xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 294796b505e0433c25e7df581489e21d5efb370e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <dev_driver.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <bus_pci_driver.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_flow_tunnel.h"
30 #include "sfc_dp.h"
31 #include "sfc_dp_rx.h"
32 #include "sfc_repr.h"
33 #include "sfc_sw_stats.h"
34 #include "sfc_switch.h"
35 #include "sfc_nic_dma.h"
36 
37 #define SFC_XSTAT_ID_INVALID_VAL  UINT64_MAX
38 #define SFC_XSTAT_ID_INVALID_NAME '\0'
39 
40 uint32_t sfc_logtype_driver;
41 
42 static struct sfc_dp_list sfc_dp_head =
43 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
44 
45 
46 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
47 
48 
49 static int
50 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
51 {
52 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
53 	efx_nic_fw_info_t enfi;
54 	int ret;
55 	int rc;
56 
57 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
58 	if (rc != 0)
59 		return -rc;
60 
61 	ret = snprintf(fw_version, fw_size,
62 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
65 	if (ret < 0)
66 		return ret;
67 
68 	if (enfi.enfi_dpcpu_fw_ids_valid) {
69 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
70 		int ret_extra;
71 
72 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 				     fw_size - dpcpu_fw_ids_offset,
74 				     " rx%" PRIx16 " tx%" PRIx16,
75 				     enfi.enfi_rx_dpcpu_fw_id,
76 				     enfi.enfi_tx_dpcpu_fw_id);
77 		if (ret_extra < 0)
78 			return ret_extra;
79 
80 		ret += ret_extra;
81 	}
82 
83 	if (fw_size < (size_t)(++ret))
84 		return ret;
85 	else
86 		return 0;
87 }
88 
89 static int
90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
91 {
92 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 	struct sfc_rss *rss = &sas->rss;
96 	struct sfc_mae *mae = &sa->mae;
97 
98 	sfc_log_init(sa, "entry");
99 
100 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
102 
103 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
104 
105 	dev_info->max_vfs = sa->sriov.num_vfs;
106 
107 	/* Autonegotiation may be disabled */
108 	dev_info->speed_capa = RTE_ETH_LINK_SPEED_FIXED;
109 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
110 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_1G;
111 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
112 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_10G;
113 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
114 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_25G;
115 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
116 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_40G;
117 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
118 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_50G;
119 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
120 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_100G;
121 
122 	dev_info->max_rx_queues = sa->rxq_max;
123 	dev_info->max_tx_queues = sa->txq_max;
124 
125 	/* By default packets are dropped if no descriptors are available */
126 	dev_info->default_rxconf.rx_drop_en = 1;
127 
128 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
129 
130 	/*
131 	 * rx_offload_capa includes both device and queue offloads since
132 	 * the latter may be requested on a per device basis which makes
133 	 * sense when some offloads are needed to be set on all queues.
134 	 */
135 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
136 				    dev_info->rx_queue_offload_capa;
137 
138 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
139 
140 	/*
141 	 * tx_offload_capa includes both device and queue offloads since
142 	 * the latter may be requested on a per device basis which makes
143 	 * sense when some offloads are needed to be set on all queues.
144 	 */
145 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
146 				    dev_info->tx_queue_offload_capa;
147 
148 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
149 		uint64_t rte_hf = 0;
150 		unsigned int i;
151 
152 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
153 			rte_hf |= rss->hf_map[i].rte;
154 
155 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
156 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
157 		dev_info->flow_type_rss_offloads = rte_hf;
158 	}
159 
160 	/* Initialize to hardware limits */
161 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
162 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
163 	/* The RXQ hardware requires that the descriptor count is a power
164 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
165 	 */
166 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
167 
168 	/* Initialize to hardware limits */
169 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
170 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
171 	/*
172 	 * The TXQ hardware requires that the descriptor count is a power
173 	 * of 2, but tx_desc_lim cannot properly describe that constraint
174 	 */
175 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
176 
177 	if (sap->dp_rx->get_dev_info != NULL)
178 		sap->dp_rx->get_dev_info(dev_info);
179 	if (sap->dp_tx->get_dev_info != NULL)
180 		sap->dp_tx->get_dev_info(dev_info);
181 
182 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
183 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
184 	dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
185 
186 	if (mae->status == SFC_MAE_STATUS_SUPPORTED ||
187 	    mae->status == SFC_MAE_STATUS_ADMIN) {
188 		dev_info->switch_info.name = dev->device->driver->name;
189 		dev_info->switch_info.domain_id = mae->switch_domain_id;
190 		dev_info->switch_info.port_id = mae->switch_port_id;
191 	}
192 
193 	return 0;
194 }
195 
196 static const uint32_t *
197 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
198 {
199 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
200 
201 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
202 }
203 
204 static int
205 sfc_dev_configure(struct rte_eth_dev *dev)
206 {
207 	struct rte_eth_dev_data *dev_data = dev->data;
208 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
209 	int rc;
210 
211 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
212 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
213 
214 	sfc_adapter_lock(sa);
215 	switch (sa->state) {
216 	case SFC_ETHDEV_CONFIGURED:
217 		/* FALLTHROUGH */
218 	case SFC_ETHDEV_INITIALIZED:
219 		rc = sfc_configure(sa);
220 		break;
221 	default:
222 		sfc_err(sa, "unexpected adapter state %u to configure",
223 			sa->state);
224 		rc = EINVAL;
225 		break;
226 	}
227 	sfc_adapter_unlock(sa);
228 
229 	sfc_log_init(sa, "done %d", rc);
230 	SFC_ASSERT(rc >= 0);
231 	return -rc;
232 }
233 
234 static int
235 sfc_dev_start(struct rte_eth_dev *dev)
236 {
237 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
238 	int rc;
239 
240 	sfc_log_init(sa, "entry");
241 
242 	sfc_adapter_lock(sa);
243 	rc = sfc_start(sa);
244 	sfc_adapter_unlock(sa);
245 
246 	sfc_log_init(sa, "done %d", rc);
247 	SFC_ASSERT(rc >= 0);
248 	return -rc;
249 }
250 
251 static void
252 sfc_dev_get_rte_link(struct rte_eth_dev *dev, int wait_to_complete,
253 		     struct rte_eth_link *link)
254 {
255 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
256 
257 	SFC_ASSERT(link != NULL);
258 
259 	if (sa->state != SFC_ETHDEV_STARTED) {
260 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, link);
261 	} else if (wait_to_complete) {
262 		efx_link_mode_t link_mode;
263 
264 		if (efx_port_poll(sa->nic, &link_mode) != 0)
265 			link_mode = EFX_LINK_UNKNOWN;
266 		sfc_port_link_mode_to_info(link_mode, link);
267 	} else {
268 		sfc_ev_mgmt_qpoll(sa);
269 		rte_eth_linkstatus_get(dev, link);
270 	}
271 }
272 
273 static int
274 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
275 {
276 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
277 	struct rte_eth_link current_link;
278 	int ret;
279 
280 	sfc_log_init(sa, "entry");
281 
282 	sfc_dev_get_rte_link(dev, wait_to_complete, &current_link);
283 
284 	ret = rte_eth_linkstatus_set(dev, &current_link);
285 	if (ret == 0)
286 		sfc_notice(sa, "Link status is %s",
287 			   current_link.link_status ? "UP" : "DOWN");
288 
289 	return ret;
290 }
291 
292 static int
293 sfc_dev_stop(struct rte_eth_dev *dev)
294 {
295 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
296 
297 	sfc_log_init(sa, "entry");
298 
299 	sfc_adapter_lock(sa);
300 	sfc_stop(sa);
301 	sfc_adapter_unlock(sa);
302 
303 	sfc_log_init(sa, "done");
304 
305 	return 0;
306 }
307 
308 static int
309 sfc_dev_set_link_up(struct rte_eth_dev *dev)
310 {
311 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
312 	int rc;
313 
314 	sfc_log_init(sa, "entry");
315 
316 	sfc_adapter_lock(sa);
317 	rc = sfc_start(sa);
318 	sfc_adapter_unlock(sa);
319 
320 	SFC_ASSERT(rc >= 0);
321 	return -rc;
322 }
323 
324 static int
325 sfc_dev_set_link_down(struct rte_eth_dev *dev)
326 {
327 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
328 
329 	sfc_log_init(sa, "entry");
330 
331 	sfc_adapter_lock(sa);
332 	sfc_stop(sa);
333 	sfc_adapter_unlock(sa);
334 
335 	return 0;
336 }
337 
338 static void
339 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
340 {
341 	free(dev->process_private);
342 	rte_eth_dev_release_port(dev);
343 }
344 
345 static int
346 sfc_dev_close(struct rte_eth_dev *dev)
347 {
348 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
349 
350 	sfc_log_init(sa, "entry");
351 
352 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
353 		sfc_eth_dev_secondary_clear_ops(dev);
354 		return 0;
355 	}
356 
357 	sfc_pre_detach(sa);
358 
359 	sfc_adapter_lock(sa);
360 	switch (sa->state) {
361 	case SFC_ETHDEV_STARTED:
362 		sfc_stop(sa);
363 		SFC_ASSERT(sa->state == SFC_ETHDEV_CONFIGURED);
364 		/* FALLTHROUGH */
365 	case SFC_ETHDEV_CONFIGURED:
366 		sfc_close(sa);
367 		SFC_ASSERT(sa->state == SFC_ETHDEV_INITIALIZED);
368 		/* FALLTHROUGH */
369 	case SFC_ETHDEV_INITIALIZED:
370 		break;
371 	default:
372 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
373 		break;
374 	}
375 
376 	/*
377 	 * Cleanup all resources.
