1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = dev->data->dev_private; 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 struct sfc_adapter *sa = dev->data->dev_private; 88 struct sfc_rss *rss = &sa->rss; 89 uint64_t txq_offloads_def = 0; 90 91 sfc_log_init(sa, "entry"); 92 93 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 94 95 /* Autonegotiation may be disabled */ 96 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 97 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 98 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 99 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 100 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 101 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 102 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 103 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 104 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 105 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 106 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 107 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 108 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 109 110 dev_info->max_rx_queues = sa->rxq_max; 111 dev_info->max_tx_queues = sa->txq_max; 112 113 /* By default packets are dropped if no descriptors are available */ 114 dev_info->default_rxconf.rx_drop_en = 1; 115 116 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 117 118 /* 119 * rx_offload_capa includes both device and queue offloads since 120 * the latter may be requested on a per device basis which makes 121 * sense when some offloads are needed to be set on all queues. 122 */ 123 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 124 dev_info->rx_queue_offload_capa; 125 126 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 127 128 /* 129 * tx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 134 dev_info->tx_queue_offload_capa; 135 136 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 137 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 138 139 dev_info->default_txconf.offloads |= txq_offloads_def; 140 141 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 142 uint64_t rte_hf = 0; 143 unsigned int i; 144 145 for (i = 0; i < rss->hf_map_nb_entries; ++i) 146 rte_hf |= rss->hf_map[i].rte; 147 148 dev_info->reta_size = EFX_RSS_TBL_SIZE; 149 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 150 dev_info->flow_type_rss_offloads = rte_hf; 151 } 152 153 /* Initialize to hardware limits */ 154 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 155 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 156 /* The RXQ hardware requires that the descriptor count is a power 157 * of 2, but rx_desc_lim cannot properly describe that constraint. 158 */ 159 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 160 161 /* Initialize to hardware limits */ 162 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 163 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 164 /* 165 * The TXQ hardware requires that the descriptor count is a power 166 * of 2, but tx_desc_lim cannot properly describe that constraint 167 */ 168 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 169 170 if (sa->dp_rx->get_dev_info != NULL) 171 sa->dp_rx->get_dev_info(dev_info); 172 if (sa->dp_tx->get_dev_info != NULL) 173 sa->dp_tx->get_dev_info(dev_info); 174 175 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 176 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 177 } 178 179 static const uint32_t * 180 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 181 { 182 struct sfc_adapter *sa = dev->data->dev_private; 183 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 184 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 185 186 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 187 } 188 189 static int 190 sfc_dev_configure(struct rte_eth_dev *dev) 191 { 192 struct rte_eth_dev_data *dev_data = dev->data; 193 struct sfc_adapter *sa = dev_data->dev_private; 194 int rc; 195 196 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 197 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 198 199 sfc_adapter_lock(sa); 200 switch (sa->state) { 201 case SFC_ADAPTER_CONFIGURED: 202 /* FALLTHROUGH */ 203 case SFC_ADAPTER_INITIALIZED: 204 rc = sfc_configure(sa); 205 break; 206 default: 207 sfc_err(sa, "unexpected adapter state %u to configure", 208 sa->state); 209 rc = EINVAL; 210 break; 211 } 212 sfc_adapter_unlock(sa); 213 214 sfc_log_init(sa, "done %d", rc); 215 SFC_ASSERT(rc >= 0); 216 return -rc; 217 } 218 219 static int 220 sfc_dev_start(struct rte_eth_dev *dev) 221 { 222 struct sfc_adapter *sa = dev->data->dev_private; 223 int rc; 224 225 sfc_log_init(sa, "entry"); 226 227 sfc_adapter_lock(sa); 228 rc = sfc_start(sa); 229 sfc_adapter_unlock(sa); 230 231 sfc_log_init(sa, "done %d", rc); 232 SFC_ASSERT(rc >= 0); 233 return -rc; 234 } 235 236 static int 237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 238 { 239 struct sfc_adapter *sa = dev->data->dev_private; 240 struct rte_eth_link current_link; 241 int ret; 242 243 sfc_log_init(sa, "entry"); 244 245 if (sa->state != SFC_ADAPTER_STARTED) { 246 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 247 } else if (wait_to_complete) { 248 efx_link_mode_t link_mode; 249 250 if (efx_port_poll(sa->nic, &link_mode) != 0) 251 link_mode = EFX_LINK_UNKNOWN; 252 sfc_port_link_mode_to_info(link_mode, ¤t_link); 253 254 } else { 255 sfc_ev_mgmt_qpoll(sa); 256 rte_eth_linkstatus_get(dev, ¤t_link); 257 } 258 259 ret = rte_eth_linkstatus_set(dev, ¤t_link); 260 if (ret == 0) 261 sfc_notice(sa, "Link status is %s", 262 current_link.link_status ? "UP" : "DOWN"); 263 264 return ret; 265 } 266 267 static void 268 sfc_dev_stop(struct rte_eth_dev *dev) 269 { 270 struct sfc_adapter *sa = dev->data->dev_private; 271 272 sfc_log_init(sa, "entry"); 273 274 sfc_adapter_lock(sa); 275 sfc_stop(sa); 276 sfc_adapter_unlock(sa); 277 278 sfc_log_init(sa, "done"); 279 } 280 281 static int 282 sfc_dev_set_link_up(struct rte_eth_dev *dev) 283 { 284 struct sfc_adapter *sa = dev->data->dev_private; 285 int rc; 286 287 sfc_log_init(sa, "entry"); 288 289 sfc_adapter_lock(sa); 290 rc = sfc_start(sa); 291 sfc_adapter_unlock(sa); 292 293 SFC_ASSERT(rc >= 0); 294 return -rc; 295 } 296 297 static int 298 sfc_dev_set_link_down(struct rte_eth_dev *dev) 299 { 300 struct sfc_adapter *sa = dev->data->dev_private; 301 302 sfc_log_init(sa, "entry"); 303 304 sfc_adapter_lock(sa); 305 sfc_stop(sa); 306 sfc_adapter_unlock(sa); 307 308 return 0; 309 } 310 311 static void 312 sfc_dev_close(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = dev->data->dev_private; 315 316 sfc_log_init(sa, "entry"); 317 318 sfc_adapter_lock(sa); 319 switch (sa->state) { 320 case SFC_ADAPTER_STARTED: 321 sfc_stop(sa); 322 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 323 /* FALLTHROUGH */ 324 case SFC_ADAPTER_CONFIGURED: 325 sfc_close(sa); 326 