 if (sfc_sa2shared(sa)->isolated) { 1267 sfc_err(sa, "isolated mode is active on the port"); 1268 sfc_err(sa, "will not set multicast address list"); 1269 return -ENOTSUP; 1270 } 1271 1272 if (mc_addrs == NULL) 1273 return -ENOBUFS; 1274 1275 if (nb_mc_addr > port->max_mcast_addrs) { 1276 sfc_err(sa, "too many multicast addresses: %u > %u", 1277 nb_mc_addr, port->max_mcast_addrs); 1278 return -EINVAL; 1279 } 1280 1281 for (i = 0; i < nb_mc_addr; ++i) { 1282 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1283 EFX_MAC_ADDR_LEN); 1284 mc_addrs += EFX_MAC_ADDR_LEN; 1285 } 1286 1287 port->nb_mcast_addrs = nb_mc_addr; 1288 1289 if (sa->state != SFC_ADAPTER_STARTED) 1290 return 0; 1291 1292 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1293 port->nb_mcast_addrs); 1294 if (rc != 0) 1295 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1296 1297 SFC_ASSERT(rc >= 0); 1298 return -rc; 1299 } 1300 1301 /* 1302 * The function is used by the secondary process as well. It must not 1303 * use any process-local pointers from the adapter data. 1304 */ 1305 static void 1306 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid, 1307 struct rte_eth_rxq_info *qinfo) 1308 { 1309 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1310 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1311 struct sfc_rxq_info *rxq_info; 1312 1313 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1314 1315 qinfo->mp = rxq_info->refill_mb_pool; 1316 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1317 qinfo->conf.rx_drop_en = 1; 1318 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1319 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1320 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1321 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1322 qinfo->scattered_rx = 1; 1323 } 1324 qinfo->nb_desc = rxq_info->entries; 1325 } 1326 1327 /* 1328 * The function is used by the secondary process as well. It must not 1329 * use any process-local pointers from the adapter data. 1330 */ 1331 static void 1332 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid, 1333 struct rte_eth_txq_info *qinfo) 1334 { 1335 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1336 struct sfc_txq_info *txq_info; 1337 1338 SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count); 1339 1340 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 1341 1342 memset(qinfo, 0, sizeof(*qinfo)); 1343 1344 qinfo->conf.offloads = txq_info->offloads; 1345 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1346 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1347 qinfo->nb_desc = txq_info->entries; 1348 } 1349 1350 /* 1351 * The function is used by the secondary process as well. It must not 1352 * use any process-local pointers from the adapter data. 1353 */ 1354 static uint32_t 1355 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1356 { 1357 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1358 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1359 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1360 struct sfc_rxq_info *rxq_info; 1361 1362 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1363 1364 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1365 return 0; 1366 1367 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1368 } 1369 1370 /* 1371 * The function is used by the secondary process as well. It must not 1372 * use any process-local pointers from the adapter data. 1373 */ 1374 static int 1375 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1376 { 1377 struct sfc_dp_rxq *dp_rxq = queue; 1378 const struct sfc_dp_rx *dp_rx; 1379 1380 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1381 1382 return dp_rx->qdesc_status(dp_rxq, offset); 1383 } 1384 1385 /* 1386 * The function is used by the secondary process as well. It must not 1387 * use any process-local pointers from the adapter data. 1388 */ 1389 static int 1390 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1391 { 1392 struct sfc_dp_txq *dp_txq = queue; 1393 const struct sfc_dp_tx *dp_tx; 1394 1395 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1396 1397 return dp_tx->qdesc_status(dp_txq, offset); 1398 } 1399 1400 static int 1401 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1402 { 1403 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1404 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1405 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1406 struct sfc_rxq_info *rxq_info; 1407 sfc_sw_index_t