xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 2f82d143fb318042f47a50694baa4507b51b7381)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 
17 #include "efx.h"
18 
19 #include "sfc.h"
20 #include "sfc_debug.h"
21 #include "sfc_log.h"
22 #include "sfc_kvargs.h"
23 #include "sfc_ev.h"
24 #include "sfc_rx.h"
25 #include "sfc_tx.h"
26 #include "sfc_flow.h"
27 #include "sfc_dp.h"
28 #include "sfc_dp_rx.h"
29 
30 uint32_t sfc_logtype_driver;
31 
32 static struct sfc_dp_list sfc_dp_head =
33 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
34 
35 static int
36 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
37 {
38 	struct sfc_adapter *sa = dev->data->dev_private;
39 	efx_nic_fw_info_t enfi;
40 	int ret;
41 	int rc;
42 
43 	/*
44 	 * Return value of the callback is likely supposed to be
45 	 * equal to or greater than 0, nevertheless, if an error
46 	 * occurs, it will be desirable to pass it to the caller
47 	 */
48 	if ((fw_version == NULL) || (fw_size == 0))
49 		return -EINVAL;
50 
51 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
52 	if (rc != 0)
53 		return -rc;
54 
55 	ret = snprintf(fw_version, fw_size,
56 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
57 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
58 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
59 	if (ret < 0)
60 		return ret;
61 
62 	if (enfi.enfi_dpcpu_fw_ids_valid) {
63 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
64 		int ret_extra;
65 
66 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
67 				     fw_size - dpcpu_fw_ids_offset,
68 				     " rx%" PRIx16 " tx%" PRIx16,
69 				     enfi.enfi_rx_dpcpu_fw_id,
70 				     enfi.enfi_tx_dpcpu_fw_id);
71 		if (ret_extra < 0)
72 			return ret_extra;
73 
74 		ret += ret_extra;
75 	}
76 
77 	if (fw_size < (size_t)(++ret))
78 		return ret;
79 	else
80 		return 0;
81 }
82 
83 static void
84 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
85 {
86 	struct sfc_adapter *sa = dev->data->dev_private;
87 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
88 	struct sfc_rss *rss = &sa->rss;
89 	uint64_t txq_offloads_def = 0;
90 
91 	sfc_log_init(sa, "entry");
92 
93 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
94 
95 	/* Autonegotiation may be disabled */
96 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
97 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
98 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
99 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
100 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
101 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX)
102 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
103 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
104 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
105 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX)
106 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
107 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX)
108 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
109 
110 	dev_info->max_rx_queues = sa->rxq_max;
111 	dev_info->max_tx_queues = sa->txq_max;
112 
113 	/* By default packets are dropped if no descriptors are available */
114 	dev_info->default_rxconf.rx_drop_en = 1;
115 
116 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
117 
118 	/*
119 	 * rx_offload_capa includes both device and queue offloads since
120 	 * the latter may be requested on a per device basis which makes
121 	 * sense when some offloads are needed to be set on all queues.
122 	 */
123 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
124 				    dev_info->rx_queue_offload_capa;
125 
126 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
127 
128 	/*
129 	 * tx_offload_capa includes both device and queue offloads since
130 	 * the latter may be requested on a per device basis which makes
131 	 * sense when some offloads are needed to be set on all queues.
132 	 */
133 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
134 				    dev_info->tx_queue_offload_capa;
135 
136 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
137 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
138 
139 	dev_info->default_txconf.offloads |= txq_offloads_def;
140 
141 	dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP;
142 	if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) ||
143 	    !encp->enc_hw_tx_insert_vlan_enabled)
144 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL;
145 
146 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG)
147 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS;
148 
149 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL)
150 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP;
151 
152 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT)
153 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT;
154 
155 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
156 		uint64_t rte_hf = 0;
157 		unsigned int i;
158 
159 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
160 			rte_hf |= rss->hf_map[i].rte;
161 
162 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
163 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
164 		dev_info->flow_type_rss_offloads = rte_hf;
165 	}
166 
167 	/* Initialize to hardware limits */
168 	dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
169 	dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
170 	/* The RXQ hardware requires that the descriptor count is a power
171 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
172 	 */
173 	dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
174 
175 	/* Initialize to hardware limits */
176 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
177 	dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
178 	/*
179 	 * The TXQ hardware requires that the descriptor count is a power
180 	 * of 2, but tx_desc_lim cannot properly describe that constraint
181 	 */
182 	dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
183 
184 	if (sa->dp_rx->get_dev_info != NULL)
185 		sa->dp_rx->get_dev_info(dev_info);
186 	if (sa->dp_tx->get_dev_info != NULL)
187 		sa->dp_tx->get_dev_info(dev_info);
188 }
189 
190 static const uint32_t *
191 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
192 {
193 	struct sfc_adapter *sa = dev->data->dev_private;
194 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
195 	uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported;
196 
197 	return sa->dp_rx->supported_ptypes_get(tunnel_encaps);
198 }
199 
200 static int
201 sfc_dev_configure(struct rte_eth_dev *dev)
202 {
203 	struct rte_eth_dev_data *dev_data = dev->data;
204 	struct sfc_adapter *sa = dev_data->dev_private;
205 	int rc;
206 
207 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
208 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
209 
210 	sfc_adapter_lock(sa);
211 	switch (sa->state) {
212 	case SFC_ADAPTER_CONFIGURED:
213 		/* FALLTHROUGH */
214 	case SFC_ADAPTER_INITIALIZED:
215 		rc = sfc_configure(sa);
216 		break;
217 	default:
218 		sfc_err(sa, "unexpected adapter state %u to configure",
219 			sa->state);
220 		rc = EINVAL;
221 		break;
222 	}
223 	sfc_adapter_unlock(sa);
224 
225 	sfc_log_init(sa, "done %d", rc);
226 	SFC_ASSERT(rc >= 0);
227 	return -rc;
228 }
229 
230 static int
231 sfc_dev_start(struct rte_eth_dev *dev)
232 {
233 	struct sfc_adapter *sa = dev->data->dev_private;
234 	int rc;
235 
236 	sfc_log_init(sa, "entry");
237 
238 	sfc_adapter_lock(sa);
239 	rc = sfc_start(sa);
240 	sfc_adapter_unlock(sa);
241 
242 	sfc_log_init(sa, "done %d", rc);
243 	SFC_ASSERT(rc >= 0);
244 	return -rc;
245 }
246 
247 static int
248 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
249 {
250 	struct sfc_adapter *sa = dev->data->dev_private;
251 	struct rte_eth_link current_link;
252 	int ret;
253 
254 	sfc_log_init(sa, "entry");
255 
256 	if (sa->state != SFC_ADAPTER_STARTED) {
257 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
258 	} else if (wait_to_complete) {
259 		efx_link_mode_t link_mode;
260 
261 		if (efx_port_poll(sa->nic, &link_mode) != 0)
262 			link_mode = EFX_LINK_UNKNOWN;
263 		sfc_port_link_mode_to_info(link_mode, &current_link);
264 
265 	} else {