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 327 /* FALLTHROUGH */ 328 case SFC_ADAPTER_INITIALIZED: 329 break; 330 default: 331 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 332 break; 333 } 334 sfc_adapter_unlock(sa); 335 336 sfc_log_init(sa, "done"); 337 } 338 339 static void 340 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 341 boolean_t enabled) 342 { 343 struct sfc_port *port; 344 boolean_t *toggle; 345 struct sfc_adapter *sa = dev->data->dev_private; 346 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 347 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 348 349 sfc_adapter_lock(sa); 350 351 port = &sa->port; 352 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 353 354 if (*toggle != enabled) { 355 *toggle = enabled; 356 357 if (port->isolated) { 358 sfc_warn(sa, "isolated mode is active on the port"); 359 sfc_warn(sa, "the change is to be applied on the next " 360 "start provided that isolated mode is " 361 "disabled prior the next start"); 362 } else if ((sa->state == SFC_ADAPTER_STARTED) && 363 (sfc_set_rx_mode(sa) != 0)) { 364 *toggle = !(enabled); 365 sfc_warn(sa, "Failed to %s %s mode", 366 ((enabled) ? "enable" : "disable"), desc); 367 } 368 } 369 370 sfc_adapter_unlock(sa); 371 } 372 373 static void 374 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 375 { 376 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 377 } 378 379 static void 380 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 381 { 382 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 383 } 384 385 static void 386 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 387 { 388 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 389 } 390 391 static void 392 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 393 { 394 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 395 } 396 397 static int 398 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 399 uint16_t nb_rx_desc, unsigned int socket_id, 400 const struct rte_eth_rxconf *rx_conf, 401 struct rte_mempool *mb_pool) 402 { 403 struct sfc_adapter *sa = dev->data->dev_private; 404 int rc; 405 406 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 407 rx_queue_id, nb_rx_desc, socket_id); 408 409 sfc_adapter_lock(sa); 410 411 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 412 rx_conf, mb_pool); 413 if (rc != 0) 414 goto fail_rx_qinit; 415 416 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 417 418 sfc_adapter_unlock(sa); 419 420 return 0; 421 422 fail_rx_qinit: 423 sfc_adapter_unlock(sa); 424 SFC_ASSERT(rc > 0); 425 return -rc; 426 } 427 428 static void 429 sfc_rx_queue_release(void *queue) 430 { 431 struct sfc_dp_rxq *dp_rxq = queue; 432 struct sfc_rxq *rxq; 433 struct sfc_adapter *sa; 434 unsigned int sw_index; 435 436 if (dp_rxq == NULL) 437 return; 438 439 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 440 sa = rxq->evq->sa; 441 sfc_adapter_lock(sa); 442 443 sw_index = sfc_rxq_sw_index(rxq); 444 445 sfc_log_init(sa, "RxQ=%u", sw_index); 446 447 sa->eth_dev->data->rx_queues[sw_index] = NULL; 448 449 sfc_rx_qfini(sa, sw_index); 450 451 sfc_adapter_unlock(sa); 452 } 453 454 static int 455 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 456 uint16_t nb_tx_desc, unsigned int socket_id, 457 const struct rte_eth_txconf *tx_conf) 458 { 459 struct sfc_adapter *sa = dev->data->dev_private; 460 int rc; 461 462 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 463 tx_queue_id, nb_tx_desc, socket_id); 464 465 sfc_adapter_lock(sa); 466 467 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 468 if (rc != 0) 469 goto fail_tx_qinit; 470 471 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 472 473 sfc_adapter_unlock(sa); 474 return 0; 475 476 fail_tx_qinit: 477 sfc_adapter_unlock(sa); 478 SFC_ASSERT(rc > 0); 479 return -rc; 480 } 481 482 static void 483 sfc_tx_queue_release(void *queue) 484 { 485 struct sfc_dp_txq *dp_txq = queue; 486 struct sfc_txq *txq; 487 unsigned int sw_index; 488 struct sfc_adapter *sa; 489 490 if (dp_txq == NULL) 491 return; 492 493 txq = sfc_txq_by_dp_txq(dp_txq); 494 sw_index = sfc_txq_sw_index(txq); 495 496 SFC_ASSERT(txq->evq != NULL); 497 sa = txq->evq->sa; 498 499 sfc_log_init(sa, "TxQ = %u", sw_index); 500 501 sfc_adapter_lock(sa); 502 503 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 504 sa->eth_dev->data->tx_queues[sw_index] = NULL; 505 506 sfc_tx_qfini(sa, sw_index); 507 508 sfc_adapter_unlock(sa); 509 } 510 511 static int 512 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 513 { 514 struct sfc_adapter *sa = dev->data->dev_private; 515 struct sfc_port *port = &sa->port; 516 uint64_t *mac_stats; 517 int ret; 518 519 rte_spinlock_lock(&port->mac_stats_lock); 520 521 ret = sfc_port_update_mac_stats(sa); 522 if (ret != 0) 523 goto unlock; 524 525 mac_stats = port->mac_stats_buf; 526 527 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 528 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 529 stats->ipackets = 530 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 531 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 532 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 533 stats->opackets = 534 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 535 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 536 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 537 stats->ibytes = 538 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 539 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 540 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 541 stats->obytes = 542 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 543 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 544 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 545 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 546 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 547 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 548 } else { 549 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 550 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 551 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 552 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 553 /* 554 * Take into account stats which are whenever supported 555 * on EF10. If some stat is not supported by current 556 * firmware variant or HW revision, it is guaranteed 557 * to be zero in mac_stats. 