sw_index; 1408 int rc; 1409 1410 sfc_log_init(sa, "RxQ=%u", ethdev_qid); 1411 1412 sfc_adapter_lock(sa); 1413 1414 rc = EINVAL; 1415 if (sa->state != SFC_ADAPTER_STARTED) 1416 goto fail_not_started; 1417 1418 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1419 if (rxq_info->state != SFC_RXQ_INITIALIZED) 1420 goto fail_not_setup; 1421 1422 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid); 1423 rc = sfc_rx_qstart(sa, sw_index); 1424 if (rc != 0) 1425 goto fail_rx_qstart; 1426 1427 rxq_info->deferred_started = B_TRUE; 1428 1429 sfc_adapter_unlock(sa); 1430 1431 return 0; 1432 1433 fail_rx_qstart: 1434 fail_not_setup: 1435 fail_not_started: 1436 sfc_adapter_unlock(sa); 1437 SFC_ASSERT(rc > 0); 1438 return -rc; 1439 } 1440 1441 static int 1442 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1443 { 1444 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1445 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1446 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1447 struct sfc_rxq_info *rxq_info; 1448 sfc_sw_index_t sw_index; 1449 1450 sfc_log_init(sa, "RxQ=%u", ethdev_qid); 1451 1452 sfc_adapter_lock(sa); 1453 1454 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid); 1455 sfc_rx_qstop(sa, sw_index); 1456 1457 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1458 rxq_info->deferred_started = B_FALSE; 1459 1460 sfc_adapter_unlock(sa); 1461 1462 return 0; 1463 } 1464 1465 static int 1466 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1467 { 1468 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1469 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1470 struct sfc_txq_info *txq_info; 1471 sfc_sw_index_t sw_index; 1472 int rc; 1473 1474 sfc_log_init(sa, "TxQ = %u", ethdev_qid); 1475 1476 sfc_adapter_lock(sa); 1477 1478 rc = EINVAL; 1479 if (sa->state != SFC_ADAPTER_STARTED) 1480 goto fail_not_started; 1481 1482 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 1483 if (txq_info->state != SFC_TXQ_INITIALIZED) 1484 goto fail_not_setup; 1485 1486 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 1487 rc = sfc_tx_qstart(sa, sw_index); 1488 if (rc != 0) 1489 goto fail_tx_qstart; 1490 1491 txq_info->deferred_started = B_TRUE; 1492 1493 sfc_adapter_unlock(sa); 1494 return 0; 1495 1496 fail_tx_qstart: 1497 1498 fail_not_setup: 1499 fail_not_started: 1500 sfc_adapter_unlock(sa); 1501 SFC_ASSERT(rc > 0); 1502 return -rc; 1503 } 1504 1505 static int 1506 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1507 { 1508 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1509 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1510 struct sfc_txq_info *txq_info; 1511 sfc_sw_index_t sw_index; 1512 1513 sfc_log_init(sa, "TxQ = %u", ethdev_qid); 1514 1515 sfc_adapter_lock(sa); 1516 1517 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 1518 sfc_tx_qstop(sa, sw_index); 1519 1520 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 1521 txq_info->deferred_started = B_FALSE; 1522 1523 sfc_adapter_unlock(sa); 1524 return 0; 1525 } 1526 1527 static efx_tunnel_protocol_t 1528 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1529 { 1530 switch (rte_type) { 1531 case RTE_TUNNEL_TYPE_VXLAN: 1532 return EFX_TUNNEL_PROTOCOL_VXLAN; 1533 case RTE_TUNNEL_TYPE_GENEVE: 1534 return EFX_TUNNEL_PROTOCOL_GENEVE; 1535 default: 1536 return EFX_TUNNEL_NPROTOS; 1537 } 1538 } 1539 1540 enum sfc_udp_tunnel_op_e { 1541 SFC_UDP_TUNNEL_ADD_PORT, 1542 SFC_UDP_TUNNEL_DEL_PORT, 1543 }; 1544 1545 static int 1546 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1547 struct rte_eth_udp_tunnel *tunnel_udp, 1548 enum sfc_udp_tunnel_op_e op) 1549 { 1550 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1551 efx_tunnel_protocol_t tunnel_proto; 1552 int rc; 1553 1554 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1555 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1556 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1557 tunnel_udp->udp_port, tunnel_udp->prot_type); 1558 1559 tunnel_proto = 1560 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1561 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1562 rc = ENOTSUP; 1563 goto fail_bad_proto; 1564 } 1565 1566 sfc_adapter_lock(sa); 1567 1568 switch (op) { 1569 case SFC_UDP_TUNNEL_ADD_PORT: 1570 rc = efx_tunnel_config_udp_add(sa->nic, 1571 tunnel_udp->udp_port, 1572 tunnel_proto); 1573 break; 1574 case SFC_UDP_TUNNEL_DEL_PORT: 1575 rc = efx_tunnel_config_udp_remove(sa->nic, 1576 tunnel_udp->udp_port, 1577 tunnel_proto); 1578 break; 1579 default: 1580 rc = EINVAL; 1581 goto fail_bad_op; 1582 } 1583 1584 if (rc != 0) 1585 goto fail_op; 1586 1587 if (sa->state == SFC_ADAPTER_STARTED) { 1588 rc = efx_tunnel_reconfigure(sa->nic); 1589 if (rc == EAGAIN) { 1590 /* 1591 * Configuration is accepted by FW and MC reboot 1592 * is initiated to apply the changes. MC reboot 1593 * will be handled in a usual way (MC reboot 1594 * event on management event queue and adapter 1595 * restart). 