xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 3998e2a07220844d3f3c17f76a781ced3efe0de0)
1 /*-
2  *   BSD LICENSE
3  *
4  * Copyright (c) 2016-2017 Solarflare Communications Inc.
5  * All rights reserved.
6  *
7  * This software was jointly developed between OKTET Labs (under contract
8  * for Solarflare) and Solarflare Communications, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright notice,
14  *    this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright notice,
16  *    this list of conditions and the following disclaimer in the documentation
17  *    and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <rte_dev.h>
33 #include <rte_ethdev.h>
34 #include <rte_ethdev_pci.h>
35 #include <rte_pci.h>
36 #include <rte_bus_pci.h>
37 #include <rte_errno.h>
38 
39 #include "efx.h"
40 
41 #include "sfc.h"
42 #include "sfc_debug.h"
43 #include "sfc_log.h"
44 #include "sfc_kvargs.h"
45 #include "sfc_ev.h"
46 #include "sfc_rx.h"
47 #include "sfc_tx.h"
48 #include "sfc_flow.h"
49 #include "sfc_dp.h"
50 #include "sfc_dp_rx.h"
51 
52 static struct sfc_dp_list sfc_dp_head =
53 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
54 
55 static int
56 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
57 {
58 	struct sfc_adapter *sa = dev->data->dev_private;
59 	efx_nic_fw_info_t enfi;
60 	int ret;
61 	int rc;
62 
63 	/*
64 	 * Return value of the callback is likely supposed to be
65 	 * equal to or greater than 0, nevertheless, if an error
66 	 * occurs, it will be desirable to pass it to the caller
67 	 */
68 	if ((fw_version == NULL) || (fw_size == 0))
69 		return -EINVAL;
70 
71 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
72 	if (rc != 0)
73 		return -rc;
74 
75 	ret = snprintf(fw_version, fw_size,
76 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
77 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
78 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
79 	if (ret < 0)
80 		return ret;
81 
82 	if (enfi.enfi_dpcpu_fw_ids_valid) {
83 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
84 		int ret_extra;
85 
86 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
87 				     fw_size - dpcpu_fw_ids_offset,
88 				     " rx%" PRIx16 " tx%" PRIx16,
89 				     enfi.enfi_rx_dpcpu_fw_id,
90 				     enfi.enfi_tx_dpcpu_fw_id);
91 		if (ret_extra < 0)
92 			return ret_extra;
93 
94 		ret += ret_extra;
95 	}
96 
97 	if (fw_size < (size_t)(++ret))
98 		return ret;
99 	else
100 		return 0;
101 }
102 
103 static void
104 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
105 {
106 	struct sfc_adapter *sa = dev->data->dev_private;
107 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
108 
109 	sfc_log_init(sa, "entry");
110 
111 	dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
112 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
113 
114 	/* Autonegotiation may be disabled */
115 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
116 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
117 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
118 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
119 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
120 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
121 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
122 
123 	dev_info->max_rx_queues = sa->rxq_max;
124 	dev_info->max_tx_queues = sa->txq_max;
125 
126 	/* By default packets are dropped if no descriptors are available */
127 	dev_info->default_rxconf.rx_drop_en = 1;
128 
129 	dev_info->rx_offload_capa =
130 		DEV_RX_OFFLOAD_IPV4_CKSUM |
131 		DEV_RX_OFFLOAD_UDP_CKSUM |
132 		DEV_RX_OFFLOAD_TCP_CKSUM;
133 
134 	dev_info->tx_offload_capa =
135 		DEV_TX_OFFLOAD_IPV4_CKSUM |
136 		DEV_TX_OFFLOAD_UDP_CKSUM |
137 		DEV_TX_OFFLOAD_TCP_CKSUM;
138 
139 	dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP;
140 	if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) ||
141 	    !encp->enc_hw_tx_insert_vlan_enabled)
142 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL;
143 	else
144 		dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT;
145 
146 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG)
147 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS;
148 
149 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL)
150 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP;
151 
152 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT)
153 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT;
154 
155 #if EFSYS_OPT_RX_SCALE
156 	if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) {
157 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
158 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
159 		dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS;
160 	}
161 #endif
162 
163 	if (sa->tso)
164 		dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO;
165 
166 	dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
167 	dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
168 	/* The RXQ hardware requires that the descriptor count is a power
169 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
170 	 */
171 	dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
172 
173 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
174 	dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
175 	/*
176 	 * The TXQ hardware requires that the descriptor count is a power
177 	 * of 2, but tx_desc_lim cannot properly describe that constraint
178 	 */
179 	dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
180 }
181 
182 static const uint32_t *
183 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
184 {
185 	struct sfc_adapter *sa = dev->data->dev_private;
186 
187 	return sa->dp_rx->supported_ptypes_get();
188 }
189 
190 static int
191 sfc_dev_configure(struct rte_eth_dev *dev)
192 {
193 	struct rte_eth_dev_data *dev_data = dev->data;
194 	struct sfc_adapter *sa = dev_data->dev_private;
195 	int rc;
196 
197 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
198 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
199 
200 	sfc_adapter_lock(sa);
201 	switch (sa->state) {
202 	case SFC_ADAPTER_CONFIGURED:
203 		/* FALLTHROUGH */
204 	case SFC_ADAPTER_INITIALIZED:
205 		rc = sfc_configure(sa);
206 		break;
207 	default:
208 		sfc_err(sa, "unexpected adapter state %u to configure",
209 			sa->state);
210 		rc = EINVAL;
211 		break;
212 	}
213 	sfc_adapter_unlock(sa);
214 
215 	sfc_log_init(sa, "done %d", rc);
216 	SFC_ASSERT(rc >= 0);
217 	return -rc;
218 }
219 
220 static int
221 sfc_dev_start(struct rte_eth_dev *dev)
222 {
223 	struct sfc_adapter *sa = dev->data->dev_private;
224 	int rc;
225 
226 	sfc_log_init(sa, "entry");
227 
228 	sfc_adapter_lock(sa);
229 	rc = sfc_start(sa);
230 	sfc_adapter_unlock(sa);
231 
232 	sfc_log_init(sa, "done %d", rc);
233 	SFC_ASSERT(rc >= 0);
234 	return -rc;
235 }
236 
237 static int
238 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
239 {
240 	struct sfc_adapter *sa = dev->data->dev_private;
241 	struct rte_eth_link *dev_link = &dev->data->dev_link;
242 	struct rte_eth_link old_link;
243 	struct rte_eth_link current_link;
244 
245 	sfc_log_init(sa, "entry");
246 
247 retry:
248 	EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t));
249 	*(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link);
250 
251 	if (sa->state != SFC_ADAPTER_STARTED) {
252 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
253 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
254 					 *(uint64_t *)&old_link,
255 					 *(uint64_t *)&current_link))
256 			goto retry;
257 	} else if (wait_to_complete) {
258 		efx_link_mode_t link_mode;
259 
260 		if (efx_port_poll(sa->nic, &link_mode) != 0)
261 			link_mode = EFX_LINK_UNKNOWN;
262 		sfc_port_link_mode_to_info(link_mode, &current_link);
263 
264 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
265 					 *(uint64_t *)&old_link,
266 					 *(uint64_t *)&current_link))
267 			goto retry;
268 	} else {
269 		sfc_ev_mgmt_qpoll(sa);
270 		*(int64_t *)&current_link =
271 			rte_atomic64_read((rte_atomic64_t *)dev_link);
272 	}
273 
274 	if (old_link.link_status != current_link.link_status)