378 	 * Rollback primary process sfc_eth_dev_init() below.
379 	 */
380 
381 	sfc_eth_dev_clear_ops(dev);
382 
383 	sfc_nic_dma_detach(sa);
384 	sfc_detach(sa);
385 	sfc_unprobe(sa);
386 
387 	sfc_kvargs_cleanup(sa);
388 
389 	sfc_adapter_unlock(sa);
390 	sfc_adapter_lock_fini(sa);
391 
392 	sfc_log_init(sa, "done");
393 
394 	/* Required for logging, so cleanup last */
395 	sa->eth_dev = NULL;
396 
397 	free(sa);
398 
399 	return 0;
400 }
401 
402 static int
403 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
404 		   boolean_t enabled)
405 {
406 	struct sfc_port *port;
407 	boolean_t *toggle;
408 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
409 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
410 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
411 	int rc = 0;
412 
413 	sfc_adapter_lock(sa);
414 
415 	port = &sa->port;
416 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
417 
418 	if (*toggle != enabled) {
419 		*toggle = enabled;
420 
421 		if (sfc_sa2shared(sa)->isolated) {
422 			sfc_warn(sa, "isolated mode is active on the port");
423 			sfc_warn(sa, "the change is to be applied on the next "
424 				     "start provided that isolated mode is "
425 				     "disabled prior the next start");
426 		} else if ((sa->state == SFC_ETHDEV_STARTED) &&
427 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
428 			*toggle = !(enabled);
429 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
430 				 ((enabled) ? "enable" : "disable"), desc, rc);
431 
432 			/*
433 			 * For promiscuous and all-multicast filters a
434 			 * permission failure should be reported as an
435 			 * unsupported filter.
436 			 */
437 			if (rc == EPERM)
438 				rc = ENOTSUP;
439 		}
440 	}
441 
442 	sfc_adapter_unlock(sa);
443 	return rc;
444 }
445 
446 static int
447 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
448 {
449 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
450 
451 	SFC_ASSERT(rc >= 0);
452 	return -rc;
453 }
454 
455 static int
456 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
457 {
458 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
459 
460 	SFC_ASSERT(rc >= 0);
461 	return -rc;
462 }
463 
464 static int
465 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
466 {
467 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
468 
469 	SFC_ASSERT(rc >= 0);
470 	return -rc;
471 }
472 
473 static int
474 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
475 {
476 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
477 
478 	SFC_ASSERT(rc >= 0);
479 	return -rc;
480 }
481 
482 static int
483 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
484 		   uint16_t nb_rx_desc, unsigned int socket_id,
485 		   const struct rte_eth_rxconf *rx_conf,
486 		   struct rte_mempool *mb_pool)
487 {
488 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
489 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
490 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
491 	struct sfc_rxq_info *rxq_info;
492 	sfc_sw_index_t sw_index;
493 	int rc;
494 
495 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
496 		     ethdev_qid, nb_rx_desc, socket_id);
497 
498 	sfc_adapter_lock(sa);
499 
500 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
501 	rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
502 			  rx_conf, mb_pool);
503 	if (rc != 0)
504 		goto fail_rx_qinit;
505 
506 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
507 	dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
508 
509 	sfc_adapter_unlock(sa);
510 
511 	return 0;
512 
513 fail_rx_qinit:
514 	sfc_adapter_unlock(sa);
515 	SFC_ASSERT(rc > 0);
516 	return -rc;
517 }
518 
519 static void
520 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
521 {
522 	struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
523 	struct sfc_rxq *rxq;
524 	struct sfc_adapter *sa;
525 	sfc_sw_index_t sw_index;
526 
527 	if (dp_rxq == NULL)
528 		return;
529 
530 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
531 	sa = rxq->evq->sa;
532 	sfc_adapter_lock(sa);
533 
534 	sw_index = dp_rxq->dpq.queue_id;
535 
536 	sfc_log_init(sa, "RxQ=%u", sw_index);
537 
538 	sfc_rx_qfini(sa, sw_index);
539 
540 	sfc_adapter_unlock(sa);
541 }
542 
543 static int
544 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
545 		   uint16_t nb_tx_desc, unsigned int socket_id,
546 		   const struct rte_eth_txconf *tx_conf)
547 {
548 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
549 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
550 	struct sfc_txq_info *txq_info;
551 	sfc_sw_index_t sw_index;
552 	int rc;
553 
554 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
555 		     ethdev_qid, nb_tx_desc, socket_id);
556 
557 	sfc_adapter_lock(sa);
558 
559 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
560 	rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
561 	if (rc != 0)
562 		goto fail_tx_qinit;
563 
564 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
565 	dev->data->tx_queues[ethdev_qid] = txq_info->dp;
566 
567 	sfc_adapter_unlock(sa);
568 	return 0;
569 
570 fail_tx_qinit:
571 	sfc_adapter_unlock(sa);
572 	SFC_ASSERT(rc > 0);
573 	return -rc;
574 }
575 
576 static void
577 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
578 {
579 	struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
580 	struct sfc_txq *txq;
581 	sfc_sw_index_t sw_index;
582 	struct sfc_adapter *sa;
583 
584 	if (dp_txq == NULL)
585 		return;
586 
587 	txq = sfc_txq_by_dp_txq(dp_txq);
588 	sw_index = dp_txq->dpq.queue_id;
589 
590 	SFC_ASSERT(txq->evq != NULL);
591 	sa = txq->evq->sa;
592 
593 	sfc_log_init(sa, "TxQ = %u", sw_index);
594 
595 	sfc_adapter_lock(sa);
596 
597 	sfc_tx_qfini(sa, sw_index);
598 
599 	sfc_adapter_unlock(sa);
600 }
601 
602 static void
603 sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
604 {
605 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
606 	uint64_t pkts_sum = 0;
607 	uint64_t bytes_sum = 0;
608 	unsigned int i;
609 
610 	for (i = 0; i < sas->ethdev_rxq_count; ++i) {
611 		struct sfc_rxq_info *rxq_info;
612 
613 		rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i);
614 		if (rxq_info->state & SFC_RXQ_INITIALIZED) {
615 			union sfc_pkts_bytes qstats;
616 
617 			sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats);
618 			pkts_sum += qstats.pkts -
619 					sa->sw_stats.reset_rx_pkts[i];
620 			bytes_sum += qstats.bytes -
621 					sa->sw_stats.reset_rx_bytes[i];
622 		}
623 	}
624 
625 	*pkts = pkts_sum;
626 	*bytes = bytes_sum;
627 }
628 
629 static void
630 sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
631 {
632 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
633 	uint64_t pkts_sum = 0;
634 	uint64_t bytes_sum = 0;
635 	unsigned int i;
636 
637 	for (i = 0; i < sas->ethdev_txq_count; ++i) {
638 		struct sfc_txq_info *txq_info;
639 
640 		txq_info = sfc_txq_info_by_ethdev_qid(sas, i);
641 		if (txq_info->state & SFC_TXQ_INITIALIZED) {
642 			union sfc_pkts_bytes qstats;
643 
644 			sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats);
645 			pkts_sum += qstats.pkts -
646 					sa->sw_stats.reset_tx_pkts[i];
647 			bytes_sum += qstats.bytes -
648 					sa->sw_stats.reset_tx_bytes[i];
649 		}
650 	}
651 
652 	*pkts = pkts_sum;
653 	*bytes = bytes_sum;
654 }
655 
656 /*
657  * Some statistics are computed as A - B where A and B each increase
658  * monotonically with some hardware counter(s) and the counters are read
659  * asynchronously.
660  *
661  * If packet X is counted in A, but not counted in B yet, computed value is
662  * greater than real.
663  *
664  * If packet X is not counted in A at the moment of reading the counter,
665  * but counted in B at the moment of reading the counter, computed value
666  * is less than real.
667  *
668  * However, counter which grows backward is worse evil than slightly wrong
669  * value. So, let's try to guarantee that it never happens except may be
670  * the case when the MAC stats are zeroed as a result of a NIC reset.
671  */
672 static void
673 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
674 {
675 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
676 		*stat = newval;
677 }
678 
679 static int
680 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
681 {
682 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
683 	bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS;
684 	bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS;
685 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
686 	struct sfc_port *port = &sa->port;
687 	uint64_t *mac_stats;
688 	int ret;
689 
690 	sfc_adapter_lock(sa);
691 
692 	if (have_dp_rx_stats)
693 		sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes);
694 	if (have_dp_tx_stats)
695 		sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes);
696 
697 	ret = sfc_port_update_mac_stats(sa, B_FALSE);
698 	if (ret != 0)
699 		goto unlock;
700 
701 	mac_stats = port->mac_stats_buf;
702 
703 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
704 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
705 		if (!have_dp_rx_stats) {
706 			stats->ipackets =
707 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
708 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
709 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
710 			stats->ibytes =
711 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
712 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
713 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
714 
715 			/* CRC is included in these stats, but shouldn't be */
716 			stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
717 		}
718 		if (!have_dp_tx_stats) {
719 			stats->opackets =
720 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
721 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
722 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
723 			stats->obytes =
724 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
725 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
726 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
727 
728 			/* CRC is included in these stats, but shouldn't be */
729 			stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
730 		}
731 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
732 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
733 	} else {
734 		if (!have_dp_tx_stats) {
735 			stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
736 			stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] -
737 				mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
738 		}
739 
740 		/*
741 		 * Take into account stats which are whenever supported
742 		 * on EF10. If some stat is not supported by current
743 		 * firmware variant or HW revision, it is guaranteed
744 		 * to be zero in mac_stats.