558 */ 559 stats->imissed = 560 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 561 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 562 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 563 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 564 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 565 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 566 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 567 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 568 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 569 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 570 stats->ierrors = 571 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 572 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 573 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 574 /* no oerrors counters supported on EF10 */ 575 } 576 577 unlock: 578 rte_spinlock_unlock(&port->mac_stats_lock); 579 SFC_ASSERT(ret >= 0); 580 return -ret; 581 } 582 583 static void 584 sfc_stats_reset(struct rte_eth_dev *dev) 585 { 586 struct sfc_adapter *sa = dev->data->dev_private; 587 struct sfc_port *port = &sa->port; 588 int rc; 589 590 if (sa->state != SFC_ADAPTER_STARTED) { 591 /* 592 * The operation cannot be done if port is not started; it 593 * will be scheduled to be done during the next port start 594 */ 595 port->mac_stats_reset_pending = B_TRUE; 596 return; 597 } 598 599 rc = sfc_port_reset_mac_stats(sa); 600 if (rc != 0) 601 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 602 } 603 604 static int 605 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 606 unsigned int xstats_count) 607 { 608 struct sfc_adapter *sa = dev->data->dev_private; 609 struct sfc_port *port = &sa->port; 610 uint64_t *mac_stats; 611 int rc; 612 unsigned int i; 613 int nstats = 0; 614 615 rte_spinlock_lock(&port->mac_stats_lock); 616 617 rc = sfc_port_update_mac_stats(sa); 618 if (rc != 0) { 619 SFC_ASSERT(rc > 0); 620 nstats = -rc; 621 goto unlock; 622 } 623 624 mac_stats = port->mac_stats_buf; 625 626 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 627 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 628 if (xstats != NULL && nstats < (int)xstats_count) { 629 xstats[nstats].id = nstats; 630 xstats[nstats].value = mac_stats[i]; 631 } 632 nstats++; 633 } 634 } 635 636 unlock: 637 rte_spinlock_unlock(&port->mac_stats_lock); 638 639 return nstats; 640 } 641 642 static int 643 sfc_xstats_get_names(struct rte_eth_dev *dev, 644 struct rte_eth_xstat_name *xstats_names, 645 unsigned int xstats_count) 646 { 647 struct sfc_adapter *sa = dev->data->dev_private; 648 struct sfc_port *port = &sa->port; 649 unsigned int i; 650 unsigned int nstats = 0; 651 652 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 653 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 654 if (xstats_names != NULL && nstats < xstats_count) 655 strlcpy(xstats_names[nstats].name, 656 efx_mac_stat_name(sa->nic, i), 657 sizeof(xstats_names[0].name)); 658 nstats++; 659 } 660 } 661 662 return nstats; 663 } 664 665 static int 666 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 667 uint64_t *values, unsigned int n) 668 { 669 struct sfc_adapter *sa = dev->data->dev_private; 670 struct sfc_port *port = &sa->port; 671 uint64_t *mac_stats; 672 unsigned int nb_supported = 0; 673 unsigned int nb_written = 0; 674 unsigned int i; 675 int ret; 676 int rc; 677 678 if (unlikely(values == NULL) || 679 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 680 return port->mac_stats_nb_supported; 681 682 rte_spinlock_lock(&port->mac_stats_lock); 683 684 rc = sfc_port_update_mac_stats(sa); 685 if (rc != 0) { 686 SFC_ASSERT(rc > 0); 687 ret = -rc; 688 goto unlock; 689 } 690 691 mac_stats = port->mac_stats_buf; 692 693 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 694 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 695 continue; 696 697 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 698 values[nb_written++] = mac_stats[i]; 699 700 ++nb_supported; 701 } 702 703 ret = nb_written; 704 705 unlock: 706 rte_spinlock_unlock(&port->mac_stats_lock); 707 708 return ret; 709 } 710 711 static int 712 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 713 struct rte_eth_xstat_name *xstats_names, 714 const uint64_t *ids, unsigned int size) 715 { 716 struct sfc_adapter *sa = dev->data->dev_private; 717 struct sfc_port *port = &sa->port; 718 unsigned int nb_supported = 0; 719 unsigned int nb_written = 0; 720 unsigned int i; 721 722 if (unlikely(xstats_names == NULL) || 723 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 724 return port->mac_stats_nb_supported; 725 726 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 727 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 728 continue; 729 730 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 731 char *name = xstats_names[nb_written++].name; 732 733 strlcpy(name, efx_mac_stat_name(sa->nic, i), 734 sizeof(xstats_names[0].name)); 735 } 736 737 ++nb_supported; 738 } 739 740 return nb_written; 741 } 742 743 static int 744 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 745 { 746 struct sfc_adapter *sa = dev->data->dev_private; 747 unsigned int wanted_fc, link_fc; 748 749 memset(fc_conf, 0, sizeof(*fc_conf)); 750 751 sfc_adapter_lock(sa); 752 753 if (sa->state == SFC_ADAPTER_STARTED) 754 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 755 else 756 link_fc = sa->port.flow_ctrl; 757 758 switch (link_fc) { 759 case 0: 760 fc_conf->mode = RTE_FC_NONE; 761 break; 762 case EFX_FCNTL_RESPOND: 763 fc_conf->mode = RTE_FC_RX_PAUSE; 764 break; 765 case EFX_FCNTL_GENERATE: 766 fc_conf->mode = RTE_FC_TX_PAUSE; 767 break; 768 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 769 fc_conf->mode = RTE_FC_FULL; 770 break; 771 default: 772 sfc_err(sa, "%s: unexpected flow control value %#x", 773 __func__, link_fc); 774 } 775 776 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 777 778 sfc_adapter_unlock(sa); 779 780 return 0; 781 } 782 783 static int 784 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 785 { 786 struct sfc_adapter *sa = dev->data->dev_private; 787 struct sfc_port *port = &sa->port; 788 unsigned int fcntl; 789 int rc; 790 791 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 792 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 793 fc_conf->mac_ctrl_frame_fwd != 0) { 794 sfc_err(sa, "unsupported flow control settings specified"); 795 rc = EINVAL; 796 goto fail_inval; 797 } 798 799 switch (fc_conf->mode) { 800 case RTE_FC_NONE: 801 fcntl = 0; 802 break; 803 case RTE_FC_RX_PAUSE: 804 fcntl = EFX_FCNTL_RESPOND; 805 break; 806 case RTE_FC_TX_PAUSE: 807 fcntl = EFX_FCNTL_GENERATE; 808 break; 809 case RTE_FC_FULL: 810 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 811 break; 812 default: 813 rc = EINVAL; 814 goto fail_inval; 815 } 816 817 sfc_adapter_lock(sa); 818 819 if (sa->state == SFC_ADAPTER_STARTED) { 820 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 821 if (rc != 0) 822 goto fail_mac_fcntl_set; 823 } 824 825 port->flow_ctrl = fcntl; 826 port->flow_ctrl_autoneg = fc_conf->autoneg; 827 828 sfc_adapter_unlock(sa); 829 830 return 0; 831 832 fail_mac_fcntl_set: 833 sfc_adapter_unlock(sa); 834 fail_inval: 835 SFC_ASSERT(rc > 0); 836 return -rc; 837 } 838 839 static int 840 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 841 { 842 struct sfc_adapter *sa = dev->data->dev_private; 843 size_t pdu = EFX_MAC_PDU(mtu); 844 size_t old_pdu; 845 int rc; 846 847 sfc_log_init(sa, "mtu=%u", mtu); 