275 		sfc_info(sa, "Link status is %s",
276 			 current_link.link_status ? "UP" : "DOWN");
277 
278 	return old_link.link_status == current_link.link_status ? 0 : -1;
279 }
280 
281 static void
282 sfc_dev_stop(struct rte_eth_dev *dev)
283 {
284 	struct sfc_adapter *sa = dev->data->dev_private;
285 
286 	sfc_log_init(sa, "entry");
287 
288 	sfc_adapter_lock(sa);
289 	sfc_stop(sa);
290 	sfc_adapter_unlock(sa);
291 
292 	sfc_log_init(sa, "done");
293 }
294 
295 static int
296 sfc_dev_set_link_up(struct rte_eth_dev *dev)
297 {
298 	struct sfc_adapter *sa = dev->data->dev_private;
299 	int rc;
300 
301 	sfc_log_init(sa, "entry");
302 
303 	sfc_adapter_lock(sa);
304 	rc = sfc_start(sa);
305 	sfc_adapter_unlock(sa);
306 
307 	SFC_ASSERT(rc >= 0);
308 	return -rc;
309 }
310 
311 static int
312 sfc_dev_set_link_down(struct rte_eth_dev *dev)
313 {
314 	struct sfc_adapter *sa = dev->data->dev_private;
315 
316 	sfc_log_init(sa, "entry");
317 
318 	sfc_adapter_lock(sa);
319 	sfc_stop(sa);
320 	sfc_adapter_unlock(sa);
321 
322 	return 0;
323 }
324 
325 static void
326 sfc_dev_close(struct rte_eth_dev *dev)
327 {
328 	struct sfc_adapter *sa = dev->data->dev_private;
329 
330 	sfc_log_init(sa, "entry");
331 
332 	sfc_adapter_lock(sa);
333 	switch (sa->state) {
334 	case SFC_ADAPTER_STARTED:
335 		sfc_stop(sa);
336 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
337 		/* FALLTHROUGH */
338 	case SFC_ADAPTER_CONFIGURED:
339 		sfc_close(sa);
340 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
341 		/* FALLTHROUGH */
342 	case SFC_ADAPTER_INITIALIZED:
343 		break;
344 	default:
345 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
346 		break;
347 	}
348 	sfc_adapter_unlock(sa);
349 
350 	sfc_log_init(sa, "done");
351 }
352 
353 static void
354 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
355 		   boolean_t enabled)
356 {
357 	struct sfc_port *port;
358 	boolean_t *toggle;
359 	struct sfc_adapter *sa = dev->data->dev_private;
360 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
361 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
362 
363 	sfc_adapter_lock(sa);
364 
365 	port = &sa->port;
366 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
367 
368 	if (*toggle != enabled) {
369 		*toggle = enabled;
370 
371 		if (port->isolated) {
372 			sfc_warn(sa, "isolated mode is active on the port");
373 			sfc_warn(sa, "the change is to be applied on the next "
374 				     "start provided that isolated mode is "
375 				     "disabled prior the next start");
376 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
377 			   (sfc_set_rx_mode(sa) != 0)) {
378 			*toggle = !(enabled);
379 			sfc_warn(sa, "Failed to %s %s mode",
380 				 ((enabled) ? "enable" : "disable"), desc);
381 		}
382 	}
383 
384 	sfc_adapter_unlock(sa);
385 }
386 
387 static void
388 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
389 {
390 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
391 }
392 
393 static void
394 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
395 {
396 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
397 }
398 
399 static void
400 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
401 {
402 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
403 }
404 
405 static void
406 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
407 {
408 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
409 }
410 
411 static int
412 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
413 		   uint16_t nb_rx_desc, unsigned int socket_id,
414 		   const struct rte_eth_rxconf *rx_conf,
415 		   struct rte_mempool *mb_pool)
416 {
417 	struct sfc_adapter *sa = dev->data->dev_private;
418 	int rc;
419 
420 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
421 		     rx_queue_id, nb_rx_desc, socket_id);
422 
423 	sfc_adapter_lock(sa);
424 
425 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
426 			  rx_conf, mb_pool);
427 	if (rc != 0)
428 		goto fail_rx_qinit;
429 
430 	dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp;
431 
432 	sfc_adapter_unlock(sa);
433 
434 	return 0;
435 
436 fail_rx_qinit:
437 	sfc_adapter_unlock(sa);
438 	SFC_ASSERT(rc > 0);
439 	return -rc;
440 }
441 
442 static void
443 sfc_rx_queue_release(void *queue)
444 {
445 	struct sfc_dp_rxq *dp_rxq = queue;
446 	struct sfc_rxq *rxq;
447 	struct sfc_adapter *sa;
448 	unsigned int sw_index;
449 
450 	if (dp_rxq == NULL)
451 		return;
452 
453 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
454 	sa = rxq->evq->sa;
455 	sfc_adapter_lock(sa);
456 
457 	sw_index = sfc_rxq_sw_index(rxq);
458 
459 	sfc_log_init(sa, "RxQ=%u", sw_index);
460 
461 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
462 
463 	sfc_rx_qfini(sa, sw_index);
464 
465 	sfc_adapter_unlock(sa);
466 }
467 
468 static int
469 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
470 		   uint16_t nb_tx_desc, unsigned int socket_id,
471 		   const struct rte_eth_txconf *tx_conf)
472 {
473 	struct sfc_adapter *sa = dev->data->dev_private;
474 	int rc;
475 
476 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
477 		     tx_queue_id, nb_tx_desc, socket_id);
478 
479 	sfc_adapter_lock(sa);
480 
481 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
482 	if (rc != 0)
483 		goto fail_tx_qinit;
484 
485 	dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp;
486 
487 	sfc_adapter_unlock(sa);
488 	return 0;
489 
490 fail_tx_qinit:
491 	sfc_adapter_unlock(sa);
492 	SFC_ASSERT(rc > 0);
493 	return -rc;
494 }
495 
496 static void
497 sfc_tx_queue_release(void *queue)
498 {
499 	struct sfc_dp_txq *dp_txq = queue;
500 	struct sfc_txq *txq;
501 	unsigned int sw_index;
502 	struct sfc_adapter *sa;
503 
504 	if (dp_txq == NULL)
505 		return;
506 
507 	txq = sfc_txq_by_dp_txq(dp_txq);
508 	sw_index = sfc_txq_sw_index(txq);
509 
510 	SFC_ASSERT(txq->evq != NULL);
511 	sa = txq->evq->sa;
512 
513 	sfc_log_init(sa, "TxQ = %u", sw_index);
514 
515 	sfc_adapter_lock(sa);
516 
517 	SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues);
518 	sa->eth_dev->data->tx_queues[sw_index] = NULL;
519 
520 	sfc_tx_qfini(sa, sw_index);
521 
522 	sfc_adapter_unlock(sa);
523 }
524 
525 static int
526 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
527 {
528 	struct sfc_adapter *sa = dev->data->dev_private;
529 	struct sfc_port *port = &sa->port;
530 	uint64_t *mac_stats;
531 	int ret;
532 
533 	rte_spinlock_lock(&port->mac_stats_lock);
534 
535 	ret = sfc_port_update_mac_stats(sa);
536 	if (ret != 0)
537 		goto unlock;
538 
539 	mac_stats = port->mac_stats_buf;
540 
541 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
542 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
543 		stats->ipackets =
544 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
545 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
546 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
547 		stats->opackets =
548 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
549 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
550 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
551 		stats->ibytes =
552 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
553 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
554 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
555 		stats->obytes =
556 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
557 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
558 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
559 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW];
560 		stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
561 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
562 	} else {
563 		stats->ipackets = mac_stats[EFX_MAC_RX_PKTS];
564 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
565 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
566 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
567 		/*
568 		 * Take into account stats which are whenever supported
569 		 * on EF10. If some stat is not supported by current
570 		 * firmware variant or HW revision, it is guaranteed
571 		 * to be zero in mac_stats.