266 		sfc_ev_mgmt_qpoll(sa);
267 		rte_eth_linkstatus_get(dev, &current_link);
268 	}
269 
270 	ret = rte_eth_linkstatus_set(dev, &current_link);
271 	if (ret == 0)
272 		sfc_notice(sa, "Link status is %s",
273 			   current_link.link_status ? "UP" : "DOWN");
274 
275 	return ret;
276 }
277 
278 static void
279 sfc_dev_stop(struct rte_eth_dev *dev)
280 {
281 	struct sfc_adapter *sa = dev->data->dev_private;
282 
283 	sfc_log_init(sa, "entry");
284 
285 	sfc_adapter_lock(sa);
286 	sfc_stop(sa);
287 	sfc_adapter_unlock(sa);
288 
289 	sfc_log_init(sa, "done");
290 }
291 
292 static int
293 sfc_dev_set_link_up(struct rte_eth_dev *dev)
294 {
295 	struct sfc_adapter *sa = dev->data->dev_private;
296 	int rc;
297 
298 	sfc_log_init(sa, "entry");
299 
300 	sfc_adapter_lock(sa);
301 	rc = sfc_start(sa);
302 	sfc_adapter_unlock(sa);
303 
304 	SFC_ASSERT(rc >= 0);
305 	return -rc;
306 }
307 
308 static int
309 sfc_dev_set_link_down(struct rte_eth_dev *dev)
310 {
311 	struct sfc_adapter *sa = dev->data->dev_private;
312 
313 	sfc_log_init(sa, "entry");
314 
315 	sfc_adapter_lock(sa);
316 	sfc_stop(sa);
317 	sfc_adapter_unlock(sa);
318 
319 	return 0;
320 }
321 
322 static void
323 sfc_dev_close(struct rte_eth_dev *dev)
324 {
325 	struct sfc_adapter *sa = dev->data->dev_private;
326 
327 	sfc_log_init(sa, "entry");
328 
329 	sfc_adapter_lock(sa);
330 	switch (sa->state) {
331 	case SFC_ADAPTER_STARTED:
332 		sfc_stop(sa);
333 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
334 		/* FALLTHROUGH */
335 	case SFC_ADAPTER_CONFIGURED:
336 		sfc_close(sa);
337 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
338 		/* FALLTHROUGH */
339 	case SFC_ADAPTER_INITIALIZED:
340 		break;
341 	default:
342 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
343 		break;
344 	}
345 	sfc_adapter_unlock(sa);
346 
347 	sfc_log_init(sa, "done");
348 }
349 
350 static void
351 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
352 		   boolean_t enabled)
353 {
354 	struct sfc_port *port;
355 	boolean_t *toggle;
356 	struct sfc_adapter *sa = dev->data->dev_private;
357 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
358 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
359 
360 	sfc_adapter_lock(sa);
361 
362 	port = &sa->port;
363 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
364 
365 	if (*toggle != enabled) {
366 		*toggle = enabled;
367 
368 		if (port->isolated) {
369 			sfc_warn(sa, "isolated mode is active on the port");
370 			sfc_warn(sa, "the change is to be applied on the next "
371 				     "start provided that isolated mode is "
372 				     "disabled prior the next start");
373 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
374 			   (sfc_set_rx_mode(sa) != 0)) {
375 			*toggle = !(enabled);
376 			sfc_warn(sa, "Failed to %s %s mode",
377 				 ((enabled) ? "enable" : "disable"), desc);
378 		}
379 	}
380 
381 	sfc_adapter_unlock(sa);
382 }
383 
384 static void
385 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
386 {
387 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
388 }
389 
390 static void
391 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
392 {
393 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
394 }
395 
396 static void
397 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
398 {
399 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
400 }
401 
402 static void
403 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
404 {
405 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
406 }
407 
408 static int
409 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
410 		   uint16_t nb_rx_desc, unsigned int socket_id,
411 		   const struct rte_eth_rxconf *rx_conf,
412 		   struct rte_mempool *mb_pool)
413 {
414 	struct sfc_adapter *sa = dev->data->dev_private;
415 	int rc;
416 
417 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
418 		     rx_queue_id, nb_rx_desc, socket_id);
419 
420 	sfc_adapter_lock(sa);
421 
422 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
423 			  rx_conf, mb_pool);
424 	if (rc != 0)
425 		goto fail_rx_qinit;
426 
427 	dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp;
428 
429 	sfc_adapter_unlock(sa);
430 
431 	return 0;
432 
433 fail_rx_qinit:
434 	sfc_adapter_unlock(sa);
435 	SFC_ASSERT(rc > 0);
436 	return -rc;
437 }
438 
439 static void
440 sfc_rx_queue_release(void *queue)
441 {
442 	struct sfc_dp_rxq *dp_rxq = queue;
443 	struct sfc_rxq *rxq;
444 	struct sfc_adapter *sa;
445 	unsigned int sw_index;
446 
447 	if (dp_rxq == NULL)
448 		return;
449 
450 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
451 	sa = rxq->evq->sa;
452 	sfc_adapter_lock(sa);
453 
454 	sw_index = sfc_rxq_sw_index(rxq);
455 
456 	sfc_log_init(sa, "RxQ=%u", sw_index);
457 
458 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
459 
460 	sfc_rx_qfini(sa, sw_index);
461 
462 	sfc_adapter_unlock(sa);
463 }
464 
465 static int
466 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
467 		   uint16_t nb_tx_desc, unsigned int socket_id,
468 		   const struct rte_eth_txconf *tx_conf)
469 {
470 	struct sfc_adapter *sa = dev->data->dev_private;
471 	int rc;
472 
473 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
474 		     tx_queue_id, nb_tx_desc, socket_id);
475 
476 	sfc_adapter_lock(sa);
477 
478 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
479 	if (rc != 0)
480 		goto fail_tx_qinit;
481 
482 	dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp;
483 
484 	sfc_adapter_unlock(sa);
485 	return 0;
486 
487 fail_tx_qinit:
488 	sfc_adapter_unlock(sa);
489 	SFC_ASSERT(rc > 0);
490 	return -rc;
491 }
492 
493 static void
494 sfc_tx_queue_release(void *queue)
495 {
496 	struct sfc_dp_txq *dp_txq = queue;
497 	struct sfc_txq *txq;
498 	unsigned int sw_index;
499 	struct sfc_adapter *sa;
500 
501 	if (dp_txq == NULL)
502 		return;
503 
504 	txq = sfc_txq_by_dp_txq(dp_txq);
505 	sw_index = sfc_txq_sw_index(txq);
506 
507 	SFC_ASSERT(txq->evq != NULL);
508 	sa = txq->evq->sa;
509 
510 	sfc_log_init(sa, "TxQ = %u", sw_index);
511 
512 	sfc_adapter_lock(sa);
513 
514 	SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues);
515 	sa->eth_dev->data->tx_queues[sw_index] = NULL;
516 
517 	sfc_tx_qfini(sa, sw_index);
518 
519 	sfc_adapter_unlock(sa);
520 }
521 
522 static int
523 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
524 {
525 	struct sfc_adapter *sa = dev->data->dev_private;
526 	struct sfc_port *port = &sa->port;
527 	uint64_t *mac_stats;
528 	int ret;
529 
530 	rte_spinlock_lock(&port->mac_stats_lock);
531 
532 	ret = sfc_port_update_mac_stats(sa);
533 	if (ret != 0)
534 		goto unlock;
535 
536 	mac_stats = port->mac_stats_buf;
537 
538 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
539 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
540 		stats->ipackets =
541 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
542 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
543 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
544 		stats->opackets =
545 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
546 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
547 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
548 		stats->ibytes =
549 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
550 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
551 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
552 		stats->obytes =
553 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
554 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
555 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
556 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW];
557 		stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
558 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
559 	} else {
560 		stats->ipackets = mac_stats[EFX_MAC_RX_PKTS];
561 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
562 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
563 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
564 		/*
565 		 * Take into account stats which are whenever supported
566 		 * on EF10. If some stat is not supported by current
567 		 * firmware variant or HW revision, it is guaranteed
568 		 * to be zero in mac_stats.