848 849 rc = EINVAL; 850 if (pdu < EFX_MAC_PDU_MIN) { 851 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 852 (unsigned int)mtu, (unsigned int)pdu, 853 EFX_MAC_PDU_MIN); 854 goto fail_inval; 855 } 856 if (pdu > EFX_MAC_PDU_MAX) { 857 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 858 (unsigned int)mtu, (unsigned int)pdu, 859 EFX_MAC_PDU_MAX); 860 goto fail_inval; 861 } 862 863 sfc_adapter_lock(sa); 864 865 if (pdu != sa->port.pdu) { 866 if (sa->state == SFC_ADAPTER_STARTED) { 867 sfc_stop(sa); 868 869 old_pdu = sa->port.pdu; 870 sa->port.pdu = pdu; 871 rc = sfc_start(sa); 872 if (rc != 0) 873 goto fail_start; 874 } else { 875 sa->port.pdu = pdu; 876 } 877 } 878 879 /* 880 * The driver does not use it, but other PMDs update jumbo frame 881 * flag and max_rx_pkt_len when MTU is set. 882 */ 883 if (mtu > ETHER_MAX_LEN) { 884 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 885 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 886 } 887 888 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 889 890 sfc_adapter_unlock(sa); 891 892 sfc_log_init(sa, "done"); 893 return 0; 894 895 fail_start: 896 sa->port.pdu = old_pdu; 897 if (sfc_start(sa) != 0) 898 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 899 "PDU max size - port is stopped", 900 (unsigned int)pdu, (unsigned int)old_pdu); 901 sfc_adapter_unlock(sa); 902 903 fail_inval: 904 sfc_log_init(sa, "failed %d", rc); 905 SFC_ASSERT(rc > 0); 906 return -rc; 907 } 908 static int 909 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 910 { 911 struct sfc_adapter *sa = dev->data->dev_private; 912 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 913 struct sfc_port *port = &sa->port; 914 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 915 int rc = 0; 916 917 sfc_adapter_lock(sa); 918 919 /* 920 * Copy the address to the device private data so that 921 * it could be recalled in the case of adapter restart. 922 */ 923 ether_addr_copy(mac_addr, &port->default_mac_addr); 924 925 /* 926 * Neither of the two following checks can return 927 * an error. The new MAC address is preserved in 928 * the device private data and can be activated 929 * on the next port start if the user prevents 930 * isolated mode from being enabled. 931 */ 932 if (port->isolated) { 933 sfc_warn(sa, "isolated mode is active on the port"); 934 sfc_warn(sa, "will not set MAC address"); 935 goto unlock; 936 } 937 938 if (sa->state != SFC_ADAPTER_STARTED) { 939 sfc_notice(sa, "the port is not started"); 940 sfc_notice(sa, "the new MAC address will be set on port start"); 941 942 goto unlock; 943 } 944 945 if (encp->enc_allow_set_mac_with_installed_filters) { 946 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 947 if (rc != 0) { 948 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 949 goto unlock; 950 } 951 952 /* 953 * Changing the MAC address by means of MCDI request 954 * has no effect on received traffic, therefore 955 * we also need to update unicast filters 956 */ 957 rc = sfc_set_rx_mode(sa); 958 if (rc != 0) { 959 sfc_err(sa, "cannot set filter (rc = %u)", rc); 960 /* Rollback the old address */ 961 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 962 (void)sfc_set_rx_mode(sa); 963 } 964 } else { 965 sfc_warn(sa, "cannot set MAC address with filters installed"); 966 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 967 sfc_warn(sa, "(some traffic may be dropped)"); 968 969 /* 970 * Since setting MAC address with filters installed is not 971 * allowed on the adapter, the new MAC address will be set 972 * by means of adapter restart. sfc_start() shall retrieve 973 * the new address from the device private data and set it. 974 */ 975 sfc_stop(sa); 976 rc = sfc_start(sa); 977 if (rc != 0) 978 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 979 } 980 981 unlock: 982 if (rc != 0) 983 ether_addr_copy(old_addr, &port->default_mac_addr); 984 985 sfc_adapter_unlock(sa); 986 987 SFC_ASSERT(rc >= 0); 988 return -rc; 989 } 990 991 992 static int 993 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 994 uint32_t nb_mc_addr) 995 { 996 struct sfc_adapter *sa = dev->data->dev_private; 997 struct sfc_port *port = &sa->port; 998 uint8_t *mc_addrs = port->mcast_addrs; 999 int rc; 1000 unsigned int i; 1001 1002 if (port->isolated) { 1003 sfc_err(sa, "isolated mode is active on the port"); 1004 sfc_err(sa, "will not set multicast address list"); 1005 return -ENOTSUP; 1006 } 1007 1008 if (mc_addrs == NULL) 1009 return -ENOBUFS; 1010 1011 if (nb_mc_addr > port->max_mcast_addrs) { 1012 sfc_err(sa, "too many multicast addresses: %u > %u", 1013 nb_mc_addr, port->max_mcast_addrs); 1014 return -EINVAL; 1015 } 1016 1017 for (i = 0; i < nb_mc_addr; ++i) { 1018 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1019 EFX_MAC_ADDR_LEN); 1020 mc_addrs += EFX_MAC_ADDR_LEN; 1021 } 1022 1023 port->nb_mcast_addrs = nb_mc_addr; 1024 1025 if (sa->state != SFC_ADAPTER_STARTED) 1026 return 0; 1027 1028 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1029 port->nb_mcast_addrs); 1030 if (rc != 0) 1031 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1032 1033 SFC_ASSERT(rc >= 0); 1034 return -rc; 1035 } 1036 1037 /* 1038 * The function is used by the secondary process as well. It must not 1039 * use any process-local pointers from the adapter data. 1040 */ 1041 static void 1042 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1043 struct rte_eth_rxq_info *qinfo) 1044 { 1045 struct sfc_adapter *sa = dev->data->dev_private; 1046 struct sfc_rxq_info *rxq_info; 1047 struct sfc_rxq *rxq; 1048 1049 sfc_adapter_lock(sa); 1050 1051 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1052 1053 rxq_info = &sa->rxq_info[rx_queue_id]; 1054 rxq = rxq_info->rxq; 1055 SFC_ASSERT(rxq != NULL); 1056 1057 qinfo->mp = rxq->refill_mb_pool; 1058 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1059 qinfo->conf.rx_drop_en = 1; 1060 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1061 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1062 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1063 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1064 qinfo->scattered_rx = 1; 1065 } 1066 qinfo->nb_desc = rxq_info->entries; 1067 1068 sfc_adapter_unlock(sa); 1069 } 1070 1071 /* 1072 * The function is used by the secondary process as well. It must not 1073 * use any process-local pointers from the adapter data. 1074 */ 1075 static void 1076 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1077 struct rte_eth_txq_info *qinfo) 1078 { 1079 struct sfc_adapter *sa = dev->data->dev_private; 1080 struct sfc_txq_info *txq_info; 1081 1082 sfc_adapter_lock(sa); 1083 1084 SFC_ASSERT(tx_queue_id < sa->txq_count); 1085 1086 txq_info = &sa->txq_info[tx_queue_id]; 1087 SFC_ASSERT(txq_info->txq != NULL); 1088 1089 memset(qinfo, 0, sizeof(*qinfo)); 1090 1091 qinfo->conf.offloads = txq_info->txq->offloads; 1092 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1093 