745 		 */
746 		stats->imissed =
747 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
748 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
749 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
750 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
751 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
752 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
753 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
754 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
755 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
756 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
757 		stats->ierrors =
758 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
759 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
760 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
761 		/* no oerrors counters supported on EF10 */
762 
763 		if (!have_dp_rx_stats) {
764 			/* Exclude missed, errors and pauses from Rx packets */
765 			sfc_update_diff_stat(&port->ipackets,
766 				mac_stats[EFX_MAC_RX_PKTS] -
767 				mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
768 				stats->imissed - stats->ierrors);
769 			stats->ipackets = port->ipackets;
770 			stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] -
771 				mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
772 		}
773 	}
774 
775 unlock:
776 	sfc_adapter_unlock(sa);
777 	SFC_ASSERT(ret >= 0);
778 	return -ret;
779 }
780 
781 static int
782 sfc_stats_reset(struct rte_eth_dev *dev)
783 {
784 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
785 	struct sfc_port *port = &sa->port;
786 	int rc;
787 
788 	sfc_adapter_lock(sa);
789 
790 	if (sa->state != SFC_ETHDEV_STARTED) {
791 		/*
792 		 * The operation cannot be done if port is not started; it
793 		 * will be scheduled to be done during the next port start
794 		 */
795 		port->mac_stats_reset_pending = B_TRUE;
796 		sfc_adapter_unlock(sa);
797 		return 0;
798 	}
799 
800 	rc = sfc_port_reset_mac_stats(sa);
801 	if (rc != 0)
802 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
803 
804 	sfc_sw_xstats_reset(sa);
805 
806 	sfc_adapter_unlock(sa);
807 
808 	SFC_ASSERT(rc >= 0);
809 	return -rc;
810 }
811 
812 static unsigned int
813 sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
814 {
815 	struct sfc_port *port = &sa->port;
816 	unsigned int nb_supported;
817 
818 	sfc_adapter_lock(sa);
819 	nb_supported = port->mac_stats_nb_supported +
820 		       sfc_sw_xstats_get_nb_supported(sa);
821 	sfc_adapter_unlock(sa);
822 
823 	return nb_supported;
824 }
825 
826 static int
827 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
828 	       unsigned int xstats_count)
829 {
830 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
831 	unsigned int nb_written = 0;
832 	unsigned int nb_supported = 0;
833 	int rc;
834 
835 	if (unlikely(xstats == NULL))
836 		return sfc_xstats_get_nb_supported(sa);
837 
838 	rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
839 	if (rc < 0)
840 		return rc;
841 
842 	nb_supported = rc;
843 	sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
844 			       &nb_supported);
845 
846 	return nb_supported;
847 }
848 
849 static int
850 sfc_xstats_get_names(struct rte_eth_dev *dev,
851 		     struct rte_eth_xstat_name *xstats_names,
852 		     unsigned int xstats_count)
853 {
854 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
855 	struct sfc_port *port = &sa->port;
856 	unsigned int i;
857 	unsigned int nstats = 0;
858 	unsigned int nb_written = 0;
859 	int ret;
860 
861 	if (unlikely(xstats_names == NULL))
862 		return sfc_xstats_get_nb_supported(sa);
863 
864 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
865 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
866 			if (nstats < xstats_count) {
867 				strlcpy(xstats_names[nstats].name,
868 					efx_mac_stat_name(sa->nic, i),
869 					sizeof(xstats_names[0].name));
870 				nb_written++;
871 			}
872 			nstats++;
873 		}
874 	}
875 
876 	ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
877 				      &nb_written, &nstats);
878 	if (ret != 0) {
879 		SFC_ASSERT(ret < 0);
880 		return ret;
881 	}
882 
883 	return nstats;
884 }
885 
886 static int
887 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
888 		     uint64_t *values, unsigned int n)
889 {
890 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
891 	struct sfc_port *port = &sa->port;
892 	unsigned int nb_supported;
893 	unsigned int i;
894 	int rc;
895 
896 	if (unlikely(ids == NULL || values == NULL))
897 		return -EINVAL;
898 
899 	/*
900 	 * Values array could be filled in nonsequential order. Fill values with
901 	 * constant indicating invalid ID first.
902 	 */
903 	for (i = 0; i < n; i++)
904 		values[i] = SFC_XSTAT_ID_INVALID_VAL;
905 
906 	rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
907 	if (rc != 0)
908 		return rc;
909 
910 	nb_supported = port->mac_stats_nb_supported;
911 	sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
912 
913 	/* Return number of written stats before invalid ID is encountered. */
914 	for (i = 0; i < n; i++) {
915 		if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
916 			return i;
917 	}
918 
919 	return n;
920 }
921 
922 static int
923 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
924 			   const uint64_t *ids,
925 			   struct rte_eth_xstat_name *xstats_names,
926 			   unsigned int size)
927 {
928 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
929 	struct sfc_port *port = &sa->port;
930 	unsigned int nb_supported;
931 	unsigned int i;
932 	int ret;
933 
934 	if (unlikely(xstats_names == NULL && ids != NULL) ||
935 	    unlikely(xstats_names != NULL && ids == NULL))
936 		return -EINVAL;
937 
938 	if (unlikely(xstats_names == NULL && ids == NULL))
939 		return sfc_xstats_get_nb_supported(sa);
940 
941 	/*
942 	 * Names array could be filled in nonsequential order. Fill names with
943 	 * string indicating invalid ID first.
944 	 */
945 	for (i = 0; i < size; i++)
946 		xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
947 
948 	sfc_adapter_lock(sa);
949 
950 	SFC_ASSERT(port->mac_stats_nb_supported <=
951 		   RTE_DIM(port->mac_stats_by_id));
952 
953 	for (i = 0; i < size; i++) {
954 		if (ids[i] < port->mac_stats_nb_supported) {
955 			strlcpy(xstats_names[i].name,
956 				efx_mac_stat_name(sa->nic,
957 						 port->mac_stats_by_id[ids[i]]),
958 				sizeof(xstats_names[0].name));
959 		}
960 	}
961 
962 	nb_supported = port->mac_stats_nb_supported;
963 
964 	sfc_adapter_unlock(sa);
965 
966 	ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
967 					    &nb_supported);
968 	if (ret != 0) {
969 		SFC_ASSERT(ret < 0);
970 		return ret;
971 	}
972 
973 	/* Return number of written names before invalid ID is encountered. */
974 	for (i = 0; i < size; i++) {
975 		if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
976 			return i;
977 	}
978 
979 	return size;
980 }
981 
982 static int
983 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
984 {
985 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
986 	unsigned int wanted_fc, link_fc;
987 
988 	memset(fc_conf, 0, sizeof(*fc_conf));
989 
990 	sfc_adapter_lock(sa);
991 
992 	if (sa->state == SFC_ETHDEV_STARTED)
993 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
994 	else
995 		link_fc = sa->port.flow_ctrl;
996 
997 	switch (link_fc) {
998 	case 0:
999 		fc_conf->mode = RTE_ETH_FC_NONE;
1000 		break;
1001 	case EFX_FCNTL_RESPOND:
1002 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
1003 		break;
1004 	case EFX_FCNTL_GENERATE:
1005 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
1006 		break;
1007 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
1008 		fc_conf->mode = RTE_ETH_FC_FULL;
1009 		break;
1010 	default:
1011 		sfc_err(sa, "%s: unexpected flow control value %#x",
1012 			__func__, link_fc);
1013 	}
1014 
1015 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
1016 
1017 	sfc_adapter_unlock(sa);
1018 
1019 	return 0;
1020 }
1021 
1022 static int
1023 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1024 {
1025 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1026 	struct sfc_port *port = &sa->port;
1027 	unsigned int fcntl;
1028 	int rc;
1029 
1030 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
1031 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
1032 	    fc_conf->mac_ctrl_frame_fwd != 0) {
1033 		sfc_err(sa, "unsupported flow control settings specified");
1034 		rc = EINVAL;
1035 		goto fail_inval;
1036 	}
1037 
1038 	switch (fc_conf->mode) {
1039 	case RTE_ETH_FC_NONE:
1040 		fcntl = 0;
1041 		break;
1042 	case RTE_ETH_FC_RX_PAUSE:
1043 		fcntl = EFX_FCNTL_RESPOND;
1044 		break;
1045 	case RTE_ETH_FC_TX_PAUSE:
1046 		fcntl = EFX_FCNTL_GENERATE;
1047 		break;
1048 	case RTE_ETH_FC_FULL:
1049 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
1050 		break;
1051 	default:
1052 		rc = EINVAL;
1053 		goto fail_inval;
1054 	}
1055 
1056 	sfc_adapter_lock(sa);
1057 
1058 	if (sa->state == SFC_ETHDEV_STARTED) {
1059 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
1060 		if (rc != 0)
1061 			goto fail_mac_fcntl_set;
1062 	}
1063 
1064 	port->flow_ctrl = fcntl;
1065 	port->flow_ctrl_autoneg = fc_conf->autoneg;
1066 
1067 	sfc_adapter_unlock(sa);
1068 
1069 	return 0;
1070 
1071 fail_mac_fcntl_set:
1072 	sfc_adapter_unlock(sa);
1073 fail_inval:
1074 	SFC_ASSERT(rc > 0);
1075 	return -rc;
1076 }
1077 
1078 static int
1079 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
1080 {