569 		 */
570 		stats->imissed =
571 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
572 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
573 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
574 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
575 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
576 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
577 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
578 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
579 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
580 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
581 		stats->ierrors =
582 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
583 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
584 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
585 		/* no oerrors counters supported on EF10 */
586 	}
587 
588 unlock:
589 	rte_spinlock_unlock(&port->mac_stats_lock);
590 	SFC_ASSERT(ret >= 0);
591 	return -ret;
592 }
593 
594 static void
595 sfc_stats_reset(struct rte_eth_dev *dev)
596 {
597 	struct sfc_adapter *sa = dev->data->dev_private;
598 	struct sfc_port *port = &sa->port;
599 	int rc;
600 
601 	if (sa->state != SFC_ADAPTER_STARTED) {
602 		/*
603 		 * The operation cannot be done if port is not started; it
604 		 * will be scheduled to be done during the next port start
605 		 */
606 		port->mac_stats_reset_pending = B_TRUE;
607 		return;
608 	}
609 
610 	rc = sfc_port_reset_mac_stats(sa);
611 	if (rc != 0)
612 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
613 }
614 
615 static int
616 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
617 	       unsigned int xstats_count)
618 {
619 	struct sfc_adapter *sa = dev->data->dev_private;
620 	struct sfc_port *port = &sa->port;
621 	uint64_t *mac_stats;
622 	int rc;
623 	unsigned int i;
624 	int nstats = 0;
625 
626 	rte_spinlock_lock(&port->mac_stats_lock);
627 
628 	rc = sfc_port_update_mac_stats(sa);
629 	if (rc != 0) {
630 		SFC_ASSERT(rc > 0);
631 		nstats = -rc;
632 		goto unlock;
633 	}
634 
635 	mac_stats = port->mac_stats_buf;
636 
637 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
638 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
639 			if (xstats != NULL && nstats < (int)xstats_count) {
640 				xstats[nstats].id = nstats;
641 				xstats[nstats].value = mac_stats[i];
642 			}
643 			nstats++;
644 		}
645 	}
646 
647 unlock:
648 	rte_spinlock_unlock(&port->mac_stats_lock);
649 
650 	return nstats;
651 }
652 
653 static int
654 sfc_xstats_get_names(struct rte_eth_dev *dev,
655 		     struct rte_eth_xstat_name *xstats_names,
656 		     unsigned int xstats_count)
657 {
658 	struct sfc_adapter *sa = dev->data->dev_private;
659 	struct sfc_port *port = &sa->port;
660 	unsigned int i;
661 	unsigned int nstats = 0;
662 
663 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
664 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
665 			if (xstats_names != NULL && nstats < xstats_count)
666 				strncpy(xstats_names[nstats].name,
667 					efx_mac_stat_name(sa->nic, i),
668 					sizeof(xstats_names[0].name));
669 			nstats++;
670 		}
671 	}
672 
673 	return nstats;
674 }
675 
676 static int
677 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
678 		     uint64_t *values, unsigned int n)
679 {
680 	struct sfc_adapter *sa = dev->data->dev_private;
681 	struct sfc_port *port = &sa->port;
682 	uint64_t *mac_stats;
683 	unsigned int nb_supported = 0;
684 	unsigned int nb_written = 0;
685 	unsigned int i;
686 	int ret;
687 	int rc;
688 
689 	if (unlikely(values == NULL) ||
690 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
691 		return port->mac_stats_nb_supported;
692 
693 	rte_spinlock_lock(&port->mac_stats_lock);
694 
695 	rc = sfc_port_update_mac_stats(sa);
696 	if (rc != 0) {
697 		SFC_ASSERT(rc > 0);
698 		ret = -rc;
699 		goto unlock;
700 	}
701 
702 	mac_stats = port->mac_stats_buf;
703 
704 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
705 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
706 			continue;
707 
708 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
709 			values[nb_written++] = mac_stats[i];
710 
711 		++nb_supported;
712 	}
713 
714 	ret = nb_written;
715 
716 unlock:
717 	rte_spinlock_unlock(&port->mac_stats_lock);
718 
719 	return ret;
720 }
721 
722 static int
723 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
724 			   struct rte_eth_xstat_name *xstats_names,
725 			   const uint64_t *ids, unsigned int size)
726 {
727 	struct sfc_adapter *sa = dev->data->dev_private;
728 	struct sfc_port *port = &sa->port;
729 	unsigned int nb_supported = 0;
730 	unsigned int nb_written = 0;
731 	unsigned int i;
732 
733 	if (unlikely(xstats_names == NULL) ||
734 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
735 		return port->mac_stats_nb_supported;
736 
737 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
738 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
739 			continue;
740 
741 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
742 			char *name = xstats_names[nb_written++].name;
743 
744 			strncpy(name, efx_mac_stat_name(sa->nic, i),
745 				sizeof(xstats_names[0].name));
746 			name[sizeof(xstats_names[0].name) - 1] = '\0';
747 		}
748 
749 		++nb_supported;
750 	}
751 
752 	return nb_written;
753 }
754 
755 static int
756 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
757 {
758 	struct sfc_adapter *sa = dev->data->dev_private;
759 	unsigned int wanted_fc, link_fc;
760 
761 	memset(fc_conf, 0, sizeof(*fc_conf));
762 
763 	sfc_adapter_lock(sa);
764 
765 	if (sa->state == SFC_ADAPTER_STARTED)
766 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
767 	else
768 		link_fc = sa->port.flow_ctrl;
769 
770 	switch (link_fc) {
771 	case 0:
772 		fc_conf->mode = RTE_FC_NONE;
773 		break;
774 	case EFX_FCNTL_RESPOND:
775 		fc_conf->mode = RTE_FC_RX_PAUSE;
776 		break;
777 	case EFX_FCNTL_GENERATE:
778 		fc_conf->mode = RTE_FC_TX_PAUSE;
779 		break;
780 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
781 		fc_conf->mode = RTE_FC_FULL;
782 		break;
783 	default:
784 		sfc_err(sa, "%s: unexpected flow control value %#x",
785 			__func__, link_fc);
786 	}
787 
788 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
789 
790 	sfc_adapter_unlock(sa);
791 
792 	return 0;
793 }
794 
795 static int
796 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
797 {
798 	struct sfc_adapter *sa = dev->data->dev_private;
799 	struct sfc_port *port = &sa->port;
800 	unsigned int fcntl;
801 	int rc;
802 
803 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
804 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
805 	    fc_conf->mac_ctrl_frame_fwd != 0) {
806 		sfc_err(sa, "unsupported flow control settings specified");
807 		rc = EINVAL;
808 		goto fail_inval;
809 	}
810 
811 	switch (fc_conf->mode) {
812 	case RTE_FC_NONE:
813 		fcntl = 0;
814 		break;
815 	case RTE_FC_RX_PAUSE:
816 		fcntl = EFX_FCNTL_RESPOND;
817 		break;
818 	case RTE_FC_TX_PAUSE:
819 		fcntl = EFX_FCNTL_GENERATE;
820 		break;
821 	case RTE_FC_FULL:
822 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
823 		break;
824 	default:
825 		rc = EINVAL;
826 		goto fail_inval;
827 	}
828 
829 	sfc_adapter_lock(sa);
830 
831 	if (sa->state == SFC_ADAPTER_STARTED) {
832 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
833 		if (rc != 0)
834 			goto fail_mac_fcntl_set;
835 	}
836 
837 	port->flow_ctrl = fcntl;
838 	port->flow_ctrl_autoneg = fc_conf->autoneg;
839 
840 	sfc_adapter_unlock(sa);
841 
842 	return 0;
843 
844 fail_mac_fcntl_set:
845 	sfc_adapter_unlock(sa);
846 fail_inval:
847 	SFC_ASSERT(rc > 0);
848 	return -rc;
849 }
850 
851 static int
852 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
853 {
854 	struct sfc_adapter *sa = dev->data->dev_private;
855 	size_t pdu = EFX_MAC_PDU(mtu);
856 	size_t old_pdu;
857 	int rc;
858 
859 	sfc_log_init(sa, "mtu=%u", mtu);
860 
861 	rc = EINVAL;
862 	if (pdu < EFX_MAC_PDU_MIN) {
863 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
864 			(unsigned int)mtu, (unsigned int)pdu,
865 			EFX_MAC_PDU_MIN);
866 		goto fail_inval;
867 	}
868 	if (pdu > EFX_MAC_PDU_MAX) {
869 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
870 			(unsigned int)mtu, (unsigned int)pdu,
871 			EFX_MAC_PDU_MAX);
872 		goto fail_inval;
873 	}
874 
875 	sfc_adapter_lock(sa);
876 
877 	if (pdu != sa->port.pdu) {
878 		if (sa->state == SFC_ADAPTER_STARTED) {
879 			sfc_stop(sa);
880 
881 			old_pdu = sa->port.pdu;
882 			sa->port.pdu = pdu;
883 			rc = sfc_start(sa);
884 			if (rc != 0)
885 				goto fail_start;
886 		} else {
887 			sa->port.pdu = pdu;
888 		}
889 	}
890 
891 	/*
892 	 * The driver does not use it, but other PMDs update jumbo_frame
893 	 * flag and max_rx_pkt_len when MTU is set.
