1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) 2016-2017 Solarflare Communications Inc. 5 * All rights reserved. 6 * 7 * This software was jointly developed between OKTET Labs (under contract 8 * for Solarflare) and Solarflare Communications, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright notice, 14 * this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <rte_dev.h> 33 #include <rte_ethdev.h> 34 #include <rte_ethdev_pci.h> 35 #include <rte_pci.h> 36 #include <rte_bus_pci.h> 37 #include <rte_errno.h> 38 39 #include "efx.h" 40 41 #include "sfc.h" 42 #include "sfc_debug.h" 43 #include "sfc_log.h" 44 #include "sfc_kvargs.h" 45 #include "sfc_ev.h" 46 #include "sfc_rx.h" 47 #include "sfc_tx.h" 48 #include "sfc_flow.h" 49 #include "sfc_dp.h" 50 #include "sfc_dp_rx.h" 51 52 static struct sfc_dp_list sfc_dp_head = 53 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 54 55 static int 56 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 57 { 58 struct sfc_adapter *sa = dev->data->dev_private; 59 efx_nic_fw_info_t enfi; 60 int ret; 61 int rc; 62 63 /* 64 * Return value of the callback is likely supposed to be 65 * equal to or greater than 0, nevertheless, if an error 66 * occurs, it will be desirable to pass it to the caller 67 */ 68 if ((fw_version == NULL) || (fw_size == 0)) 69 return -EINVAL; 70 71 rc = efx_nic_get_fw_version(sa->nic, &enfi); 72 if (rc != 0) 73 return -rc; 74 75 ret = snprintf(fw_version, fw_size, 76 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 77 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 78 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 79 if (ret < 0) 80 return ret; 81 82 if (enfi.enfi_dpcpu_fw_ids_valid) { 83 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 84 int ret_extra; 85 86 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 87 fw_size - dpcpu_fw_ids_offset, 88 " rx%" PRIx16 " tx%" PRIx16, 89 enfi.enfi_rx_dpcpu_fw_id, 90 enfi.enfi_tx_dpcpu_fw_id); 91 if (ret_extra < 0) 92 return ret_extra; 93 94 ret += ret_extra; 95 } 96 97 if (fw_size < (size_t)(++ret)) 98 return ret; 99 else 100 return 0; 101 } 102 103 static void 104 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 105 { 106 struct sfc_adapter *sa = dev->data->dev_private; 107 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 108 109 sfc_log_init(sa, "entry"); 110 111 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev); 112 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 113 114 /* Autonegotiation may be disabled */ 115 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 116 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 117 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 118 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 119 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 120 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 121 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 122 123 dev_info->max_rx_queues = sa->rxq_max; 124 dev_info->max_tx_queues = sa->txq_max; 125 126 /* By default packets are dropped if no descriptors are available */ 127 dev_info->default_rxconf.rx_drop_en = 1; 128 129 dev_info->rx_offload_capa = 130 DEV_RX_OFFLOAD_IPV4_CKSUM | 131 DEV_RX_OFFLOAD_UDP_CKSUM | 132 DEV_RX_OFFLOAD_TCP_CKSUM; 133 134 dev_info->tx_offload_capa = 135 DEV_TX_OFFLOAD_IPV4_CKSUM | 136 DEV_TX_OFFLOAD_UDP_CKSUM | 137 DEV_TX_OFFLOAD_TCP_CKSUM; 138 139 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 140 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 141 !encp->enc_hw_tx_insert_vlan_enabled) 142 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 143 else 144 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT; 145 146 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 147 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 148 149 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) 150 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP; 151 152 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT) 153 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT; 154 155 #if EFSYS_OPT_RX_SCALE 156 if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) { 157 dev_info->reta_size = EFX_RSS_TBL_SIZE; 158 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 159 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 160 } 161 #endif 162 163 if (sa->tso) 164 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO; 165 166 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 167 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 168 /* The RXQ hardware requires that the descriptor count is a power 169 * of 2, but rx_desc_lim cannot properly describe that constraint. 170 */ 171 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 172 173 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 174 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 175 /* 176 * The TXQ hardware requires that the descriptor count is a power 177 * of 2, but tx_desc_lim cannot properly describe that constraint 178 */ 179 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 180 } 181 182 static const uint32_t * 183 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 184 { 185 struct sfc_adapter *sa = dev->data->dev_private; 186 187 return sa->dp_rx->supported_ptypes_get(); 188 } 189 190 static int 191 sfc_dev_configure(struct rte_eth_dev *dev) 192 { 193 struct rte_eth_dev_data *dev_data = dev->data; 194 struct sfc_adapter *sa = dev_data->dev_private; 195 int rc; 196 197 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 198 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 199 200 sfc_adapter_lock(sa); 201 switch (sa->state) { 202 case SFC_ADAPTER_CONFIGURED: 203 /* FALLTHROUGH */ 204 case SFC_ADAPTER_INITIALIZED: 205 rc = sfc_configure(sa); 206 break; 207 default: 208 sfc_err(sa, "unexpected adapter state %u to configure", 209 sa->state); 210 rc = EINVAL; 211 break; 212 } 213 sfc_adapter_unlock(sa); 214 215 sfc_log_init(sa, "done %d", rc); 216 SFC_ASSERT(rc >= 0); 217 return -rc; 218 } 219 220 static int 221 sfc_dev_start(struct rte_eth_dev *dev) 222 { 223 struct sfc_adapter *sa = dev->data->dev_private; 224 int rc; 225 226 sfc_log_init(sa, "entry"); 227 228 sfc_adapter_lock(sa); 229 rc = sfc_start(sa); 230 sfc_adapter_unlock(sa); 231 232 sfc_log_init(sa, "done %d", rc); 233 SFC_ASSERT(rc >= 0); 234 return -rc; 235 } 236 237 static int 238 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 239 { 240 struct sfc_adapter *sa = dev->data->dev_private; 241 struct rte_eth_link *dev_link = &dev->data->dev_link; 242 