1081 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1082 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1083 	boolean_t scatter_enabled;
1084 	const char *error;
1085 	unsigned int i;
1086 
1087 	for (i = 0; i < sas->rxq_count; i++) {
1088 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
1089 			continue;
1090 
1091 		scatter_enabled = (sas->rxq_info[i].type_flags &
1092 				   EFX_RXQ_FLAG_SCATTER);
1093 
1094 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
1095 					  encp->enc_rx_prefix_size,
1096 					  scatter_enabled,
1097 					  encp->enc_rx_scatter_max, &error)) {
1098 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1099 				error);
1100 			return EINVAL;
1101 		}
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static int
1108 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1109 {
1110 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1111 	size_t pdu = EFX_MAC_PDU(mtu);
1112 	size_t old_pdu;
1113 	int rc;
1114 
1115 	sfc_log_init(sa, "mtu=%u", mtu);
1116 
1117 	rc = EINVAL;
1118 	if (pdu < EFX_MAC_PDU_MIN) {
1119 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1120 			(unsigned int)mtu, (unsigned int)pdu,
1121 			EFX_MAC_PDU_MIN);
1122 		goto fail_inval;
1123 	}
1124 	if (pdu > EFX_MAC_PDU_MAX) {
1125 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1126 			(unsigned int)mtu, (unsigned int)pdu,
1127 			(unsigned int)EFX_MAC_PDU_MAX);
1128 		goto fail_inval;
1129 	}
1130 
1131 	sfc_adapter_lock(sa);
1132 
1133 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1134 	if (rc != 0)
1135 		goto fail_check_scatter;
1136 
1137 	if (pdu != sa->port.pdu) {
1138 		if (sa->state == SFC_ETHDEV_STARTED) {
1139 			sfc_stop(sa);
1140 
1141 			old_pdu = sa->port.pdu;
1142 			sa->port.pdu = pdu;
1143 			rc = sfc_start(sa);
1144 			if (rc != 0)
1145 				goto fail_start;
1146 		} else {
1147 			sa->port.pdu = pdu;
1148 		}
1149 	}
1150 
1151 	sfc_adapter_unlock(sa);
1152 
1153 	sfc_log_init(sa, "done");
1154 	return 0;
1155 
1156 fail_start:
1157 	sa->port.pdu = old_pdu;
1158 	if (sfc_start(sa) != 0)
1159 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1160 			"PDU max size - port is stopped",
1161 			(unsigned int)pdu, (unsigned int)old_pdu);
1162 
1163 fail_check_scatter:
1164 	sfc_adapter_unlock(sa);
1165 
1166 fail_inval:
1167 	sfc_log_init(sa, "failed %d", rc);
1168 	SFC_ASSERT(rc > 0);
1169 	return -rc;
1170 }
1171 static int
1172 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1173 {
1174 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1175 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1176 	struct sfc_port *port = &sa->port;
1177 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1178 	int rc = 0;
1179 
1180 	sfc_adapter_lock(sa);
1181 
1182 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1183 		goto unlock;
1184 
1185 	/*
1186 	 * Copy the address to the device private data so that
1187 	 * it could be recalled in the case of adapter restart.
1188 	 */
1189 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1190 
1191 	/*
1192 	 * Neither of the two following checks can return
1193 	 * an error. The new MAC address is preserved in
1194 	 * the device private data and can be activated
1195 	 * on the next port start if the user prevents
1196 	 * isolated mode from being enabled.
1197 	 */
1198 	if (sfc_sa2shared(sa)->isolated) {
1199 		sfc_warn(sa, "isolated mode is active on the port");
1200 		sfc_warn(sa, "will not set MAC address");
1201 		goto unlock;
1202 	}
1203 
1204 	if (sa->state != SFC_ETHDEV_STARTED) {
1205 		sfc_notice(sa, "the port is not started");
1206 		sfc_notice(sa, "the new MAC address will be set on port start");
1207 
1208 		goto unlock;
1209 	}
1210 
1211 	if (encp->enc_allow_set_mac_with_installed_filters) {
1212 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1213 		if (rc != 0) {
1214 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1215 			goto unlock;
1216 		}
1217 
1218 		/*
1219 		 * Changing the MAC address by means of MCDI request
1220 		 * has no effect on received traffic, therefore
1221 		 * we also need to update unicast filters
1222 		 */
1223 		rc = sfc_set_rx_mode_unchecked(sa);
1224 		if (rc != 0) {
1225 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1226 			/* Rollback the old address */
1227 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1228 			(void)sfc_set_rx_mode_unchecked(sa);
1229 		}
1230 	} else {
1231 		sfc_warn(sa, "cannot set MAC address with filters installed");
1232 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1233 		sfc_warn(sa, "(some traffic may be dropped)");
1234 
1235 		/*
1236 		 * Since setting MAC address with filters installed is not
1237 		 * allowed on the adapter, the new MAC address will be set
1238 		 * by means of adapter restart. sfc_start() shall retrieve
1239 		 * the new address from the device private data and set it.
1240 		 */
1241 		sfc_stop(sa);
1242 		rc = sfc_start(sa);
1243 		if (rc != 0)
1244 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1245 	}
1246 
1247 unlock:
1248 	if (rc != 0)
1249 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1250 
1251 	sfc_adapter_unlock(sa);
1252 
1253 	SFC_ASSERT(rc >= 0);
1254 	return -rc;
1255 }
1256 
1257 
1258 static int
1259 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1260 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1261 {
1262 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1263 	struct sfc_port *port = &sa->port;
1264 	uint8_t *mc_addrs = port->mcast_addrs;
1265 	int rc;
1266 	unsigned int i;
1267 
1268 	if (sfc_sa2shared(sa)->isolated) {
1269 		sfc_err(sa, "isolated mode is active on the port");
1270 		sfc_err(sa, "will not set multicast address list");
1271 		return -ENOTSUP;
1272 	}
1273 
1274 	if (mc_addrs == NULL)
1275 		return -ENOBUFS;
1276 
1277 	if (nb_mc_addr > port->max_mcast_addrs) {
1278 		sfc_err(sa, "too many multicast addresses: %u > %u",
1279 			 nb_mc_addr, port->max_mcast_addrs);
1280 		return -EINVAL;
1281 	}
1282 
1283 	for (i = 0; i < nb_mc_addr; ++i) {
1284 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1285 				 EFX_MAC_ADDR_LEN);
1286 		mc_addrs += EFX_MAC_ADDR_LEN;
1287 	}
1288 
1289 	port->nb_mcast_addrs = nb_mc_addr;
1290 
1291 	if (sa->state != SFC_ETHDEV_STARTED)
1292 		return 0;
1293 
1294 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1295 					port->nb_mcast_addrs);
1296 	if (rc != 0)
1297 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1298 
1299 	SFC_ASSERT(rc >= 0);
1300 	return -rc;
1301 }
1302 
1303 /*
1304  * The function is used by the secondary process as well. It must not
1305  * use any process-local pointers from the adapter data.
1306  */
1307 static void
1308 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1309 		      struct rte_eth_rxq_info *qinfo)
1310 {
1311 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1312 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1313 	struct sfc_rxq_info *rxq_info;
1314 
1315 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1316 
1317 	qinfo->mp = rxq_info->refill_mb_pool;
1318 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1319 	qinfo->conf.rx_drop_en = 1;
1320 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1321 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1322 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1323 		qinfo->conf.offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
1324 		qinfo->scattered_rx = 1;
1325 	}
1326 	qinfo->nb_desc = rxq_info->entries;
1327 }
1328 
1329 /*
1330  * The function is used by the secondary process as well. It must not
1331  * use any process-local pointers from the adapter data.
1332  */
1333 static void
1334 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1335 		      struct rte_eth_txq_info *qinfo)
1336 {
1337 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1338 	struct sfc_txq_info *txq_info;
1339 
1340 	SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1341 
1342 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1343 
1344 	memset(qinfo, 0, sizeof(*qinfo));
1345 
1346 	qinfo->conf.offloads = txq_info->offloads;
1347 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1348 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1349 	qinfo->nb_desc = txq_info->entries;
1350 }
1351 
1352 /*
1353  * The function is used by the secondary process as well. It must not
1354  * use any process-local pointers from the adapter data.
1355  */
1356 static uint32_t
1357 sfc_rx_queue_count(void *rx_queue)
1358 {
1359 	struct sfc_dp_rxq *dp_rxq = rx_queue;
1360 	const struct sfc_dp_rx *dp_rx;
1361 	struct sfc_rxq_info *rxq_info;
1362 
1363 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1364 	rxq_info = sfc_rxq_info_by_dp_rxq(dp_rxq);
1365 
1366 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1367 		return 0;
1368 
1369 	return dp_rx->qdesc_npending(dp_rxq);
1370 }
1371 
1372 /*
1373  * The function is used by the secondary process as well. It must not
1374  * use any process-local pointers from the adapter data.
1375  */
1376 static int
1377 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1378 {
1379 	struct sfc_dp_rxq *dp_rxq = queue;
1380 	const struct sfc_dp_rx *dp_rx;
1381 
1382 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1383 
1384 	return dp_rx->qdesc_status(dp_rxq, offset);
1385 }
1386 
1387 /*
1388  * The function is used by the secondary process as well. It must not
1389  * use any process-local pointers from the adapter data.