894 	 */
895 	if (mtu > ETHER_MAX_LEN) {
896 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
897 
898 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
899 		rxmode->jumbo_frame = 1;
900 	}
901 
902 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
903 
904 	sfc_adapter_unlock(sa);
905 
906 	sfc_log_init(sa, "done");
907 	return 0;
908 
909 fail_start:
910 	sa->port.pdu = old_pdu;
911 	if (sfc_start(sa) != 0)
912 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
913 			"PDU max size - port is stopped",
914 			(unsigned int)pdu, (unsigned int)old_pdu);
915 	sfc_adapter_unlock(sa);
916 
917 fail_inval:
918 	sfc_log_init(sa, "failed %d", rc);
919 	SFC_ASSERT(rc > 0);
920 	return -rc;
921 }
922 static int
923 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
924 {
925 	struct sfc_adapter *sa = dev->data->dev_private;
926 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
927 	struct sfc_port *port = &sa->port;
928 	struct ether_addr *old_addr = &dev->data->mac_addrs[0];
929 	int rc = 0;
930 
931 	sfc_adapter_lock(sa);
932 
933 	/*
934 	 * Copy the address to the device private data so that
935 	 * it could be recalled in the case of adapter restart.
936 	 */
937 	ether_addr_copy(mac_addr, &port->default_mac_addr);
938 
939 	/*
940 	 * Neither of the two following checks can return
941 	 * an error. The new MAC address is preserved in
942 	 * the device private data and can be activated
943 	 * on the next port start if the user prevents
944 	 * isolated mode from being enabled.
945 	 */
946 	if (port->isolated) {
947 		sfc_warn(sa, "isolated mode is active on the port");
948 		sfc_warn(sa, "will not set MAC address");
949 		goto unlock;
950 	}
951 
952 	if (sa->state != SFC_ADAPTER_STARTED) {
953 		sfc_notice(sa, "the port is not started");
954 		sfc_notice(sa, "the new MAC address will be set on port start");
955 
956 		goto unlock;
957 	}
958 
959 	if (encp->enc_allow_set_mac_with_installed_filters) {
960 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
961 		if (rc != 0) {
962 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
963 			goto unlock;
964 		}
965 
966 		/*
967 		 * Changing the MAC address by means of MCDI request
968 		 * has no effect on received traffic, therefore
969 		 * we also need to update unicast filters
970 		 */
971 		rc = sfc_set_rx_mode(sa);
972 		if (rc != 0) {
973 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
974 			/* Rollback the old address */
975 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
976 			(void)sfc_set_rx_mode(sa);
977 		}
978 	} else {
979 		sfc_warn(sa, "cannot set MAC address with filters installed");
980 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
981 		sfc_warn(sa, "(some traffic may be dropped)");
982 
983 		/*
984 		 * Since setting MAC address with filters installed is not
985 		 * allowed on the adapter, the new MAC address will be set
986 		 * by means of adapter restart. sfc_start() shall retrieve
987 		 * the new address from the device private data and set it.
988 		 */
989 		sfc_stop(sa);
990 		rc = sfc_start(sa);
991 		if (rc != 0)
992 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
993 	}
994 
995 unlock:
996 	if (rc != 0)
997 		ether_addr_copy(old_addr, &port->default_mac_addr);
998 
999 	sfc_adapter_unlock(sa);
1000 
1001 	SFC_ASSERT(rc >= 0);
1002 	return -rc;
1003 }
1004 
1005 
1006 static int
1007 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
1008 		     uint32_t nb_mc_addr)
1009 {
1010 	struct sfc_adapter *sa = dev->data->dev_private;
1011 	struct sfc_port *port = &sa->port;
1012 	uint8_t *mc_addrs = port->mcast_addrs;
1013 	int rc;
1014 	unsigned int i;
1015 
1016 	if (port->isolated) {
1017 		sfc_err(sa, "isolated mode is active on the port");
1018 		sfc_err(sa, "will not set multicast address list");
1019 		return -ENOTSUP;
1020 	}
1021 
1022 	if (mc_addrs == NULL)
1023 		return -ENOBUFS;
1024 
1025 	if (nb_mc_addr > port->max_mcast_addrs) {
1026 		sfc_err(sa, "too many multicast addresses: %u > %u",
1027 			 nb_mc_addr, port->max_mcast_addrs);
1028 		return -EINVAL;
1029 	}
1030 
1031 	for (i = 0; i < nb_mc_addr; ++i) {
1032 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1033 				 EFX_MAC_ADDR_LEN);
1034 		mc_addrs += EFX_MAC_ADDR_LEN;
1035 	}
1036 
1037 	port->nb_mcast_addrs = nb_mc_addr;
1038 
1039 	if (sa->state != SFC_ADAPTER_STARTED)
1040 		return 0;
1041 
1042 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1043 					port->nb_mcast_addrs);
1044 	if (rc != 0)
1045 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1046 
1047 	SFC_ASSERT(rc > 0);
1048 	return -rc;
1049 }
1050 
1051 /*
1052  * The function is used by the secondary process as well. It must not
1053  * use any process-local pointers from the adapter data.
1054  */
1055 static void
1056 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1057 		      struct rte_eth_rxq_info *qinfo)
1058 {
1059 	struct sfc_adapter *sa = dev->data->dev_private;
1060 	struct sfc_rxq_info *rxq_info;
1061 	struct sfc_rxq *rxq;
1062 
1063 	sfc_adapter_lock(sa);
1064 
1065 	SFC_ASSERT(rx_queue_id < sa->rxq_count);
1066 
1067 	rxq_info = &sa->rxq_info[rx_queue_id];
1068 	rxq = rxq_info->rxq;
1069 	SFC_ASSERT(rxq != NULL);
1070 
1071 	qinfo->mp = rxq->refill_mb_pool;
1072 	qinfo->conf.rx_free_thresh = rxq->refill_threshold;
1073 	qinfo->conf.rx_drop_en = 1;
1074 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1075 	qinfo->conf.offloads = DEV_RX_OFFLOAD_IPV4_CKSUM |
1076 			       DEV_RX_OFFLOAD_UDP_CKSUM |
1077 			       DEV_RX_OFFLOAD_TCP_CKSUM;
1078 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1079 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1080 		qinfo->scattered_rx = 1;
1081 	}
1082 	qinfo->nb_desc = rxq_info->entries;
1083 
1084 	sfc_adapter_unlock(sa);
1085 }
1086 
1087 /*
1088  * The function is used by the secondary process as well. It must not
1089  * use any process-local pointers from the adapter data.
