1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) 2016-2017 Solarflare Communications Inc. 5 * All rights reserved. 6 * 7 * This software was jointly developed between OKTET Labs (under contract 8 * for Solarflare) and Solarflare Communications, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright notice, 14 * this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <rte_dev.h> 33 #include <rte_ethdev.h> 34 #include <rte_ethdev_pci.h> 35 #include <rte_pci.h> 36 #include <rte_bus_pci.h> 37 #include <rte_errno.h> 38 39 #include "efx.h" 40 41 #include "sfc.h" 42 #include "sfc_debug.h" 43 #include "sfc_log.h" 44 #include "sfc_kvargs.h" 45 #include "sfc_ev.h" 46 #include "sfc_rx.h" 47 #include "sfc_tx.h" 48 #include "sfc_flow.h" 49 #include "sfc_dp.h" 50 #include "sfc_dp_rx.h" 51 52 static struct sfc_dp_list sfc_dp_head = 53 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 54 55 static int 56 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 57 { 58 struct sfc_adapter *sa = dev->data->dev_private; 59 efx_nic_fw_info_t enfi; 60 int ret; 61 int rc; 62 63 /* 64 * Return value of the callback is likely supposed to be 65 * equal to or greater than 0, nevertheless, if an error 66 * occurs, it will be desirable to pass it to the caller 67 */ 68 if ((fw_version == NULL) || (fw_size == 0)) 69 return -EINVAL; 70 71 rc = efx_nic_get_fw_version(sa->nic, &enfi); 72 if (rc != 0) 73 return -rc; 74 75 ret = snprintf(fw_version, fw_size, 76 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 77 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 78 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 79 if (ret < 0) 80 return ret; 81 82 if (enfi.enfi_dpcpu_fw_ids_valid) { 83 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 84 int ret_extra; 85 86 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 87 fw_size - dpcpu_fw_ids_offset, 88 " rx%" PRIx16 " tx%" PRIx16, 89 enfi.enfi_rx_dpcpu_fw_id, 90 enfi.enfi_tx_dpcpu_fw_id); 91 if (ret_extra < 0) 92 return ret_extra; 93 94 ret += ret_extra; 95 } 96 97 if (fw_size < (size_t)(++ret)) 98 return ret; 99 else 100 return 0; 101 } 102 103 static void 104 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 105 { 106 struct sfc_adapter *sa = dev->data->dev_private; 107 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 108 109 sfc_log_init(sa, "entry"); 110 111 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev); 112 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 113 114 /* Autonegotiation may be disabled */ 115 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 116 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 117 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 118 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 119 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 120 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 121 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 122 123 dev_info->max_rx_queues = sa->rxq_max; 124 dev_info->max_tx_queues = sa->txq_max; 125 126 /* By default packets are dropped if no descriptors are available */ 127 dev_info->default_rxconf.rx_drop_en = 1; 128 129 dev_info->rx_offload_capa = 130 DEV_RX_OFFLOAD_IPV4_CKSUM | 131 DEV_RX_OFFLOAD_UDP_CKSUM | 132 DEV_RX_OFFLOAD_TCP_CKSUM; 133 134 if ((encp->enc_tunnel_encapsulations_supported != 0) && 135 (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS)) 136 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM; 137 138 dev_info->tx_offload_capa = 139 DEV_TX_OFFLOAD_IPV4_CKSUM | 140 DEV_TX_OFFLOAD_UDP_CKSUM | 141 DEV_TX_OFFLOAD_TCP_CKSUM; 142 143 if (encp->enc_tunnel_encapsulations_supported != 0) 144 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM; 145 146 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 147 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 148 !encp->enc_hw_tx_insert_vlan_enabled) 149 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 150 else 151 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT; 152 153 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 154 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 155 156 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) 157 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP; 158 159 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT) 160 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT; 161 162 #if EFSYS_OPT_RX_SCALE 163 if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) { 164 dev_info->reta_size = EFX_RSS_TBL_SIZE; 165 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 166 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 167 } 168 #endif 169 170 if (sa->tso) 171 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO; 172 173 /* Initialize to hardware limits */ 174 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 175 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 176 /* The RXQ hardware requires that the descriptor count is a power 177 * of 2, but rx_desc_lim cannot properly describe that constraint. 178 */ 179 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 180 181 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 182 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 183 /* 184 * The TXQ hardware requires that the descriptor count is a power 185 * of 2, but tx_desc_lim cannot properly describe that constraint 186 */ 187 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 188 189 if (sa->dp_rx->get_dev_info != NULL) 190 sa->dp_rx->get_dev_info(dev_info); 191 } 192 193 static const uint32_t * 194 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 195 { 196 struct sfc_adapter *sa = dev->data->dev_private; 197 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 198 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 199 200 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 201 } 202 203 static int 204 sfc_dev_configure(struct rte_eth_dev *dev) 205 { 206 struct rte_eth_dev_data *dev_data = dev->data; 207 struct sfc_adapter *sa = dev_data->dev_private; 208 int rc; 209 210 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 211 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 212 213 sfc_adapter_lock(sa); 214 switch (sa->state) { 215 case SFC_ADAPTER_CONFIGURED: 216 /* FALLTHROUGH */ 217 case SFC_ADAPTER_INITIALIZED: 218 rc = sfc_configure(sa); 219 break; 220 default: 221 sfc_err(sa, "unexpected adapter state %u to configure", 222 sa->state); 223 rc = EINVAL; 224 break; 225 } 226 sfc_adapter_unlock(sa); 227 228 sfc_log_init(sa, "done %d", rc); 229 SFC_ASSERT(rc >= 0); 230 return -rc; 231 } 232 233 static int 234 sfc_dev_start(struct rte_eth_dev *dev) 235 { 236 struct sfc_adapter *sa = dev->data->dev_private; 237 int rc; 238 239 sfc_log_init(sa, "entry"); 240 241 sfc_adapter_lock(sa); 242 rc = sfc_start(sa); 243 sfc_adapter_unlock(sa); 244 245 sfc_log_init(sa, "done %d", rc); 246 SFC_ASSERT(rc >= 0); 247 return -rc; 248 } 249 250 static int 251 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 252 { 253 struct sfc_adapter *sa = dev->data->dev_private; 254 struct rte_eth_link *dev_link = &dev->data->dev_link; 255 struct rte_eth_link old_link; 256 struct rte_eth_link current_link; 257 258 sfc_log_init(sa, "entry"); 259 260 retry: 261 EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t)); 262 *(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link); 263 264 if (sa->state != SFC_ADAPTER_STARTED) { 265 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 266 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 267 *(uint64_t *)&old_link, 268 *(uint64_t *)¤t_link)) 269 goto retry; 270 } else if (wait_to_complete) { 271 efx_link_mode_t link_mode; 272 273 if (efx_port_poll(sa->nic, &link_mode) != 0) 274 link_mode = EFX_LINK_UNKNOWN; 275 sfc_port_link_mode_to_info(link_mode, ¤t_link); 276 277 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 278 *(uint64_t *)&old_link, 279 *(uint64_t *)¤t_link)) 280 goto retry; 281 } else { 282 sfc_ev_mgmt_qpoll(sa); 283 *(int64_t *)¤t_link = 284 rte_atomic64_read((rte_atomic64_t *)dev_link); 285 } 286 287 if (old_link.link_status != current_link.link_status) 288 sfc_info(sa, "Link status is %s", 289 current_link.link_status ? "UP" : "DOWN"); 290 291 return old_link.link_status == current_link.link_status ? 0 : -1; 292 } 293 294 static void 295 sfc_dev_stop(struct rte_eth_dev *dev) 296 { 297 struct sfc_adapter *sa = dev->data->dev_private; 298 299 sfc_log_init(sa, "entry"); 300 301 sfc_adapter_lock(sa); 302 sfc_stop(sa); 303 sfc_adapter_unlock(sa); 304 305 sfc_log_init(sa, "done"); 306 } 307 308 static int 309 sfc_dev_set_link_up(struct rte_eth_dev *dev) 310 { 311 struct sfc_adapter *sa = dev->data->dev_private; 312 int rc; 313 314 sfc_log_init(sa, "entry"); 315 316 sfc_adapter_lock(sa); 317 rc = sfc_start(sa); 318 sfc_adapter_unlock(sa); 319 320 SFC_ASSERT(rc >= 0); 321 return -rc; 322 } 323 324 static int 325 sfc_dev_set_link_down(struct rte_eth_dev *dev) 326 { 327 struct sfc_adapter *sa = dev->data->dev_private; 328 329 sfc_log_init(sa, "entry"); 330 331 sfc_adapter_lock(sa); 332 sfc_stop(sa); 333 sfc_adapter_unlock(sa); 334 335 return 0; 336 } 337 338 static void 339 sfc_dev_close(struct rte_eth_dev *dev) 340 { 341 struct sfc_adapter *sa = dev->data->dev_private; 342 343 sfc_log_init(sa, "entry"); 344 345 sfc_adapter_lock(sa); 346 switch (sa->state) { 347 case SFC_ADAPTER_STARTED: 348 sfc_stop(sa); 349 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 350 /* FALLTHROUGH */ 351 case SFC_ADAPTER_CONFIGURED: 352 sfc_close(sa); 353 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 354 /* FALLTHROUGH */ 355 case SFC_ADAPTER_INITIALIZED: 356 break; 357 default: 358 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 359 break; 360 } 361 sfc_adapter_unlock(sa); 362 363 sfc_log_init(sa, "done"); 364 } 365 366 static void 367 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 368 boolean_t enabled) 369 { 370 struct sfc_port *port; 371 boolean_t *toggle; 372 struct sfc_adapter *sa = dev->data->dev_private; 373 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 374 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 375 376 sfc_adapter_lock(sa); 377 378 port = &sa->port; 379 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 380 381 if (*toggle != enabled) { 382 *toggle = enabled; 383 384 if (port->isolated) { 385 sfc_warn(sa, "isolated mode is active on the port"); 386 sfc_warn(sa, "the change is to be applied on the next " 387 "start provided that isolated mode is " 388 "disabled prior the next start"); 389 } else if ((sa->state == SFC_ADAPTER_STARTED) && 390 (sfc_set_rx_mode(sa) != 0)) { 391 *toggle = !(enabled); 392 sfc_warn(sa, "Failed to %s %s mode", 393 ((enabled) ? "enable" : "disable"), desc); 394 } 395 } 396 397 sfc_adapter_unlock(sa); 398 } 399 400 static void 401 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 402 { 403 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 404 } 405 406 static void 407 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 408 { 409 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 410 } 411 412 static void 413 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 414 { 415 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 416 } 417 418 static void 419 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 420 { 421 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 422 } 423 424 static int 425 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 426 uint16_t nb_rx_desc, unsigned int socket_id, 427 const struct rte_eth_rxconf *rx_conf, 428 struct rte_mempool *mb_pool) 429 { 430 struct sfc_adapter *sa = dev->data->dev_private; 431 int rc; 432 433 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 434 rx_queue_id, nb_rx_desc, socket_id); 435 436 sfc_adapter_lock(sa); 437 438 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 439 rx_conf, mb_pool); 440 if (rc != 0) 441 goto fail_rx_qinit; 442 443 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 444 445 sfc_adapter_unlock(sa); 446 447 return 0; 448 449 fail_rx_qinit: 450 sfc_adapter_unlock(sa); 451 SFC_ASSERT(rc > 0); 452 return -rc; 453 } 454 455 static void 456 sfc_rx_queue_release(void *queue) 457 { 458 struct sfc_dp_rxq *dp_rxq = queue; 459 struct sfc_rxq *rxq; 460 struct sfc_adapter *sa; 461 unsigned int sw_index; 462 463 if (dp_rxq == NULL) 464 return; 465 466 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 467 sa = rxq->evq->sa; 468 sfc_adapter_lock(sa); 469 470 sw_index = sfc_rxq_sw_index(rxq); 471 472 sfc_log_init(sa, "RxQ=%u", sw_index); 473 474 sa->eth_dev->data->rx_queues[sw_index] = NULL; 475 476 sfc_rx_qfini(sa, sw_index); 477 478 sfc_adapter_unlock(sa); 479 } 480 481 static int 482 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 483 uint16_t nb_tx_desc, unsigned int socket_id, 484 const struct rte_eth_txconf *tx_conf) 485 { 486 struct sfc_adapter *sa = dev->data->dev_private; 487 int rc; 488 489 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 490 tx_queue_id, nb_tx_desc, socket_id); 491 492 sfc_adapter_lock(sa); 493 494 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 495 if (rc != 0) 496 goto fail_tx_qinit; 497 498 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 499 500 sfc_adapter_unlock(sa); 501 return 0; 502 503 fail_tx_qinit: 504 sfc_adapter_unlock(sa); 505 SFC_ASSERT(rc > 0); 506 return -rc; 507 } 508 509 static void 510 sfc_tx_queue_release(void *queue) 511 { 512 struct sfc_dp_txq *dp_txq = queue; 513 struct sfc_txq *txq; 514 unsigned int sw_index; 515 struct sfc_adapter *sa; 516 517 if (dp_txq == NULL) 518 return; 519 520 txq = sfc_txq_by_dp_txq(dp_txq); 521 sw_index = sfc_txq_sw_index(txq); 522 523 SFC_ASSERT(txq->evq != NULL); 524 sa = txq->evq->sa; 525 526 sfc_log_init(sa, "TxQ = %u", sw_index); 527 528 sfc_adapter_lock(sa); 529 530 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 531 sa->eth_dev->data->tx_queues[sw_index] = NULL; 532 533 sfc_tx_qfini(sa, sw_index); 534 535 sfc_adapter_unlock(sa); 536 } 537 538 static int 539 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 540 { 541 struct sfc_adapter *sa = dev->data->dev_private; 542 struct sfc_port *port = &sa->port; 543 