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1094 qinfo->nb_desc = txq_info->entries; 1095 1096 sfc_adapter_unlock(sa); 1097 } 1098 1099 static uint32_t 1100 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1101 { 1102 struct sfc_adapter *sa = dev->data->dev_private; 1103 1104 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1105 1106 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1107 } 1108 1109 static int 1110 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1111 { 1112 struct sfc_dp_rxq *dp_rxq = queue; 1113 1114 return sfc_rx_qdesc_done(dp_rxq, offset); 1115 } 1116 1117 static int 1118 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1119 { 1120 struct sfc_dp_rxq *dp_rxq = queue; 1121 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1122 1123 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1124 } 1125 1126 static int 1127 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1128 { 1129 struct sfc_dp_txq *dp_txq = queue; 1130 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1131 1132 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1133 } 1134 1135 static int 1136 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1137 { 1138 struct sfc_adapter *sa = dev->data->dev_private; 1139 int rc; 1140 1141 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1142 1143 sfc_adapter_lock(sa); 1144 1145 rc = EINVAL; 1146 if (sa->state != SFC_ADAPTER_STARTED) 1147 goto fail_not_started; 1148 1149 if (sa->rxq_info[rx_queue_id].rxq == NULL) 1150 goto fail_not_setup; 1151 1152 rc = sfc_rx_qstart(sa, rx_queue_id); 1153 if (rc != 0) 1154 goto fail_rx_qstart; 1155 1156 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1157 1158 sfc_adapter_unlock(sa); 1159 1160 return 0; 1161 1162 fail_rx_qstart: 1163 fail_not_setup: 1164 fail_not_started: 1165 sfc_adapter_unlock(sa); 1166 SFC_ASSERT(rc > 0); 1167 return -rc; 1168 } 1169 1170 static int 1171 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1172 { 1173 struct sfc_adapter *sa = dev->data->dev_private; 1174 1175 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1176 1177 sfc_adapter_lock(sa); 1178 sfc_rx_qstop(sa, rx_queue_id); 1179 1180 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1181 1182 sfc_adapter_unlock(sa); 1183 1184 return 0; 1185 } 1186 1187 static int 1188 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1189 { 1190 struct sfc_adapter *sa = dev->data->dev_private; 1191 int rc; 1192 1193 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1194 1195 sfc_adapter_lock(sa); 1196 1197 rc = EINVAL; 1198 if (sa->state != SFC_ADAPTER_STARTED) 1199 goto fail_not_started; 1200 1201 if (sa->txq_info[tx_queue_id].txq == NULL) 1202 goto fail_not_setup; 1203 1204 rc = sfc_tx_qstart(sa, tx_queue_id); 1205 if (rc != 0) 1206 goto fail_tx_qstart; 1207 1208 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1209 1210 sfc_adapter_unlock(sa); 1211 return 0; 1212 1213 fail_tx_qstart: 1214 1215 fail_not_setup: 1216 fail_not_started: 1217 sfc_adapter_unlock(sa); 1218 SFC_ASSERT(rc > 0); 1219 return -rc; 1220 } 1221 1222 static int 1223 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1224 { 1225 struct sfc_adapter *sa = dev->data->dev_private; 1226 1227 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1228 1229 sfc_adapter_lock(sa); 1230 1231 sfc_tx_qstop(sa, tx_queue_id); 1232 1233 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1234 1235 sfc_adapter_unlock(sa); 1236 return 0; 1237 } 1238 1239 static efx_tunnel_protocol_t 1240 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1241 { 1242 switch (rte_type) { 1243 case RTE_TUNNEL_TYPE_VXLAN: 1244 return EFX_TUNNEL_PROTOCOL_VXLAN; 1245 case RTE_TUNNEL_TYPE_GENEVE: 1246 return EFX_TUNNEL_PROTOCOL_GENEVE; 1247 default: 1248 return EFX_TUNNEL_NPROTOS; 1249 } 1250 } 1251 1252 enum sfc_udp_tunnel_op_e { 1253 SFC_UDP_TUNNEL_ADD_PORT, 1254 SFC_UDP_TUNNEL_DEL_PORT, 1255 }; 1256 1257 static int 1258 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1259 struct rte_eth_udp_tunnel *tunnel_udp, 1260 enum sfc_udp_tunnel_op_e op) 1261 { 1262 struct sfc_adapter *sa = dev->data->dev_private; 1263 efx_tunnel_protocol_t tunnel_proto; 1264 int rc; 1265 1266 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1267 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1268 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1269 tunnel_udp->udp_port, tunnel_udp->prot_type); 1270 1271 tunnel_proto = 1272 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1273 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1274 rc = ENOTSUP; 1275 goto fail_bad_proto; 1276 } 1277 1278 sfc_adapter_lock(sa); 1279 1280 switch (op) { 1281 case SFC_UDP_TUNNEL_ADD_PORT: 1282 rc = efx_tunnel_config_udp_add(sa->nic, 1283 tunnel_udp->udp_port, 1284 tunnel_proto); 1285 break; 1286 case SFC_UDP_TUNNEL_DEL_PORT: 1287 rc = efx_tunnel_config_udp_remove(sa->nic, 1288 tunnel_udp->udp_port, 1289 tunnel_proto); 1290 break; 1291 default: 1292 rc = EINVAL; 1293 goto fail_bad_op; 1294 } 1295 1296 if (rc != 0) 1297 goto fail_op; 1298 1299 if (sa->state == SFC_ADAPTER_STARTED) { 1300 rc = efx_tunnel_reconfigure(sa->nic); 1301 if (rc == EAGAIN) { 1302 /* 1303 * Configuration is accepted by FW and MC reboot 1304 * is initiated to apply the changes. MC reboot 1305 * will be handled in a usual way (MC reboot 1306 * event on management event queue and adapter 1307 * restart). 1308 */ 1309 rc = 0; 1310 } else if (rc != 0) { 1311 goto fail_reconfigure; 1312 } 1313 } 1314 1315 sfc_adapter_unlock(sa); 1316 return 0; 1317 1318 fail_reconfigure: 1319 /* Remove/restore entry since the change makes the trouble */ 1320 switch (op) { 1321 case SFC_UDP_TUNNEL_ADD_PORT: 1322 (void)efx_tunnel_config_udp_remove(sa->nic, 1323 tunnel_udp->udp_port, 1324 tunnel_proto); 1325 break; 1326 case SFC_UDP_TUNNEL_DEL_PORT: 1327 (void)efx_tunnel_config_udp_add(sa->nic, 1328 tunnel_udp->udp_port, 1329 tunnel_proto); 1330 break; 1331 } 1332 1333 fail_op: 1334 fail_bad_op: 1335 sfc_adapter_unlock(sa); 1336 1337 fail_bad_proto: 1338 SFC_ASSERT(rc > 0); 1339 return -rc; 1340 } 1341 1342 static int 1343 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1344 struct rte_eth_udp_tunnel *tunnel_udp) 1345 { 1346 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1347 } 1348 1349 static int 1350 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1351 struct rte_eth_udp_tunnel *tunnel_udp) 1352 { 1353 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1354 } 1355 1356 static int 1357 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1358 struct rte_eth_rss_conf *rss_conf) 1359 { 1360 struct sfc_adapter *sa = dev->data->dev_private; 1361 struct sfc_rss *rss = &sa->rss; 1362 struct sfc_port *port = &sa->port; 1363 1364 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1365 return -ENOTSUP; 1366 1367 if (rss->channels == 0) 1368 return -EINVAL; 1369 1370 sfc_adapter_lock(sa); 1371 1372 /* 1373 