1390  */
1391 static int
1392 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1393 {
1394 	struct sfc_dp_txq *dp_txq = queue;
1395 	const struct sfc_dp_tx *dp_tx;
1396 
1397 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1398 
1399 	return dp_tx->qdesc_status(dp_txq, offset);
1400 }
1401 
1402 static int
1403 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1404 {
1405 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1406 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1407 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1408 	struct sfc_rxq_info *rxq_info;
1409 	sfc_sw_index_t sw_index;
1410 	int rc;
1411 
1412 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1413 
1414 	sfc_adapter_lock(sa);
1415 
1416 	rc = EINVAL;
1417 	if (sa->state != SFC_ETHDEV_STARTED)
1418 		goto fail_not_started;
1419 
1420 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1421 	if (rxq_info->state != SFC_RXQ_INITIALIZED)
1422 		goto fail_not_setup;
1423 
1424 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1425 	rc = sfc_rx_qstart(sa, sw_index);
1426 	if (rc != 0)
1427 		goto fail_rx_qstart;
1428 
1429 	rxq_info->deferred_started = B_TRUE;
1430 
1431 	sfc_adapter_unlock(sa);
1432 
1433 	return 0;
1434 
1435 fail_rx_qstart:
1436 fail_not_setup:
1437 fail_not_started:
1438 	sfc_adapter_unlock(sa);
1439 	SFC_ASSERT(rc > 0);
1440 	return -rc;
1441 }
1442 
1443 static int
1444 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1445 {
1446 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1447 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1448 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1449 	struct sfc_rxq_info *rxq_info;
1450 	sfc_sw_index_t sw_index;
1451 
1452 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1453 
1454 	sfc_adapter_lock(sa);
1455 
1456 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1457 	sfc_rx_qstop(sa, sw_index);
1458 
1459 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1460 	rxq_info->deferred_started = B_FALSE;
1461 
1462 	sfc_adapter_unlock(sa);
1463 
1464 	return 0;
1465 }
1466 
1467 static int
1468 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1469 {
1470 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1471 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1472 	struct sfc_txq_info *txq_info;
1473 	sfc_sw_index_t sw_index;
1474 	int rc;
1475 
1476 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1477 
1478 	sfc_adapter_lock(sa);
1479 
1480 	rc = EINVAL;
1481 	if (sa->state != SFC_ETHDEV_STARTED)
1482 		goto fail_not_started;
1483 
1484 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1485 	if (txq_info->state != SFC_TXQ_INITIALIZED)
1486 		goto fail_not_setup;
1487 
1488 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1489 	rc = sfc_tx_qstart(sa, sw_index);
1490 	if (rc != 0)
1491 		goto fail_tx_qstart;
1492 
1493 	txq_info->deferred_started = B_TRUE;
1494 
1495 	sfc_adapter_unlock(sa);
1496 	return 0;
1497 
1498 fail_tx_qstart:
1499 
1500 fail_not_setup:
1501 fail_not_started:
1502 	sfc_adapter_unlock(sa);
1503 	SFC_ASSERT(rc > 0);
1504 	return -rc;
1505 }
1506 
1507 static int
1508 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1509 {
1510 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1511 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1512 	struct sfc_txq_info *txq_info;
1513 	sfc_sw_index_t sw_index;
1514 
1515 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1516 
1517 	sfc_adapter_lock(sa);
1518 
1519 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1520 	sfc_tx_qstop(sa, sw_index);
1521 
1522 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1523 	txq_info->deferred_started = B_FALSE;
1524 
1525 	sfc_adapter_unlock(sa);
1526 	return 0;
1527 }
1528 
1529 static efx_tunnel_protocol_t
1530 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1531 {
1532 	switch (rte_type) {
1533 	case RTE_ETH_TUNNEL_TYPE_VXLAN:
1534 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1535 	case RTE_ETH_TUNNEL_TYPE_GENEVE:
1536 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1537 	default:
1538 		return EFX_TUNNEL_NPROTOS;
1539 	}
1540 }
1541 
1542 enum sfc_udp_tunnel_op_e {
1543 	SFC_UDP_TUNNEL_ADD_PORT,
1544 	SFC_UDP_TUNNEL_DEL_PORT,
1545 };
1546 
1547 static int
1548 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1549 		      struct rte_eth_udp_tunnel *tunnel_udp,
1550 		      enum sfc_udp_tunnel_op_e op)
1551 {
1552 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1553 	efx_tunnel_protocol_t tunnel_proto;
1554 	int rc;
1555 
1556 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1557 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1558 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1559 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1560 
1561 	tunnel_proto =
1562 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1563 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1564 		rc = ENOTSUP;
1565 		goto fail_bad_proto;
1566 	}
1567 
1568 	sfc_adapter_lock(sa);
1569 
1570 	switch (op) {
1571 	case SFC_UDP_TUNNEL_ADD_PORT:
1572 		rc = efx_tunnel_config_udp_add(sa->nic,
1573 					       tunnel_udp->udp_port,
1574 					       tunnel_proto);
1575 		break;
1576 	case SFC_UDP_TUNNEL_DEL_PORT:
1577 		rc = efx_tunnel_config_udp_remove(sa->nic,
1578 						  tunnel_udp->udp_port,
1579 						  tunnel_proto);
1580 		break;
1581 	default:
1582 		rc = EINVAL;
1583 		goto fail_bad_op;
1584 	}
1585 
1586 	if (rc != 0)
1587 		goto fail_op;
1588 
1589 	if (sa->state == SFC_ETHDEV_STARTED) {
1590 		rc = efx_tunnel_reconfigure(sa->nic);
1591 		if (rc == EAGAIN) {
1592 			/*
1593 			 * Configuration is accepted by FW and MC reboot
1594 			 * is initiated to apply the changes. MC reboot
1595 			 * will be handled in a usual way (MC reboot
1596 			 * event on management event queue and adapter
1597 			 * restart).
1598 			 */
1599 			rc = 0;
1600 		} else if (rc != 0) {
1601 			goto fail_reconfigure;
1602 		}
1603 	}
1604 
1605 	sfc_adapter_unlock(sa);
1606 	return 0;
1607 
1608 fail_reconfigure:
1609 	/* Remove/restore entry since the change makes the trouble */
1610 	switch (op) {
1611 	case SFC_UDP_TUNNEL_ADD_PORT:
1612 		(void)efx_tunnel_config_udp_remove(sa->nic,
1613 						   tunnel_udp->udp_port,
1614 						   tunnel_proto);
1615 		break;
1616 	case SFC_UDP_TUNNEL_DEL_PORT:
1617 		(void)efx_tunnel_config_udp_add(sa->nic,
1618 						tunnel_udp->udp_port,
1619 						tunnel_proto);
1620 		break;
1621 	}
1622 
1623 fail_op:
1624 fail_bad_op:
1625 	sfc_adapter_unlock(sa);
1626 
1627 fail_bad_proto:
1628 	SFC_ASSERT(rc > 0);
1629 	return -rc;
1630 }
1631 
1632 static int
1633 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1634 			    struct rte_eth_udp_tunnel *tunnel_udp)
1635 {
1636 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1637 }
1638 
1639 static int
1640 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1641 			    struct rte_eth_udp_tunnel *tunnel_udp)
1642 {
1643 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1644 }
1645 
1646 /*
1647  * The function is used by the secondary process as well. It must not
1648  * use any process-local pointers from the adapter data.
1649  */
1650 static int
1651 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1652 			  struct rte_eth_rss_conf *rss_conf)
1653 {
1654 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1655 	struct sfc_rss *rss = &sas->rss;
1656 
1657 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1658 		return -ENOTSUP;
1659 
1660 	/*
1661 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1662 	 * hence, conversion is done here to derive a correct set of RTE_ETH_RSS
1663 	 * flags which corresponds to the active EFX configuration stored
1664 	 * locally in 'sfc_adapter' and kept up-to-date
1665 	 */
1666 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1667 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1668 	if (rss_conf->rss_key != NULL)
1669 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1670 
1671 	return 0;
1672 }
1673 
1674 static int
1675 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1676 			struct rte_eth_rss_conf *rss_conf)
1677 {
1678 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1679 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1680 	unsigned int efx_hash_types;
1681 	unsigned int n_contexts;
1682 	unsigned int mode_i = 0;
1683 	unsigned int key_i = 0;
1684 	uint32_t contexts[2];
1685 	unsigned int i = 0;
1686 	int rc = 0;
1687 
1688 	if (sfc_sa2shared(sa)->isolated)
1689 		return -ENOTSUP;
1690 
1691 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1692 		sfc_err(sa, "RSS is not available");
1693 		return -ENOTSUP;
1694 	}
1695 
1696 	if (rss->channels == 0) {
1697 		sfc_err(sa, "RSS is not configured");
1698 		return -EINVAL;
1699 	}
1700 
1701 	if ((rss_conf->rss_key != NULL) &&
1702 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1703 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1704 			sizeof(rss->key));
1705 		return -EINVAL;
1706 	}
1707 
1708 	sfc_adapter_lock(sa);
1709 
1710 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1711 	if (rc != 0)
1712 		goto fail_rx_hf_rte_to_efx;
1713 
1714 	contexts[0] = EFX_RSS_CONTEXT_DEFAULT;
1715 	contexts[1] = rss->dummy_ctx.nic_handle;
1716 	n_contexts = (rss->dummy_ctx.nic_handle_refcnt == 0) ? 1 : 2;
1717 
1718 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1719 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1720 					   rss->hash_alg, efx_hash_types,
1721 					   B_TRUE);
1722 		if (rc != 0)
1723 			goto fail_scale_mode_set;
1724 	}
1725 
1726 	if (rss_conf->rss_key != NULL) {
1727 		if (sa->state == SFC_ETHDEV_STARTED) {
1728 			for (key_i = 0; key_i < n_contexts; key_i++) {
1729 				rc = efx_rx_scale_key_set(sa->nic,
1730 							  contexts[key_i],
1731 							  rss_conf->rss_key,
1732 							  sizeof(rss->key));
1733 				if (rc != 0)
1734 					goto fail_scale_key_set;
1735 			}
1736 		}
1737 
1738 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1739 	}
1740 
1741 	rss->hash_types = efx_hash_types;
1742 
1743 	sfc_adapter_unlock(sa);
1744 
1745 	return 0;
1746 
1747 fail_scale_key_set:
1748 	for (i = 0; i < key_i; i++) {
1749 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1750 					 sizeof(rss->key)) != 0)
1751 			sfc_err(sa, "failed to restore RSS key");
1752 	}
1753 
1754 fail_scale_mode_set:
1755 	for (i = 0; i < mode_i; i++) {
1756 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1757 					  EFX_RX_HASHALG_TOEPLITZ,
1758 					  rss->hash_types, B_TRUE) != 0)
1759 			sfc_err(sa, "failed to restore RSS mode");
1760 	}
1761 
1762 fail_rx_hf_rte_to_efx:
1763 	sfc_adapter_unlock(sa);
1764 	return -rc;
1765 }
1766 
1767 /*
1768  * The function is used by the secondary process as well. It must not
1769  * use any process-local pointers from the adapter data.