1090  */
1091 static void
1092 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1093 		      struct rte_eth_txq_info *qinfo)
1094 {
1095 	struct sfc_adapter *sa = dev->data->dev_private;
1096 	struct sfc_txq_info *txq_info;
1097 
1098 	sfc_adapter_lock(sa);
1099 
1100 	SFC_ASSERT(tx_queue_id < sa->txq_count);
1101 
1102 	txq_info = &sa->txq_info[tx_queue_id];
1103 	SFC_ASSERT(txq_info->txq != NULL);
1104 
1105 	memset(qinfo, 0, sizeof(*qinfo));
1106 
1107 	qinfo->conf.txq_flags = txq_info->txq->flags;
1108 	qinfo->conf.offloads = txq_info->txq->offloads;
1109 	qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
1110 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1111 	qinfo->nb_desc = txq_info->entries;
1112 
1113 	sfc_adapter_unlock(sa);
1114 }
1115 
1116 static uint32_t
1117 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1118 {
1119 	struct sfc_adapter *sa = dev->data->dev_private;
1120 
1121 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1122 
1123 	return sfc_rx_qdesc_npending(sa, rx_queue_id);
1124 }
1125 
1126 static int
1127 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1128 {
1129 	struct sfc_dp_rxq *dp_rxq = queue;
1130 
1131 	return sfc_rx_qdesc_done(dp_rxq, offset);
1132 }
1133 
1134 static int
1135 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1136 {
1137 	struct sfc_dp_rxq *dp_rxq = queue;
1138 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
1139 
1140 	return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset);
1141 }
1142 
1143 static int
1144 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1145 {
1146 	struct sfc_dp_txq *dp_txq = queue;
1147 	struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
1148 
1149 	return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset);
1150 }
1151 
1152 static int
1153 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1154 {
1155 	struct sfc_adapter *sa = dev->data->dev_private;
1156 	int rc;
1157 
1158 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1159 
1160 	sfc_adapter_lock(sa);
1161 
1162 	rc = EINVAL;
1163 	if (sa->state != SFC_ADAPTER_STARTED)
1164 		goto fail_not_started;
1165 
1166 	rc = sfc_rx_qstart(sa, rx_queue_id);
1167 	if (rc != 0)
1168 		goto fail_rx_qstart;
1169 
1170 	sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1171 
1172 	sfc_adapter_unlock(sa);
1173 
1174 	return 0;
1175 
1176 fail_rx_qstart:
1177 fail_not_started:
1178 	sfc_adapter_unlock(sa);
1179 	SFC_ASSERT(rc > 0);
1180 	return -rc;
1181 }
1182 
1183 static int
1184 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1185 {
1186 	struct sfc_adapter *sa = dev->data->dev_private;
1187 
1188 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1189 
1190 	sfc_adapter_lock(sa);
1191 	sfc_rx_qstop(sa, rx_queue_id);
1192 
1193 	sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1194 
1195 	sfc_adapter_unlock(sa);
1196 
1197 	return 0;
1198 }
1199 
1200 static int
1201 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1202 {
1203 	struct sfc_adapter *sa = dev->data->dev_private;
1204 	int rc;
1205 
1206 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1207 
1208 	sfc_adapter_lock(sa);
1209 
1210 	rc = EINVAL;
1211 	if (sa->state != SFC_ADAPTER_STARTED)
1212 		goto fail_not_started;
1213 
1214 	rc = sfc_tx_qstart(sa, tx_queue_id);
1215 	if (rc != 0)
1216 		goto fail_tx_qstart;
1217 
1218 	sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
1219 
1220 	sfc_adapter_unlock(sa);
1221 	return 0;
1222 
1223 fail_tx_qstart:
1224 
1225 fail_not_started:
1226 	sfc_adapter_unlock(sa);
1227 	SFC_ASSERT(rc > 0);
1228 	return -rc;
1229 }
1230 
1231 static int
1232 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1233 {
1234 	struct sfc_adapter *sa = dev->data->dev_private;
1235 
1236 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1237 
1238 	sfc_adapter_lock(sa);
1239 
1240 	sfc_tx_qstop(sa, tx_queue_id);
1241 
1242 	sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1243 
1244 	sfc_adapter_unlock(sa);
1245 	return 0;
1246 }
1247 
1248 static efx_tunnel_protocol_t
1249 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1250 {
1251 	switch (rte_type) {
1252 	case RTE_TUNNEL_TYPE_VXLAN:
1253 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1254 	case RTE_TUNNEL_TYPE_GENEVE:
1255 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1256 	default:
1257 		return EFX_TUNNEL_NPROTOS;
1258 	}
1259 }
1260 
1261 enum sfc_udp_tunnel_op_e {
1262 	SFC_UDP_TUNNEL_ADD_PORT,
1263 	SFC_UDP_TUNNEL_DEL_PORT,
1264 };
1265 
1266 static int
1267 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1268 		      struct rte_eth_udp_tunnel *tunnel_udp,
1269 		      enum sfc_udp_tunnel_op_e op)
1270 {
1271 	struct sfc_adapter *sa = dev->data->dev_private;
1272 	efx_tunnel_protocol_t tunnel_proto;
1273 	int rc;
1274 
1275 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1276 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1277 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1278 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1279 
1280 	tunnel_proto =
1281 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1282 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1283 		rc = ENOTSUP;
1284 		goto fail_bad_proto;
1285 	}
1286 
1287 	sfc_adapter_lock(sa);
1288 
1289 	switch (op) {
1290 	case SFC_UDP_TUNNEL_ADD_PORT:
1291 		rc = efx_tunnel_config_udp_add(sa->nic,
1292 					       tunnel_udp->udp_port,
1293 					       tunnel_proto);
1294 		break;
1295 	case SFC_UDP_TUNNEL_DEL_PORT:
1296 		rc = efx_tunnel_config_udp_remove(sa->nic,
1297 						  tunnel_udp->udp_port,
1298 						  tunnel_proto);
1299 		break;
1300 	default:
1301 		rc = EINVAL;
1302 		goto fail_bad_op;
1303 	}
1304 
1305 	if (rc != 0)
1306 		goto fail_op;
1307 
1308 	if (sa->state == SFC_ADAPTER_STARTED) {
1309 		rc = efx_tunnel_reconfigure(sa->nic);
1310 		if (rc == EAGAIN) {
1311 			/*
1312 			 * Configuration is accepted by FW and MC reboot
1313 			 * is initiated to apply the changes. MC reboot
1314 			 * will be handled in a usual way (MC reboot
1315 			 * event on management event queue and adapter
1316 			 * restart).