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1374 * hence, conversion is done here to derive a correct set of ETH_RSS 1375 * flags which corresponds to the active EFX configuration stored 1376 * locally in 'sfc_adapter' and kept up-to-date 1377 */ 1378 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1379 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1380 if (rss_conf->rss_key != NULL) 1381 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1382 1383 sfc_adapter_unlock(sa); 1384 1385 return 0; 1386 } 1387 1388 static int 1389 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1390 struct rte_eth_rss_conf *rss_conf) 1391 { 1392 struct sfc_adapter *sa = dev->data->dev_private; 1393 struct sfc_rss *rss = &sa->rss; 1394 struct sfc_port *port = &sa->port; 1395 unsigned int efx_hash_types; 1396 int rc = 0; 1397 1398 if (port->isolated) 1399 return -ENOTSUP; 1400 1401 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1402 sfc_err(sa, "RSS is not available"); 1403 return -ENOTSUP; 1404 } 1405 1406 if (rss->channels == 0) { 1407 sfc_err(sa, "RSS is not configured"); 1408 return -EINVAL; 1409 } 1410 1411 if ((rss_conf->rss_key != NULL) && 1412 (rss_conf->rss_key_len != sizeof(rss->key))) { 1413 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1414 sizeof(rss->key)); 1415 return -EINVAL; 1416 } 1417 1418 sfc_adapter_lock(sa); 1419 1420 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1421 if (rc != 0) 1422 goto fail_rx_hf_rte_to_efx; 1423 1424 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1425 rss->hash_alg, efx_hash_types, B_TRUE); 1426 if (rc != 0) 1427 goto fail_scale_mode_set; 1428 1429 if (rss_conf->rss_key != NULL) { 1430 if (sa->state == SFC_ADAPTER_STARTED) { 1431 rc = efx_rx_scale_key_set(sa->nic, 1432 EFX_RSS_CONTEXT_DEFAULT, 1433 rss_conf->rss_key, 1434 sizeof(rss->key)); 1435 if (rc != 0) 1436 goto fail_scale_key_set; 1437 } 1438 1439 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1440 } 1441 1442 rss->hash_types = efx_hash_types; 1443 1444 sfc_adapter_unlock(sa); 1445 1446 return 0; 1447 1448 fail_scale_key_set: 1449 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1450 EFX_RX_HASHALG_TOEPLITZ, 1451 rss->hash_types, B_TRUE) != 0) 1452 sfc_err(sa, "failed to restore RSS mode"); 1453 1454 fail_scale_mode_set: 1455 fail_rx_hf_rte_to_efx: 1456 sfc_adapter_unlock(sa); 1457 return -rc; 1458 } 1459 1460 static int 1461 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1462 struct rte_eth_rss_reta_entry64 *reta_conf, 1463 uint16_t reta_size) 1464 { 1465 struct sfc_adapter *sa = dev->data->dev_private; 1466 struct sfc_rss *rss = &sa->rss; 1467 struct sfc_port *port = &sa->port; 1468 int entry; 1469 1470 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1471 return -ENOTSUP; 1472 1473 if (rss->channels == 0) 1474 return -EINVAL; 1475 1476 if (reta_size != EFX_RSS_TBL_SIZE) 1477 return -EINVAL; 1478 1479 sfc_adapter_lock(sa); 1480 1481 for (entry = 0; entry < reta_size; entry++) { 1482 int grp = entry / RTE_RETA_GROUP_SIZE; 1483 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1484 1485 if ((reta_conf[grp].mask >> grp_idx) & 1) 1486 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1487 } 1488 1489 sfc_adapter_unlock(sa); 1490 1491 return 0; 1492 } 1493 1494 static int 1495 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1496 struct rte_eth_rss_reta_entry64 *reta_conf, 1497 uint16_t reta_size) 1498 { 1499 struct sfc_adapter *sa = dev->data->dev_private; 1500 struct sfc_rss *rss = &sa->rss; 1501 struct sfc_port *port = &sa->port; 1502 unsigned int *rss_tbl_new; 1503 uint16_t entry; 1504 int rc = 0; 1505 1506 1507 if (port->isolated) 1508 return -ENOTSUP; 1509 1510 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1511 sfc_err(sa, "RSS is not available"); 1512 return -ENOTSUP; 1513 } 1514 1515 if (rss->channels == 0) { 1516 sfc_err(sa, "RSS is not configured"); 1517 return -EINVAL; 1518 } 1519 1520 if (reta_size != EFX_RSS_TBL_SIZE) { 1521 sfc_err(sa, "RETA size is wrong (should be %u)", 1522 EFX_RSS_TBL_SIZE); 1523 return -EINVAL; 1524 } 1525 1526 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1527 if (rss_tbl_new == NULL) 1528 return -ENOMEM; 1529 1530 sfc_adapter_lock(sa); 1531 1532 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1533 1534 for (entry = 0; entry < reta_size; entry++) { 1535 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1536 struct rte_eth_rss_reta_entry64 *grp; 1537 1538 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1539 1540 if (grp->mask & (1ull << grp_idx)) { 1541 if (grp->reta[grp_idx] >= rss->channels) { 1542 rc = EINVAL; 1543 goto bad_reta_entry; 1544 } 1545 rss_tbl_new[entry] = grp->reta[grp_idx]; 1546 } 1547 } 1548 1549 if (sa->state == SFC_ADAPTER_STARTED) { 1550 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1551 rss_tbl_new, EFX_RSS_TBL_SIZE); 1552 if (rc != 0) 1553 goto fail_scale_tbl_set; 1554 } 1555 1556 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1557 1558 fail_scale_tbl_set: 1559 bad_reta_entry: 1560 sfc_adapter_unlock(sa); 1561 1562 rte_free(rss_tbl_new); 1563 1564 SFC_ASSERT(rc >= 0); 1565 return -rc; 1566 } 1567 1568 static int 1569 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1570 enum rte_filter_op filter_op, 1571 void *arg) 1572 { 1573 struct sfc_adapter *sa = dev->data->dev_private; 1574 int rc = ENOTSUP; 1575 1576 sfc_log_init(sa, "entry"); 1577 1578 switch (filter_type) { 1579 case RTE_ETH_FILTER_NONE: 1580 sfc_err(sa, "Global filters configuration not supported"); 1581 break; 1582 case RTE_ETH_FILTER_MACVLAN: 1583 sfc_err(sa, "MACVLAN filters not supported"); 1584 break; 1585 case RTE_ETH_FILTER_ETHERTYPE: 1586 sfc_err(sa, "EtherType filters not supported"); 1587 break; 1588 case RTE_ETH_FILTER_FLEXIBLE: 1589 sfc_err(sa, "Flexible filters not supported"); 1590 break; 1591 case RTE_ETH_FILTER_SYN: 1592 sfc_err(sa, "SYN filters not supported"); 1593 break; 1594 case RTE_ETH_FILTER_NTUPLE: 1595 sfc_err(sa, "NTUPLE filters not supported"); 1596 break; 1597 case RTE_ETH_FILTER_TUNNEL: 1598 sfc_err(sa, "Tunnel filters not supported"); 1599 break; 1600 case RTE_ETH_FILTER_FDIR: 1601 sfc_err(sa, "Flow Director filters not supported"); 1602 break; 1603 case RTE_ETH_FILTER_HASH: 1604 sfc_err(sa, "Hash filters not supported"); 1605 break; 1606 case RTE_ETH_FILTER_GENERIC: 1607 if (filter_op != RTE_ETH_FILTER_GET) { 1608 rc = EINVAL; 1609 } else { 1610 *(const void **)arg = &sfc_flow_ops; 1611 rc = 0; 1612 } 1613 break; 1614 default: 1615 sfc_err(sa, "Unknown filter type %u", filter_type); 1616 break; 1617 } 1618 1619 sfc_log_init(sa, "exit: %d", -rc); 1620 SFC_ASSERT(rc >= 0); 1621 return -rc; 1622 } 1623 1624 static int 1625 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1626 { 1627 struct sfc_adapter *sa = dev->data->dev_private; 1628 1629 /* 1630 * If Rx datapath does not provide callback to check mempool, 1631 * all pools are supported. 