uint64_t *mac_stats; 544 int ret; 545 546 rte_spinlock_lock(&port->mac_stats_lock); 547 548 ret = sfc_port_update_mac_stats(sa); 549 if (ret != 0) 550 goto unlock; 551 552 mac_stats = port->mac_stats_buf; 553 554 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 555 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 556 stats->ipackets = 557 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 558 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 559 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 560 stats->opackets = 561 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 562 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 563 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 564 stats->ibytes = 565 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 566 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 567 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 568 stats->obytes = 569 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 570 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 571 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 572 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 573 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 574 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 575 } else { 576 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 577 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 578 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 579 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 580 /* 581 * Take into account stats which are whenever supported 582 * on EF10. If some stat is not supported by current 583 * firmware variant or HW revision, it is guaranteed 584 * to be zero in mac_stats. 585 */ 586 stats->imissed = 587 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 588 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 589 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 590 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 591 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 592 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 593 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 594 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 595 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 596 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 597 stats->ierrors = 598 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 599 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 600 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 601 /* no oerrors counters supported on EF10 */ 602 } 603 604 unlock: 605 rte_spinlock_unlock(&port->mac_stats_lock); 606 SFC_ASSERT(ret >= 0); 607 return -ret; 608 } 609 610 static void 611 sfc_stats_reset(struct rte_eth_dev *dev) 612 { 613 struct sfc_adapter *sa = dev->data->dev_private; 614 struct sfc_port *port = &sa->port; 615 int rc; 616 617 if (sa->state != SFC_ADAPTER_STARTED) { 618 /* 619 * The operation cannot be done if port is not started; it 620 * will be scheduled to be done during the next port start 621 */ 622 port->mac_stats_reset_pending = B_TRUE; 623 return; 624 } 625 626 rc = sfc_port_reset_mac_stats(sa); 627 if (rc != 0) 628 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 629 } 630 631 static int 632 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 633 unsigned int xstats_count) 634 { 635 struct sfc_adapter *sa = dev->data->dev_private; 636 struct sfc_port *port = &sa->port; 637 uint64_t *mac_stats; 638 int rc; 639 unsigned int i; 640 int nstats = 0; 641 642 rte_spinlock_lock(&port->mac_stats_lock); 643 644 rc = sfc_port_update_mac_stats(sa); 645 if (rc != 0) { 646 SFC_ASSERT(rc > 0); 647 nstats = -rc; 648 goto unlock; 649 } 650 651 mac_stats = port->mac_stats_buf; 652 653 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 654 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 655 if (xstats != NULL && nstats < (int)xstats_count) { 656 xstats[nstats].id = nstats; 657 xstats[nstats].value = mac_stats[i]; 658 } 659 nstats++; 660 } 661 } 662 663 unlock: 664 rte_spinlock_unlock(&port->mac_stats_lock); 665 666 return nstats; 667 } 668 669 static int 670 sfc_xstats_get_names(struct rte_eth_dev *dev, 671 struct rte_eth_xstat_name *xstats_names, 672 unsigned int xstats_count) 673 { 674 struct sfc_adapter *sa = dev->data->dev_private; 675 struct sfc_port *port = &sa->port; 676 unsigned int i; 677 unsigned int nstats = 0; 678 679 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 680 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 681 if (xstats_names != NULL && nstats < xstats_count) 682 strncpy(xstats_names[nstats].name, 683 efx_mac_stat_name(sa->nic, i), 684 sizeof(xstats_names[0].name)); 685 nstats++; 686 } 687 } 688 689 return nstats; 690 } 691 692 static int 693 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 694 uint64_t *values, unsigned int n) 695 { 696 struct sfc_adapter *sa = dev->data->dev_private; 697 struct sfc_port *port = &sa->port; 698 uint64_t *mac_stats; 699 unsigned int nb_supported = 0; 700 unsigned int nb_written = 0; 701 unsigned int i; 702 int ret; 703 int rc; 704 705 if (unlikely(values == NULL) || 706 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 707 return port->mac_stats_nb_supported; 708 709 rte_spinlock_lock(&port->mac_stats_lock); 710 711 rc = sfc_port_update_mac_stats(sa); 712 if (rc != 0) { 713 SFC_ASSERT(rc > 0); 714 ret = -rc; 715 goto unlock; 716 } 717 718 mac_stats = port->mac_stats_buf; 719 720 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 721 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 722 continue; 723 724 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 725 values[nb_written++] = mac_stats[i]; 726 727 ++nb_supported; 728 } 729 730 ret = nb_written; 731 732 unlock: 733 rte_spinlock_unlock(&port->mac_stats_lock); 734 735 return ret; 736 } 737 738 static int 739 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 740 struct rte_eth_xstat_name *xstats_names, 741 const uint64_t *ids, unsigned int size) 742 { 743 struct sfc_adapter *sa = dev->data->dev_private; 744 struct sfc_port *port = &sa->port; 745 unsigned int nb_supported = 0; 746 unsigned int nb_written = 0; 747 unsigned int i; 748 749 if (unlikely(xstats_names == NULL) || 750 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 751 return port->mac_stats_nb_supported; 752 753 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 754 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 755 continue; 756 757 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 758 char *name = xstats_names[nb_written++].name; 759 760 strncpy(name, efx_mac_stat_name(sa->nic, i), 761 sizeof(xstats_names[0].name)); 762 name[sizeof(xstats_names[0].name) - 1] = '\0'; 763 } 764 765 ++nb_supported; 766 } 767 768 return nb_written; 769 } 770 771 static int 772 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 773 { 774 struct sfc_adapter *sa = dev->data->dev_private; 775 unsigned int wanted_fc, link_fc; 776 777 memset(fc_conf, 0, sizeof(*fc_conf)); 778 779 sfc_adapter_lock(sa); 780 781 if (sa->state == SFC_ADAPTER_STARTED) 782 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 783 else 784 link_fc = sa->port.flow_ctrl; 785 786 switch (link_fc) { 787 case 0: 788 fc_conf->mode = RTE_FC_NONE; 789 break; 790 case EFX_FCNTL_RESPOND: 791 fc_conf->mode = RTE_FC_RX_PAUSE; 792 break; 793 case EFX_FCNTL_GENERATE: 794 fc_conf->mode = RTE_FC_TX_PAUSE; 795 break; 796 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 797 fc_conf->mode = RTE_FC_FULL; 798 break; 799 default: 800 sfc_err(sa, "%s: unexpected flow control value %#x", 801 __func__, link_fc); 802 } 803 804 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 805 806 sfc_adapter_unlock(sa); 807 808 return 0; 809 } 810 811 static int 812 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 813 { 814 struct sfc_adapter *sa = dev->data->dev_private; 815 struct sfc_port *port = &sa->port; 816 unsigned int fcntl; 817 int rc; 818 819 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 820 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 821 fc_conf->mac_ctrl_frame_fwd != 0) { 822 sfc_err(sa, "unsupported flow control settings specified"); 823 rc = EINVAL; 824 goto fail_inval; 825 } 826 827 switch (fc_conf->mode) { 828 case RTE_FC_NONE: 829 fcntl = 0; 830 break; 831 case RTE_FC_RX_PAUSE: 832 fcntl = EFX_FCNTL_RESPOND; 833 break; 834 case RTE_FC_TX_PAUSE: 835 fcntl = EFX_FCNTL_GENERATE; 836 break; 837 case RTE_FC_FULL: 838 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 839 break; 840 default: 841 rc = EINVAL; 842 goto fail_inval; 843 } 844 845 sfc_adapter_lock(sa); 846 847 if (sa->state == SFC_ADAPTER_STARTED) { 848 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 849 if (rc != 0) 850 goto fail_mac_fcntl_set; 851 } 852 853 port->flow_ctrl = fcntl; 854 port->flow_ctrl_autoneg = fc_conf->autoneg; 855 856 sfc_adapter_unlock(sa); 857 858 return 0; 859 860 fail_mac_fcntl_set: 861 sfc_adapter_unlock(sa); 862 fail_inval: 863 SFC_ASSERT(rc > 0); 864 return -rc; 865 } 866 867 static int 868 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 869 { 870 struct sfc_adapter *sa = dev->data->dev_private; 871 size_t pdu = EFX_MAC_PDU(mtu); 872 size_t old_pdu; 873 int rc; 874 875 sfc_log_init(sa, "mtu=%u", mtu); 876 877 rc = EINVAL; 878 if (pdu < EFX_MAC_PDU_MIN) { 879 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 880 (unsigned int)mtu, (unsigned int)pdu, 881 EFX_MAC_PDU_MIN); 882 goto fail_inval; 883 } 884 if (pdu > EFX_MAC_PDU_MAX) { 885 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 886 (unsigned int)mtu, (unsigned int)pdu, 887 EFX_MAC_PDU_MAX); 888 goto fail_inval; 889 } 890 891 sfc_adapter_lock(sa); 892 893 if (pdu != sa->port.pdu) { 894 if (sa->state == SFC_ADAPTER_STARTED) { 895 sfc_stop(sa); 896 897 old_pdu = sa->port.pdu; 898 sa->port.pdu = pdu; 899 rc = sfc_start(sa); 900 if (rc != 0) 901 goto fail_start; 902 } else { 903 sa->port.pdu = pdu; 904 } 905 } 906 907 /* 908 * The driver does not use it, but other PMDs update jumbo_frame 909 * flag and max_rx_pkt_len when MTU is set. 910 */ 911 dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN); 912 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 913 914 sfc_adapter_unlock(sa); 915 916 sfc_log_init(sa, "done"); 917 return 0; 918 919 fail_start: 920 sa->port.pdu = old_pdu; 921 if (sfc_start(sa) != 0) 922 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 923 "PDU max size - port is stopped", 924 (unsigned int)pdu, (unsigned int)old_pdu); 925 sfc_adapter_unlock(sa); 926 927 fail_inval: 928 sfc_log_init(sa, "failed %d", rc); 929 SFC_ASSERT(rc > 0); 930 return -rc; 931 } 932 static void 933 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 934 { 935 struct sfc_adapter *sa = dev->data->dev_private; 936 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 937 struct sfc_port *port = &sa->port; 938 int rc; 939 940 sfc_adapter_lock(sa); 941 942 /* 943 * Copy the address to the device private data so that 944 * it could be recalled in the case of adapter restart. 945 */ 946 ether_addr_copy(mac_addr, &port->default_mac_addr); 947 948 if (port->isolated) { 949 sfc_err(sa, "isolated mode is active on the port"); 950 sfc_err(sa, "will not set MAC address"); 951 goto unlock; 952 } 953 954 if (sa->state != SFC_ADAPTER_STARTED) { 955 sfc_info(sa, "the port is not started"); 956 sfc_info(sa, "the new MAC address will be set on port start"); 957 958 goto unlock; 959 } 960 961 if (encp->enc_allow_set_mac_with_installed_filters) { 962 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 963 if (rc != 0) { 964 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 965 goto unlock; 966 } 967 968 /* 969 * Changing the MAC address by means of MCDI request 970 * has no effect on received traffic, therefore 971 * we also need to update unicast filters 972 */ 973 rc = sfc_set_rx_mode(sa); 974 if (rc != 0) 975 sfc_err(sa, "cannot set filter (rc = %u)", rc); 976 } else { 977 sfc_warn(sa, "cannot set MAC address with filters installed"); 978 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 979 sfc_warn(sa, "(some traffic may be dropped)"); 980 981 /* 982 * Since setting MAC address with filters installed is not 983 * allowed on the adapter, the new MAC address will be set 984 * by means of adapter restart. sfc_start() shall retrieve 985 * the new address from the device private data and set it. 986 */ 987 sfc_stop(sa); 988 rc = sfc_start(sa); 989 if (rc != 0) 990 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 991 } 992 993 unlock: 994 /* 995 * In the case of failure sa->port->default_mac_addr does not 996 * need rollback since no error code is returned, and the upper 997 * API will anyway update the external MAC address storage. 998 * To be consistent with that new value it is better to keep 999 * the device private value the same. 1000 */ 1001 sfc_adapter_unlock(sa); 1002 } 1003 1004 1005 static int 1006 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1007 uint32_t nb_mc_addr) 1008 { 1009 struct sfc_adapter *sa = dev->data->dev_private; 1010 struct sfc_port *port = &sa->port; 1011 uint8_t *mc_addrs = port->mcast_addrs; 1012 int rc; 1013 unsigned int i; 1014 1015 if (port->isolated) { 1016 sfc_err(sa, "isolated mode is active on the port"); 1017 sfc_err(sa, "will not set multicast address list"); 1018 return -ENOTSUP; 1019 } 1020 1021 if (mc_addrs == NULL) 1022 return -ENOBUFS; 1023 1024 if (nb_mc_addr > port->max_mcast_addrs) { 1025 sfc_err(sa, "too many multicast addresses: %u > %u", 1026 nb_mc_addr, port->max_mcast_addrs); 1027 return -EINVAL; 1028 } 1029 1030 for (i = 0; i < nb_mc_addr; ++i) { 1031 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1032 EFX_MAC_ADDR_LEN); 1033 mc_addrs += EFX_MAC_ADDR_LEN; 1034 } 1035 1036 port->nb_mcast_addrs = nb_mc_addr; 1037 1038 if (sa->state != SFC_ADAPTER_STARTED) 1039 return 0; 1040 1041 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1042 port->nb_mcast_addrs); 1043 if (rc != 0) 1044 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1045 1046 SFC_ASSERT(rc > 0); 1047 return -rc; 1048 } 1049 1050 /* 1051 * The function is used by