572 		 */
573 		stats->imissed =
574 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
575 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
576 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
577 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
578 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
579 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
580 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
581 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
582 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
583 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
584 		stats->ierrors =
585 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
586 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
587 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
588 		/* no oerrors counters supported on EF10 */
589 	}
590 
591 unlock:
592 	rte_spinlock_unlock(&port->mac_stats_lock);
593 	SFC_ASSERT(ret >= 0);
594 	return -ret;
595 }
596 
597 static void
598 sfc_stats_reset(struct rte_eth_dev *dev)
599 {
600 	struct sfc_adapter *sa = dev->data->dev_private;
601 	struct sfc_port *port = &sa->port;
602 	int rc;
603 
604 	if (sa->state != SFC_ADAPTER_STARTED) {
605 		/*
606 		 * The operation cannot be done if port is not started; it
607 		 * will be scheduled to be done during the next port start
608 		 */
609 		port->mac_stats_reset_pending = B_TRUE;
610 		return;
611 	}
612 
613 	rc = sfc_port_reset_mac_stats(sa);
614 	if (rc != 0)
615 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
616 }
617 
618 static int
619 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
620 	       unsigned int xstats_count)
621 {
622 	struct sfc_adapter *sa = dev->data->dev_private;
623 	struct sfc_port *port = &sa->port;
624 	uint64_t *mac_stats;
625 	int rc;
626 	unsigned int i;
627 	int nstats = 0;
628 
629 	rte_spinlock_lock(&port->mac_stats_lock);
630 
631 	rc = sfc_port_update_mac_stats(sa);
632 	if (rc != 0) {
633 		SFC_ASSERT(rc > 0);
634 		nstats = -rc;
635 		goto unlock;
636 	}
637 
638 	mac_stats = port->mac_stats_buf;
639 
640 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
641 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
642 			if (xstats != NULL && nstats < (int)xstats_count) {
643 				xstats[nstats].id = nstats;
644 				xstats[nstats].value = mac_stats[i];
645 			}
646 			nstats++;
647 		}
648 	}
649 
650 unlock:
651 	rte_spinlock_unlock(&port->mac_stats_lock);
652 
653 	return nstats;
654 }
655 
656 static int
657 sfc_xstats_get_names(struct rte_eth_dev *dev,
658 		     struct rte_eth_xstat_name *xstats_names,
659 		     unsigned int xstats_count)
660 {
661 	struct sfc_adapter *sa = dev->data->dev_private;
662 	struct sfc_port *port = &sa->port;
663 	unsigned int i;
664 	unsigned int nstats = 0;
665 
666 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
667 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
668 			if (xstats_names != NULL && nstats < xstats_count)
669 				strncpy(xstats_names[nstats].name,
670 					efx_mac_stat_name(sa->nic, i),
671 					sizeof(xstats_names[0].name));
672 			nstats++;
673 		}
674 	}
675 
676 	return nstats;
677 }
678 
679 static int
680 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
681 		     uint64_t *values, unsigned int n)
682 {
683 	struct sfc_adapter *sa = dev->data->dev_private;
684 	struct sfc_port *port = &sa->port;
685 	uint64_t *mac_stats;
686 	unsigned int nb_supported = 0;
687 	unsigned int nb_written = 0;
688 	unsigned int i;
689 	int ret;
690 	int rc;
691 
692 	if (unlikely(values == NULL) ||
693 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
694 		return port->mac_stats_nb_supported;
695 
696 	rte_spinlock_lock(&port->mac_stats_lock);
697 
698 	rc = sfc_port_update_mac_stats(sa);
699 	if (rc != 0) {
700 		SFC_ASSERT(rc > 0);
701 		ret = -rc;
702 		goto unlock;
703 	}
704 
705 	mac_stats = port->mac_stats_buf;
706 
707 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
708 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
709 			continue;
710 
711 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
712 			values[nb_written++] = mac_stats[i];
713 
714 		++nb_supported;
715 	}
716 
717 	ret = nb_written;
718 
719 unlock:
720 	rte_spinlock_unlock(&port->mac_stats_lock);
721 
722 	return ret;
723 }
724 
725 static int
726 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
727 			   struct rte_eth_xstat_name *xstats_names,
728 			   const uint64_t *ids, unsigned int size)
729 {
730 	struct sfc_adapter *sa = dev->data->dev_private;
731 	struct sfc_port *port = &sa->port;
732 	unsigned int nb_supported = 0;
733 	unsigned int nb_written = 0;
734 	unsigned int i;
735 
736 	if (unlikely(xstats_names == NULL) ||
737 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
738 		return port->mac_stats_nb_supported;
739 
740 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
741 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
742 			continue;
743 
744 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
745 			char *name = xstats_names[nb_written++].name;
746 
747 			strncpy(name, efx_mac_stat_name(sa->nic, i),
748 				sizeof(xstats_names[0].name));
749 			name[sizeof(xstats_names[0].name) - 1] = '\0';
750 		}
751 
752 		++nb_supported;
753 	}
754 
755 	return nb_written;
756 }
757 
758 static int
759 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
760 {
761 	struct sfc_adapter *sa = dev->data->dev_private;
762 	unsigned int wanted_fc, link_fc;
763 
764 	memset(fc_conf, 0, sizeof(*fc_conf));
765 
766 	sfc_adapter_lock(sa);
767 
768 	if (sa->state == SFC_ADAPTER_STARTED)
769 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
770 	else
771 		link_fc = sa->port.flow_ctrl;
772 
773 	switch (link_fc) {
774 	case 0:
775 		fc_conf->mode = RTE_FC_NONE;
776 		break;
777 	case EFX_FCNTL_RESPOND:
778 		fc_conf->mode = RTE_FC_RX_PAUSE;
779 		break;
780 	case EFX_FCNTL_GENERATE:
781 		fc_conf->mode = RTE_FC_TX_PAUSE;
782 		break;
783 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
784 		fc_conf->mode = RTE_FC_FULL;
785 		break;
786 	default:
787 		sfc_err(sa, "%s: unexpected flow control value %#x",
788 			__func__, link_fc);
789 	}
790 
791 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
792 
793 	sfc_adapter_unlock(sa);
794 