1632 */ 1633 if (sa->dp_rx->pool_ops_supported == NULL) 1634 return 1; 1635 1636 return sa->dp_rx->pool_ops_supported(pool); 1637 } 1638 1639 static const struct eth_dev_ops sfc_eth_dev_ops = { 1640 .dev_configure = sfc_dev_configure, 1641 .dev_start = sfc_dev_start, 1642 .dev_stop = sfc_dev_stop, 1643 .dev_set_link_up = sfc_dev_set_link_up, 1644 .dev_set_link_down = sfc_dev_set_link_down, 1645 .dev_close = sfc_dev_close, 1646 .promiscuous_enable = sfc_dev_promisc_enable, 1647 .promiscuous_disable = sfc_dev_promisc_disable, 1648 .allmulticast_enable = sfc_dev_allmulti_enable, 1649 .allmulticast_disable = sfc_dev_allmulti_disable, 1650 .link_update = sfc_dev_link_update, 1651 .stats_get = sfc_stats_get, 1652 .stats_reset = sfc_stats_reset, 1653 .xstats_get = sfc_xstats_get, 1654 .xstats_reset = sfc_stats_reset, 1655 .xstats_get_names = sfc_xstats_get_names, 1656 .dev_infos_get = sfc_dev_infos_get, 1657 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1658 .mtu_set = sfc_dev_set_mtu, 1659 .rx_queue_start = sfc_rx_queue_start, 1660 .rx_queue_stop = sfc_rx_queue_stop, 1661 .tx_queue_start = sfc_tx_queue_start, 1662 .tx_queue_stop = sfc_tx_queue_stop, 1663 .rx_queue_setup = sfc_rx_queue_setup, 1664 .rx_queue_release = sfc_rx_queue_release, 1665 .rx_queue_count = sfc_rx_queue_count, 1666 .rx_descriptor_done = sfc_rx_descriptor_done, 1667 .rx_descriptor_status = sfc_rx_descriptor_status, 1668 .tx_descriptor_status = sfc_tx_descriptor_status, 1669 .tx_queue_setup = sfc_tx_queue_setup, 1670 .tx_queue_release = sfc_tx_queue_release, 1671 .flow_ctrl_get = sfc_flow_ctrl_get, 1672 .flow_ctrl_set = sfc_flow_ctrl_set, 1673 .mac_addr_set = sfc_mac_addr_set, 1674 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1675 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1676 .reta_update = sfc_dev_rss_reta_update, 1677 .reta_query = sfc_dev_rss_reta_query, 1678 .rss_hash_update = sfc_dev_rss_hash_update, 1679 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1680 .filter_ctrl = sfc_dev_filter_ctrl, 1681 .set_mc_addr_list = sfc_set_mc_addr_list, 1682 .rxq_info_get = sfc_rx_queue_info_get, 1683 .txq_info_get = sfc_tx_queue_info_get, 1684 .fw_version_get = sfc_fw_version_get, 1685 .xstats_get_by_id = sfc_xstats_get_by_id, 1686 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1687 .pool_ops_supported = sfc_pool_ops_supported, 1688 }; 1689 1690 /** 1691 * Duplicate a string in potentially shared memory required for 1692 * multi-process support. 1693 * 1694 * strdup() allocates from process-local heap/memory. 1695 */ 1696 static char * 1697 sfc_strdup(const char *str) 1698 { 1699 size_t size; 1700 char *copy; 1701 1702 if (str == NULL) 1703 return NULL; 1704 1705 size = strlen(str) + 1; 1706 copy = rte_malloc(__func__, size, 0); 1707 if (copy != NULL) 1708 rte_memcpy(copy, str, size); 1709 1710 return copy; 1711 } 1712 1713 static int 1714 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1715 { 1716 struct sfc_adapter *sa = dev->data->dev_private; 1717 const efx_nic_cfg_t *encp; 1718 unsigned int avail_caps = 0; 1719 const char *rx_name = NULL; 1720 const char *tx_name = NULL; 1721 int rc; 1722 1723 switch (sa->family) { 1724 case EFX_FAMILY_HUNTINGTON: 1725 case EFX_FAMILY_MEDFORD: 1726 case EFX_FAMILY_MEDFORD2: 1727 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1728 break; 1729 default: 1730 break; 1731 } 1732 1733 encp = efx_nic_cfg_get(sa->nic); 1734 if (encp->enc_rx_es_super_buffer_supported) 1735 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1736 1737 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1738 sfc_kvarg_string_handler, &rx_name); 1739 if (rc != 0) 1740 goto fail_kvarg_rx_datapath; 1741 1742 if (rx_name != NULL) { 1743 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1744 if (sa->dp_rx == NULL) { 1745 sfc_err(sa, "Rx datapath %s not found", rx_name); 1746 rc = ENOENT; 1747 goto fail_dp_rx; 1748 } 1749 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1750 sfc_err(sa, 1751 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1752 rx_name); 1753 rc = EINVAL; 1754 goto fail_dp_rx_caps; 1755 } 1756 } else { 1757 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1758 if (sa->dp_rx == NULL) { 1759 sfc_err(sa, "Rx datapath by caps %#x not found", 1760 avail_caps); 1761 rc = ENOENT; 1762 goto fail_dp_rx; 1763 } 1764 } 1765 1766 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1767 if (sa->dp_rx_name == NULL) { 1768 rc = ENOMEM; 1769 goto fail_dp_rx_name; 1770 } 1771 1772 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1773 1774 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1775 1776 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1777 sfc_kvarg_string_handler, &tx_name); 1778 if (rc != 0) 1779 goto fail_kvarg_tx_datapath; 1780 1781 if (tx_name != NULL) { 1782 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1783 if (sa->dp_tx == NULL) { 1784 sfc_err(sa, "Tx datapath %s not found", tx_name); 1785 rc = ENOENT; 1786 goto fail_dp_tx; 1787 } 1788 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1789 sfc_err(sa, 1790 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1791 tx_name); 1792 rc = EINVAL; 1793 goto fail_dp_tx_caps; 1794 } 1795 } else { 1796 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1797 if (sa->dp_tx == NULL) { 1798 sfc_err(sa, "Tx datapath by caps %#x not found", 1799 avail_caps); 1800 rc = ENOENT; 1801 goto fail_dp_tx; 1802 } 1803 } 1804 1805 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1806 if (sa->dp_tx_name == NULL) { 1807 rc = ENOMEM; 1808 goto fail_dp_tx_name; 1809 } 1810 1811 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1812 1813 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1814 1815 dev->dev_ops = &sfc_eth_dev_ops; 1816 1817 return 0; 1818 1819 fail_dp_tx_name: 1820 fail_dp_tx_caps: 1821 sa->dp_tx = NULL; 1822 1823 fail_dp_tx: 1824 fail_kvarg_tx_datapath: 1825 rte_free(sa->dp_rx_name); 1826 sa->dp_rx_name = NULL; 1827 1828 fail_dp_rx_name: 1829 fail_dp_rx_caps: 1830 sa->dp_rx = NULL; 1831 1832 fail_dp_rx: 1833 fail_kvarg_rx_datapath: 1834 return rc; 1835 } 1836 1837 static void 1838 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1839 { 1840 struct sfc_adapter *sa = dev->data->dev_private; 1841 1842 dev->dev_ops = NULL; 1843 dev->rx_pkt_burst = NULL; 1844 dev->tx_pkt_burst = NULL; 1845 1846 rte_free(sa->dp_tx_name); 1847 sa->dp_tx_name = NULL; 1848 sa->dp_tx = NULL; 1849 1850 rte_free(sa->dp_rx_name); 1851 sa->dp_rx_name = NULL; 1852 sa->dp_rx = NULL; 1853 } 1854 1855 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1856 .rxq_info_get = sfc_rx_queue_info_get, 1857 .txq_info_get = sfc_tx_queue_info_get, 1858 }; 1859 1860 static int 1861 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1862 { 1863 /* 1864 * Device private data has really many process-local pointers. 