1596 */ 1597 rc = 0; 1598 } else if (rc != 0) { 1599 goto fail_reconfigure; 1600 } 1601 } 1602 1603 sfc_adapter_unlock(sa); 1604 return 0; 1605 1606 fail_reconfigure: 1607 /* Remove/restore entry since the change makes the trouble */ 1608 switch (op) { 1609 case SFC_UDP_TUNNEL_ADD_PORT: 1610 (void)efx_tunnel_config_udp_remove(sa->nic, 1611 tunnel_udp->udp_port, 1612 tunnel_proto); 1613 break; 1614 case SFC_UDP_TUNNEL_DEL_PORT: 1615 (void)efx_tunnel_config_udp_add(sa->nic, 1616 tunnel_udp->udp_port, 1617 tunnel_proto); 1618 break; 1619 } 1620 1621 fail_op: 1622 fail_bad_op: 1623 sfc_adapter_unlock(sa); 1624 1625 fail_bad_proto: 1626 SFC_ASSERT(rc > 0); 1627 return -rc; 1628 } 1629 1630 static int 1631 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1632 struct rte_eth_udp_tunnel *tunnel_udp) 1633 { 1634 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1635 } 1636 1637 static int 1638 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1639 struct rte_eth_udp_tunnel *tunnel_udp) 1640 { 1641 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1642 } 1643 1644 /* 1645 * The function is used by the secondary process as well. It must not 1646 * use any process-local pointers from the adapter data. 1647 */ 1648 static int 1649 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1650 struct rte_eth_rss_conf *rss_conf) 1651 { 1652 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1653 struct sfc_rss *rss = &sas->rss; 1654 1655 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1656 return -ENOTSUP; 1657 1658 /* 1659 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1660 * hence, conversion is done here to derive a correct set of ETH_RSS 1661 * flags which corresponds to the active EFX configuration stored 1662 * locally in 'sfc_adapter' and kept up-to-date 1663 */ 1664 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1665 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1666 if (rss_conf->rss_key != NULL) 1667 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1668 1669 return 0; 1670 } 1671 1672 static int 1673 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1674 struct rte_eth_rss_conf *rss_conf) 1675 { 1676 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1677 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1678 unsigned int efx_hash_types; 1679 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context}; 1680 unsigned int n_contexts; 1681 unsigned int mode_i = 0; 1682 unsigned int key_i = 0; 1683 unsigned int i = 0; 1684 int rc = 0; 1685 1686 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2; 1687 1688 if (sfc_sa2shared(sa)->isolated) 1689 return -ENOTSUP; 1690 1691 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1692 sfc_err(sa, "RSS is not available"); 1693 return -ENOTSUP; 1694 } 1695 1696 if (rss->channels == 0) { 1697 sfc_err(sa, "RSS is not configured"); 1698 return -EINVAL; 1699 } 1700 1701 if ((rss_conf->rss_key != NULL) && 1702 (rss_conf->rss_key_len != sizeof(rss->key))) { 1703 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1704 sizeof(rss->key)); 1705 return -EINVAL; 1706 } 1707 1708 sfc_adapter_lock(sa); 1709 1710 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1711 if (rc != 0) 1712 goto fail_rx_hf_rte_to_efx; 1713 1714 for (mode_i = 0; mode_i < n_contexts; mode_i++) { 1715 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i], 1716 rss->hash_alg, efx_hash_types, 1717 B_TRUE); 1718 if (rc != 0) 1719 goto fail_scale_mode_set; 1720 } 1721 1722 if (rss_conf->rss_key != NULL) { 1723 if (sa->state == SFC_ADAPTER_STARTED) { 1724 for (key_i = 0; key_i < n_contexts; key_i++) { 1725 rc = efx_rx_scale_key_set(sa->nic, 1726 contexts[key_i], 1727 rss_conf->rss_key, 1728 sizeof(rss->key)); 1729 if (rc != 0) 1730 goto fail_scale_key_set; 1731 } 1732 } 1733 1734 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1735 } 1736 1737 rss->hash_types = efx_hash_types; 1738 1739 sfc_adapter_unlock(sa); 1740 1741 return 0; 1742 1743 fail_scale_key_set: 1744 for (i = 0; i < key_i; i++) { 1745 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key, 1746 sizeof(rss->key)) != 0) 1747 sfc_err(sa, "failed to restore RSS key"); 1748 } 1749 1750 fail_scale_mode_set: 1751 for (i = 0; i < mode_i; i++) { 1752 if (efx_rx_scale_mode_set(sa->nic, contexts[i], 1753 EFX_RX_HASHALG_TOEPLITZ, 1754 rss->hash_types, B_TRUE) != 0) 1755 sfc_err(sa, "failed to restore RSS mode"); 1756 } 1757 1758 fail_rx_hf_rte_to_efx: 1759 sfc_adapter_unlock(sa); 1760 return -rc; 1761 } 1762 1763 /* 1764 * The function is used by the secondary process as well. It must not 1765 * use any process-local pointers from the adapter data. 1766 */ 1767 static int 1768 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1769 struct rte_eth_rss_reta_entry64 *reta_conf, 1770 uint16_t reta_size) 1771 { 1772 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1773 struct sfc_rss *rss = &sas->rss; 1774 int entry; 1775 1776 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1777 return -ENOTSUP; 1778 1779 if (rss->channels == 0) 1780 return -EINVAL; 1781 1782 if (reta_size != EFX_RSS_TBL_SIZE) 1783 return -EINVAL; 1784 1785 for (entry = 0; entry < reta_size; entry++) { 1786 int grp = entry / RTE_RETA_GROUP_SIZE; 1787 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1788 1789 if ((reta_conf[grp].mask >> grp_idx) & 1) 1790 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1791 } 1792 1793 return 0; 1794 } 1795 1796 static int 1797 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1798 struct rte_eth_rss_reta_entry64 *reta_conf, 1799 uint16_t reta_size) 1800 { 1801 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1802 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1803 unsigned int *rss_tbl_new; 1804 uint16_t entry; 1805 int rc = 0; 1806 1807 1808 if (sfc_sa2shared(sa)->isolated) 1809 return -ENOTSUP; 1810 1811 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1812 sfc_err(sa, "RSS is not available"); 1813 return -ENOTSUP; 1814 } 1815 1816 if (rss->channels == 0) { 1817 sfc_err(sa, "RSS is not configured"); 1818 return -EINVAL; 1819 } 1820 1821 if (reta_size != EFX_RSS_TBL_SIZE) { 1822 sfc_err(sa, "RETA size is wrong (should be %u)", 1823 EFX_RSS_TBL_SIZE); 1824 return -EINVAL; 1825 } 1826 1827 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1828 if (rss_tbl_new == NULL) 1829 return -ENOMEM; 1830 1831 sfc_adapter_lock(sa); 1832 1833 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1834 1835 for (entry = 0; entry < reta_size; entry++) { 1836 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1837 struct rte_eth_rss_reta_entry64 *grp; 1838 1839 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1840 1841 if (grp->mask & (1ull << grp_idx)) { 1842 if (grp->reta[grp_idx] >= rss->channels) { 1843 rc = EINVAL; 1844 goto bad_reta_entry; 1845 } 1846 rss_tbl_new[entry] = grp->reta[grp_idx]; 1847 } 1848 } 1849 1850 if (sa->state == SFC_ADAPTER_STARTED) { 1851 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1852 rss_tbl_new, EFX_RSS_TBL_SIZE); 1853 if (rc != 0) 1854 goto fail_scale_tbl_set; 1855 } 1856 1857 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1858 1859 fail_scale_tbl_set: 1860 bad_reta_entry: 1861 sfc_adapter_unlock(sa); 1862 1863 rte_free(rss_tbl_new); 1864 1865 SFC_ASSERT(rc >= 0); 1866 return -rc; 1867 } 1868 1869 static int 1870 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused, 1871 const struct rte_flow_ops **ops) 1872 { 1873 *ops = &sfc_flow_ops; 1874 return 0; 1875 } 1876 1877 static int 1878 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1879 { 1880 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1881 1882 /* 1883 * If Rx datapath does not provide callback to check mempool, 1884 * all pools are supported. 1885 */ 1886 if (sap->dp_rx->pool_ops_supported == NULL) 1887 return 1; 1888 1889 return sap->dp_rx->pool_ops_supported(pool); 1890 } 1891 1892 static int 1893 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1894 { 1895 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1896 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1897 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1898 struct sfc_rxq_info *rxq_info; 1899 1900 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1901 1902 return sap->dp_rx->intr_enable(rxq_info->dp); 1903 } 1904 1905 static int 1906 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1907 { 1908 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1909 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1910 