struct rte_eth_link old_link; 243 struct rte_eth_link current_link; 244 245 sfc_log_init(sa, "entry"); 246 247 retry: 248 EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t)); 249 *(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link); 250 251 if (sa->state != SFC_ADAPTER_STARTED) { 252 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 253 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 254 *(uint64_t *)&old_link, 255 *(uint64_t *)¤t_link)) 256 goto retry; 257 } else if (wait_to_complete) { 258 efx_link_mode_t link_mode; 259 260 if (efx_port_poll(sa->nic, &link_mode) != 0) 261 link_mode = EFX_LINK_UNKNOWN; 262 sfc_port_link_mode_to_info(link_mode, ¤t_link); 263 264 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 265 *(uint64_t *)&old_link, 266 *(uint64_t *)¤t_link)) 267 goto retry; 268 } else { 269 sfc_ev_mgmt_qpoll(sa); 270 *(int64_t *)¤t_link = 271 rte_atomic64_read((rte_atomic64_t *)dev_link); 272 } 273 274 if (old_link.link_status != current_link.link_status) 275 sfc_info(sa, "Link status is %s", 276 current_link.link_status ? "UP" : "DOWN"); 277 278 return old_link.link_status == current_link.link_status ? 0 : -1; 279 } 280 281 static void 282 sfc_dev_stop(struct rte_eth_dev *dev) 283 { 284 struct sfc_adapter *sa = dev->data->dev_private; 285 286 sfc_log_init(sa, "entry"); 287 288 sfc_adapter_lock(sa); 289 sfc_stop(sa); 290 sfc_adapter_unlock(sa); 291 292 sfc_log_init(sa, "done"); 293 } 294 295 static int 296 sfc_dev_set_link_up(struct rte_eth_dev *dev) 297 { 298 struct sfc_adapter *sa = dev->data->dev_private; 299 int rc; 300 301 sfc_log_init(sa, "entry"); 302 303 sfc_adapter_lock(sa); 304 rc = sfc_start(sa); 305 sfc_adapter_unlock(sa); 306 307 SFC_ASSERT(rc >= 0); 308 return -rc; 309 } 310 311 static int 312 sfc_dev_set_link_down(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = dev->data->dev_private; 315 316 sfc_log_init(sa, "entry"); 317 318 sfc_adapter_lock(sa); 319 sfc_stop(sa); 320 sfc_adapter_unlock(sa); 321 322 return 0; 323 } 324 325 static void 326 sfc_dev_close(struct rte_eth_dev *dev) 327 { 328 struct sfc_adapter *sa = dev->data->dev_private; 329 330 sfc_log_init(sa, "entry"); 331 332 sfc_adapter_lock(sa); 333 switch (sa->state) { 334 case SFC_ADAPTER_STARTED: 335 sfc_stop(sa); 336 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 337 /* FALLTHROUGH */ 338 case SFC_ADAPTER_CONFIGURED: 339 sfc_close(sa); 340 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 341 /* FALLTHROUGH */ 342 case SFC_ADAPTER_INITIALIZED: 343 break; 344 default: 345 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 346 break; 347 } 348 sfc_adapter_unlock(sa); 349 350 sfc_log_init(sa, "done"); 351 } 352 353 static void 354 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 355 boolean_t enabled) 356 { 357 struct sfc_port *port; 358 boolean_t *toggle; 359 struct sfc_adapter *sa = dev->data->dev_private; 360 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 361 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 362 363 sfc_adapter_lock(sa); 364 365 port = &sa->port; 366 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 367 368 if (*toggle != enabled) { 369 *toggle = enabled; 370 371 if (port->isolated) { 372 sfc_warn(sa, "isolated mode is active on the port"); 373 sfc_warn(sa, "the change is to be applied on the next " 374 "start provided that isolated mode is " 375 "disabled prior the next start"); 376 } else if ((sa->state == SFC_ADAPTER_STARTED) && 377 (sfc_set_rx_mode(sa) != 0)) { 378 *toggle = !(enabled); 379 sfc_warn(sa, "Failed to %s %s mode", 380 ((enabled) ? "enable" : "disable"), desc); 381 } 382 } 383 384 sfc_adapter_unlock(sa); 385 } 386 387 static void 388 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 389 { 390 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 391 } 392 393 static void 394 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 395 { 396 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 397 } 398 399 static void 400 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 401 { 402 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 403 } 404 405 static void 406 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 407 { 408 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 409 } 410 411 static int 412 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 413 uint16_t nb_rx_desc, unsigned int socket_id, 414 const struct rte_eth_rxconf *rx_conf, 415 struct rte_mempool *mb_pool) 416 { 417 struct sfc_adapter *sa = dev->data->dev_private; 418 int rc; 419 420 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 421 rx_queue_id, nb_rx_desc, socket_id); 422 423 sfc_adapter_lock(sa); 424 425 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 426 rx_conf, mb_pool); 427 if (rc != 0) 428 goto fail_rx_qinit; 429 430 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 431 432 sfc_adapter_unlock(sa); 433 434 return 0; 435 436 fail_rx_qinit: 437 sfc_adapter_unlock(sa); 438 SFC_ASSERT(rc > 0); 439 return -rc; 440 } 441 442 static void 443 sfc_rx_queue_release(void *queue) 444 { 445 struct sfc_dp_rxq *dp_rxq = queue; 446 struct sfc_rxq *rxq; 447 struct sfc_adapter *sa; 448 unsigned int sw_index; 449 450 if (dp_rxq == NULL) 451 return; 452 453 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 454 sa = rxq->evq->sa; 455 sfc_adapter_lock(sa); 456 457 sw_index = sfc_rxq_sw_index(rxq); 458 459 sfc_log_init(sa, "RxQ=%u", sw_index); 460 461 sa->eth_dev->data->rx_queues[sw_index] = NULL; 462 463 sfc_rx_qfini(sa, sw_index); 464 465 sfc_adapter_unlock(sa); 466 } 467 468 static int 469 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 470 uint16_t nb_tx_desc, unsigned int socket_id, 471 const struct rte_eth_txconf *tx_conf) 472 { 473 struct sfc_adapter *sa = dev->data->dev_private; 474 int rc; 475 476 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 477 tx_queue_id, nb_tx_desc, socket_id); 478 479 sfc_adapter_lock(sa); 480 481 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 482 if (rc != 0) 483 goto fail_tx_qinit; 484 485 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 486 487 sfc_adapter_unlock(sa); 488 return 0; 489 490 fail_tx_qinit: 491 sfc_adapter_unlock(sa); 492 SFC_ASSERT(rc > 0); 493 return -rc; 494 } 495 496 static void 497 sfc_tx_queue_release(void *queue) 498 { 499 struct sfc_dp_txq *dp_txq = queue; 500 struct sfc_txq *txq; 501 unsigned int sw_index; 502 struct sfc_adapter *sa; 503 504 if (dp_txq == NULL) 505 return; 506 507 txq = sfc_txq_by_dp_txq(dp_txq); 508 sw_index = sfc_txq_sw_index(txq); 509 510 