1770  */
1771 static int
1772 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1773 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1774 		       uint16_t reta_size)
1775 {
1776 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1777 	struct sfc_rss *rss = &sas->rss;
1778 	int entry;
1779 
1780 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1781 		return -ENOTSUP;
1782 
1783 	if (rss->channels == 0)
1784 		return -EINVAL;
1785 
1786 	if (reta_size != EFX_RSS_TBL_SIZE)
1787 		return -EINVAL;
1788 
1789 	for (entry = 0; entry < reta_size; entry++) {
1790 		int grp = entry / RTE_ETH_RETA_GROUP_SIZE;
1791 		int grp_idx = entry % RTE_ETH_RETA_GROUP_SIZE;
1792 
1793 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1794 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1795 	}
1796 
1797 	return 0;
1798 }
1799 
1800 static int
1801 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1802 			struct rte_eth_rss_reta_entry64 *reta_conf,
1803 			uint16_t reta_size)
1804 {
1805 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1806 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1807 	unsigned int *rss_tbl_new;
1808 	uint16_t entry;
1809 	int rc = 0;
1810 
1811 
1812 	if (sfc_sa2shared(sa)->isolated)
1813 		return -ENOTSUP;
1814 
1815 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1816 		sfc_err(sa, "RSS is not available");
1817 		return -ENOTSUP;
1818 	}
1819 
1820 	if (rss->channels == 0) {
1821 		sfc_err(sa, "RSS is not configured");
1822 		return -EINVAL;
1823 	}
1824 
1825 	if (reta_size != EFX_RSS_TBL_SIZE) {
1826 		sfc_err(sa, "RETA size is wrong (should be %u)",
1827 			EFX_RSS_TBL_SIZE);
1828 		return -EINVAL;
1829 	}
1830 
1831 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1832 	if (rss_tbl_new == NULL)
1833 		return -ENOMEM;
1834 
1835 	sfc_adapter_lock(sa);
1836 
1837 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1838 
1839 	for (entry = 0; entry < reta_size; entry++) {
1840 		int grp_idx = entry % RTE_ETH_RETA_GROUP_SIZE;
1841 		struct rte_eth_rss_reta_entry64 *grp;
1842 
1843 		grp = &reta_conf[entry / RTE_ETH_RETA_GROUP_SIZE];
1844 
1845 		if (grp->mask & (1ull << grp_idx)) {
1846 			if (grp->reta[grp_idx] >= rss->channels) {
1847 				rc = EINVAL;
1848 				goto bad_reta_entry;
1849 			}
1850 			rss_tbl_new[entry] = grp->reta[grp_idx];
1851 		}
1852 	}
1853 
1854 	if (sa->state == SFC_ETHDEV_STARTED) {
1855 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1856 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1857 		if (rc != 0)
1858 			goto fail_scale_tbl_set;
1859 	}
1860 
1861 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1862 
1863 fail_scale_tbl_set:
1864 bad_reta_entry:
1865 	sfc_adapter_unlock(sa);
1866 
1867 	rte_free(rss_tbl_new);
1868 
1869 	SFC_ASSERT(rc >= 0);
1870 	return -rc;
1871 }
1872 
1873 static int
1874 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1875 		     const struct rte_flow_ops **ops)
1876 {
1877 	*ops = &sfc_flow_ops;
1878 	return 0;
1879 }
1880 
1881 static int
1882 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1883 {
1884 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1885 
1886 	/*
1887 	 * If Rx datapath does not provide callback to check mempool,
1888 	 * all pools are supported.
1889 	 */
1890 	if (sap->dp_rx->pool_ops_supported == NULL)
1891 		return 1;
1892 
1893 	return sap->dp_rx->pool_ops_supported(pool);
1894 }
1895 
1896 static int
1897 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1898 {
1899 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1900 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1901 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1902 	struct sfc_rxq_info *rxq_info;
1903 
1904 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1905 
1906 	return sap->dp_rx->intr_enable(rxq_info->dp);
1907 }
1908 
1909 static int
1910 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1911 {
1912 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1913 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1914 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1915 	struct sfc_rxq_info *rxq_info;
1916 
1917 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1918 
1919 	return sap->dp_rx->intr_disable(rxq_info->dp);
1920 }
1921 
1922 struct sfc_mport_journal_ctx {
1923 	struct sfc_adapter		*sa;
1924 	uint16_t			switch_domain_id;
1925 	uint32_t			mcdi_handle;
1926 	bool				controllers_assigned;
1927 	efx_pcie_interface_t		*controllers;
1928 	size_t				nb_controllers;
1929 };
1930 
1931 static int
1932 sfc_journal_ctx_add_controller(struct sfc_mport_journal_ctx *ctx,
1933 			       efx_pcie_interface_t intf)
1934 {
1935 	efx_pcie_interface_t *new_controllers;
1936 	size_t i, target;
1937 	size_t new_size;
1938 
1939 	if (ctx->controllers == NULL) {
1940 		ctx->controllers = rte_malloc("sfc_controller_mapping",
1941 					      sizeof(ctx->controllers[0]), 0);
1942 		if (ctx->controllers == NULL)
1943 			return ENOMEM;
1944 
1945 		ctx->controllers[0] = intf;
1946 		ctx->nb_controllers = 1;
1947 
1948 		return 0;
1949 	}
1950 
1951 	for (i = 0; i < ctx->nb_controllers; i++) {
1952 		if (ctx->controllers[i] == intf)
1953 			return 0;
1954 		if (ctx->controllers[i] > intf)
1955 			break;
1956 	}
1957 	target = i;
1958 
1959 	ctx->nb_controllers += 1;
1960 	new_size = ctx->nb_controllers * sizeof(ctx->controllers[0]);
1961 
1962 	new_controllers = rte_realloc(ctx->controllers, new_size, 0);
1963 	if (new_controllers == NULL) {
1964 		rte_free(ctx->controllers);
1965 		return ENOMEM;
1966 	}
1967 	ctx->controllers = new_controllers;
1968 
1969 	for (i = target + 1; i < ctx->nb_controllers; i++)
1970 		ctx->controllers[i] = ctx->controllers[i - 1];
1971 
1972 	ctx->controllers[target] = intf;
1973 
1974 	return 0;
1975 }
1976 
1977 static efx_rc_t
1978 sfc_process_mport_journal_entry(struct sfc_mport_journal_ctx *ctx,
1979 				efx_mport_desc_t *mport)
1980 {
1981 	struct sfc_mae_switch_port_request req;
1982 	efx_mport_sel_t entity_selector;
1983 	efx_mport_sel_t ethdev_mport;
1984 	uint16_t switch_port_id;
1985 	efx_rc_t efx_rc;
1986 	int rc;
1987 
1988 	sfc_dbg(ctx->sa,
1989 		"processing mport id %u (controller %u pf %u vf %u)",
1990 		mport->emd_id.id, mport->emd_vnic.ev_intf,
1991 		mport->emd_vnic.ev_pf, mport->emd_vnic.ev_vf);
1992 	efx_mae_mport_invalid(&ethdev_mport);
1993 
1994 	if (!ctx->controllers_assigned) {
1995 		rc = sfc_journal_ctx_add_controller(ctx,
1996 						    mport->emd_vnic.ev_intf);
1997 		if (rc != 0)
1998 			return rc;
1999 	}
2000 
2001 	/* Build Mport selector */
2002 	efx_rc = efx_mae_mport_by_pcie_mh_function(mport->emd_vnic.ev_intf,
2003 						mport->emd_vnic.ev_pf,
2004 						mport->emd_vnic.ev_vf,
2005 						&entity_selector);
2006 	if (efx_rc != 0) {
2007 		sfc_err(ctx->sa, "failed to build entity mport selector for c%upf%uvf%u",
2008 			mport->emd_vnic.ev_intf,
2009 			mport->emd_vnic.ev_pf,
2010 			mport->emd_vnic.ev_vf);
2011 		return efx_rc;
2012 	}
2013 
2014 	rc = sfc_mae_switch_port_id_by_entity(ctx->switch_domain_id,
2015 					      &entity_selector,
2016 					      SFC_MAE_SWITCH_PORT_REPRESENTOR,
2017 					      &switch_port_id);
2018 	switch (rc) {
2019 	case 0:
2020 		/* Already registered */
2021 		break;
2022 	case ENOENT:
2023 		/*
2024 		 * No representor has been created for this entity.
2025 		 * Create a dummy switch registry entry with an invalid ethdev
2026 		 * mport selector. When a corresponding representor is created,
2027 		 * this entry will be updated.