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1911 struct sfc_rxq_info *rxq_info; 1912 1913 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1914 1915 return sap->dp_rx->intr_disable(rxq_info->dp); 1916 } 1917 1918 static const struct eth_dev_ops sfc_eth_dev_ops = { 1919 .dev_configure = sfc_dev_configure, 1920 .dev_start = sfc_dev_start, 1921 .dev_stop = sfc_dev_stop, 1922 .dev_set_link_up = sfc_dev_set_link_up, 1923 .dev_set_link_down = sfc_dev_set_link_down, 1924 .dev_close = sfc_dev_close, 1925 .promiscuous_enable = sfc_dev_promisc_enable, 1926 .promiscuous_disable = sfc_dev_promisc_disable, 1927 .allmulticast_enable = sfc_dev_allmulti_enable, 1928 .allmulticast_disable = sfc_dev_allmulti_disable, 1929 .link_update = sfc_dev_link_update, 1930 .stats_get = sfc_stats_get, 1931 .stats_reset = sfc_stats_reset, 1932 .xstats_get = sfc_xstats_get, 1933 .xstats_reset = sfc_stats_reset, 1934 .xstats_get_names = sfc_xstats_get_names, 1935 .dev_infos_get = sfc_dev_infos_get, 1936 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1937 .mtu_set = sfc_dev_set_mtu, 1938 .rx_queue_start = sfc_rx_queue_start, 1939 .rx_queue_stop = sfc_rx_queue_stop, 1940 .tx_queue_start = sfc_tx_queue_start, 1941 .tx_queue_stop = sfc_tx_queue_stop, 1942 .rx_queue_setup = sfc_rx_queue_setup, 1943 .rx_queue_release = sfc_rx_queue_release, 1944 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1945 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1946 .tx_queue_setup = sfc_tx_queue_setup, 1947 .tx_queue_release = sfc_tx_queue_release, 1948 .flow_ctrl_get = sfc_flow_ctrl_get, 1949 .flow_ctrl_set = sfc_flow_ctrl_set, 1950 .mac_addr_set = sfc_mac_addr_set, 1951 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1952 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1953 .reta_update = sfc_dev_rss_reta_update, 1954 .reta_query = sfc_dev_rss_reta_query, 1955 .rss_hash_update = sfc_dev_rss_hash_update, 1956 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1957 .flow_ops_get = sfc_dev_flow_ops_get, 1958 .set_mc_addr_list = sfc_set_mc_addr_list, 1959 .rxq_info_get = sfc_rx_queue_info_get, 1960 .txq_info_get = sfc_tx_queue_info_get, 1961 .fw_version_get = sfc_fw_version_get, 1962 .xstats_get_by_id = sfc_xstats_get_by_id, 1963 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1964 .pool_ops_supported = sfc_pool_ops_supported, 1965 }; 1966 1967 /** 1968 * Duplicate a string in potentially shared memory required for 1969 * multi-process support. 1970 * 1971 * strdup() allocates from process-local heap/memory. 1972 */ 1973 static char * 1974 sfc_strdup(const char *str) 1975 { 1976 size_t size; 1977 char *copy; 1978 1979 if (str == NULL) 1980 return NULL; 1981 1982 size = strlen(str) + 1; 1983 copy = rte_malloc(__func__, size, 0); 1984 if (copy != NULL) 1985 rte_memcpy(copy, str, size); 1986 1987 return copy; 1988 } 1989 1990 static int 1991 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1992 { 1993 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1994 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1995 const struct sfc_dp_rx *dp_rx; 1996 const struct sfc_dp_tx *dp_tx; 1997 const efx_nic_cfg_t *encp; 1998 unsigned int avail_caps = 0; 1999 const char *rx_name = NULL; 2000 const char *tx_name = NULL; 2001 int rc; 2002 2003 switch (sa->family) { 2004 case EFX_FAMILY_HUNTINGTON: 2005 case EFX_FAMILY_MEDFORD: 2006 case EFX_FAMILY_MEDFORD2: 2007 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 2008 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX; 2009 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX; 2010 break; 2011 case EFX_FAMILY_RIVERHEAD: 2012 avail_caps |= SFC_DP_HW_FW_CAP_EF100; 2013 break; 2014 default: 2015 break; 2016 } 2017 2018 encp = efx_nic_cfg_get(sa->nic); 2019 if (encp->enc_rx_es_super_buffer_supported) 2020 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 2021 2022 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 2023 sfc_kvarg_string_handler, &rx_name); 2024 if (rc != 0) 2025 goto fail_kvarg_rx_datapath; 2026 2027 if (rx_name != NULL) { 2028 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 2029 if (dp_rx == NULL) { 2030 sfc_err(sa, "Rx datapath %s not found", rx_name); 2031 rc = ENOENT; 2032 goto fail_dp_rx; 2033 } 2034 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 2035 sfc_err(sa, 2036 "Insufficient Hw/FW capabilities to use Rx datapath %s", 2037 rx_name); 2038 rc = EINVAL; 2039 goto fail_dp_rx_caps; 2040 } 2041 } else { 2042 