795 	return 0;
796 }
797 
798 static int
799 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
800 {
801 	struct sfc_adapter *sa = dev->data->dev_private;
802 	struct sfc_port *port = &sa->port;
803 	unsigned int fcntl;
804 	int rc;
805 
806 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
807 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
808 	    fc_conf->mac_ctrl_frame_fwd != 0) {
809 		sfc_err(sa, "unsupported flow control settings specified");
810 		rc = EINVAL;
811 		goto fail_inval;
812 	}
813 
814 	switch (fc_conf->mode) {
815 	case RTE_FC_NONE:
816 		fcntl = 0;
817 		break;
818 	case RTE_FC_RX_PAUSE:
819 		fcntl = EFX_FCNTL_RESPOND;
820 		break;
821 	case RTE_FC_TX_PAUSE:
822 		fcntl = EFX_FCNTL_GENERATE;
823 		break;
824 	case RTE_FC_FULL:
825 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
826 		break;
827 	default:
828 		rc = EINVAL;
829 		goto fail_inval;
830 	}
831 
832 	sfc_adapter_lock(sa);
833 
834 	if (sa->state == SFC_ADAPTER_STARTED) {
835 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
836 		if (rc != 0)
837 			goto fail_mac_fcntl_set;
838 	}
839 
840 	port->flow_ctrl = fcntl;
841 	port->flow_ctrl_autoneg = fc_conf->autoneg;
842 
843 	sfc_adapter_unlock(sa);
844 
845 	return 0;
846 
847 fail_mac_fcntl_set:
848 	sfc_adapter_unlock(sa);
849 fail_inval:
850 	SFC_ASSERT(rc > 0);
851 	return -rc;
852 }
853 
854 static int
855 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
856 {
857 	struct sfc_adapter *sa = dev->data->dev_private;
858 	size_t pdu = EFX_MAC_PDU(mtu);
859 	size_t old_pdu;
860 	int rc;
861 
862 	sfc_log_init(sa, "mtu=%u", mtu);
863 
864 	rc = EINVAL;
865 	if (pdu < EFX_MAC_PDU_MIN) {
866 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
867 			(unsigned int)mtu, (unsigned int)pdu,
868 			EFX_MAC_PDU_MIN);
869 		goto fail_inval;
870 	}
871 	if (pdu > EFX_MAC_PDU_MAX) {
872 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
873 			(unsigned int)mtu, (unsigned int)pdu,
874 			EFX_MAC_PDU_MAX);
875 		goto fail_inval;
876 	}
877 
878 	sfc_adapter_lock(sa);
879 
880 	if (pdu != sa->port.pdu) {
881 		if (sa->state == SFC_ADAPTER_STARTED) {
882 			sfc_stop(sa);
883 
884 			old_pdu = sa->port.pdu;
885 			sa->port.pdu = pdu;
886 			rc = sfc_start(sa);
887 			if (rc != 0)
888 				goto fail_start;
889 		} else {
890 			sa->port.pdu = pdu;
891 		}
892 	}
893 
894 	/*
895 	 * The driver does not use it, but other PMDs update jumbo_frame
896 	 * flag and max_rx_pkt_len when MTU is set.
897 	 */
898 	dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN);
899 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
900 
901 	sfc_adapter_unlock(sa);
902 
903 	sfc_log_init(sa, "done");
904 	return 0;
905 
906 fail_start:
907 	sa->port.pdu = old_pdu;
908 	if (sfc_start(sa) != 0)
909 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
910 			"PDU max size - port is stopped",
911 			(unsigned int)pdu, (unsigned int)old_pdu);
912 	sfc_adapter_unlock(sa);
913 
914 fail_inval:
915 	sfc_log_init(sa, "failed %d", rc);
916 	SFC_ASSERT(rc > 0);
917 	return -rc;
918 }
919 static void
920 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
921 {
922 	struct sfc_adapter *sa = dev->data->dev_private;
923 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
924 	struct sfc_port *port = &sa->port;
925 	int rc;
926 
927 	sfc_adapter_lock(sa);
928 
929 	if (port->isolated) {
930 		sfc_err(sa, "isolated mode is active on the port");
931 		sfc_err(sa, "will not set MAC address");
932 		goto unlock;
933 	}
934 
935 	if (sa->state != SFC_ADAPTER_STARTED) {
936 		sfc_info(sa, "the port is not started");
937 		sfc_info(sa, "the new MAC address will be set on port start");
938 
939 		goto unlock;
940 	}
941 
942 	if (encp->enc_allow_set_mac_with_installed_filters) {
943 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
944 		if (rc != 0) {
945 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
946 			goto unlock;
947 		}
948 
949 		/*
950 		 * Changing the MAC address by means of MCDI request
951 		 * has no effect on received traffic, therefore
952 		 * we also need to update unicast filters
953 		 */
954 		rc = sfc_set_rx_mode(sa);
955 		if (rc != 0)
956 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
957 	} else {
958 		sfc_warn(sa, "cannot set MAC address with filters installed");
959 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
960 		sfc_warn(sa, "(some traffic may be dropped)");
961 
962 		/*
963 		 * Since setting MAC address with filters installed is not
964 		 * allowed on the adapter, one needs to simply restart adapter
965 		 * so that the new MAC address will be taken from an outer
966 		 * storage and set flawlessly by means of sfc_start() call
967 		 */
968 		sfc_stop(sa);
969 		rc = sfc_start(sa);
970 		if (rc != 0)
971 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
972 	}
973 
974 unlock:
975 	sfc_adapter_unlock(sa);
976 }
977 
978 
979 static int
980 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
981 		     uint32_t nb_mc_addr)
982 {
983 	struct sfc_adapter *sa = dev->data->dev_private;
984 	struct sfc_port *port = &sa->port;
985 	uint8_t *mc_addrs = port->mcast_addrs;
986 	int rc;
987 	unsigned int i;
988 
989 	if (port->isolated) {
990 		sfc_err(sa, "isolated mode is active on the port");
991 		sfc_err(sa, "will not set multicast address list");
992 		return -ENOTSUP;
993 	}
994 
995 	if (mc_addrs == NULL)
996 		return -ENOBUFS;
997 
998 	if (nb_mc_addr > port->max_mcast_addrs) {
999 		sfc_err(sa, "too many multicast addresses: %u > %u",
1000 			 nb_mc_addr, port->max_mcast_addrs);
1001 		return -EINVAL;
1002 	}
1003 
1004 	for (i = 0; i < nb_mc_addr; ++i) {
1005 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1006 				 EFX_MAC_ADDR_LEN);
1007 		mc_addrs += EFX_MAC_ADDR_LEN;
1008 	}
1009 
1010 	port->nb_mcast_addrs = nb_mc_addr;
1011 
1012 	if (sa->state != SFC_ADAPTER_STARTED)
1013 		return 0;
1014 
1015 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1016 					port->nb_mcast_addrs);
1017 	if (rc != 0)
1018 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1019 
1020 	SFC_ASSERT(rc > 0);
1021 	return -rc;
1022 }
1023 
1024 /*
1025  * The function is used by the secondary process as well. It must not
1026  * use any process-local pointers from the adapter data.