SFC_ASSERT(txq->evq != NULL); 511 sa = txq->evq->sa; 512 513 sfc_log_init(sa, "TxQ = %u", sw_index); 514 515 sfc_adapter_lock(sa); 516 517 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 518 sa->eth_dev->data->tx_queues[sw_index] = NULL; 519 520 sfc_tx_qfini(sa, sw_index); 521 522 sfc_adapter_unlock(sa); 523 } 524 525 static int 526 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 527 { 528 struct sfc_adapter *sa = dev->data->dev_private; 529 struct sfc_port *port = &sa->port; 530 uint64_t *mac_stats; 531 int ret; 532 533 rte_spinlock_lock(&port->mac_stats_lock); 534 535 ret = sfc_port_update_mac_stats(sa); 536 if (ret != 0) 537 goto unlock; 538 539 mac_stats = port->mac_stats_buf; 540 541 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 542 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 543 stats->ipackets = 544 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 545 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 546 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 547 stats->opackets = 548 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 549 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 550 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 551 stats->ibytes = 552 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 553 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 554 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 555 stats->obytes = 556 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 557 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 558 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 559 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 560 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 561 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 562 } else { 563 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 564 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 565 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 566 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 567 /* 568 * Take into account stats which are whenever supported 569 * on EF10. If some stat is not supported by current 570 * firmware variant or HW revision, it is guaranteed 571 * to be zero in mac_stats. 572 */ 573 stats->imissed = 574 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 575 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 576 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 577 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 578 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 579 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 580 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 581 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 582 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 583 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 584 stats->ierrors = 585 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 586 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 587 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 588 /* no oerrors counters supported on EF10 */ 589 } 590 591 unlock: 592 rte_spinlock_unlock(&port->mac_stats_lock); 593 SFC_ASSERT(ret >= 0); 594 return -ret; 595 } 596 597 static void 598 sfc_stats_reset(struct rte_eth_dev *dev) 599 { 600 struct sfc_adapter *sa = dev->data->dev_private; 601 struct sfc_port *port = &sa->port; 602 int rc; 603 604 if (sa->state != SFC_ADAPTER_STARTED) { 605 /* 606 * The operation cannot be done if port is not started; it 607 * will be scheduled to be done during the next port start 608 */ 609 port->mac_stats_reset_pending = B_TRUE; 610 return; 611 } 612 613 rc = sfc_port_reset_mac_stats(sa); 614 if (rc != 0) 615 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 616 } 617 618 static int 619 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 620 unsigned int xstats_count) 621 { 622 struct sfc_adapter *sa = dev->data->dev_private; 623 struct sfc_port *port = &sa->port; 624 uint64_t *mac_stats; 625 int rc; 626 unsigned int i; 627 int nstats = 0; 628 629 rte_spinlock_lock(&port->mac_stats_lock); 630 631 rc = sfc_port_update_mac_stats(sa); 632 if (rc != 0) { 633 SFC_ASSERT(rc > 0); 634 nstats = -rc; 635 goto unlock; 636 } 637 638 mac_stats = port->mac_stats_buf; 639 640 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 641 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 642 if (xstats != NULL && nstats < (int)xstats_count) { 643 xstats[nstats].id = nstats; 644 xstats[nstats].value = mac_stats[i]; 645 } 646 nstats++; 647 } 648 } 649 650 unlock: 651 rte_spinlock_unlock(&port->mac_stats_lock); 652 653 return nstats; 654 } 655 656 static int 657 sfc_xstats_get_names(struct rte_eth_dev *dev, 658 struct rte_eth_xstat_name *xstats_names, 659 unsigned int xstats_count) 660 { 661 struct sfc_adapter *sa = dev->data->dev_private; 662 struct sfc_port *port = &sa->port; 663 unsigned int i; 664 unsigned int nstats = 0; 665 666 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 667 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 668 if (xstats_names != NULL && nstats < xstats_count) 669 strncpy(xstats_names[nstats].name, 670 efx_mac_stat_name(sa->nic, i), 671 sizeof(xstats_names[0].name)); 672 nstats++; 673 } 674 } 675 676 return nstats; 677 } 678 679 static int 680 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 681 uint64_t *values, unsigned int n) 682 { 683 struct sfc_adapter *sa = dev->data->dev_private; 684 struct sfc_port *port = &sa->port; 685 uint64_t *mac_stats; 686 unsigned int nb_supported = 0; 687 unsigned int nb_written = 0; 688 unsigned int i; 689 int ret; 690 int rc; 691 692 if (unlikely(values == NULL) || 693 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 694 return port->mac_stats_nb_supported; 695 696 rte_spinlock_lock(&port->mac_stats_lock); 697 698 rc = sfc_port_update_mac_stats(sa); 699 if (rc != 0) { 700 SFC_ASSERT(rc > 0); 701 ret = -rc; 702 goto unlock; 703 } 704 705 mac_stats = port->mac_stats_buf; 706 707 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 708 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 709 continue; 710 711 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 712 values[nb_written++] = mac_stats[i]; 713 714 ++nb_supported; 715 } 716 717 ret = nb_written; 718 719 unlock: 720 rte_spinlock_unlock(&port->mac_stats_lock); 721 722 return ret; 723 } 724 725 static int 726 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 727 struct rte_eth_xstat_name *xstats_names, 728 const uint64_t *ids, unsigned int size) 729 { 730 struct sfc_adapter *sa = dev->data->dev_private; 731 struct sfc_port *port = &sa->port; 732 unsigned int nb_supported = 0; 733 unsigned int nb_written = 0; 734 unsigned int i; 735 736 if (unlikely(xstats_names == NULL) || 737 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 738 return port->mac_stats_nb_supported; 739 740 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 741 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 742 continue; 743 744 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 745 char *name = xstats_names[nb_written++].name; 746 747 strncpy(name, efx_mac_stat_name(sa->nic, i), 748 sizeof(xstats_names[0].name)); 749 name[sizeof(xstats_names[0].name) - 1] = '\0'; 750 } 751 752 ++nb_supported; 753 } 754 755 return nb_written; 756 } 757 758 static int 759 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 760 { 761 struct sfc_adapter *sa = dev->data->dev_private; 762 unsigned int wanted_fc, link_fc; 763 764 memset(fc_conf, 0, sizeof(*fc_conf)); 765 766 sfc_adapter_lock(sa); 767 768 if (sa->state == SFC_ADAPTER_STARTED) 769 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 770 else 771 link_fc = sa->port.flow_ctrl; 772 773 switch (link_fc) { 774 case 0: 775 fc_conf->mode = RTE_FC_NONE; 776 break; 777 case EFX_FCNTL_RESPOND: 778 fc_conf->mode = RTE_FC_RX_PAUSE; 779 break; 780 case EFX_FCNTL_GENERATE: 781 fc_conf->mode = RTE_FC_TX_PAUSE; 782 break; 783 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 784 fc_conf->mode = RTE_FC_FULL; 785 break; 786 default: 787 sfc_err(sa, "%s: unexpected flow control value %#x", 788 __func__, link_fc); 789 } 790 791 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 792 793 sfc_adapter_unlock(sa); 794 795 return 0; 796 } 797 798 static int 799 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 800 { 801 struct sfc_adapter *sa = dev->data->dev_private; 802 struct sfc_port *port = &sa->port; 803 unsigned int fcntl; 804 int rc; 805 806 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 807 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 808 fc_conf->mac_ctrl_frame_fwd != 0) { 809 sfc_err(sa, "unsupported flow control settings specified"); 810 rc = EINVAL; 811 goto fail_inval; 812 } 813 814 switch (fc_conf->mode) { 815 case RTE_FC_NONE: 816 fcntl = 0; 817 break; 818 case RTE_FC_RX_PAUSE: 819 fcntl = EFX_FCNTL_RESPOND; 820 break; 821 case RTE_FC_TX_PAUSE: 822 fcntl = EFX_FCNTL_GENERATE; 823 break; 824 case RTE_FC_FULL: 825 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 826 break; 827 default: 828 rc = EINVAL; 829 goto fail_inval; 830 } 831 832 sfc_adapter_lock(sa); 833 834 if (sa->state == SFC_ADAPTER_STARTED) { 835 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 836 if (rc != 0) 837 goto fail_mac_fcntl_set; 838 } 839 840 port->flow_ctrl = fcntl; 841 port->flow_ctrl_autoneg = fc_conf->autoneg; 842 843 sfc_adapter_unlock(sa); 844 845 return 0; 846 847 fail_mac_fcntl_set: 848 sfc_adapter_unlock(sa); 849 fail_inval: 850 SFC_ASSERT(rc > 0); 851 return -rc; 852 } 853 854 static int 855 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 856 { 857 struct sfc_adapter *sa = dev->data->dev_private; 858 size_t pdu = EFX_MAC_PDU(mtu); 859 size_t old_pdu; 860 int rc; 861 862 sfc_log_init(sa, "mtu=%u", mtu); 863 864 rc = EINVAL; 865 if (pdu < EFX_MAC_PDU_MIN) { 866 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 867 (unsigned int)mtu, (unsigned int)pdu, 868 EFX_MAC_PDU_MIN); 869 goto fail_inval; 870 } 871 if (pdu > EFX_MAC_PDU_MAX) { 872 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 873 (unsigned int)mtu, (unsigned int)pdu, 874 EFX_MAC_PDU_MAX); 875 goto fail_inval; 876 } 877 878 sfc_adapter_lock(sa); 879 880 if (pdu != sa->port.pdu) { 881 if (sa->state == SFC_ADAPTER_STARTED) { 882 sfc_stop(sa); 883 884 old_pdu = sa->port.pdu; 885 sa->port.pdu = pdu; 886 rc = sfc_start(sa); 887 if (rc != 0) 888 goto fail_start; 889 } else { 890 sa->port.pdu = pdu; 891 } 892 } 893 894 /* 895 * The driver does not use it, but other PMDs update jumbo_frame 896 * flag and max_rx_pkt_len when MTU is set. 897 */ 898 dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN); 899 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 900 901 sfc_adapter_unlock(sa); 902 903 sfc_log_init(sa, "done"); 904 return 0; 905 906 fail_start: 907 sa->port.pdu = old_pdu; 908 if (sfc_start(sa) != 0) 909 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 910 "PDU max size - port is stopped", 911 (unsigned int)pdu, (unsigned int)old_pdu); 912 sfc_adapter_unlock(sa); 913 914 fail_inval: 915 sfc_log_init(sa, "failed %d", rc); 916 SFC_ASSERT(rc > 0); 917 return -rc; 918 } 919 static void 920 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 921 { 922 struct sfc_adapter *sa = dev->data->dev_private; 923 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 924 struct sfc_port *port = &sa->port; 925 int rc; 926 927 sfc_adapter_lock(sa); 928 929 if (port->isolated) { 930 sfc_err(sa, "isolated mode is active on the port"); 931 sfc_err(sa, "will not set MAC address"); 932 goto unlock; 933 } 934 935 if (sa->state != SFC_ADAPTER_STARTED) { 936 sfc_info(sa, "the port is not started"); 937 sfc_info(sa, "the new MAC address will be set on port start"); 938 939 goto unlock; 940 } 941 942 if (encp->enc_allow_set_mac_with_installed_filters) { 943 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 944 if (rc != 0) { 945 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 946 goto unlock; 947 } 948 949 /* 950 * Changing the MAC address by means of MCDI request 951 * has no effect on received traffic, therefore 952 * we also need to update unicast filters 953 */ 954 rc = sfc_set_rx_mode(sa); 955 if (rc != 0) 956 sfc_err(sa, "cannot set filter (rc = %u)", rc); 957 } else { 958 sfc_warn(sa, "cannot set MAC address with filters installed"); 959 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 960 sfc_warn(sa, "(some traffic may be dropped)"); 961 962 /* 963 * Since setting MAC address with filters installed is not 964 * allowed on the adapter, one needs to simply restart adapter 965 * so that the new MAC address will be taken from an outer 966 * storage and set flawlessly by means of sfc_start() call 967 */ 968 sfc_stop(sa); 969 rc = sfc_start(sa); 970 if (rc != 0) 971 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 972 } 973 974 unlock: 975 sfc_adapter_unlock(sa); 976 } 977 978 979 static int 980 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 981 uint32_t nb_mc_addr) 982 { 983 struct sfc_adapter *sa = dev->data->dev_private; 984 struct sfc_port *port = &sa->port; 