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 2043 if (dp_rx == NULL) { 2044 sfc_err(sa, "Rx datapath by caps %#x not found", 2045 avail_caps); 2046 rc = ENOENT; 2047 goto fail_dp_rx; 2048 } 2049 } 2050 2051 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 2052 if (sas->dp_rx_name == NULL) { 2053 rc = ENOMEM; 2054 goto fail_dp_rx_name; 2055 } 2056 2057 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 2058 2059 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 2060 sfc_kvarg_string_handler, &tx_name); 2061 if (rc != 0) 2062 goto fail_kvarg_tx_datapath; 2063 2064 if (tx_name != NULL) { 2065 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 2066 if (dp_tx == NULL) { 2067 sfc_err(sa, "Tx datapath %s not found", tx_name); 2068 rc = ENOENT; 2069 goto fail_dp_tx; 2070 } 2071 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 2072 sfc_err(sa, 2073 "Insufficient Hw/FW capabilities to use Tx datapath %s", 2074 tx_name); 2075 rc = EINVAL; 2076 goto fail_dp_tx_caps; 2077 } 2078 } else { 2079 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 2080 if (dp_tx == NULL) { 2081 sfc_err(sa, "Tx datapath by caps %#x not found", 2082 avail_caps); 2083 rc = ENOENT; 2084 goto fail_dp_tx; 2085 } 2086 } 2087 2088 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 2089 if (sas->dp_tx_name == NULL) { 2090 rc = ENOMEM; 2091 goto fail_dp_tx_name; 2092 } 2093 2094 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 2095 2096 sa->priv.dp_rx = dp_rx; 2097 sa->priv.dp_tx = dp_tx; 2098 2099 dev->rx_pkt_burst = dp_rx->pkt_burst; 2100 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2101 dev->tx_pkt_burst = dp_tx->pkt_burst; 2102 2103 dev->rx_queue_count = sfc_rx_queue_count; 2104 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2105 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2106 dev->dev_ops = &sfc_eth_dev_ops; 2107 2108 return 0; 2109 2110 fail_dp_tx_name: 2111 fail_dp_tx_caps: 2112 fail_dp_tx: 2113 fail_kvarg_tx_datapath: 2114 rte_free(sas->dp_rx_name); 2115 sas->dp_rx_name = NULL; 2116 2117 fail_dp_rx_name: 2118 fail_dp_rx_caps: 2119 fail_dp_rx: 2120 fail_kvarg_rx_datapath: 2121 return rc; 2122 } 2123 2124 static void 2125 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 2126 { 2127 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2128 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2129 2130 dev->dev_ops = NULL; 2131 dev->tx_pkt_prepare = NULL; 2132 dev->rx_pkt_burst = NULL; 2133 dev->tx_pkt_burst = NULL; 2134 2135 rte_free(sas->dp_tx_name); 2136 sas->dp_tx_name = NULL; 2137 sa->priv.dp_tx = NULL; 2138 2139 rte_free(sas->dp_rx_name); 2140 sas->dp_rx_name = NULL; 2141 sa->priv.dp_rx = NULL; 2142 } 2143 2144 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2145 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2146 .reta_query = sfc_dev_rss_reta_query, 2147 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2148 .rxq_info_get = sfc_rx_queue_info_get, 2149 .txq_info_get = sfc_tx_queue_info_get, 2150 }; 2151 2152 static int 2153 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2154 { 2155 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2156 struct sfc_adapter_priv *sap; 2157 const struct sfc_dp_rx *dp_rx; 2158 const struct sfc_dp_tx *dp_tx; 2159 int rc; 2160 2161 /* 2162 * Allocate process private data from heap, since it should not 2163 * be located in shared memory allocated using rte_malloc() API. 2164 */ 2165 sap = calloc(1, sizeof(*sap)); 2166 if (sap == NULL) { 2167 rc = ENOMEM; 2168 goto fail_alloc_priv; 2169 } 2170 2171 sap->logtype_main = logtype_main; 2172 2173 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2174 if (dp_rx == NULL) { 2175 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2176 "cannot find %s Rx datapath", sas->dp_rx_name); 2177 rc = ENOENT; 2178 goto fail_dp_rx; 2179 } 2180 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2181 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2182 "%s Rx datapath does not support multi-process", 2183 sas->dp_rx_name); 2184 rc = EINVAL; 2185 goto fail_dp_rx_multi_process; 2186 } 2187 2188 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2189 if (dp_tx == NULL) { 2190 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2191 "cannot find %s Tx datapath", sas->dp_tx_name); 2192 rc = ENOENT; 2193 goto fail_dp_tx; 2194 } 2195 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2196 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2197 "%s Tx datapath does not support