1027  */
1028 static void
1029 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1030 		      struct rte_eth_rxq_info *qinfo)
1031 {
1032 	struct sfc_adapter *sa = dev->data->dev_private;
1033 	struct sfc_rxq_info *rxq_info;
1034 	struct sfc_rxq *rxq;
1035 
1036 	sfc_adapter_lock(sa);
1037 
1038 	SFC_ASSERT(rx_queue_id < sa->rxq_count);
1039 
1040 	rxq_info = &sa->rxq_info[rx_queue_id];
1041 	rxq = rxq_info->rxq;
1042 	SFC_ASSERT(rxq != NULL);
1043 
1044 	qinfo->mp = rxq->refill_mb_pool;
1045 	qinfo->conf.rx_free_thresh = rxq->refill_threshold;
1046 	qinfo->conf.rx_drop_en = 1;
1047 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1048 	qinfo->scattered_rx = (rxq_info->type == EFX_RXQ_TYPE_SCATTER);
1049 	qinfo->nb_desc = rxq_info->entries;
1050 
1051 	sfc_adapter_unlock(sa);
1052 }
1053 
1054 /*
1055  * The function is used by the secondary process as well. It must not
1056  * use any process-local pointers from the adapter data.
1057  */
1058 static void
1059 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1060 		      struct rte_eth_txq_info *qinfo)
1061 {
1062 	struct sfc_adapter *sa = dev->data->dev_private;
1063 	struct sfc_txq_info *txq_info;
1064 
1065 	sfc_adapter_lock(sa);
1066 
1067 	SFC_ASSERT(tx_queue_id < sa->txq_count);
1068 
1069 	txq_info = &sa->txq_info[tx_queue_id];
1070 	SFC_ASSERT(txq_info->txq != NULL);
1071 
1072 	memset(qinfo, 0, sizeof(*qinfo));
1073 
1074 	qinfo->conf.txq_flags = txq_info->txq->flags;
1075 	qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
1076 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1077 	qinfo->nb_desc = txq_info->entries;
1078 
1079 	sfc_adapter_unlock(sa);
1080 }
1081 
1082 static uint32_t
1083 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1084 {
1085 	struct sfc_adapter *sa = dev->data->dev_private;
1086 
1087 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1088 
1089 	return sfc_rx_qdesc_npending(sa, rx_queue_id);
1090 }
1091 
1092 static int
1093 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1094 {
1095 	struct sfc_dp_rxq *dp_rxq = queue;
1096 
1097 	return sfc_rx_qdesc_done(dp_rxq, offset);
1098 }
1099 
1100 static int
1101 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1102 {
1103 	struct sfc_dp_rxq *dp_rxq = queue;
1104 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
1105 
1106 	return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset);
1107 }
1108 
1109 static int
1110 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1111 {
1112 	struct sfc_dp_txq *dp_txq = queue;
1113 	struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
1114 
1115 	return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset);
1116 }
1117 
1118 static int
1119 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1120 {
1121 	struct sfc_adapter *sa = dev->data->dev_private;
1122 	int rc;
1123 
1124 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1125 
1126 	sfc_adapter_lock(sa);
1127 
1128 	rc = EINVAL;
1129 	if (sa->state != SFC_ADAPTER_STARTED)
1130 		goto fail_not_started;
1131 
1132 	rc = sfc_rx_qstart(sa, rx_queue_id);
1133 	if (rc != 0)
1134 		goto fail_rx_qstart;
1135 
1136 	sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1137 
1138 	sfc_adapter_unlock(sa);
1139 
1140 	return 0;
1141 
1142 fail_rx_qstart:
1143 fail_not_started:
1144 	sfc_adapter_unlock(sa);
1145 	SFC_ASSERT(rc > 0);
1146 	return -rc;
1147 }
1148 
1149 static int
1150 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1151 {
1152 	struct sfc_adapter *sa = dev->data->dev_private;
1153 
1154 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1155 
1156 	sfc_adapter_lock(sa);
1157 	sfc_rx_qstop(sa, rx_queue_id);
1158 
1159 	sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1160 
1161 	sfc_adapter_unlock(sa);
1162 
1163 	return 0;
1164 }
1165 
1166 static int
1167 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1168 {
1169 	struct sfc_adapter *sa = dev->data->dev_private;
1170 	int rc;
1171 
1172 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1173 
1174 	sfc_adapter_lock(sa);
1175 
1176 	rc = EINVAL;
1177 	if (sa->state != SFC_ADAPTER_STARTED)
1178 		goto fail_not_started;
1179 
1180 	rc = sfc_tx_qstart(sa, tx_queue_id);
1181 	if (rc != 0)
1182 		goto fail_tx_qstart;
1183 
1184 	sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
1185 
1186 	sfc_adapter_unlock(sa);
1187 	return 0;
1188 
1189 fail_tx_qstart:
1190 
1191 fail_not_started:
1192 	sfc_adapter_unlock(sa);
1193 	SFC_ASSERT(rc > 0);
1194 	return -rc;
1195 }
1196 
1197 static int
1198 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1199 {
1200 	struct sfc_adapter *sa = dev->data->dev_private;
1201 
1202 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1203 
1204 	sfc_adapter_lock(sa);
1205 
1206 	sfc_tx_qstop(sa, tx_queue_id);
1207 
1208 	sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1209 
1210 	sfc_adapter_unlock(sa);
1211 	return 0;
1212 }
1213 
1214 #if EFSYS_OPT_RX_SCALE
1215 static int
1216 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1217 			  struct rte_eth_rss_conf *rss_conf)
1218 {
1219 	struct sfc_adapter *sa = dev->data->dev_private;
1220 	struct sfc_port *port = &sa->port;
1221 
1222 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1223 		return -ENOTSUP;
1224 
1225 	if (sa->rss_channels == 0)
1226 		return -EINVAL;
1227 
1228 	sfc_adapter_lock(sa);
1229 
1230 	/*
1231 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1232 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1233 	 * flags which corresponds to the active EFX configuration stored
1234 	 * locally in 'sfc_adapter' and kept up-to-date
1235 	 */
1236 	rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types);
1237 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1238 	if (rss_conf->rss_key != NULL)
1239 		rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE);
1240 
1241 	sfc_adapter_unlock(sa);
1242 
1243 	return 0;
1244 }
1245 
1246 static int
1247 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1248 			struct rte_eth_rss_conf *rss_conf)
1249 {
1250 	struct sfc_adapter *sa = dev->data->dev_private;
1251 	struct sfc_port *port = &sa->port;
1252 	unsigned int efx_hash_types;
1253 	int rc = 0;
1254 
1255 	if (port->isolated)
1256 		return -ENOTSUP;
1257 
1258 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1259 		sfc_err(sa, "RSS is not available");
1260 		return -ENOTSUP;
1261 	}
1262 
1263 	if (sa->rss_channels == 0) {
1264 		sfc_err(sa, "RSS is not configured");
1265 		return -EINVAL;
1266 	}
1267 
1268 	if ((rss_conf->rss_key != NULL) &&
1269 	    (rss_conf->rss_key_len != sizeof(sa->rss_key))) {
1270 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1271 			sizeof(sa->rss_key));
1272 		return -EINVAL;
1273 	}
1274 
1275 	if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) {
1276 		sfc_err(sa, "unsupported hash functions requested");
1277 		return -EINVAL;
1278 	}
1279 
1280 	sfc_adapter_lock(sa);
1281 
1282 	efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf);
1283 
1284 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1285 				   EFX_RX_HASHALG_TOEPLITZ,
1286 				   efx_hash_types, B_TRUE);
1287 	if (rc != 0)
1288 		goto fail_scale_mode_set;
1289 
1290 	if (rss_conf->rss_key != NULL) {
1291 		if (sa->state == SFC_ADAPTER_STARTED) {
1292 			rc = efx_rx_scale_key_set(sa->nic,
1293 						  EFX_RSS_CONTEXT_DEFAULT,
1294 						  rss_conf->rss_key,
1295 						  sizeof(sa->rss_key));
1296 			if (rc != 0)