2028 		 */
2029 		req.type = SFC_MAE_SWITCH_PORT_REPRESENTOR;
2030 		req.entity_mportp = &entity_selector;
2031 		req.ethdev_mportp = &ethdev_mport;
2032 		req.ethdev_port_id = RTE_MAX_ETHPORTS;
2033 		req.port_data.repr.intf = mport->emd_vnic.ev_intf;
2034 		req.port_data.repr.pf = mport->emd_vnic.ev_pf;
2035 		req.port_data.repr.vf = mport->emd_vnic.ev_vf;
2036 
2037 		rc = sfc_mae_assign_switch_port(ctx->switch_domain_id,
2038 						&req, &switch_port_id);
2039 		if (rc != 0) {
2040 			sfc_err(ctx->sa,
2041 				"failed to assign MAE switch port for c%upf%uvf%u: %s",
2042 				mport->emd_vnic.ev_intf,
2043 				mport->emd_vnic.ev_pf,
2044 				mport->emd_vnic.ev_vf,
2045 				rte_strerror(rc));
2046 			return rc;
2047 		}
2048 		break;
2049 	default:
2050 		sfc_err(ctx->sa, "failed to find MAE switch port for c%upf%uvf%u: %s",
2051 			mport->emd_vnic.ev_intf,
2052 			mport->emd_vnic.ev_pf,
2053 			mport->emd_vnic.ev_vf,
2054 			rte_strerror(rc));
2055 		return rc;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 static efx_rc_t
2062 sfc_process_mport_journal_cb(void *data, efx_mport_desc_t *mport,
2063 			     size_t mport_len)
2064 {
2065 	struct sfc_mport_journal_ctx *ctx = data;
2066 
2067 	if (ctx == NULL || ctx->sa == NULL) {
2068 		sfc_err(ctx->sa, "received NULL context or SFC adapter");
2069 		return EINVAL;
2070 	}
2071 
2072 	if (mport_len != sizeof(*mport)) {
2073 		sfc_err(ctx->sa, "actual and expected mport buffer sizes differ");
2074 		return EINVAL;
2075 	}
2076 
2077 	SFC_ASSERT(sfc_adapter_is_locked(ctx->sa));
2078 
2079 	/*
2080 	 * If a zombie flag is set, it means the mport has been marked for
2081 	 * deletion and cannot be used for any new operations. The mport will
2082 	 * be destroyed completely once all references to it are released.
2083 	 */
2084 	if (mport->emd_zombie) {
2085 		sfc_dbg(ctx->sa, "mport is a zombie, skipping");
2086 		return 0;
2087 	}
2088 	if (mport->emd_type != EFX_MPORT_TYPE_VNIC) {
2089 		sfc_dbg(ctx->sa, "mport is not a VNIC, skipping");
2090 		return 0;
2091 	}
2092 	if (mport->emd_vnic.ev_client_type != EFX_MPORT_VNIC_CLIENT_FUNCTION) {
2093 		sfc_dbg(ctx->sa, "mport is not a function, skipping");
2094 		return 0;
2095 	}
2096 	if (mport->emd_vnic.ev_handle == ctx->mcdi_handle) {
2097 		sfc_dbg(ctx->sa, "mport is this driver instance, skipping");
2098 		return 0;
2099 	}
2100 
2101 	return sfc_process_mport_journal_entry(ctx, mport);
2102 }
2103 
2104 static int
2105 sfc_process_mport_journal(struct sfc_adapter *sa)
2106 {
2107 	struct sfc_mport_journal_ctx ctx;
2108 	const efx_pcie_interface_t *controllers;
2109 	size_t nb_controllers;
2110 	efx_rc_t efx_rc;
2111 	int rc;
2112 
2113 	memset(&ctx, 0, sizeof(ctx));
2114 	ctx.sa = sa;
2115 	ctx.switch_domain_id = sa->mae.switch_domain_id;
2116 
2117 	efx_rc = efx_mcdi_get_own_client_handle(sa->nic, &ctx.mcdi_handle);
2118 	if (efx_rc != 0) {
2119 		sfc_err(sa, "failed to get own MCDI handle");
2120 		SFC_ASSERT(efx_rc > 0);
2121 		return efx_rc;
2122 	}
2123 
2124 	rc = sfc_mae_switch_domain_controllers(ctx.switch_domain_id,
2125 					       &controllers, &nb_controllers);
2126 	if (rc != 0) {
2127 		sfc_err(sa, "failed to get controller mapping");
2128 		return rc;
2129 	}
2130 
2131 	ctx.controllers_assigned = controllers != NULL;
2132 	ctx.controllers = NULL;
2133 	ctx.nb_controllers = 0;
2134 
2135 	efx_rc = efx_mae_read_mport_journal(sa->nic,
2136 					    sfc_process_mport_journal_cb, &ctx);
2137 	if (efx_rc != 0) {
2138 		sfc_err(sa, "failed to process MAE mport journal");
2139 		SFC_ASSERT(efx_rc > 0);
2140 		return efx_rc;
2141 	}
2142 
2143 	if (controllers == NULL) {
2144 		rc = sfc_mae_switch_domain_map_controllers(ctx.switch_domain_id,
2145 							   ctx.controllers,
2146 							   ctx.nb_controllers);
2147 		if (rc != 0)
2148 			return rc;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 static void
2155 sfc_count_representors_cb(enum sfc_mae_switch_port_type type,
2156 			  const efx_mport_sel_t *ethdev_mportp __rte_unused,
2157 			  uint16_t ethdev_port_id __rte_unused,
2158 			  const efx_mport_sel_t *entity_mportp __rte_unused,
2159 			  uint16_t switch_port_id __rte_unused,
2160 			  union sfc_mae_switch_port_data *port_datap
2161 				__rte_unused,
2162 			  void *user_datap)
2163 {
2164 	int *counter = user_datap;
2165 
2166 	SFC_ASSERT(counter != NULL);
2167 
2168 	if (type == SFC_MAE_SWITCH_PORT_REPRESENTOR)
2169 		(*counter)++;
2170 }
2171 
2172 struct sfc_get_representors_ctx {
2173 	struct rte_eth_representor_info	*info;
2174 	struct sfc_adapter		*sa;
2175 	uint16_t			switch_domain_id;
2176 	const efx_pcie_interface_t	*controllers;
2177 	size_t				nb_controllers;
2178 };
2179 
2180 static void
2181 sfc_get_representors_cb(enum sfc_mae_switch_port_type type,
2182 			const efx_mport_sel_t *ethdev_mportp __rte_unused,
2183 			uint16_t ethdev_port_id __rte_unused,
2184 			const efx_mport_sel_t *entity_mportp __rte_unused,
2185 			uint16_t switch_port_id,
2186 			union sfc_mae_switch_port_data *port_datap,
2187 			void *user_datap)
2188 {
2189 	struct sfc_get_representors_ctx *ctx = user_datap;
2190 	struct rte_eth_representor_range *range;
2191 	int ret;
2192 	int rc;
2193 
2194 	SFC_ASSERT(ctx != NULL);
2195 	SFC_ASSERT(ctx->info != NULL);
2196 	SFC_ASSERT(ctx->sa != NULL);
2197 
2198 	if (type != SFC_MAE_SWITCH_PORT_REPRESENTOR) {
2199 		sfc_dbg(ctx->sa, "not a representor, skipping");
2200 		return;
2201 	}
2202 	if (ctx->info->nb_ranges >= ctx->info->nb_ranges_alloc) {
2203 		sfc_dbg(ctx->sa, "info structure is full already");
2204 		return;
2205 	}
2206 
2207 	range = &ctx->info->ranges[ctx->info->nb_ranges];
2208 	rc = sfc_mae_switch_controller_from_mapping(ctx->controllers,
2209 						    ctx->nb_controllers,
2210 						    port_datap->repr.intf,
2211 						    &range->controller);
2212 	if (rc != 0) {
2213 		sfc_err(ctx->sa, "invalid representor controller: %d",
2214 			port_datap->repr.intf);
2215 		range->controller = -1;
2216 	}
2217 	range->pf = port_datap->repr.pf;
2218 	range->id_base = switch_port_id;
2219 	range->id_end = switch_port_id;
2220 
2221 	if (port_datap->repr.vf != EFX_PCI_VF_INVALID) {
2222 		range->type = RTE_ETH_REPRESENTOR_VF;
2223 		range->vf = port_datap->repr.vf;
2224 		ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2225 			       "c%dpf%dvf%d", range->controller, range->pf,
2226 			       range->vf);
2227 	} else {
2228 		range->type = RTE_ETH_REPRESENTOR_PF;
2229 		ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2230 			 "c%dpf%d", range->controller, range->pf);
2231 	}
2232 	if (ret >= RTE_DEV_NAME_MAX_LEN) {
2233 		sfc_err(ctx->sa, "representor name has been truncated: %s",
2234 			range->name);
2235 	}
2236 
2237 	ctx->info->nb_ranges++;
2238 }
2239 
2240 static int
2241 sfc_representor_info_get(struct rte_eth_dev *dev,
2242 			 struct rte_eth_representor_info *info)
2243 {
2244 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2245 	struct sfc_get_representors_ctx get_repr_ctx;
2246 	const efx_nic_cfg_t *nic_cfg;
2247 	uint16_t switch_domain_id;
2248 	uint32_t nb_repr;
2249 	int controller;
2250 	int rc;
2251 
2252 	sfc_adapter_lock(sa);
2253 
2254 	if (sa->mae.status != SFC_MAE_STATUS_ADMIN) {
2255 		sfc_adapter_unlock(sa);
2256 		return -ENOTSUP;
2257 	}
2258 
2259 	rc = sfc_process_mport_journal(sa);
2260 	if (rc != 0) {
2261 		sfc_adapter_unlock(sa);
2262 		SFC_ASSERT(rc > 0);
2263 		return -rc;
2264 	}
2265 
2266 	switch_domain_id = sa->mae.switch_domain_id;
2267 
2268 	nb_repr = 0;
2269 	rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2270 					  sfc_count_representors_cb,
2271 					  &nb_repr);
2272 	if (rc != 0) {
2273 		sfc_adapter_unlock(sa);