the secondary process as well. It must not 1052 * use any process-local pointers from the adapter data. 1053 */ 1054 static void 1055 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1056 struct rte_eth_rxq_info *qinfo) 1057 { 1058 struct sfc_adapter *sa = dev->data->dev_private; 1059 struct sfc_rxq_info *rxq_info; 1060 struct sfc_rxq *rxq; 1061 1062 sfc_adapter_lock(sa); 1063 1064 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1065 1066 rxq_info = &sa->rxq_info[rx_queue_id]; 1067 rxq = rxq_info->rxq; 1068 SFC_ASSERT(rxq != NULL); 1069 1070 qinfo->mp = rxq->refill_mb_pool; 1071 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1072 qinfo->conf.rx_drop_en = 1; 1073 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1074 qinfo->scattered_rx = 1075 ((rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) != 0); 1076 qinfo->nb_desc = rxq_info->entries; 1077 1078 sfc_adapter_unlock(sa); 1079 } 1080 1081 /* 1082 * The function is used by the secondary process as well. It must not 1083 * use any process-local pointers from the adapter data. 1084 */ 1085 static void 1086 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1087 struct rte_eth_txq_info *qinfo) 1088 { 1089 struct sfc_adapter *sa = dev->data->dev_private; 1090 struct sfc_txq_info *txq_info; 1091 1092 sfc_adapter_lock(sa); 1093 1094 SFC_ASSERT(tx_queue_id < sa->txq_count); 1095 1096 txq_info = &sa->txq_info[tx_queue_id]; 1097 SFC_ASSERT(txq_info->txq != NULL); 1098 1099 memset(qinfo, 0, sizeof(*qinfo)); 1100 1101 qinfo->conf.txq_flags = txq_info->txq->flags; 1102 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1103 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1104 qinfo->nb_desc = txq_info->entries; 1105 1106 sfc_adapter_unlock(sa); 1107 } 1108 1109 static uint32_t 1110 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1111 { 1112 struct sfc_adapter *sa = dev->data->dev_private; 1113 1114 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1115 1116 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1117 } 1118 1119 static int 1120 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1121 { 1122 struct sfc_dp_rxq *dp_rxq = queue; 1123 1124 return sfc_rx_qdesc_done(dp_rxq, offset); 1125 } 1126 1127 static int 1128 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1129 { 1130 struct sfc_dp_rxq *dp_rxq = queue; 1131 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1132 1133 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1134 } 1135 1136 static int 1137 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1138 { 1139 struct sfc_dp_txq *dp_txq = queue; 1140 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1141 1142 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1143 } 1144 1145 static int 1146 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1147 { 1148 struct sfc_adapter *sa = dev->data->dev_private; 1149 int rc; 1150 1151 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1152 1153 sfc_adapter_lock(sa); 1154 1155 rc = EINVAL; 1156 if (sa->state != SFC_ADAPTER_STARTED) 1157 goto fail_not_started; 1158 1159 rc = sfc_rx_qstart(sa, rx_queue_id); 1160 if (rc != 0) 1161 goto fail_rx_qstart; 1162 1163 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1164 1165 sfc_adapter_unlock(sa); 1166 1167 return 0; 1168 1169 fail_rx_qstart: 1170 fail_not_started: 1171 sfc_adapter_unlock(sa); 1172 SFC_ASSERT(rc > 0); 1173 return -rc; 1174 } 1175 1176 static int 1177 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1178 { 1179 struct sfc_adapter *sa = dev->data->dev_private; 1180 1181 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1182 1183 sfc_adapter_lock(sa); 1184 sfc_rx_qstop(sa, rx_queue_id); 1185 1186 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1187 1188 sfc_adapter_unlock(sa); 1189 1190 return 0; 1191 } 1192 1193 static int 1194 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1195 { 1196 struct sfc_adapter *sa = dev->data->dev_private; 1197 int rc; 1198 1199 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1200 1201 sfc_adapter_lock(sa); 1202 1203 rc = EINVAL; 1204 if (sa->state != SFC_ADAPTER_STARTED) 1205 goto fail_not_started; 1206 1207 rc = sfc_tx_qstart(sa, tx_queue_id); 1208 if (rc != 0) 1209 goto fail_tx_qstart; 1210 1211 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1212 1213 sfc_adapter_unlock(sa); 1214 return 0; 1215 1216 fail_tx_qstart: 1217 1218 fail_not_started: 1219 sfc_adapter_unlock(sa); 1220 SFC_ASSERT(rc > 0); 1221 return -rc; 1222 } 1223 1224 static int 1225 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1226 { 1227 struct sfc_adapter *sa = dev->data->dev_private; 1228 1229 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1230 1231 sfc_adapter_lock(sa); 1232 1233 sfc_tx_qstop(sa, tx_queue_id); 1234 1235 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1236 1237 sfc_adapter_unlock(sa); 1238 return 0; 1239 } 1240 1241 static efx_tunnel_protocol_t 1242 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1243 { 1244 switch (rte_type) { 1245 case RTE_TUNNEL_TYPE_VXLAN: 1246 return EFX_TUNNEL_PROTOCOL_VXLAN; 1247 case RTE_TUNNEL_TYPE_GENEVE: 1248 return EFX_TUNNEL_PROTOCOL_GENEVE; 1249 default: 1250 return EFX_TUNNEL_NPROTOS; 1251 } 1252 } 1253 1254 enum sfc_udp_tunnel_op_e { 1255 SFC_UDP_TUNNEL_ADD_PORT, 1256 SFC_UDP_TUNNEL_DEL_PORT, 1257 }; 1258 1259 static int 1260 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1261 struct rte_eth_udp_tunnel *tunnel_udp, 1262 enum sfc_udp_tunnel_op_e op) 1263 { 1264 struct sfc_adapter *sa = dev->data->dev_private; 1265 efx_tunnel_protocol_t tunnel_proto; 1266 int rc; 1267 1268 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1269 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1270 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1271 tunnel_udp->udp_port, tunnel_udp->prot_type); 1272 1273 tunnel_proto = 1274 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1275 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1276 rc = ENOTSUP; 1277 goto fail_bad_proto; 1278 } 1279 1280 sfc_adapter_lock(sa); 1281 1282 switch (op) { 1283 case SFC_UDP_TUNNEL_ADD_PORT: 1284 rc = efx_tunnel_config_udp_add(sa->nic, 1285 tunnel_udp->udp_port, 1286 tunnel_proto); 1287 break; 1288 case SFC_UDP_TUNNEL_DEL_PORT: 1289 rc = efx_tunnel_config_udp_remove(sa->nic, 1290 tunnel_udp->udp_port, 1291 tunnel_proto); 1292 break; 1293 default: 1294 rc = EINVAL; 1295 goto fail_bad_op; 1296 } 1297 1298 if (rc != 0) 1299 goto fail_op; 1300 1301 if (sa->state == SFC_ADAPTER_STARTED) { 1302 rc = efx_tunnel_reconfigure(sa->nic); 1303 if (rc == EAGAIN) { 1304 /* 1305 * Configuration is accepted by FW and MC reboot 1306 * is initiated to apply the changes. MC reboot 1307 * will be handled in a usual way (MC reboot 1308 * event on management event queue and adapter 1309 * restart). 