1297 				goto fail_scale_key_set;
1298 		}
1299 
1300 		rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key));
1301 	}
1302 
1303 	sa->rss_hash_types = efx_hash_types;
1304 
1305 	sfc_adapter_unlock(sa);
1306 
1307 	return 0;
1308 
1309 fail_scale_key_set:
1310 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1311 				  EFX_RX_HASHALG_TOEPLITZ,
1312 				  sa->rss_hash_types, B_TRUE) != 0)
1313 		sfc_err(sa, "failed to restore RSS mode");
1314 
1315 fail_scale_mode_set:
1316 	sfc_adapter_unlock(sa);
1317 	return -rc;
1318 }
1319 
1320 static int
1321 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1322 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1323 		       uint16_t reta_size)
1324 {
1325 	struct sfc_adapter *sa = dev->data->dev_private;
1326 	struct sfc_port *port = &sa->port;
1327 	int entry;
1328 
1329 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1330 		return -ENOTSUP;
1331 
1332 	if (sa->rss_channels == 0)
1333 		return -EINVAL;
1334 
1335 	if (reta_size != EFX_RSS_TBL_SIZE)
1336 		return -EINVAL;
1337 
1338 	sfc_adapter_lock(sa);
1339 
1340 	for (entry = 0; entry < reta_size; entry++) {
1341 		int grp = entry / RTE_RETA_GROUP_SIZE;
1342 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1343 
1344 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1345 			reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry];
1346 	}
1347 
1348 	sfc_adapter_unlock(sa);
1349 
1350 	return 0;
1351 }
1352 
1353 static int
1354 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1355 			struct rte_eth_rss_reta_entry64 *reta_conf,
1356 			uint16_t reta_size)
1357 {
1358 	struct sfc_adapter *sa = dev->data->dev_private;
1359 	struct sfc_port *port = &sa->port;
1360 	unsigned int *rss_tbl_new;
1361 	uint16_t entry;
1362 	int rc = 0;
1363 
1364 
1365 	if (port->isolated)
1366 		return -ENOTSUP;
1367 
1368 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1369 		sfc_err(sa, "RSS is not available");
1370 		return -ENOTSUP;
1371 	}
1372 
1373 	if (sa->rss_channels == 0) {
1374 		sfc_err(sa, "RSS is not configured");
1375 		return -EINVAL;
1376 	}
1377 
1378 	if (reta_size != EFX_RSS_TBL_SIZE) {
1379 		sfc_err(sa, "RETA size is wrong (should be %u)",
1380 			EFX_RSS_TBL_SIZE);
1381 		return -EINVAL;
1382 	}
1383 
1384 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0);
1385 	if (rss_tbl_new == NULL)
1386 		return -ENOMEM;
1387 
1388 	sfc_adapter_lock(sa);
1389 
1390 	rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl));
1391 
1392 	for (entry = 0; entry < reta_size; entry++) {
1393 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1394 		struct rte_eth_rss_reta_entry64 *grp;
1395 
1396 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1397 
1398 		if (grp->mask & (1ull << grp_idx)) {
1399 			if (grp->reta[grp_idx] >= sa->rss_channels) {
1400 				rc = EINVAL;
1401 				goto bad_reta_entry;
1402 			}
1403 			rss_tbl_new[entry] = grp->reta[grp_idx];
1404 		}
1405 	}
1406 
1407 	if (sa->state == SFC_ADAPTER_STARTED) {
1408 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1409 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1410 		if (rc != 0)
1411 			goto fail_scale_tbl_set;
1412 	}
1413 
1414 	rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl));
1415 
1416 fail_scale_tbl_set:
1417 bad_reta_entry:
1418 	sfc_adapter_unlock(sa);
1419 
1420 	rte_free(rss_tbl_new);
1421 
1422 	SFC_ASSERT(rc >= 0);
1423 	return -rc;
1424 }
1425 #endif
1426 
1427 static int
1428 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1429 		    enum rte_filter_op filter_op,
1430 		    void *arg)
1431 {
1432 	struct sfc_adapter *sa = dev->data->dev_private;
1433 	int rc = ENOTSUP;
1434 
1435 	sfc_log_init(sa, "entry");
1436 
1437 	switch (filter_type) {
1438 	case RTE_ETH_FILTER_NONE:
1439 		sfc_err(sa, "Global filters configuration not supported");
1440 		break;
1441 	case RTE_ETH_FILTER_MACVLAN:
1442 		sfc_err(sa, "MACVLAN filters not supported");
1443 		break;
1444 	case RTE_ETH_FILTER_ETHERTYPE:
1445 		sfc_err(sa, "EtherType filters not supported");
1446 		break;
1447 	case RTE_ETH_FILTER_FLEXIBLE:
1448 		sfc_err(sa, "Flexible filters not supported");
1449 		break;
1450 	case RTE_ETH_FILTER_SYN:
1451 		sfc_err(sa, "SYN filters not supported");
1452 		break;
1453 	case RTE_ETH_FILTER_NTUPLE:
1454 		sfc_err(sa, "NTUPLE filters not supported");
1455 		break;
1456 	case RTE_ETH_FILTER_TUNNEL:
1457 		sfc_err(sa, "Tunnel filters not supported");
1458 		break;
1459 	case RTE_ETH_FILTER_FDIR:
1460 		sfc_err(sa, "Flow Director filters not supported");
1461 		break;
1462 	case RTE_ETH_FILTER_HASH:
1463 		sfc_err(sa, "Hash filters not supported");
1464 		break;
1465 	case RTE_ETH_FILTER_GENERIC:
1466 		if (filter_op != RTE_ETH_FILTER_GET) {
1467 			rc = EINVAL;
1468 		} else {
1469 			*(const void **)arg = &sfc_flow_ops;
1470 			rc = 0;
1471 		}
1472 		break;
1473 	default:
1474 		sfc_err(sa, "Unknown filter type %u", filter_type);
1475 		break;
1476 	}
1477 
1478 	sfc_log_init(sa, "exit: %d", -rc);
1479 	SFC_ASSERT(rc >= 0);
1480 	return -rc;
1481 }
1482 
1483 static const struct eth_dev_ops sfc_eth_dev_ops = {
1484 	.dev_configure			= sfc_dev_configure,
1485 	.dev_start			= sfc_dev_start,
1486 	.dev_stop			= sfc_dev_stop,
1487 	.dev_set_link_up		= sfc_dev_set_link_up,
1488 	.dev_set_link_down		= sfc_dev_set_link_down,
1489 	.dev_close			= sfc_dev_close,
1490 	.promiscuous_enable		= sfc_dev_promisc_enable,
1491 	.promiscuous_disable		= sfc_dev_promisc_disable,
1492 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1493 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1494 	.link_update			= sfc_dev_link_update,
1495 	.stats_get			= sfc_stats_get,
1496 	.stats_reset			= sfc_stats_reset,
1497 	.xstats_get			= sfc_xstats_get,
1498 	.xstats_reset			= sfc_stats_reset,
1499 	.xstats_get_names		= sfc_xstats_get_names,
1500 	.dev_infos_get			= sfc_dev_infos_get,
1501 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1502 	.mtu_set			= sfc_dev_set_mtu,
1503 	.rx_queue_start			= sfc_rx_queue_start,
1504 	.rx_queue_stop			= sfc_rx_queue_stop,
1505 	.tx_queue_start			= sfc_tx_queue_start,
1506 	.tx_queue_stop			= sfc_tx_queue_stop,
1507 	.rx_queue_setup			= sfc_rx_queue_setup,
1508 	.rx_queue_release		= sfc_rx_queue_release,
1509 	.rx_queue_count			= sfc_rx_queue_count,
1510 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1511 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1512 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1513 	.tx_queue_setup			= sfc_tx_queue_setup,
1514 	.tx_queue_release		= sfc_tx_queue_release,
1515 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1516 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1517 	.mac_addr_set			= sfc_mac_addr_set,
1518 #if EFSYS_OPT_RX_SCALE
1519 	.reta_update			= sfc_dev_rss_reta_update,
1520 	.reta_query			= sfc_dev_rss_reta_query,
1521 	.rss_hash_update		= sfc_dev_rss_hash_update,
1522 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1523 #endif
1524 	.filter_ctrl			= sfc_dev_filter_ctrl,
1525 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1526 	.rxq_info_get			= sfc_rx_queue_info_get,
1527 	.txq_info_get			= sfc_tx_queue_info_get,
1528 	.fw_version_get			= sfc_fw_version_get,
1529 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1530 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1531 };
1532 
1533 /**
1534  * Duplicate a string in potentially shared memory required for
1535  * multi-process support.