1317 			 */
1318 			rc = 0;
1319 		} else if (rc != 0) {
1320 			goto fail_reconfigure;
1321 		}
1322 	}
1323 
1324 	sfc_adapter_unlock(sa);
1325 	return 0;
1326 
1327 fail_reconfigure:
1328 	/* Remove/restore entry since the change makes the trouble */
1329 	switch (op) {
1330 	case SFC_UDP_TUNNEL_ADD_PORT:
1331 		(void)efx_tunnel_config_udp_remove(sa->nic,
1332 						   tunnel_udp->udp_port,
1333 						   tunnel_proto);
1334 		break;
1335 	case SFC_UDP_TUNNEL_DEL_PORT:
1336 		(void)efx_tunnel_config_udp_add(sa->nic,
1337 						tunnel_udp->udp_port,
1338 						tunnel_proto);
1339 		break;
1340 	}
1341 
1342 fail_op:
1343 fail_bad_op:
1344 	sfc_adapter_unlock(sa);
1345 
1346 fail_bad_proto:
1347 	SFC_ASSERT(rc > 0);
1348 	return -rc;
1349 }
1350 
1351 static int
1352 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1353 			    struct rte_eth_udp_tunnel *tunnel_udp)
1354 {
1355 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1356 }
1357 
1358 static int
1359 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1360 			    struct rte_eth_udp_tunnel *tunnel_udp)
1361 {
1362 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1363 }
1364 
1365 static int
1366 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1367 			  struct rte_eth_rss_conf *rss_conf)
1368 {
1369 	struct sfc_adapter *sa = dev->data->dev_private;
1370 	struct sfc_rss *rss = &sa->rss;
1371 	struct sfc_port *port = &sa->port;
1372 
1373 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated)
1374 		return -ENOTSUP;
1375 
1376 	if (rss->channels == 0)
1377 		return -EINVAL;
1378 
1379 	sfc_adapter_lock(sa);
1380 
1381 	/*
1382 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1383 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1384 	 * flags which corresponds to the active EFX configuration stored
1385 	 * locally in 'sfc_adapter' and kept up-to-date
1386 	 */
1387 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types);
1388 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1389 	if (rss_conf->rss_key != NULL)
1390 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1391 
1392 	sfc_adapter_unlock(sa);
1393 
1394 	return 0;
1395 }
1396 
1397 static int
1398 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1399 			struct rte_eth_rss_conf *rss_conf)
1400 {
1401 	struct sfc_adapter *sa = dev->data->dev_private;
1402 	struct sfc_rss *rss = &sa->rss;
1403 	struct sfc_port *port = &sa->port;
1404 	unsigned int efx_hash_types;
1405 	int rc = 0;
1406 
1407 	if (port->isolated)
1408 		return -ENOTSUP;
1409 
1410 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1411 		sfc_err(sa, "RSS is not available");
1412 		return -ENOTSUP;
1413 	}
1414 
1415 	if (rss->channels == 0) {
1416 		sfc_err(sa, "RSS is not configured");
1417 		return -EINVAL;
1418 	}
1419 
1420 	if ((rss_conf->rss_key != NULL) &&
1421 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1422 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1423 			sizeof(rss->key));
1424 		return -EINVAL;
1425 	}
1426 
1427 	sfc_adapter_lock(sa);
1428 
1429 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1430 	if (rc != 0)
1431 		goto fail_rx_hf_rte_to_efx;
1432 
1433 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1434 				   rss->hash_alg, efx_hash_types, B_TRUE);
1435 	if (rc != 0)
1436 		goto fail_scale_mode_set;
1437 
1438 	if (rss_conf->rss_key != NULL) {
1439 		if (sa->state == SFC_ADAPTER_STARTED) {
1440 			rc = efx_rx_scale_key_set(sa->nic,
1441 						  EFX_RSS_CONTEXT_DEFAULT,
1442 						  rss_conf->rss_key,
1443 						  sizeof(rss->key));
1444 			if (rc != 0)
1445 				goto fail_scale_key_set;
1446 		}
1447 
1448 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1449 	}
1450 
1451 	rss->hash_types = efx_hash_types;
1452 
1453 	sfc_adapter_unlock(sa);
1454 
1455 	return 0;
1456 
1457 fail_scale_key_set:
1458 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1459 				  EFX_RX_HASHALG_TOEPLITZ,
1460 				  rss->hash_types, B_TRUE) != 0)
1461 		sfc_err(sa, "failed to restore RSS mode");
1462 
1463 fail_scale_mode_set:
1464 fail_rx_hf_rte_to_efx:
1465 	sfc_adapter_unlock(sa);
1466 	return -rc;
1467 }
1468 
1469 static int
1470 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1471 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1472 		       uint16_t reta_size)
1473 {
1474 	struct sfc_adapter *sa = dev->data->dev_private;
1475 	struct sfc_rss *rss = &sa->rss;
1476 	struct sfc_port *port = &sa->port;
1477 	int entry;
1478 
1479 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated)
1480 		return -ENOTSUP;
1481 
1482 	if (rss->channels == 0)
1483 		return -EINVAL;
1484 
1485 	if (reta_size != EFX_RSS_TBL_SIZE)
1486 		return -EINVAL;
1487 
1488 	sfc_adapter_lock(sa);
1489 
1490 	for (entry = 0; entry < reta_size; entry++) {
1491 		int grp = entry / RTE_RETA_GROUP_SIZE;
1492 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1493 
1494 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1495 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1496 	}
1497 
1498 	sfc_adapter_unlock(sa);
1499 
1500 	return 0;
1501 }
1502 
1503 static int
1504 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1505 			struct rte_eth_rss_reta_entry64 *reta_conf,
1506 			uint16_t reta_size)
1507 {
1508 	struct sfc_adapter *sa = dev->data->dev_private;
1509 	struct sfc_rss *rss = &sa->rss;
1510 	struct sfc_port *port = &sa->port;
1511 	unsigned int *rss_tbl_new;
1512 	uint16_t entry;
1513 	int rc = 0;
1514 
1515 
1516 	if (port->isolated)
1517 		return -ENOTSUP;
1518 
1519 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1520 		sfc_err(sa, "RSS is not available");
1521 		return -ENOTSUP;
1522 	}
1523 
1524 	if (rss->channels == 0) {
1525 		sfc_err(sa, "RSS is not configured");
1526 		return -EINVAL;
1527 	}
1528 
1529 	if (reta_size != EFX_RSS_TBL_SIZE) {
1530 		sfc_err(sa, "RETA size is wrong (should be %u)",
1531 			EFX_RSS_TBL_SIZE);
1532 		return -EINVAL;
1533 	}
1534 
1535 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1536 	if (rss_tbl_new == NULL)
1537 		return -ENOMEM;
1538 
1539 	sfc_adapter_lock(sa);
1540 
1541 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1542 
1543 	for (entry = 0; entry < reta_size; entry++) {
1544 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1545 		struct rte_eth_rss_reta_entry64 *grp;
1546 
1547 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1548 
1549 		if (grp->mask & (1ull << grp_idx)) {
1550 			if (grp->reta[grp_idx] >= rss->channels) {
1551 				rc = EINVAL;
1552 				goto bad_reta_entry;
1553 			}
1554 			rss_tbl_new[entry] = grp->reta[grp_idx];
1555 		}
1556 	}
1557 
1558 	if (sa->state == SFC_ADAPTER_STARTED) {
1559 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1560 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1561 		if (rc != 0)
1562 			goto fail_scale_tbl_set;
1563 	}
1564 
1565 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1566 
1567 fail_scale_tbl_set:
1568 bad_reta_entry:
1569 	sfc_adapter_unlock(sa);
1570 
1571 	rte_free(rss_tbl_new);
1572 
1573 	SFC_ASSERT(rc >= 0);
1574 	return -rc;
1575 }
1576 
1577 static int
1578 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1579 		    enum rte_filter_op filter_op,
1580 		    void *arg)
1581 {
1582 	struct sfc_adapter *sa = dev->data->dev_private;
1583 	int rc = ENOTSUP;
1584 
1585 	sfc_log_init(sa, "entry");
1586 
1587 	switch (filter_type) {
1588 	case RTE_ETH_FILTER_NONE:
1589 		sfc_err(sa, "Global filters configuration not supported");
1590 		break;
1591 	case RTE_ETH_FILTER_MACVLAN:
1592 		sfc_err(sa, "MACVLAN filters not supported");
1593 		break;
1594 	case RTE_ETH_FILTER_ETHERTYPE:
1595 		sfc_err(sa, "EtherType filters not supported");
1596 		break;
1597 	case RTE_ETH_FILTER_FLEXIBLE:
1598 		sfc_err(sa, "Flexible filters not supported");