1865 * Below code should be extremely careful to use data located 1866 * in shared memory only. 1867 */ 1868 struct sfc_adapter *sa = dev->data->dev_private; 1869 const struct sfc_dp_rx *dp_rx; 1870 const struct sfc_dp_tx *dp_tx; 1871 int rc; 1872 1873 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1874 if (dp_rx == NULL) { 1875 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1876 rc = ENOENT; 1877 goto fail_dp_rx; 1878 } 1879 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1880 sfc_err(sa, "%s Rx datapath does not support multi-process", 1881 sa->dp_tx_name); 1882 rc = EINVAL; 1883 goto fail_dp_rx_multi_process; 1884 } 1885 1886 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1887 if (dp_tx == NULL) { 1888 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1889 rc = ENOENT; 1890 goto fail_dp_tx; 1891 } 1892 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1893 sfc_err(sa, "%s Tx datapath does not support multi-process", 1894 sa->dp_tx_name); 1895 rc = EINVAL; 1896 goto fail_dp_tx_multi_process; 1897 } 1898 1899 dev->rx_pkt_burst = dp_rx->pkt_burst; 1900 dev->tx_pkt_burst = dp_tx->pkt_burst; 1901 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1902 1903 return 0; 1904 1905 fail_dp_tx_multi_process: 1906 fail_dp_tx: 1907 fail_dp_rx_multi_process: 1908 fail_dp_rx: 1909 return rc; 1910 } 1911 1912 static void 1913 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1914 { 1915 dev->dev_ops = NULL; 1916 dev->tx_pkt_burst = NULL; 1917 dev->rx_pkt_burst = NULL; 1918 } 1919 1920 static void 1921 sfc_register_dp(void) 1922 { 1923 /* Register once */ 1924 if (TAILQ_EMPTY(&sfc_dp_head)) { 1925 /* Prefer EF10 datapath */ 1926 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 1927 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1928 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1929 1930 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1931 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1932 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1933 } 1934 } 1935 1936 static int 1937 sfc_eth_dev_init(struct rte_eth_dev *dev) 1938 { 1939 struct sfc_adapter *sa = dev->data->dev_private; 1940 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1941 int rc; 1942 const efx_nic_cfg_t *encp; 1943 const struct ether_addr *from; 1944 1945 sfc_register_dp(); 1946 1947 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1948 return -sfc_eth_dev_secondary_set_ops(dev); 1949 1950 /* Required for logging */ 1951 sa->pci_addr = pci_dev->addr; 1952 sa->port_id = dev->data->port_id; 1953 1954 sa->eth_dev = dev; 1955 1956 /* Copy PCI device info to the dev->data */ 1957 rte_eth_copy_pci_info(dev, pci_dev); 1958 1959 sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR, 1960 RTE_LOG_NOTICE); 1961 1962 rc = sfc_kvargs_parse(sa); 1963 if (rc != 0) 1964 goto fail_kvargs_parse; 1965 1966 sfc_log_init(sa, "entry"); 1967 1968 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1969 if (dev->data->mac_addrs == NULL) { 1970 rc = ENOMEM; 1971 goto fail_mac_addrs; 1972 } 1973 1974 sfc_adapter_lock_init(sa); 1975 sfc_adapter_lock(sa); 1976 1977 sfc_log_init(sa, "probing"); 1978 rc = sfc_probe(sa); 1979 if (rc != 0) 1980 goto fail_probe; 1981 1982 sfc_log_init(sa, "set device ops"); 1983 rc = sfc_eth_dev_set_ops(dev); 1984 if (rc != 0) 1985 goto fail_set_ops; 1986 1987 sfc_log_init(sa, "attaching"); 1988 rc = sfc_attach(sa); 1989 if (rc != 0) 1990 goto fail_attach; 1991 1992 encp = efx_nic_cfg_get(sa->nic); 1993 1994 /* 1995 * The arguments are really reverse order in comparison to 1996 * Linux kernel. Copy from NIC config to Ethernet device data. 1997 */ 1998 from = (const struct ether_addr *)(encp->enc_mac_addr); 1999 ether_addr_copy(from, &dev->data->mac_addrs[0]); 2000 2001 sfc_adapter_unlock(sa); 2002 2003 sfc_log_init(sa, "done"); 2004 return 0; 2005 2006 fail_attach: 2007 sfc_eth_dev_clear_ops(dev); 2008 2009 fail_set_ops: 2010 sfc_unprobe(sa); 2011 2012 fail_probe: 2013 sfc_adapter_unlock(sa); 2014 sfc_adapter_lock_fini(sa); 2015 rte_free(dev->data->mac_addrs); 2016 dev->data->mac_addrs = NULL; 2017 2018 fail_mac_addrs: 2019 sfc_kvargs_cleanup(sa); 2020 2021 fail_kvargs_parse: 2022 sfc_log_init(sa, "failed %d", rc); 2023 SFC_ASSERT(rc > 0); 2024 return -rc; 2025 } 2026 2027 static int 2028 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2029 { 2030 struct sfc_adapter *sa; 2031 2032 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2033 sfc_eth_dev_secondary_clear_ops(dev); 2034 return 0; 2035 } 2036 2037 sa = dev->data->dev_private; 2038 sfc_log_init(sa, "entry"); 2039 2040 sfc_adapter_lock(sa); 2041 2042 sfc_eth_dev_clear_ops(dev); 2043 2044 sfc_detach(sa); 2045 sfc_unprobe(sa); 2046 2047 rte_free(dev->data->mac_addrs); 2048 dev->data->mac_addrs = NULL; 2049 2050 sfc_kvargs_cleanup(sa); 2051 2052 sfc_adapter_unlock(sa); 2053 sfc_adapter_lock_fini(sa); 2054 2055 sfc_log_init(sa, "done"); 2056 2057 /* Required for logging, so cleanup last */ 2058 sa->eth_dev = NULL; 2059 return 0; 2060 } 2061 2062 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2063 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2064 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2065 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2066 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2067 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2068 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2069 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2070 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2071 { .vendor_id = 0 /* sentinel */ } 2072 }; 2073 2074 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2075 struct rte_pci_device *pci_dev) 2076 { 2077 return rte_eth_dev_pci_generic_probe(pci_dev, 2078 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2079 } 2080 2081 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2082 { 2083 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2084 } 2085 2086 static struct rte_pci_driver sfc_efx_pmd = { 2087 .id_table = pci_id_sfc_efx_map, 2088 .drv_flags = 2089 RTE_PCI_DRV_INTR_LSC | 2090 RTE_PCI_DRV_NEED_MAPPING, 2091 .probe = sfc_eth_dev_pci_probe, 2092 .remove = sfc_eth_dev_pci_remove, 2093 }; 2094 2095 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2096 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2097 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2098 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2099 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2100 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2101 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2102 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2103 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2104 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2105 2106 RTE_INIT(sfc_driver_register_logtype) 2107 { 2108 int ret; 2109 2110 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2111 RTE_LOG_NOTICE); 2112 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2113 } 2114