985 uint8_t *mc_addrs = port->mcast_addrs; 986 int rc; 987 unsigned int i; 988 989 if (port->isolated) { 990 sfc_err(sa, "isolated mode is active on the port"); 991 sfc_err(sa, "will not set multicast address list"); 992 return -ENOTSUP; 993 } 994 995 if (mc_addrs == NULL) 996 return -ENOBUFS; 997 998 if (nb_mc_addr > port->max_mcast_addrs) { 999 sfc_err(sa, "too many multicast addresses: %u > %u", 1000 nb_mc_addr, port->max_mcast_addrs); 1001 return -EINVAL; 1002 } 1003 1004 for (i = 0; i < nb_mc_addr; ++i) { 1005 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1006 EFX_MAC_ADDR_LEN); 1007 mc_addrs += EFX_MAC_ADDR_LEN; 1008 } 1009 1010 port->nb_mcast_addrs = nb_mc_addr; 1011 1012 if (sa->state != SFC_ADAPTER_STARTED) 1013 return 0; 1014 1015 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1016 port->nb_mcast_addrs); 1017 if (rc != 0) 1018 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1019 1020 SFC_ASSERT(rc > 0); 1021 return -rc; 1022 } 1023 1024 /* 1025 * The function is used by the secondary process as well. It must not 1026 * use any process-local pointers from the adapter data. 1027 */ 1028 static void 1029 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1030 struct rte_eth_rxq_info *qinfo) 1031 { 1032 struct sfc_adapter *sa = dev->data->dev_private; 1033 struct sfc_rxq_info *rxq_info; 1034 struct sfc_rxq *rxq; 1035 1036 sfc_adapter_lock(sa); 1037 1038 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1039 1040 rxq_info = &sa->rxq_info[rx_queue_id]; 1041 rxq = rxq_info->rxq; 1042 SFC_ASSERT(rxq != NULL); 1043 1044 qinfo->mp = rxq->refill_mb_pool; 1045 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1046 qinfo->conf.rx_drop_en = 1; 1047 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1048 qinfo->scattered_rx = (rxq_info->type == EFX_RXQ_TYPE_SCATTER); 1049 qinfo->nb_desc = rxq_info->entries; 1050 1051 sfc_adapter_unlock(sa); 1052 } 1053 1054 /* 1055 * The function is used by the secondary process as well. It must not 1056 * use any process-local pointers from the adapter data. 1057 */ 1058 static void 1059 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1060 struct rte_eth_txq_info *qinfo) 1061 { 1062 struct sfc_adapter *sa = dev->data->dev_private; 1063 struct sfc_txq_info *txq_info; 1064 1065 sfc_adapter_lock(sa); 1066 1067 SFC_ASSERT(tx_queue_id < sa->txq_count); 1068 1069 txq_info = &sa->txq_info[tx_queue_id]; 1070 SFC_ASSERT(txq_info->txq != NULL); 1071 1072 memset(qinfo, 0, sizeof(*qinfo)); 1073 1074 qinfo->conf.txq_flags = txq_info->txq->flags; 1075 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1076 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1077 qinfo->nb_desc = txq_info->entries; 1078 1079 sfc_adapter_unlock(sa); 1080 } 1081 1082 static uint32_t 1083 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1084 { 1085 struct sfc_adapter *sa = dev->data->dev_private; 1086 1087 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1088 1089 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1090 } 1091 1092 static int 1093 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1094 { 1095 struct sfc_dp_rxq *dp_rxq = queue; 1096 1097 return sfc_rx_qdesc_done(dp_rxq, offset); 1098 } 1099 1100 static int 1101 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1102 { 1103 struct sfc_dp_rxq *dp_rxq = queue; 1104 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1105 1106 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1107 } 1108 1109 static int 1110 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1111 { 1112 struct sfc_dp_txq *dp_txq = queue; 1113 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1114 1115 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1116 } 1117 1118 static int 1119 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1120 { 1121 struct sfc_adapter *sa = dev->data->dev_private; 1122 int rc; 1123 1124 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1125 1126 sfc_adapter_lock(sa); 1127 1128 rc = EINVAL; 1129 if (sa->state != SFC_ADAPTER_STARTED) 1130 goto fail_not_started; 1131 1132 rc = sfc_rx_qstart(sa, rx_queue_id); 1133 if (rc != 0) 1134 goto fail_rx_qstart; 1135 1136 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1137 1138 sfc_adapter_unlock(sa); 1139 1140 return 0; 1141 1142 fail_rx_qstart: 1143 fail_not_started: 1144 sfc_adapter_unlock(sa); 1145 SFC_ASSERT(rc > 0); 1146 return -rc; 1147 } 1148 1149 static int 1150 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1151 { 1152 struct sfc_adapter *sa = dev->data->dev_private; 1153 1154 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1155 1156 sfc_adapter_lock(sa); 1157 sfc_rx_qstop(sa, rx_queue_id); 1158 1159 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1160 1161 sfc_adapter_unlock(sa); 1162 1163 return 0; 1164 } 1165 1166 static int 1167 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1168 { 1169 struct sfc_adapter *sa = dev->data->dev_private; 1170 int rc; 1171 1172 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1173 1174 sfc_adapter_lock(sa); 1175 1176 rc = EINVAL; 1177 if (sa->state != SFC_ADAPTER_STARTED) 1178 goto fail_not_started; 1179 1180 rc = sfc_tx_qstart(sa, tx_queue_id); 1181 if (rc != 0) 1182 goto fail_tx_qstart; 1183 1184 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1185 1186 sfc_adapter_unlock(sa); 1187 return 0; 1188 1189 fail_tx_qstart: 1190 1191 fail_not_started: 1192 sfc_adapter_unlock(sa); 1193 SFC_ASSERT(rc > 0); 1194 return -rc; 1195 } 1196 1197 static int 1198 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1199 { 1200 struct sfc_adapter *sa = dev->data->dev_private; 1201 1202 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1203 1204 sfc_adapter_lock(sa); 1205 1206 sfc_tx_qstop(sa, tx_queue_id); 1207 1208 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1209 1210 sfc_adapter_unlock(sa); 1211 return 0; 1212 } 1213 1214 #if EFSYS_OPT_RX_SCALE 1215 static int 1216 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1217 struct rte_eth_rss_conf *rss_conf) 1218 { 1219 struct sfc_adapter *sa = dev->data->dev_private; 1220 struct sfc_port *port = &sa->port; 1221 1222 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1223 return -ENOTSUP; 1224 1225 if (sa->rss_channels == 0) 1226 return -EINVAL; 1227 1228 sfc_adapter_lock(sa); 1229 1230 /* 1231 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1232 * hence, conversion is done here to derive a correct set of ETH_RSS 1233 * flags which corresponds to the active EFX configuration stored 1234 * locally in 'sfc_adapter' and