1599 		break;
1600 	case RTE_ETH_FILTER_SYN:
1601 		sfc_err(sa, "SYN filters not supported");
1602 		break;
1603 	case RTE_ETH_FILTER_NTUPLE:
1604 		sfc_err(sa, "NTUPLE filters not supported");
1605 		break;
1606 	case RTE_ETH_FILTER_TUNNEL:
1607 		sfc_err(sa, "Tunnel filters not supported");
1608 		break;
1609 	case RTE_ETH_FILTER_FDIR:
1610 		sfc_err(sa, "Flow Director filters not supported");
1611 		break;
1612 	case RTE_ETH_FILTER_HASH:
1613 		sfc_err(sa, "Hash filters not supported");
1614 		break;
1615 	case RTE_ETH_FILTER_GENERIC:
1616 		if (filter_op != RTE_ETH_FILTER_GET) {
1617 			rc = EINVAL;
1618 		} else {
1619 			*(const void **)arg = &sfc_flow_ops;
1620 			rc = 0;
1621 		}
1622 		break;
1623 	default:
1624 		sfc_err(sa, "Unknown filter type %u", filter_type);
1625 		break;
1626 	}
1627 
1628 	sfc_log_init(sa, "exit: %d", -rc);
1629 	SFC_ASSERT(rc >= 0);
1630 	return -rc;
1631 }
1632 
1633 static const struct eth_dev_ops sfc_eth_dev_ops = {
1634 	.dev_configure			= sfc_dev_configure,
1635 	.dev_start			= sfc_dev_start,
1636 	.dev_stop			= sfc_dev_stop,
1637 	.dev_set_link_up		= sfc_dev_set_link_up,
1638 	.dev_set_link_down		= sfc_dev_set_link_down,
1639 	.dev_close			= sfc_dev_close,
1640 	.promiscuous_enable		= sfc_dev_promisc_enable,
1641 	.promiscuous_disable		= sfc_dev_promisc_disable,
1642 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1643 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1644 	.link_update			= sfc_dev_link_update,
1645 	.stats_get			= sfc_stats_get,
1646 	.stats_reset			= sfc_stats_reset,
1647 	.xstats_get			= sfc_xstats_get,
1648 	.xstats_reset			= sfc_stats_reset,
1649 	.xstats_get_names		= sfc_xstats_get_names,
1650 	.dev_infos_get			= sfc_dev_infos_get,
1651 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1652 	.mtu_set			= sfc_dev_set_mtu,
1653 	.rx_queue_start			= sfc_rx_queue_start,
1654 	.rx_queue_stop			= sfc_rx_queue_stop,
1655 	.tx_queue_start			= sfc_tx_queue_start,
1656 	.tx_queue_stop			= sfc_tx_queue_stop,
1657 	.rx_queue_setup			= sfc_rx_queue_setup,
1658 	.rx_queue_release		= sfc_rx_queue_release,
1659 	.rx_queue_count			= sfc_rx_queue_count,
1660 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1661 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1662 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1663 	.tx_queue_setup			= sfc_tx_queue_setup,
1664 	.tx_queue_release		= sfc_tx_queue_release,
1665 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1666 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1667 	.mac_addr_set			= sfc_mac_addr_set,
1668 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1669 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1670 	.reta_update			= sfc_dev_rss_reta_update,
1671 	.reta_query			= sfc_dev_rss_reta_query,
1672 	.rss_hash_update		= sfc_dev_rss_hash_update,
1673 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1674 	.filter_ctrl			= sfc_dev_filter_ctrl,
1675 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1676 	.rxq_info_get			= sfc_rx_queue_info_get,
1677 	.txq_info_get			= sfc_tx_queue_info_get,
1678 	.fw_version_get			= sfc_fw_version_get,
1679 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1680 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1681 };
1682 
1683 /**
1684  * Duplicate a string in potentially shared memory required for
1685  * multi-process support.
1686  *
1687  * strdup() allocates from process-local heap/memory.
1688  */
1689 static char *
1690 sfc_strdup(const char *str)
1691 {
1692 	size_t size;
1693 	char *copy;
1694 
1695 	if (str == NULL)
1696 		return NULL;
1697 
1698 	size = strlen(str) + 1;
1699 	copy = rte_malloc(__func__, size, 0);
1700 	if (copy != NULL)
1701 		rte_memcpy(copy, str, size);
1702 
1703 	return copy;
1704 }
1705 
1706 static int
1707 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1708 {
1709 	struct sfc_adapter *sa = dev->data->dev_private;
1710 	unsigned int avail_caps = 0;
1711 	const char *rx_name = NULL;
1712 	const char *tx_name = NULL;
1713 	int rc;
1714 
1715 	switch (sa->family) {
1716 	case EFX_FAMILY_HUNTINGTON:
1717 	case EFX_FAMILY_MEDFORD:
1718 	case EFX_FAMILY_MEDFORD2:
1719 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1720 		break;
1721 	default:
1722 		break;
1723 	}
1724 
1725 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1726 				sfc_kvarg_string_handler, &rx_name);
1727 	if (rc != 0)
1728 		goto fail_kvarg_rx_datapath;
1729 
1730 	if (rx_name != NULL) {
1731 		sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1732 		if (sa->dp_rx == NULL) {
1733 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1734 			rc = ENOENT;
1735 			goto fail_dp_rx;
1736 		}
1737 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) {
1738 			sfc_err(sa,
1739 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1740 				rx_name);
1741 			rc = EINVAL;
1742 			goto fail_dp_rx_caps;
1743 		}
1744 	} else {
1745 		sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1746 		if (sa->dp_rx == NULL) {
1747 			sfc_err(sa, "Rx datapath by caps %#x not found",
1748 				avail_caps);
1749 			rc = ENOENT;
1750 			goto fail_dp_rx;
1751 		}
1752 	}
1753 
1754 	sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name);
1755 	if (sa->dp_rx_name == NULL) {
1756 		rc = ENOMEM;
1757 		goto fail_dp_rx_name;
1758 	}
1759 
1760 	sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name);
1761 
1762 	dev->rx_pkt_burst = sa->dp_rx->pkt_burst;
1763 
1764 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1765 				sfc_kvarg_string_handler, &tx_name);
1766 	if (rc != 0)
1767 		goto fail_kvarg_tx_datapath;
1768 
1769 	if (tx_name != NULL) {
1770 		sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1771 		if (sa->dp_tx == NULL) {
1772 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1773 			rc = ENOENT;
1774 			goto fail_dp_tx;
1775 		}
1776 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) {
1777 			sfc_err(sa,
1778 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1779 				tx_name);
1780 			rc = EINVAL;
1781 			goto fail_dp_tx_caps;
1782 		}
1783 	} else {
1784 		sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1785 		if (sa->dp_tx == NULL) {
1786 			sfc_err(sa, "Tx datapath by caps %#x not found",
1787 				avail_caps);
1788 			rc = ENOENT;
1789 			goto fail_dp_tx;
1790 		}
1791 	}
1792 
1793 	sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name);
1794 	if (sa->dp_tx_name == NULL) {
1795 		rc = ENOMEM;
1796 		goto fail_dp_tx_name;
1797 	}
1798 
1799 	sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name);
1800 
1801 	dev->tx_pkt_burst = sa->dp_tx->pkt_burst;
1802 
1803 	dev->dev_ops = &sfc_eth_dev_ops;
1804 
1805 	return 0;
1806 
1807 fail_dp_tx_name:
1808 fail_dp_tx_caps:
1809 	sa->dp_tx = NULL;
1810 
1811 fail_dp_tx:
1812 fail_kvarg_tx_datapath:
1813 	rte_free(sa->dp_rx_name);
1814 	sa->dp_rx_name = NULL;
1815 
1816 fail_dp_rx_name:
1817 fail_dp_rx_caps:
1818 	sa->dp_rx = NULL;
1819 
1820 fail_dp_rx:
1821 fail_kvarg_rx_datapath:
1822 	return rc;
1823 }
1824 
1825 static void
1826 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1827 {
1828 	struct sfc_adapter *sa = dev->data->dev_private;
1829 
1830 	dev->dev_ops = NULL;
1831 	dev->rx_pkt_burst = NULL;
1832 	dev->tx_pkt_burst = NULL;
1833 
1834 	rte_free(sa->dp_tx_name);
1835 	sa->dp_tx_name = NULL;
1836 	sa->dp_tx = NULL;
1837 
1838 	rte_free(sa->dp_rx_name);
1839 	sa->dp_rx_name = NULL;
1840 	sa->dp_rx = NULL;
1841 }
1842 
1843 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1844 	.rxq_info_get			= sfc_rx_queue_info_get,
1845 	.txq_info_get			= sfc_tx_queue_info_get,
1846 };
1847 
1848 static int
1849 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev)
1850 {
1851 	/*
1852 	 * Device private data has really many process-local pointers.