multi-process", 2198 sas->dp_tx_name); 2199 rc = EINVAL; 2200 goto fail_dp_tx_multi_process; 2201 } 2202 2203 sap->dp_rx = dp_rx; 2204 sap->dp_tx = dp_tx; 2205 2206 dev->process_private = sap; 2207 dev->rx_pkt_burst = dp_rx->pkt_burst; 2208 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2209 dev->tx_pkt_burst = dp_tx->pkt_burst; 2210 dev->rx_queue_count = sfc_rx_queue_count; 2211 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2212 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2213 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2214 2215 return 0; 2216 2217 fail_dp_tx_multi_process: 2218 fail_dp_tx: 2219 fail_dp_rx_multi_process: 2220 fail_dp_rx: 2221 free(sap); 2222 2223 fail_alloc_priv: 2224 return rc; 2225 } 2226 2227 static void 2228 sfc_register_dp(void) 2229 { 2230 /* Register once */ 2231 if (TAILQ_EMPTY(&sfc_dp_head)) { 2232 /* Prefer EF10 datapath */ 2233 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp); 2234 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2235 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2236 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2237 2238 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp); 2239 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2240 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2241 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2242 } 2243 } 2244 2245 static int 2246 sfc_parse_switch_mode(struct sfc_adapter *sa) 2247 { 2248 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 2249 const char *switch_mode = NULL; 2250 int rc; 2251 2252 sfc_log_init(sa, "entry"); 2253 2254 rc = sfc_kvargs_process(sa, SFC_KVARG_SWITCH_MODE, 2255 sfc_kvarg_string_handler, &switch_mode); 2256 if (rc != 0) 2257 goto fail_kvargs; 2258 2259 if (switch_mode == NULL) { 2260 sa->switchdev = encp->enc_mae_supported && 2261 !encp->enc_datapath_cap_evb; 2262 } else if (strcasecmp(switch_mode, SFC_KVARG_SWITCH_MODE_LEGACY) == 0) { 2263 sa->switchdev = false; 2264 } else if (strcasecmp(switch_mode, 2265 SFC_KVARG_SWITCH_MODE_SWITCHDEV) == 0) { 2266 sa->switchdev = true; 2267 } else { 2268 sfc_err(sa, "invalid switch mode device argument '%s'", 2269 switch_mode); 2270 rc = EINVAL; 2271 goto fail_mode; 2272 } 2273 2274 sfc_log_init(sa, "done"); 2275 2276 return 0; 2277 2278 fail_mode: 2279 fail_kvargs: 2280 sfc_log_init(sa, "failed: %s", rte_strerror(rc)); 2281 2282 return rc; 2283 } 2284 2285 static int 2286 sfc_eth_dev_init(struct rte_eth_dev *dev) 2287 { 2288 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2289 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2290 uint32_t logtype_main; 2291 struct sfc_adapter *sa; 2292 int rc; 2293 const efx_nic_cfg_t *encp; 2294 const struct rte_ether_addr *from; 2295 int ret; 2296 2297 if (sfc_efx_dev_class_get(pci_dev->device.devargs) != 2298 SFC_EFX_DEV_CLASS_NET) { 2299 SFC_GENERIC_LOG(DEBUG, 2300 "Incompatible device class: skip probing, should be probed by other sfc driver."); 2301 return 1; 2302 } 2303 2304 rc = sfc_dp_mport_register(); 2305 if (rc != 0) 2306 return rc; 2307 2308 sfc_register_dp(); 2309 2310 logtype_main = sfc_register_logtype(&pci_dev->addr, 2311 SFC_LOGTYPE_MAIN_STR, 2312 RTE_LOG_NOTICE); 2313 2314 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2315 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2316 2317 /* Required for logging */ 2318 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix), 2319 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ", 2320 pci_dev->addr.domain, pci_dev->addr.bus, 2321 pci_dev->addr.devid, pci_dev->addr.function, 2322 dev->data->port_id); 2323 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) { 2324 SFC_GENERIC_LOG(ERR, 2325 "reserved log prefix is too short for " PCI_PRI_FMT, 2326 pci_dev->addr.domain, pci_dev->addr.bus, 2327 pci_dev->addr.devid, pci_dev->addr.function); 2328 return -EINVAL; 2329 } 2330 sas->pci_addr = pci_dev->addr; 2331 sas->port_id = dev->data->port_id; 2332 2333 /* 2334 * Allocate process private data from heap, since it should not 2335 * be located in shared memory allocated using rte_malloc() API. 2336 */ 2337 sa = calloc(1, sizeof(*sa)); 2338 if (sa == NULL) { 2339 rc = ENOMEM; 2340 goto fail_alloc_sa; 2341 } 2342 2343 dev->process_private = sa; 2344 2345 /* Required for logging */ 2346 sa->priv.shared = sas; 2347 sa->priv.logtype_main = logtype_main; 2348 2349 sa->eth_dev = dev; 2350 2351 /* Copy PCI device info to the dev->data */ 2352 rte_eth_copy_pci_info(dev, pci_dev); 