1310 */ 1311 rc = 0; 1312 } else if (rc != 0) { 1313 goto fail_reconfigure; 1314 } 1315 } 1316 1317 sfc_adapter_unlock(sa); 1318 return 0; 1319 1320 fail_reconfigure: 1321 /* Remove/restore entry since the change makes the trouble */ 1322 switch (op) { 1323 case SFC_UDP_TUNNEL_ADD_PORT: 1324 (void)efx_tunnel_config_udp_remove(sa->nic, 1325 tunnel_udp->udp_port, 1326 tunnel_proto); 1327 break; 1328 case SFC_UDP_TUNNEL_DEL_PORT: 1329 (void)efx_tunnel_config_udp_add(sa->nic, 1330 tunnel_udp->udp_port, 1331 tunnel_proto); 1332 break; 1333 } 1334 1335 fail_op: 1336 fail_bad_op: 1337 sfc_adapter_unlock(sa); 1338 1339 fail_bad_proto: 1340 SFC_ASSERT(rc > 0); 1341 return -rc; 1342 } 1343 1344 static int 1345 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1346 struct rte_eth_udp_tunnel *tunnel_udp) 1347 { 1348 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1349 } 1350 1351 static int 1352 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1353 struct rte_eth_udp_tunnel *tunnel_udp) 1354 { 1355 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1356 } 1357 1358 #if EFSYS_OPT_RX_SCALE 1359 static int 1360 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1361 struct rte_eth_rss_conf *rss_conf) 1362 { 1363 struct sfc_adapter *sa = dev->data->dev_private; 1364 struct sfc_port *port = &sa->port; 1365 1366 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1367 return -ENOTSUP; 1368 1369 if (sa->rss_channels == 0) 1370 return -EINVAL; 1371 1372 sfc_adapter_lock(sa); 1373 1374 /* 1375 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1376 * hence, conversion is done here to derive a correct set of ETH_RSS 1377 * flags which corresponds to the active EFX configuration stored 1378 * locally in 'sfc_adapter' and kept up-to-date 1379 */ 1380 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types); 1381 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1382 if (rss_conf->rss_key != NULL) 1383 rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE); 1384 1385 sfc_adapter_unlock(sa); 1386 1387 return 0; 1388 } 1389 1390 static int 1391 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1392 struct rte_eth_rss_conf *rss_conf) 1393 { 1394 struct sfc_adapter *sa = dev->data->dev_private; 1395 struct sfc_port *port = &sa->port; 1396 unsigned int efx_hash_types; 1397 int rc = 0; 1398 1399 if (port->isolated) 1400 return -ENOTSUP; 1401 1402 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1403 sfc_err(sa, "RSS is not available"); 1404 return -ENOTSUP; 1405 } 1406 1407 if (sa->rss_channels == 0) { 1408 sfc_err(sa, "RSS is not configured"); 1409 return -EINVAL; 1410 } 1411 1412 if ((rss_conf->rss_key != NULL) && 1413 (rss_conf->rss_key_len != sizeof(sa->rss_key))) { 1414 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1415 sizeof(sa->rss_key)); 1416 return -EINVAL; 1417 } 1418 1419 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1420 sfc_err(sa, "unsupported hash functions requested"); 1421 return -EINVAL; 1422 } 1423 1424 sfc_adapter_lock(sa); 1425 1426 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1427 1428 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1429 EFX_RX_HASHALG_TOEPLITZ, 1430 efx_hash_types, B_TRUE); 1431 if (rc != 0) 1432 goto fail_scale_mode_set; 1433 1434 if (rss_conf->rss_key != NULL) { 1435 if (sa->state == SFC_ADAPTER_STARTED) { 1436 rc = efx_rx_scale_key_set(sa->nic, 1437 EFX_RSS_CONTEXT_DEFAULT, 1438 rss_conf->rss_key, 1439 sizeof(sa->rss_key)); 1440 if (rc != 0) 1441 goto fail_scale_key_set; 1442 } 1443 1444 rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key)); 1445 } 1446 1447 sa->rss_hash_types = efx_hash_types; 1448 1449 sfc_adapter_unlock(sa); 1450 1451 return 0; 1452 1453 fail_scale_key_set: 1454 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1455 EFX_RX_HASHALG_TOEPLITZ, 1456 sa->rss_hash_types, B_TRUE) != 0) 1457 sfc_err(sa, "failed to restore RSS mode"); 1458 1459 fail_scale_mode_set: 1460 sfc_adapter_unlock(sa); 1461 return -rc; 1462 } 1463 1464 static int 1465 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1466 struct rte_eth_rss_reta_entry64 *reta_conf, 1467 uint16_t reta_size) 1468 { 1469 struct sfc_adapter *sa = dev->data->dev_private; 1470 struct sfc_port *port = &sa->port; 1471 int entry; 1472 1473 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1474 return -ENOTSUP; 1475 1476 if (sa->rss_channels == 0) 1477 return -EINVAL; 1478 1479 if (reta_size != EFX_RSS_TBL_SIZE) 1480 return -EINVAL; 1481 1482 sfc_adapter_lock(sa); 1483 1484 for (entry = 0; entry < reta_size; entry++) { 1485 int grp = entry / RTE_RETA_GROUP_SIZE; 1486 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1487 1488 if ((reta_conf[grp].mask >> grp_idx) & 1) 1489 reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry]; 1490 } 1491 1492 sfc_adapter_unlock(sa); 1493 1494 return 0; 1495 } 1496 1497 static int 1498 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1499 struct rte_eth_rss_reta_entry64 *reta_conf, 1500 uint16_t reta_size) 1501 { 1502 struct sfc_adapter *sa = dev->data->dev_private; 1503 struct sfc_port *port = &sa->port; 1504 unsigned int *rss_tbl_new; 1505 uint16_t entry; 1506 int rc = 0; 1507 1508 1509 if (port->isolated) 1510 return -ENOTSUP; 1511 1512 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1513 sfc_err(sa, "RSS is not available"); 1514 return -ENOTSUP; 1515 } 1516 1517 if (sa->rss_channels == 0) { 1518 sfc_err(sa, "RSS is not configured"); 1519 return -EINVAL; 1520 } 1521 1522 if (reta_size != EFX_RSS_TBL_SIZE) { 1523 sfc_err(sa, "RETA size is wrong (should be %u)", 1524 EFX_RSS_TBL_SIZE); 1525 return -EINVAL; 1526 } 1527 1528 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0); 1529 if (rss_tbl_new == NULL) 1530 return -ENOMEM; 1531 1532 sfc_adapter_lock(sa); 1533 1534 rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl)); 1535 1536 for (entry = 0; entry < reta_size; entry++) { 1537 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1538 struct rte_eth_rss_reta_entry64 *grp; 1539 1540 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1541 1542 if (grp->mask & (1ull << grp_idx)) { 1543 if (grp->reta[grp_idx] >= sa->rss_channels) { 1544 rc = EINVAL; 1545 goto bad_reta_entry; 1546 } 1547 rss_tbl_new[entry] = grp->reta[grp_idx]; 1548 } 1549 } 1550 1551 if (sa->state == SFC_ADAPTER_STARTED) { 1552 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1553 rss_tbl_new, EFX_RSS_TBL_SIZE); 1554 if (rc != 0) 1555 goto fail_scale_tbl_set; 1556 } 1557 1558 rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl)); 1559 1560 fail_scale_tbl_set: 1561 bad_reta_entry: 1562 sfc_adapter_unlock(sa); 1563 1564 rte_free(rss_tbl_new); 1565 1566 SFC_ASSERT(rc >= 0); 1567 return -rc; 1568 } 1569 #endif 1570 1571 static int 1572 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1573 enum rte_filter_op filter_op, 1574 void *arg) 1575 { 1576 struct sfc_adapter *sa = dev->data->dev_private; 1577 int rc = ENOTSUP; 1578 1579 sfc_log_init(sa, "entry"); 1580 1581 switch (filter_type) { 1582 case RTE_ETH_FILTER_NONE: 1583 sfc_err(sa, "Global filters configuration not supported"); 1584 break; 1585 case RTE_ETH_FILTER_MACVLAN: 1586 sfc_err(sa, "MACVLAN filters not supported"); 1587 break; 1588 case RTE_ETH_FILTER_ETHERTYPE: 1589 sfc_err(sa, "EtherType filters not supported"); 1590 break; 1591 case RTE_ETH_FILTER_FLEXIBLE: 