kept up-to-date 1235 */ 1236 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types); 1237 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1238 if (rss_conf->rss_key != NULL) 1239 rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE); 1240 1241 sfc_adapter_unlock(sa); 1242 1243 return 0; 1244 } 1245 1246 static int 1247 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1248 struct rte_eth_rss_conf *rss_conf) 1249 { 1250 struct sfc_adapter *sa = dev->data->dev_private; 1251 struct sfc_port *port = &sa->port; 1252 unsigned int efx_hash_types; 1253 int rc = 0; 1254 1255 if (port->isolated) 1256 return -ENOTSUP; 1257 1258 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1259 sfc_err(sa, "RSS is not available"); 1260 return -ENOTSUP; 1261 } 1262 1263 if (sa->rss_channels == 0) { 1264 sfc_err(sa, "RSS is not configured"); 1265 return -EINVAL; 1266 } 1267 1268 if ((rss_conf->rss_key != NULL) && 1269 (rss_conf->rss_key_len != sizeof(sa->rss_key))) { 1270 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1271 sizeof(sa->rss_key)); 1272 return -EINVAL; 1273 } 1274 1275 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1276 sfc_err(sa, "unsupported hash functions requested"); 1277 return -EINVAL; 1278 } 1279 1280 sfc_adapter_lock(sa); 1281 1282 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1283 1284 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1285 EFX_RX_HASHALG_TOEPLITZ, 1286 efx_hash_types, B_TRUE); 1287 if (rc != 0) 1288 goto fail_scale_mode_set; 1289 1290 if (rss_conf->rss_key != NULL) { 1291 if (sa->state == SFC_ADAPTER_STARTED) { 1292 rc = efx_rx_scale_key_set(sa->nic, 1293 EFX_RSS_CONTEXT_DEFAULT, 1294 rss_conf->rss_key, 1295 sizeof(sa->rss_key)); 1296 if (rc != 0) 1297 goto fail_scale_key_set; 1298 } 1299 1300 rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key)); 1301 } 1302 1303 sa->rss_hash_types = efx_hash_types; 1304 1305 sfc_adapter_unlock(sa); 1306 1307 return 0; 1308 1309 fail_scale_key_set: 1310 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1311 EFX_RX_HASHALG_TOEPLITZ, 1312 sa->rss_hash_types, B_TRUE) != 0) 1313 sfc_err(sa, "failed to restore RSS mode"); 1314 1315 fail_scale_mode_set: 1316 sfc_adapter_unlock(sa); 1317 return -rc; 1318 } 1319 1320 static int 1321 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1322 struct rte_eth_rss_reta_entry64 *reta_conf, 1323 uint16_t reta_size) 1324 { 1325 struct sfc_adapter *sa = dev->data->dev_private; 1326 struct sfc_port *port = &sa->port; 1327 int entry; 1328 1329 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1330 return -ENOTSUP; 1331 1332 if (sa->rss_channels == 0) 1333 return -EINVAL; 1334 1335 if (reta_size != EFX_RSS_TBL_SIZE) 1336 return -EINVAL; 1337 1338 sfc_adapter_lock(sa); 1339 1340 for (entry = 0; entry < reta_size; entry++) { 1341 int grp = entry / RTE_RETA_GROUP_SIZE; 1342 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1343 1344 if ((reta_conf[grp].mask >> grp_idx) & 1) 1345 reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry]; 1346 } 1347 1348 sfc_adapter_unlock(sa); 1349 1350 return 0; 1351 } 1352 1353 static int 1354 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1355 struct rte_eth_rss_reta_entry64 *reta_conf, 1356 uint16_t reta_size) 1357 { 1358 struct sfc_adapter *sa = dev->data->dev_private; 1359 struct sfc_port *port = &sa->port; 1360 unsigned int *rss_tbl_new; 1361 uint16_t entry; 1362 int rc = 0; 1363 1364 1365 if (port->isolated) 1366 return -ENOTSUP; 1367 1368 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1369 sfc_err(sa, "RSS is not available"); 1370 return -ENOTSUP; 1371 } 1372 1373 if (sa->rss_channels == 0) { 1374 sfc_err(sa, "RSS is not configured"); 1375 return -EINVAL; 1376 } 1377 1378 if (reta_size != EFX_RSS_TBL_SIZE) { 1379 sfc_err(sa, "RETA size is wrong (should be %u)", 1380 EFX_RSS_TBL_SIZE); 1381 return -EINVAL; 1382 } 1383 1384 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0); 1385 if (rss_tbl_new == NULL) 1386 return -ENOMEM; 1387 1388 sfc_adapter_lock(sa); 1389 1390 rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl)); 1391 1392 for (entry = 0; entry < reta_size; entry++) { 1393 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1394 struct rte_eth_rss_reta_entry64 *grp; 1395 1396 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1397 1398 if (grp->mask & (1ull << grp_idx)) { 1399 if (grp->reta[grp_idx] >= sa->rss_channels) { 1400 rc = EINVAL; 1401 goto bad_reta_entry; 1402 } 1403 rss_tbl_new[entry] = grp->reta[grp_idx]; 1404 } 1405 } 1406 1407 if (sa->state == SFC_ADAPTER_STARTED) { 1408 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1409 rss_tbl_new, EFX_RSS_TBL_SIZE); 1410 if (rc != 0) 1411 goto fail_scale_tbl_set; 1412 } 1413 1414 rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl)); 1415 1416 fail_scale_tbl_set: 1417 bad_reta_entry: 1418 sfc_adapter_unlock(sa); 1419 1420 rte_free(rss_tbl_new); 1421 1422 SFC_ASSERT(rc >= 0); 1423 return -rc; 1424 } 1425 #endif 1426 1427 static int 1428 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1429 enum rte_filter_op filter_op, 1430 void *arg) 1431 { 1432 struct sfc_adapter *sa = dev->data->dev_private; 1433 int rc = ENOTSUP; 1434 1435 sfc_log_init(sa, "entry"); 1436 1437 switch (filter_type) { 1438 case RTE_ETH_FILTER_NONE: 1439 sfc_err(sa, "Global filters configuration not supported"); 1440 break; 1441 case RTE_ETH_FILTER_MACVLAN: 1442 sfc_err(sa, "MACVLAN filters not supported"); 1443 break; 1444 case RTE_ETH_FILTER_ETHERTYPE: 1445 sfc_err(sa, "EtherType filters not supported"); 1446 break; 1447 case RTE_ETH_FILTER_FLEXIBLE: 1448 sfc_err(sa, "Flexible filters not supported"); 1449 break; 1450 case RTE_ETH_FILTER_SYN: 1451 sfc_err(sa, "SYN filters not supported"); 1452 break; 1453 case RTE_ETH_FILTER_NTUPLE: 1454 sfc_err(sa, "NTUPLE filters not supported"); 1455 break; 1456 case RTE_ETH_FILTER_TUNNEL: 1457 sfc_err(sa, "Tunnel filters not supported"); 1458 break; 1459 case RTE_ETH_FILTER_FDIR: 1460 sfc_err(sa, "Flow Director filters not supported"); 1461 break; 1462 case RTE_ETH_FILTER_HASH: 1463 sfc_err(sa, "Hash filters not supported"); 1464 break; 1465 case RTE_ETH_FILTER_GENERIC: 1466 if (filter_op != RTE_ETH_FILTER_GET) { 1467 rc = EINVAL; 1468 } else { 1469 *(const void **)arg = &sfc_flow_ops; 1470 rc = 0; 1471 } 1472 break; 1473 default: 1474 sfc_err(sa, "Unknown filter type %u", filter_type); 1475 break; 1476 } 1477 1478 sfc_log_init(sa, "exit: %d", -rc); 1479 SFC_ASSERT(rc >= 0); 1480 return -rc; 1481 } 1482 1483 static const struct eth_dev_ops