1536  *
1537  * strdup() allocates from process-local heap/memory.
1538  */
1539 static char *
1540 sfc_strdup(const char *str)
1541 {
1542 	size_t size;
1543 	char *copy;
1544 
1545 	if (str == NULL)
1546 		return NULL;
1547 
1548 	size = strlen(str) + 1;
1549 	copy = rte_malloc(__func__, size, 0);
1550 	if (copy != NULL)
1551 		rte_memcpy(copy, str, size);
1552 
1553 	return copy;
1554 }
1555 
1556 static int
1557 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1558 {
1559 	struct sfc_adapter *sa = dev->data->dev_private;
1560 	unsigned int avail_caps = 0;
1561 	const char *rx_name = NULL;
1562 	const char *tx_name = NULL;
1563 	int rc;
1564 
1565 	switch (sa->family) {
1566 	case EFX_FAMILY_HUNTINGTON:
1567 	case EFX_FAMILY_MEDFORD:
1568 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1569 		break;
1570 	default:
1571 		break;
1572 	}
1573 
1574 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1575 				sfc_kvarg_string_handler, &rx_name);
1576 	if (rc != 0)
1577 		goto fail_kvarg_rx_datapath;
1578 
1579 	if (rx_name != NULL) {
1580 		sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1581 		if (sa->dp_rx == NULL) {
1582 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1583 			rc = ENOENT;
1584 			goto fail_dp_rx;
1585 		}
1586 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) {
1587 			sfc_err(sa,
1588 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1589 				rx_name);
1590 			rc = EINVAL;
1591 			goto fail_dp_rx_caps;
1592 		}
1593 	} else {
1594 		sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1595 		if (sa->dp_rx == NULL) {
1596 			sfc_err(sa, "Rx datapath by caps %#x not found",
1597 				avail_caps);
1598 			rc = ENOENT;
1599 			goto fail_dp_rx;
1600 		}
1601 	}
1602 
1603 	sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name);
1604 	if (sa->dp_rx_name == NULL) {
1605 		rc = ENOMEM;
1606 		goto fail_dp_rx_name;
1607 	}
1608 
1609 	sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name);
1610 
1611 	dev->rx_pkt_burst = sa->dp_rx->pkt_burst;
1612 
1613 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1614 				sfc_kvarg_string_handler, &tx_name);
1615 	if (rc != 0)
1616 		goto fail_kvarg_tx_datapath;
1617 
1618 	if (tx_name != NULL) {
1619 		sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1620 		if (sa->dp_tx == NULL) {
1621 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1622 			rc = ENOENT;
1623 			goto fail_dp_tx;
1624 		}
1625 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) {
1626 			sfc_err(sa,
1627 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1628 				tx_name);
1629 			rc = EINVAL;
1630 			goto fail_dp_tx_caps;
1631 		}
1632 	} else {
1633 		sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1634 		if (sa->dp_tx == NULL) {
1635 			sfc_err(sa, "Tx datapath by caps %#x not found",
1636 				avail_caps);
1637 			rc = ENOENT;
1638 			goto fail_dp_tx;
1639 		}
1640 	}
1641 
1642 	sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name);
1643 	if (sa->dp_tx_name == NULL) {
1644 		rc = ENOMEM;
1645 		goto fail_dp_tx_name;
1646 	}
1647 
1648 	sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name);
1649 
1650 	dev->tx_pkt_burst = sa->dp_tx->pkt_burst;
1651 
1652 	dev->dev_ops = &sfc_eth_dev_ops;
1653 
1654 	return 0;
1655 
1656 fail_dp_tx_name:
1657 fail_dp_tx_caps:
1658 	sa->dp_tx = NULL;
1659 
1660 fail_dp_tx:
1661 fail_kvarg_tx_datapath:
1662 	rte_free(sa->dp_rx_name);
1663 	sa->dp_rx_name = NULL;
1664 
1665 fail_dp_rx_name:
1666 fail_dp_rx_caps:
1667 	sa->dp_rx = NULL;
1668 
1669 fail_dp_rx:
1670 fail_kvarg_rx_datapath:
1671 	return rc;
1672 }
1673 
1674 static void
1675 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1676 {
1677 	struct sfc_adapter *sa = dev->data->dev_private;
1678 
1679 	dev->dev_ops = NULL;
1680 	dev->rx_pkt_burst = NULL;
1681 	dev->tx_pkt_burst = NULL;
1682 
1683 	rte_free(sa->dp_tx_name);
1684 	sa->dp_tx_name = NULL;
1685 	sa->dp_tx = NULL;
1686 
1687 	rte_free(sa->dp_rx_name);
1688 	sa->dp_rx_name = NULL;
1689 	sa->dp_rx = NULL;
1690 }
1691 
1692 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1693 	.rxq_info_get			= sfc_rx_queue_info_get,
1694 	.txq_info_get			= sfc_tx_queue_info_get,
1695 };
1696 
1697 static int
1698 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev)
1699 {
1700 	/*
1701 	 * Device private data has really many process-local pointers.
1702 	 * Below code should be extremely careful to use data located
1703 	 * in shared memory only.