2353 dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 2354 dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE; 2355 2356 rc = sfc_kvargs_parse(sa); 2357 if (rc != 0) 2358 goto fail_kvargs_parse; 2359 2360 sfc_log_init(sa, "entry"); 2361 2362 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2363 if (dev->data->mac_addrs == NULL) { 2364 rc = ENOMEM; 2365 goto fail_mac_addrs; 2366 } 2367 2368 sfc_adapter_lock_init(sa); 2369 sfc_adapter_lock(sa); 2370 2371 sfc_log_init(sa, "probing"); 2372 rc = sfc_probe(sa); 2373 if (rc != 0) 2374 goto fail_probe; 2375 2376 /* 2377 * Selecting a default switch mode requires the NIC to be probed and 2378 * to have its capabilities filled in. 2379 */ 2380 rc = sfc_parse_switch_mode(sa); 2381 if (rc != 0) 2382 goto fail_switch_mode; 2383 2384 sfc_log_init(sa, "set device ops"); 2385 rc = sfc_eth_dev_set_ops(dev); 2386 if (rc != 0) 2387 goto fail_set_ops; 2388 2389 sfc_log_init(sa, "attaching"); 2390 rc = sfc_attach(sa); 2391 if (rc != 0) 2392 goto fail_attach; 2393 2394 if (sa->switchdev && sa->mae.status != SFC_MAE_STATUS_SUPPORTED) { 2395 sfc_err(sa, 2396 "failed to enable switchdev mode without MAE support"); 2397 rc = ENOTSUP; 2398 goto fail_switchdev_no_mae; 2399 } 2400 2401 encp = efx_nic_cfg_get(sa->nic); 2402 2403 /* 2404 * The arguments are really reverse order in comparison to 2405 * Linux kernel. Copy from NIC config to Ethernet device data. 2406 */ 2407 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2408 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2409 2410 sfc_adapter_unlock(sa); 2411 2412 sfc_log_init(sa, "done"); 2413 return 0; 2414 2415 fail_switchdev_no_mae: 2416 sfc_detach(sa); 2417 2418 fail_attach: 2419 sfc_eth_dev_clear_ops(dev); 2420 2421 fail_set_ops: 2422 fail_switch_mode: 2423 sfc_unprobe(sa); 2424 2425 fail_probe: 2426 sfc_adapter_unlock(sa); 2427 sfc_adapter_lock_fini(sa); 2428 rte_free(dev->data->mac_addrs); 2429 dev->data->mac_addrs = NULL; 2430 2431 fail_mac_addrs: 2432 sfc_kvargs_cleanup(sa); 2433 2434 fail_kvargs_parse: 2435 sfc_log_init(sa, "failed %d", rc); 2436 dev->process_private = NULL; 2437 free(sa); 2438 2439 fail_alloc_sa: 2440 SFC_ASSERT(rc > 0); 2441 return -rc; 2442 } 2443 2444 static int 2445 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2446 { 2447 sfc_dev_close(dev); 2448 2449 return 0; 2450 } 2451 2452 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2453 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2454 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2455 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2456 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2457 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2458 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2459 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2460 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2461 { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) }, 2462 { .vendor_id = 0 /* sentinel */ } 2463 }; 2464 2465 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2466 struct rte_pci_device *pci_dev) 2467 { 2468 return rte_eth_dev_pci_generic_probe(pci_dev, 2469 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2470 } 2471 2472 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2473 { 2474 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2475 } 2476 2477 static struct rte_pci_driver sfc_efx_pmd = { 2478 .id_table = pci_id_sfc_efx_map, 2479 .drv_flags = 2480 RTE_PCI_DRV_INTR_LSC | 2481 RTE_PCI_DRV_NEED_MAPPING, 2482 .probe = sfc_eth_dev_pci_probe, 2483 .remove = sfc_eth_dev_pci_remove, 2484 }; 2485 2486 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2487 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2488 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2489 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2490 SFC_KVARG_SWITCH_MODE "=" SFC_KVARG_VALUES_SWITCH_MODE " " 2491 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2492 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2493 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2494 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2495 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2496 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2497 2498 RTE_INIT(sfc_driver_register_logtype) 2499 { 2500 int ret; 2501 2502 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2503 RTE_LOG_NOTICE); 2504 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2505 } 2506