1853 	 * Below code should be extremely careful to use data located
1854 	 * in shared memory only.
1855 	 */
1856 	struct sfc_adapter *sa = dev->data->dev_private;
1857 	const struct sfc_dp_rx *dp_rx;
1858 	const struct sfc_dp_tx *dp_tx;
1859 	int rc;
1860 
1861 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
1862 	if (dp_rx == NULL) {
1863 		sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name);
1864 		rc = ENOENT;
1865 		goto fail_dp_rx;
1866 	}
1867 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1868 		sfc_err(sa, "%s Rx datapath does not support multi-process",
1869 			sa->dp_tx_name);
1870 		rc = EINVAL;
1871 		goto fail_dp_rx_multi_process;
1872 	}
1873 
1874 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
1875 	if (dp_tx == NULL) {
1876 		sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name);
1877 		rc = ENOENT;
1878 		goto fail_dp_tx;
1879 	}
1880 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1881 		sfc_err(sa, "%s Tx datapath does not support multi-process",
1882 			sa->dp_tx_name);
1883 		rc = EINVAL;
1884 		goto fail_dp_tx_multi_process;
1885 	}
1886 
1887 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1888 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1889 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
1890 
1891 	return 0;
1892 
1893 fail_dp_tx_multi_process:
1894 fail_dp_tx:
1895 fail_dp_rx_multi_process:
1896 fail_dp_rx:
1897 	return rc;
1898 }
1899 
1900 static void
1901 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
1902 {
1903 	dev->dev_ops = NULL;
1904 	dev->tx_pkt_burst = NULL;
1905 	dev->rx_pkt_burst = NULL;
1906 }
1907 
1908 static void
1909 sfc_register_dp(void)
1910 {
1911 	/* Register once */
1912 	if (TAILQ_EMPTY(&sfc_dp_head)) {
1913 		/* Prefer EF10 datapath */
1914 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
1915 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
1916 
1917 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
1918 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
1919 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
1920 	}
1921 }
1922 
1923 static int
1924 sfc_eth_dev_init(struct rte_eth_dev *dev)
1925 {
1926 	struct sfc_adapter *sa = dev->data->dev_private;
1927 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1928 	int rc;
1929 	const efx_nic_cfg_t *encp;
1930 	const struct ether_addr *from;
1931 
1932 	sfc_register_dp();
1933 
1934 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1935 		return -sfc_eth_dev_secondary_set_ops(dev);
1936 
1937 	/* Required for logging */
1938 	sa->pci_addr = pci_dev->addr;
1939 	sa->port_id = dev->data->port_id;
1940 
1941 	sa->eth_dev = dev;
1942 
1943 	/* Copy PCI device info to the dev->data */
1944 	rte_eth_copy_pci_info(dev, pci_dev);
1945 
1946 	sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR,
1947 						RTE_LOG_NOTICE);
1948 
1949 	rc = sfc_kvargs_parse(sa);
1950 	if (rc != 0)
1951 		goto fail_kvargs_parse;
1952 
1953 	sfc_log_init(sa, "entry");
1954 
1955 	dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
1956 	if (dev->data->mac_addrs == NULL) {
1957 		rc = ENOMEM;
1958 		goto fail_mac_addrs;
1959 	}
1960 
1961 	sfc_adapter_lock_init(sa);
1962 	sfc_adapter_lock(sa);
1963 
1964 	sfc_log_init(sa, "probing");
1965 	rc = sfc_probe(sa);
1966 	if (rc != 0)
1967 		goto fail_probe;
1968 
1969 	sfc_log_init(sa, "set device ops");
1970 	rc = sfc_eth_dev_set_ops(dev);
1971 	if (rc != 0)
1972 		goto fail_set_ops;
1973 
1974 	sfc_log_init(sa, "attaching");
1975 	rc = sfc_attach(sa);
1976 	if (rc != 0)
1977 		goto fail_attach;
1978 
1979 	encp = efx_nic_cfg_get(sa->nic);
1980 
1981 	/*
1982 	 * The arguments are really reverse order in comparison to
1983 	 * Linux kernel. Copy from NIC config to Ethernet device data.
1984 	 */
1985 	from = (const struct ether_addr *)(encp->enc_mac_addr);
1986 	ether_addr_copy(from, &dev->data->mac_addrs[0]);
1987 
1988 	sfc_adapter_unlock(sa);
1989 
1990 	sfc_log_init(sa, "done");
1991 	return 0;
1992 
1993 fail_attach:
1994 	sfc_eth_dev_clear_ops(dev);
1995 
1996 fail_set_ops:
1997 	sfc_unprobe(sa);
1998 
1999 fail_probe:
2000 	sfc_adapter_unlock(sa);
2001 	sfc_adapter_lock_fini(sa);
2002 	rte_free(dev->data->mac_addrs);
2003 	dev->data->mac_addrs = NULL;
2004 
2005 fail_mac_addrs:
2006 	sfc_kvargs_cleanup(sa);
2007 
2008 fail_kvargs_parse:
2009 	sfc_log_init(sa, "failed %d", rc);
2010 	SFC_ASSERT(rc > 0);
2011 	return -rc;
2012 }
2013 
2014 static int
2015 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2016 {
2017 	struct sfc_adapter *sa;
2018 
2019 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2020 		sfc_eth_dev_secondary_clear_ops(dev);
2021 		return 0;
2022 	}
2023 
2024 	sa = dev->data->dev_private;
2025 	sfc_log_init(sa, "entry");
2026 
2027 	sfc_adapter_lock(sa);
2028 
2029 	sfc_eth_dev_clear_ops(dev);
2030 
2031 	sfc_detach(sa);
2032 	sfc_unprobe(sa);
2033 
2034 	rte_free(dev->data->mac_addrs);
2035 	dev->data->mac_addrs = NULL;
2036 
2037 	sfc_kvargs_cleanup(sa);
2038 
2039 	sfc_adapter_unlock(sa);
2040 	sfc_adapter_lock_fini(sa);
2041 
2042 	sfc_log_init(sa, "done");
2043 
2044 	/* Required for logging, so cleanup last */
2045 	sa->eth_dev = NULL;
2046 	return 0;
2047 }
2048 
2049 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2050 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2051 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2052 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2053 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2054 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2055 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2056 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2057 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2058 	{ .vendor_id = 0 /* sentinel */ }
2059 };
2060 
2061 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2062 	struct rte_pci_device *pci_dev)
2063 {
2064 	return rte_eth_dev_pci_generic_probe(pci_dev,
2065 		sizeof(struct sfc_adapter), sfc_eth_dev_init);
2066 }
2067 
2068 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2069 {
2070 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2071 }
2072 
2073 static struct rte_pci_driver sfc_efx_pmd = {
2074 	.id_table = pci_id_sfc_efx_map,
2075 	.drv_flags =
2076 		RTE_PCI_DRV_INTR_LSC |
2077 		RTE_PCI_DRV_NEED_MAPPING,
2078 	.probe = sfc_eth_dev_pci_probe,
2079 	.remove = sfc_eth_dev_pci_remove,
2080 };
2081 
2082 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2083 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2084 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2085 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2086 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2087 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2088 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2089 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2090 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2091 
2092 RTE_INIT(sfc_driver_register_logtype);
2093 static void
2094 sfc_driver_register_logtype(void)
2095 {
2096 	int ret;
2097 
2098 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2099 						   RTE_LOG_NOTICE);
2100 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2101 }
2102