1592 sfc_err(sa, "Flexible filters not supported"); 1593 break; 1594 case RTE_ETH_FILTER_SYN: 1595 sfc_err(sa, "SYN filters not supported"); 1596 break; 1597 case RTE_ETH_FILTER_NTUPLE: 1598 sfc_err(sa, "NTUPLE filters not supported"); 1599 break; 1600 case RTE_ETH_FILTER_TUNNEL: 1601 sfc_err(sa, "Tunnel filters not supported"); 1602 break; 1603 case RTE_ETH_FILTER_FDIR: 1604 sfc_err(sa, "Flow Director filters not supported"); 1605 break; 1606 case RTE_ETH_FILTER_HASH: 1607 sfc_err(sa, "Hash filters not supported"); 1608 break; 1609 case RTE_ETH_FILTER_GENERIC: 1610 if (filter_op != RTE_ETH_FILTER_GET) { 1611 rc = EINVAL; 1612 } else { 1613 *(const void **)arg = &sfc_flow_ops; 1614 rc = 0; 1615 } 1616 break; 1617 default: 1618 sfc_err(sa, "Unknown filter type %u", filter_type); 1619 break; 1620 } 1621 1622 sfc_log_init(sa, "exit: %d", -rc); 1623 SFC_ASSERT(rc >= 0); 1624 return -rc; 1625 } 1626 1627 static const struct eth_dev_ops sfc_eth_dev_ops = { 1628 .dev_configure = sfc_dev_configure, 1629 .dev_start = sfc_dev_start, 1630 .dev_stop = sfc_dev_stop, 1631 .dev_set_link_up = sfc_dev_set_link_up, 1632 .dev_set_link_down = sfc_dev_set_link_down, 1633 .dev_close = sfc_dev_close, 1634 .promiscuous_enable = sfc_dev_promisc_enable, 1635 .promiscuous_disable = sfc_dev_promisc_disable, 1636 .allmulticast_enable = sfc_dev_allmulti_enable, 1637 .allmulticast_disable = sfc_dev_allmulti_disable, 1638 .link_update = sfc_dev_link_update, 1639 .stats_get = sfc_stats_get, 1640 .stats_reset = sfc_stats_reset, 1641 .xstats_get = sfc_xstats_get, 1642 .xstats_reset = sfc_stats_reset, 1643 .xstats_get_names = sfc_xstats_get_names, 1644 .dev_infos_get = sfc_dev_infos_get, 1645 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1646 .mtu_set = sfc_dev_set_mtu, 1647 .rx_queue_start = sfc_rx_queue_start, 1648 .rx_queue_stop = sfc_rx_queue_stop, 1649 .tx_queue_start = sfc_tx_queue_start, 1650 .tx_queue_stop = sfc_tx_queue_stop, 1651 .rx_queue_setup = sfc_rx_queue_setup, 1652 .rx_queue_release = sfc_rx_queue_release, 1653 .rx_queue_count = sfc_rx_queue_count, 1654 .rx_descriptor_done = sfc_rx_descriptor_done, 1655 .rx_descriptor_status = sfc_rx_descriptor_status, 1656 .tx_descriptor_status = sfc_tx_descriptor_status, 1657 .tx_queue_setup = sfc_tx_queue_setup, 1658 .tx_queue_release = sfc_tx_queue_release, 1659 .flow_ctrl_get = sfc_flow_ctrl_get, 1660 .flow_ctrl_set = sfc_flow_ctrl_set, 1661 .mac_addr_set = sfc_mac_addr_set, 1662 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1663 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1664 #if EFSYS_OPT_RX_SCALE 1665 .reta_update = sfc_dev_rss_reta_update, 1666 .reta_query = sfc_dev_rss_reta_query, 1667 .rss_hash_update = sfc_dev_rss_hash_update, 1668 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1669 #endif 1670 .filter_ctrl = sfc_dev_filter_ctrl, 1671 .set_mc_addr_list = sfc_set_mc_addr_list, 1672 .rxq_info_get = sfc_rx_queue_info_get, 1673 .txq_info_get = sfc_tx_queue_info_get, 1674 .fw_version_get = sfc_fw_version_get, 1675 .xstats_get_by_id = sfc_xstats_get_by_id, 1676 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1677 }; 1678 1679 /** 1680 * Duplicate a string in potentially shared memory required for 1681 * multi-process support. 1682 * 1683 * strdup() allocates from process-local heap/memory. 1684 */ 1685 static char * 1686 sfc_strdup(const char *str) 1687 { 1688 size_t size; 1689 char *copy; 1690 1691 if (str == NULL) 1692 return NULL; 1693 1694 size = strlen(str) + 1; 1695 copy = rte_malloc(__func__, size, 0); 1696 if (copy != NULL) 1697 rte_memcpy(copy, str, size); 1698 1699 return copy; 1700 } 1701 1702 static int 1703 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1704 { 1705 struct sfc_adapter *sa = dev->data->dev_private; 1706 unsigned int avail_caps = 0; 1707 const char *rx_name = NULL; 1708 const char *tx_name = NULL; 1709 int rc; 1710 1711 switch (sa->family) { 1712 case EFX_FAMILY_HUNTINGTON: 1713 case EFX_FAMILY_MEDFORD: 1714 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1715 break; 1716 default: 1717 break; 1718 } 1719 1720 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1721 sfc_kvarg_string_handler, &rx_name); 1722 if (rc != 0) 1723 goto fail_kvarg_rx_datapath; 1724 1725 if (rx_name != NULL) { 1726 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1727 if (sa->dp_rx == NULL) { 1728 sfc_err(sa, "Rx datapath %s not found", rx_name); 1729 rc = ENOENT; 1730 goto fail_dp_rx; 1731 } 1732 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1733 sfc_err(sa, 1734 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1735 rx_name); 1736 rc = EINVAL; 1737 goto fail_dp_rx_caps; 1738 } 1739 } else { 1740 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1741 if (sa->dp_rx == NULL) { 1742 sfc_err(sa, "Rx datapath by caps %#x not found", 1743 avail_caps); 1744 rc = ENOENT; 1745 goto fail_dp_rx; 1746 } 1747 } 1748 1749 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1750 if (sa->dp_rx_name == NULL) { 1751 rc = ENOMEM; 1752 goto fail_dp_rx_name; 1753 } 1754 1755 sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name); 1756 1757 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1758 1759 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1760 sfc_kvarg_string_handler, &tx_name); 1761 if (rc != 0) 1762 goto fail_kvarg_tx_datapath; 1763 1764 if (tx_name != NULL) { 1765 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1766 if (sa->dp_tx == NULL) { 1767 sfc_err(sa, "Tx datapath %s not found", tx_name); 1768 rc = ENOENT; 1769 goto fail_dp_tx; 1770 } 1771 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1772 sfc_err(sa, 1773 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1774 tx_name); 1775 rc = EINVAL; 1776 goto fail_dp_tx_caps; 1777 } 1778 } else { 1779 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1780 if (sa->dp_tx == NULL) { 1781 sfc_err(sa, "Tx datapath by caps %#x not found", 1782 avail_caps); 1783 rc = ENOENT; 1784 goto fail_dp_tx; 1785 } 1786 } 1787 1788 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1789 if (sa->dp_tx_name == NULL) { 1790 rc = ENOMEM; 1791 goto fail_dp_tx_name; 1792 } 1793 1794 sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name); 1795 1796 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1797 1798 dev->dev_ops = &sfc_eth_dev_ops; 1799 1800 return 0; 1801 1802 fail_dp_tx_name: 1803 fail_dp_tx_caps: 1804 sa->dp_tx = NULL; 1805 1806 fail_dp_tx: 1807 fail_kvarg_tx_datapath: 1808 rte_free(sa->dp_rx_name); 1809 sa->dp_rx_name = NULL; 1810 1811 fail_dp_rx_name: 1812 fail_dp_rx_caps: 1813 sa->dp_rx = NULL; 1814 1815 fail_dp_rx: 1816 fail_kvarg_rx_datapath: 1817 return rc; 1818 } 1819 1820 static void 1821 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1822 { 1823 struct sfc_adapter *sa = dev->data->dev_private; 1824 1825 dev->dev_ops = NULL; 1826 dev->rx_pkt_burst = NULL; 1827 dev->tx_pkt_burst = NULL; 1828 1829 rte_free(sa->dp_tx_name); 1830 sa->dp_tx_name = NULL; 1831 sa->dp_tx = NULL; 1832 1833 rte_free(sa->dp_rx_name); 1834 sa->dp_rx_name = NULL; 1835 sa->dp_rx = NULL; 1836 } 1837 1838 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1839 .rxq_info_get = sfc_rx_queue_info_get, 1840 .txq_info_get = sfc_tx_queue_info_get, 1841 }; 1842 1843 static int 1844 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1845 { 1846 /* 1847 * Device private data has really many process-local pointers. 