1704 	 */
1705 	struct sfc_adapter *sa = dev->data->dev_private;
1706 	const struct sfc_dp_rx *dp_rx;
1707 	const struct sfc_dp_tx *dp_tx;
1708 	int rc;
1709 
1710 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
1711 	if (dp_rx == NULL) {
1712 		sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name);
1713 		rc = ENOENT;
1714 		goto fail_dp_rx;
1715 	}
1716 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1717 		sfc_err(sa, "%s Rx datapath does not support multi-process",
1718 			sa->dp_tx_name);
1719 		rc = EINVAL;
1720 		goto fail_dp_rx_multi_process;
1721 	}
1722 
1723 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
1724 	if (dp_tx == NULL) {
1725 		sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name);
1726 		rc = ENOENT;
1727 		goto fail_dp_tx;
1728 	}
1729 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1730 		sfc_err(sa, "%s Tx datapath does not support multi-process",
1731 			sa->dp_tx_name);
1732 		rc = EINVAL;
1733 		goto fail_dp_tx_multi_process;
1734 	}
1735 
1736 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1737 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1738 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
1739 
1740 	return 0;
1741 
1742 fail_dp_tx_multi_process:
1743 fail_dp_tx:
1744 fail_dp_rx_multi_process:
1745 fail_dp_rx:
1746 	return rc;
1747 }
1748 
1749 static void
1750 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
1751 {
1752 	dev->dev_ops = NULL;
1753 	dev->tx_pkt_burst = NULL;
1754 	dev->rx_pkt_burst = NULL;
1755 }
1756 
1757 static void
1758 sfc_register_dp(void)
1759 {
1760 	/* Register once */
1761 	if (TAILQ_EMPTY(&sfc_dp_head)) {
1762 		/* Prefer EF10 datapath */
1763 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
1764 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
1765 
1766 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
1767 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
1768 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
1769 	}
1770 }
1771 
1772 static int
1773 sfc_eth_dev_init(struct rte_eth_dev *dev)
1774 {
1775 	struct sfc_adapter *sa = dev->data->dev_private;
1776 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1777 	int rc;
1778 	const efx_nic_cfg_t *encp;
1779 	const struct ether_addr *from;
1780 
1781 	sfc_register_dp();
1782 
1783 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1784 		return -sfc_eth_dev_secondary_set_ops(dev);
1785 
1786 	/* Required for logging */
1787 	sa->pci_addr = pci_dev->addr;
1788 	sa->port_id = dev->data->port_id;
1789 
1790 	sa->eth_dev = dev;
1791 
1792 	/* Copy PCI device info to the dev->data */
1793 	rte_eth_copy_pci_info(dev, pci_dev);
1794 
1795 	rc = sfc_kvargs_parse(sa);
1796 	if (rc != 0)
1797 		goto fail_kvargs_parse;
1798 
1799 	rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT,
1800 				sfc_kvarg_bool_handler, &sa->debug_init);
1801 	if (rc != 0)
1802 		goto fail_kvarg_debug_init;
1803 
1804 	sfc_log_init(sa, "entry");
1805 
1806 	dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
1807 	if (dev->data->mac_addrs == NULL) {
1808 		rc = ENOMEM;
1809 		goto fail_mac_addrs;
1810 	}
1811 
1812 	sfc_adapter_lock_init(sa);
1813 	sfc_adapter_lock(sa);
1814 
1815 	sfc_log_init(sa, "probing");
1816 	rc = sfc_probe(sa);
1817 	if (rc != 0)
1818 		goto fail_probe;
1819 
1820 	sfc_log_init(sa, "set device ops");
1821 	rc = sfc_eth_dev_set_ops(dev);
1822 	if (rc != 0)
1823 		goto fail_set_ops;
1824 
1825 	sfc_log_init(sa, "attaching");
1826 	rc = sfc_attach(sa);
1827 	if (rc != 0)
1828 		goto fail_attach;
1829 
1830 	encp = efx_nic_cfg_get(sa->nic);
1831 
1832 	/*
1833 	 * The arguments are really reverse order in comparison to
1834 	 * Linux kernel. Copy from NIC config to Ethernet device data.
1835 	 */
1836 	from = (const struct ether_addr *)(encp->enc_mac_addr);
1837 	ether_addr_copy(from, &dev->data->mac_addrs[0]);
1838 
1839 	sfc_adapter_unlock(sa);
1840 
1841 	sfc_log_init(sa, "done");
1842 	return 0;
1843 
1844 fail_attach:
1845 	sfc_eth_dev_clear_ops(dev);
1846 
1847 fail_set_ops:
1848 	sfc_unprobe(sa);
1849 
1850 fail_probe:
1851 	sfc_adapter_unlock(sa);
1852 	sfc_adapter_lock_fini(sa);
1853 	rte_free(dev->data->mac_addrs);
1854 	dev->data->mac_addrs = NULL;
1855 
1856 fail_mac_addrs:
1857 fail_kvarg_debug_init:
1858 	sfc_kvargs_cleanup(sa);
1859 
1860 fail_kvargs_parse:
1861 	sfc_log_init(sa, "failed %d", rc);
1862 	SFC_ASSERT(rc > 0);
1863 	return -rc;
1864 }
1865 
1866 static int
1867 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
1868 {
1869 	struct sfc_adapter *sa;
1870 
1871 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1872 		sfc_eth_dev_secondary_clear_ops(dev);
1873 		return 0;
1874 	}
1875 
1876 	sa = dev->data->dev_private;
1877 	sfc_log_init(sa, "entry");
1878 
1879 	sfc_adapter_lock(sa);
1880 
1881 	sfc_eth_dev_clear_ops(dev);
1882 
1883 	sfc_detach(sa);
1884 	sfc_unprobe(sa);
1885 
1886 	rte_free(dev->data->mac_addrs);
1887 	dev->data->mac_addrs = NULL;
1888 
1889 	sfc_kvargs_cleanup(sa);
1890 
1891 	sfc_adapter_unlock(sa);
1892 	sfc_adapter_lock_fini(sa);
1893 
1894 	sfc_log_init(sa, "done");
1895 
1896 	/* Required for logging, so cleanup last */
1897 	sa->eth_dev = NULL;
1898 	return 0;
1899 }
1900 
1901 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
1902 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
1903 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
1904 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
1905 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
1906 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
1907 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
1908 	{ .vendor_id = 0 /* sentinel */ }
1909 };
1910 
1911 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1912 	struct rte_pci_device *pci_dev)
1913 {
1914 	return rte_eth_dev_pci_generic_probe(pci_dev,
1915 		sizeof(struct sfc_adapter), sfc_eth_dev_init);
1916 }
1917 
1918 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
1919 {
1920 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
1921 }
1922 
1923 static struct rte_pci_driver sfc_efx_pmd = {
1924 	.id_table = pci_id_sfc_efx_map,
1925 	.drv_flags =
1926 		RTE_PCI_DRV_INTR_LSC |
1927 		RTE_PCI_DRV_NEED_MAPPING,
1928 	.probe = sfc_eth_dev_pci_probe,
1929 	.remove = sfc_eth_dev_pci_remove,
1930 };
1931 
1932 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
1933 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
1934 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
1935 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
1936 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
1937 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
1938 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
1939 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> "
1940 	SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " "
1941 	SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL);
1942