sfc_eth_dev_ops = { 1484 .dev_configure = sfc_dev_configure, 1485 .dev_start = sfc_dev_start, 1486 .dev_stop = sfc_dev_stop, 1487 .dev_set_link_up = sfc_dev_set_link_up, 1488 .dev_set_link_down = sfc_dev_set_link_down, 1489 .dev_close = sfc_dev_close, 1490 .promiscuous_enable = sfc_dev_promisc_enable, 1491 .promiscuous_disable = sfc_dev_promisc_disable, 1492 .allmulticast_enable = sfc_dev_allmulti_enable, 1493 .allmulticast_disable = sfc_dev_allmulti_disable, 1494 .link_update = sfc_dev_link_update, 1495 .stats_get = sfc_stats_get, 1496 .stats_reset = sfc_stats_reset, 1497 .xstats_get = sfc_xstats_get, 1498 .xstats_reset = sfc_stats_reset, 1499 .xstats_get_names = sfc_xstats_get_names, 1500 .dev_infos_get = sfc_dev_infos_get, 1501 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1502 .mtu_set = sfc_dev_set_mtu, 1503 .rx_queue_start = sfc_rx_queue_start, 1504 .rx_queue_stop = sfc_rx_queue_stop, 1505 .tx_queue_start = sfc_tx_queue_start, 1506 .tx_queue_stop = sfc_tx_queue_stop, 1507 .rx_queue_setup = sfc_rx_queue_setup, 1508 .rx_queue_release = sfc_rx_queue_release, 1509 .rx_queue_count = sfc_rx_queue_count, 1510 .rx_descriptor_done = sfc_rx_descriptor_done, 1511 .rx_descriptor_status = sfc_rx_descriptor_status, 1512 .tx_descriptor_status = sfc_tx_descriptor_status, 1513 .tx_queue_setup = sfc_tx_queue_setup, 1514 .tx_queue_release = sfc_tx_queue_release, 1515 .flow_ctrl_get = sfc_flow_ctrl_get, 1516 .flow_ctrl_set = sfc_flow_ctrl_set, 1517 .mac_addr_set = sfc_mac_addr_set, 1518 #if EFSYS_OPT_RX_SCALE 1519 .reta_update = sfc_dev_rss_reta_update, 1520 .reta_query = sfc_dev_rss_reta_query, 1521 .rss_hash_update = sfc_dev_rss_hash_update, 1522 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1523 #endif 1524 .filter_ctrl = sfc_dev_filter_ctrl, 1525 .set_mc_addr_list = sfc_set_mc_addr_list, 1526 .rxq_info_get = sfc_rx_queue_info_get, 1527 .txq_info_get = sfc_tx_queue_info_get, 1528 .fw_version_get = sfc_fw_version_get, 1529 .xstats_get_by_id = sfc_xstats_get_by_id, 1530 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1531 }; 1532 1533 /** 1534 * Duplicate a string in potentially shared memory required for 1535 * multi-process support. 1536 * 1537 * strdup() allocates from process-local heap/memory. 1538 */ 1539 static char * 1540 sfc_strdup(const char *str) 1541 { 1542 size_t size; 1543 char *copy; 1544 1545 if (str == NULL) 1546 return NULL; 1547 1548 size = strlen(str) + 1; 1549 copy = rte_malloc(__func__, size, 0); 1550 if (copy != NULL) 1551 rte_memcpy(copy, str, size); 1552 1553 return copy; 1554 } 1555 1556 static int 1557 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1558 { 1559 struct sfc_adapter *sa = dev->data->dev_private; 1560 unsigned int avail_caps = 0; 1561 const char *rx_name = NULL; 1562 const char *tx_name = NULL; 1563 int rc; 1564 1565 switch (sa->family) { 1566 case EFX_FAMILY_HUNTINGTON: 1567 case EFX_FAMILY_MEDFORD: 1568 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1569 break; 1570 default: 1571 break; 1572 } 1573 1574 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1575 sfc_kvarg_string_handler, &rx_name); 1576 if (rc != 0) 1577 goto fail_kvarg_rx_datapath; 1578 1579 if (rx_name != NULL) { 1580 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1581 if (sa->dp_rx == NULL) { 1582 sfc_err(sa, "Rx datapath %s not found", rx_name); 1583 rc = ENOENT; 1584 goto fail_dp_rx; 1585 } 1586 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1587 sfc_err(sa, 1588 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1589 rx_name); 1590 rc = EINVAL; 1591 goto fail_dp_rx_caps; 1592 } 1593 } else { 1594 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1595 if (sa->dp_rx == NULL) { 1596 sfc_err(sa, "Rx datapath by caps %#x not found", 1597 avail_caps); 1598 rc = ENOENT; 1599 goto fail_dp_rx; 1600 } 1601 } 1602 1603 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1604 if (sa->dp_rx_name == NULL) { 1605 rc = ENOMEM; 1606 goto fail_dp_rx_name; 1607 } 1608 1609 sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name); 1610 1611 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1612 1613 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1614 sfc_kvarg_string_handler, &tx_name); 1615 if (rc != 0) 1616 goto fail_kvarg_tx_datapath; 1617 1618 if (tx_name != NULL) { 1619 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1620 if (sa->dp_tx == NULL) { 1621 sfc_err(sa, "Tx datapath %s not found", tx_name); 1622 rc = ENOENT; 1623 goto fail_dp_tx; 1624 } 1625 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1626 sfc_err(sa, 1627 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1628 tx_name); 1629 rc = EINVAL; 1630 goto fail_dp_tx_caps; 1631 } 1632 } else { 1633 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1634 if (sa->dp_tx == NULL) { 1635 sfc_err(sa, "Tx datapath by caps %#x not found", 1636 avail_caps); 1637 rc = ENOENT; 1638 goto fail_dp_tx; 1639 } 1640 } 1641 1642 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1643 if (sa->dp_tx_name == NULL) { 1644 rc = ENOMEM; 1645 goto fail_dp_tx_name; 1646 } 1647 1648 sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name); 1649 1650 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1651 1652 dev->dev_ops = &sfc_eth_dev_ops; 1653 1654 return 0; 1655 1656 fail_dp_tx_name: 1657 fail_dp_tx_caps: 1658 sa->dp_tx = NULL; 1659 1660 fail_dp_tx: 1661 fail_kvarg_tx_datapath: 1662 rte_free(sa->dp_rx_name); 1663 sa->dp_rx_name = NULL; 1664 1665 fail_dp_rx_name: 1666 fail_dp_rx_caps: 1667 sa->dp_rx = NULL; 1668 1669 fail_dp_rx: 1670 fail_kvarg_rx_datapath: 1671 return rc; 1672 } 1673 1674 static void 1675 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1676 { 1677 struct sfc_adapter *sa = dev->data->dev_private; 1678 1679 dev->dev_ops = NULL; 1680 dev->rx_pkt_burst = NULL; 1681 dev->tx_pkt_burst = NULL; 1682 1683 rte_free(sa->dp_tx_name); 1684 sa->dp_tx_name = NULL; 1685 sa->dp_tx = NULL; 1686 1687 rte_free(sa->dp_rx_name); 1688 sa->dp_rx_name = NULL; 1689 sa->dp_rx = NULL; 1690 } 1691 1692 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1693 .rxq_info_get = sfc_rx_queue_info_get, 1694 .txq_info_get = sfc_tx_queue_info_get, 1695 }; 1696 1697 static int 1698 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1699 { 1700 /* 1701 * Device private data has really many process-local pointers. 