1848 * Below code should be extremely careful to use data located 1849 * in shared memory only. 1850 */ 1851 struct sfc_adapter *sa = dev->data->dev_private; 1852 const struct sfc_dp_rx *dp_rx; 1853 const struct sfc_dp_tx *dp_tx; 1854 int rc; 1855 1856 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1857 if (dp_rx == NULL) { 1858 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1859 rc = ENOENT; 1860 goto fail_dp_rx; 1861 } 1862 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1863 sfc_err(sa, "%s Rx datapath does not support multi-process", 1864 sa->dp_tx_name); 1865 rc = EINVAL; 1866 goto fail_dp_rx_multi_process; 1867 } 1868 1869 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1870 if (dp_tx == NULL) { 1871 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1872 rc = ENOENT; 1873 goto fail_dp_tx; 1874 } 1875 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1876 sfc_err(sa, "%s Tx datapath does not support multi-process", 1877 sa->dp_tx_name); 1878 rc = EINVAL; 1879 goto fail_dp_tx_multi_process; 1880 } 1881 1882 dev->rx_pkt_burst = dp_rx->pkt_burst; 1883 dev->tx_pkt_burst = dp_tx->pkt_burst; 1884 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1885 1886 return 0; 1887 1888 fail_dp_tx_multi_process: 1889 fail_dp_tx: 1890 fail_dp_rx_multi_process: 1891 fail_dp_rx: 1892 return rc; 1893 } 1894 1895 static void 1896 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1897 { 1898 dev->dev_ops = NULL; 1899 dev->tx_pkt_burst = NULL; 1900 dev->rx_pkt_burst = NULL; 1901 } 1902 1903 static void 1904 sfc_register_dp(void) 1905 { 1906 /* Register once */ 1907 if (TAILQ_EMPTY(&sfc_dp_head)) { 1908 /* Prefer EF10 datapath */ 1909 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1910 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1911 1912 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1913 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1914 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1915 } 1916 } 1917 1918 static int 1919 sfc_eth_dev_init(struct rte_eth_dev *dev) 1920 { 1921 struct sfc_adapter *sa = dev->data->dev_private; 1922 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1923 int rc; 1924 const efx_nic_cfg_t *encp; 1925 const struct ether_addr *from; 1926 1927 sfc_register_dp(); 1928 1929 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1930 return -sfc_eth_dev_secondary_set_ops(dev); 1931 1932 /* Required for logging */ 1933 sa->pci_addr = pci_dev->addr; 1934 sa->port_id = dev->data->port_id; 1935 1936 sa->eth_dev = dev; 1937 1938 /* Copy PCI device info to the dev->data */ 1939 rte_eth_copy_pci_info(dev, pci_dev); 1940 1941 rc = sfc_kvargs_parse(sa); 1942 if (rc != 0) 1943 goto fail_kvargs_parse; 1944 1945 rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT, 1946 sfc_kvarg_bool_handler, &sa->debug_init); 1947 if (rc != 0) 1948 goto fail_kvarg_debug_init; 1949 1950 sfc_log_init(sa, "entry"); 1951 1952 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1953 if (dev->data->mac_addrs == NULL) { 1954 rc = ENOMEM; 1955 goto fail_mac_addrs; 1956 } 1957 1958 sfc_adapter_lock_init(sa); 1959 sfc_adapter_lock(sa); 1960 1961 sfc_log_init(sa, "probing"); 1962 rc = sfc_probe(sa); 1963 if (rc != 0) 1964 goto fail_probe; 1965 1966 sfc_log_init(sa, "set device ops"); 1967 rc = sfc_eth_dev_set_ops(dev); 1968 if (rc != 0) 1969 goto fail_set_ops; 1970 1971 sfc_log_init(sa, "attaching"); 1972 rc = sfc_attach(sa); 1973 if (rc != 0) 1974 goto fail_attach; 1975 1976 encp = efx_nic_cfg_get(sa->nic); 1977 1978 /* 1979 * The arguments are really reverse order in comparison to 1980 * Linux kernel. Copy from NIC config to Ethernet device data. 1981 */ 1982 from = (const struct ether_addr *)(encp->enc_mac_addr); 1983 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1984 1985 sfc_adapter_unlock(sa); 1986 1987 sfc_log_init(sa, "done"); 1988 return 0; 1989 1990 fail_attach: 1991 sfc_eth_dev_clear_ops(dev); 1992 1993 fail_set_ops: 1994 sfc_unprobe(sa); 1995 1996 fail_probe: 1997 sfc_adapter_unlock(sa); 1998 sfc_adapter_lock_fini(sa); 1999 rte_free(dev->data->mac_addrs); 2000 dev->data->mac_addrs = NULL; 2001 2002 fail_mac_addrs: 2003 fail_kvarg_debug_init: 2004 sfc_kvargs_cleanup(sa); 2005 2006 fail_kvargs_parse: 2007 sfc_log_init(sa, "failed %d", rc); 2008 SFC_ASSERT(rc > 0); 2009 return -rc; 2010 } 2011 2012 static int 2013 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2014 { 2015 struct sfc_adapter *sa; 2016 2017 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2018 sfc_eth_dev_secondary_clear_ops(dev); 2019 return 0; 2020 } 2021 2022 sa = dev->data->dev_private; 2023 sfc_log_init(sa, "entry"); 2024 2025 sfc_adapter_lock(sa); 2026 2027 sfc_eth_dev_clear_ops(dev); 2028 2029 sfc_detach(sa); 2030 sfc_unprobe(sa); 2031 2032 rte_free(dev->data->mac_addrs); 2033 dev->data->mac_addrs = NULL; 2034 2035 sfc_kvargs_cleanup(sa); 2036 2037 sfc_adapter_unlock(sa); 2038 sfc_adapter_lock_fini(sa); 2039 2040 sfc_log_init(sa, "done"); 2041 2042 /* Required for logging, so cleanup last */ 2043 sa->eth_dev = NULL; 2044 return 0; 2045 } 2046 2047 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2048 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2049 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2050 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2051 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2052 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2053 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2054 { .vendor_id = 0 /* sentinel */ } 2055 }; 2056 2057 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2058 struct rte_pci_device *pci_dev) 2059 { 2060 return rte_eth_dev_pci_generic_probe(pci_dev, 2061 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2062 } 2063 2064 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2065 { 2066 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2067 } 2068 2069 static struct rte_pci_driver sfc_efx_pmd = { 2070 .id_table = pci_id_sfc_efx_map, 2071 .drv_flags = 2072 RTE_PCI_DRV_INTR_LSC | 2073 RTE_PCI_DRV_NEED_MAPPING, 2074 .probe = sfc_eth_dev_pci_probe, 2075 .remove = sfc_eth_dev_pci_remove, 2076 }; 2077 2078 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2079 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2080 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2081 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2082 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2083 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2084 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2085 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> " 2086 SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " " 2087 SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL); 2088