1702 * Below code should be extremely careful to use data located 1703 * in shared memory only. 1704 */ 1705 struct sfc_adapter *sa = dev->data->dev_private; 1706 const struct sfc_dp_rx *dp_rx; 1707 const struct sfc_dp_tx *dp_tx; 1708 int rc; 1709 1710 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1711 if (dp_rx == NULL) { 1712 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1713 rc = ENOENT; 1714 goto fail_dp_rx; 1715 } 1716 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1717 sfc_err(sa, "%s Rx datapath does not support multi-process", 1718 sa->dp_tx_name); 1719 rc = EINVAL; 1720 goto fail_dp_rx_multi_process; 1721 } 1722 1723 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1724 if (dp_tx == NULL) { 1725 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1726 rc = ENOENT; 1727 goto fail_dp_tx; 1728 } 1729 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1730 sfc_err(sa, "%s Tx datapath does not support multi-process", 1731 sa->dp_tx_name); 1732 rc = EINVAL; 1733 goto fail_dp_tx_multi_process; 1734 } 1735 1736 dev->rx_pkt_burst = dp_rx->pkt_burst; 1737 dev->tx_pkt_burst = dp_tx->pkt_burst; 1738 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1739 1740 return 0; 1741 1742 fail_dp_tx_multi_process: 1743 fail_dp_tx: 1744 fail_dp_rx_multi_process: 1745 fail_dp_rx: 1746 return rc; 1747 } 1748 1749 static void 1750 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1751 { 1752 dev->dev_ops = NULL; 1753 dev->tx_pkt_burst = NULL; 1754 dev->rx_pkt_burst = NULL; 1755 } 1756 1757 static void 1758 sfc_register_dp(void) 1759 { 1760 /* Register once */ 1761 if (TAILQ_EMPTY(&sfc_dp_head)) { 1762 /* Prefer EF10 datapath */ 1763 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1764 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1765 1766 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1767 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1768 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1769 } 1770 } 1771 1772 static int 1773 sfc_eth_dev_init(struct rte_eth_dev *dev) 1774 { 1775 struct sfc_adapter *sa = dev->data->dev_private; 1776 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1777 int rc; 1778 const efx_nic_cfg_t *encp; 1779 const struct ether_addr *from; 1780 1781 sfc_register_dp(); 1782 1783 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1784 return -sfc_eth_dev_secondary_set_ops(dev); 1785 1786 /* Required for logging */ 1787 sa->pci_addr = pci_dev->addr; 1788 sa->port_id = dev->data->port_id; 1789 1790 sa->eth_dev = dev; 1791 1792 /* Copy PCI device info to the dev->data */ 1793 rte_eth_copy_pci_info(dev, pci_dev); 1794 1795 rc = sfc_kvargs_parse(sa); 1796 if (rc != 0) 1797 goto fail_kvargs_parse; 1798 1799 rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT, 1800 sfc_kvarg_bool_handler, &sa->debug_init); 1801 if (rc != 0) 1802 goto fail_kvarg_debug_init; 1803 1804 sfc_log_init(sa, "entry"); 1805 1806 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1807 if (dev->data->mac_addrs == NULL) { 1808 rc = ENOMEM; 1809 goto fail_mac_addrs; 1810 } 1811 1812 sfc_adapter_lock_init(sa); 1813 sfc_adapter_lock(sa); 1814 1815 sfc_log_init(sa, "probing"); 1816 rc = sfc_probe(sa); 1817 if (rc != 0) 1818 goto fail_probe; 1819 1820 sfc_log_init(sa, "set device ops"); 1821 rc = sfc_eth_dev_set_ops(dev); 1822 if (rc != 0) 1823 goto fail_set_ops; 1824 1825 sfc_log_init(sa, "attaching"); 1826 rc = sfc_attach(sa); 1827 if (rc != 0) 1828 goto fail_attach; 1829 1830 encp = efx_nic_cfg_get(sa->nic); 1831 1832 /* 1833 * The arguments are really reverse order in comparison to 1834 * Linux kernel. Copy from NIC config to Ethernet device data. 1835 */ 1836 from = (const struct ether_addr *)(encp->enc_mac_addr); 1837 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1838 1839 sfc_adapter_unlock(sa); 1840 1841 sfc_log_init(sa, "done"); 1842 return 0; 1843 1844 fail_attach: 1845 sfc_eth_dev_clear_ops(dev); 1846 1847 fail_set_ops: 1848 sfc_unprobe(sa); 1849 1850 fail_probe: 1851 sfc_adapter_unlock(sa); 1852 sfc_adapter_lock_fini(sa); 1853 rte_free(dev->data->mac_addrs); 1854 dev->data->mac_addrs = NULL; 1855 1856 fail_mac_addrs: 1857 fail_kvarg_debug_init: 1858 sfc_kvargs_cleanup(sa); 1859 1860 fail_kvargs_parse: 1861 sfc_log_init(sa, "failed %d", rc); 1862 SFC_ASSERT(rc > 0); 1863 return -rc; 1864 } 1865 1866 static int 1867 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 1868 { 1869 struct sfc_adapter *sa; 1870 1871 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 1872 sfc_eth_dev_secondary_clear_ops(dev); 1873 return 0; 1874 } 1875 1876 sa = dev->data->dev_private; 1877 sfc_log_init(sa, "entry"); 1878 1879 sfc_adapter_lock(sa); 1880 1881 sfc_eth_dev_clear_ops(dev); 1882 1883 sfc_detach(sa); 1884 sfc_unprobe(sa); 1885 1886 rte_free(dev->data->mac_addrs); 1887 dev->data->mac_addrs = NULL; 1888 1889 sfc_kvargs_cleanup(sa); 1890 1891 sfc_adapter_unlock(sa); 1892 sfc_adapter_lock_fini(sa); 1893 1894 sfc_log_init(sa, "done"); 1895 1896 /* Required for logging, so cleanup last */ 1897 sa->eth_dev = NULL; 1898 return 0; 1899 } 1900 1901 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 1902 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 1903 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 1904 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 1905 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 1906 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 1907 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 1908 { .vendor_id = 0 /* sentinel */ } 1909 }; 1910 1911 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1912 struct rte_pci_device *pci_dev) 1913 { 1914 return rte_eth_dev_pci_generic_probe(pci_dev, 1915 sizeof(struct sfc_adapter), sfc_eth_dev_init); 1916 } 1917 1918 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 1919 { 1920 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 1921 } 1922 1923 static struct rte_pci_driver sfc_efx_pmd = { 1924 .id_table = pci_id_sfc_efx_map, 1925 .drv_flags = 1926 RTE_PCI_DRV_INTR_LSC | 1927 RTE_PCI_DRV_NEED_MAPPING, 1928 .probe = sfc_eth_dev_pci_probe, 1929 .remove = sfc_eth_dev_pci_remove, 1930 }; 1931 1932 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 1933 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 1934 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 1935 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 1936 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 1937 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 1938 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 1939 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> " 1940 SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " " 1941 SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL); 1942