2274 		SFC_ASSERT(rc > 0);
2275 		return -rc;
2276 	}
2277 
2278 	if (info == NULL) {
2279 		sfc_adapter_unlock(sa);
2280 		return nb_repr;
2281 	}
2282 
2283 	rc = sfc_mae_switch_domain_controllers(switch_domain_id,
2284 					       &get_repr_ctx.controllers,
2285 					       &get_repr_ctx.nb_controllers);
2286 	if (rc != 0) {
2287 		sfc_adapter_unlock(sa);
2288 		SFC_ASSERT(rc > 0);
2289 		return -rc;
2290 	}
2291 
2292 	nic_cfg = efx_nic_cfg_get(sa->nic);
2293 
2294 	rc = sfc_mae_switch_domain_get_controller(switch_domain_id,
2295 						  nic_cfg->enc_intf,
2296 						  &controller);
2297 	if (rc != 0) {
2298 		sfc_err(sa, "invalid controller: %d", nic_cfg->enc_intf);
2299 		controller = -1;
2300 	}
2301 
2302 	info->controller = controller;
2303 	info->pf = nic_cfg->enc_pf;
2304 
2305 	get_repr_ctx.info = info;
2306 	get_repr_ctx.sa = sa;
2307 	get_repr_ctx.switch_domain_id = switch_domain_id;
2308 	rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2309 					  sfc_get_representors_cb,
2310 					  &get_repr_ctx);
2311 	if (rc != 0) {
2312 		sfc_adapter_unlock(sa);
2313 		SFC_ASSERT(rc > 0);
2314 		return -rc;
2315 	}
2316 
2317 	sfc_adapter_unlock(sa);
2318 	return nb_repr;
2319 }
2320 
2321 static int
2322 sfc_rx_metadata_negotiate(struct rte_eth_dev *dev, uint64_t *features)
2323 {
2324 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2325 	uint64_t supported = 0;
2326 
2327 	sfc_adapter_lock(sa);
2328 
2329 	if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_FLAG) != 0)
2330 		supported |= RTE_ETH_RX_METADATA_USER_FLAG;
2331 
2332 	if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_MARK) != 0)
2333 		supported |= RTE_ETH_RX_METADATA_USER_MARK;
2334 
2335 	if (sfc_ft_is_supported(sa))
2336 		supported |= RTE_ETH_RX_METADATA_TUNNEL_ID;
2337 
2338 	sa->negotiated_rx_metadata = supported & *features;
2339 	*features = sa->negotiated_rx_metadata;
2340 
2341 	sfc_adapter_unlock(sa);
2342 
2343 	return 0;
2344 }
2345 
2346 static const struct eth_dev_ops sfc_eth_dev_ops = {
2347 	.dev_configure			= sfc_dev_configure,
2348 	.dev_start			= sfc_dev_start,
2349 	.dev_stop			= sfc_dev_stop,
2350 	.dev_set_link_up		= sfc_dev_set_link_up,
2351 	.dev_set_link_down		= sfc_dev_set_link_down,
2352 	.dev_close			= sfc_dev_close,
2353 	.promiscuous_enable		= sfc_dev_promisc_enable,
2354 	.promiscuous_disable		= sfc_dev_promisc_disable,
2355 	.allmulticast_enable		= sfc_dev_allmulti_enable,
2356 	.allmulticast_disable		= sfc_dev_allmulti_disable,
2357 	.link_update			= sfc_dev_link_update,
2358 	.stats_get			= sfc_stats_get,
2359 	.stats_reset			= sfc_stats_reset,
2360 	.xstats_get			= sfc_xstats_get,
2361 	.xstats_reset			= sfc_stats_reset,
2362 	.xstats_get_names		= sfc_xstats_get_names,
2363 	.dev_infos_get			= sfc_dev_infos_get,
2364 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2365 	.mtu_set			= sfc_dev_set_mtu,
2366 	.rx_queue_start			= sfc_rx_queue_start,
2367 	.rx_queue_stop			= sfc_rx_queue_stop,
2368 	.tx_queue_start			= sfc_tx_queue_start,
2369 	.tx_queue_stop			= sfc_tx_queue_stop,
2370 	.rx_queue_setup			= sfc_rx_queue_setup,
2371 	.rx_queue_release		= sfc_rx_queue_release,
2372 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
2373 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
2374 	.tx_queue_setup			= sfc_tx_queue_setup,
2375 	.tx_queue_release		= sfc_tx_queue_release,
2376 	.flow_ctrl_get			= sfc_flow_ctrl_get,
2377 	.flow_ctrl_set			= sfc_flow_ctrl_set,
2378 	.mac_addr_set			= sfc_mac_addr_set,
2379 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
2380 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
2381 	.reta_update			= sfc_dev_rss_reta_update,
2382 	.reta_query			= sfc_dev_rss_reta_query,
2383 	.rss_hash_update		= sfc_dev_rss_hash_update,
2384 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2385 	.flow_ops_get			= sfc_dev_flow_ops_get,
2386 	.set_mc_addr_list		= sfc_set_mc_addr_list,
2387 	.rxq_info_get			= sfc_rx_queue_info_get,
2388 	.txq_info_get			= sfc_tx_queue_info_get,
2389 	.fw_version_get			= sfc_fw_version_get,
2390 	.xstats_get_by_id		= sfc_xstats_get_by_id,
2391 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
2392 	.pool_ops_supported		= sfc_pool_ops_supported,
2393 	.representor_info_get		= sfc_representor_info_get,
2394 	.rx_metadata_negotiate		= sfc_rx_metadata_negotiate,
2395 };
2396 
2397 struct sfc_ethdev_init_data {
2398 	uint16_t		nb_representors;
2399 };
2400 
2401 /**
2402  * Duplicate a string in potentially shared memory required for
2403  * multi-process support.
2404  *
2405  * strdup() allocates from process-local heap/memory.
2406  */
2407 static char *
2408 sfc_strdup(const char *str)
2409 {
2410 	size_t size;
2411 	char *copy;
2412 
2413 	if (str == NULL)
2414 		return NULL;
2415 
2416 	size = strlen(str) + 1;
2417 	copy = rte_malloc(__func__, size, 0);
2418 	if (copy != NULL)
2419 		rte_memcpy(copy, str, size);
2420 
2421 	return copy;
2422 }
2423 
2424 static int
2425 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
2426 {
2427 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2428 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2429 	const struct sfc_dp_rx *dp_rx;
2430 	const struct sfc_dp_tx *dp_tx;
2431 	const efx_nic_cfg_t *encp;
2432 	unsigned int avail_caps = 0;
2433 	const char *rx_name = NULL;
2434 	const char *tx_name = NULL;
2435 	int rc;
2436 
2437 	switch (sa->family) {
2438 	case EFX_FAMILY_HUNTINGTON:
2439 	case EFX_FAMILY_MEDFORD:
2440 	case EFX_FAMILY_MEDFORD2:
2441 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
2442 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
2443 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
2444 		break;
2445 	case EFX_FAMILY_RIVERHEAD:
2446 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
2447 		break;
2448 	default:
2449 		break;
2450 	}
2451 
2452 	encp = efx_nic_cfg_get(sa->nic);
2453 	if (encp->enc_rx_es_super_buffer_supported)
2454 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
2455 
2456 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
2457 				sfc_kvarg_string_handler, &rx_name);
2458 	if (rc != 0)
2459 		goto fail_kvarg_rx_datapath;
2460 
2461 	if (rx_name != NULL) {
2462 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
2463 		if (dp_rx == NULL) {
2464 			sfc_err(sa, "Rx datapath %s not found", rx_name);
2465 			rc = ENOENT;
2466 			goto fail_dp_rx;
2467 		}
2468 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
2469 			sfc_err(sa,
2470 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
2471 				rx_name);
2472 			rc = EINVAL;
2473 			goto fail_dp_rx_caps;
2474 		}
2475 	} else {
2476 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
2477 		if (dp_rx == NULL) {
2478 			sfc_err(sa, "Rx datapath by caps %#x not found",
2479 				avail_caps);
2480 			rc = ENOENT;
2481 			goto fail_dp_rx;
2482 		}
2483 	}
2484 
2485 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
2486 	if (sas->dp_rx_name == NULL) {
2487 		rc = ENOMEM;
2488 		goto fail_dp_rx_name;
2489 	}
2490 
2491 	if (strcmp(dp_rx->dp.name, SFC_KVARG_DATAPATH_EF10_ESSB) == 0) {
2492 		/* FLAG and MARK are always available from Rx prefix. */
2493 		sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_FLAG;
2494 		sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_MARK;
2495 	}
2496 
2497 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
2498 
2499 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
2500 				sfc_kvarg_string_handler, &tx_name);
2501 	if (rc != 0)
2502 		goto fail_kvarg_tx_datapath;
2503 
2504 	if (tx_name != NULL) {
2505 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
2506 		if (dp_tx == NULL) {
2507 			sfc_err(sa, "Tx datapath %s not found", tx_name);
2508 			rc = ENOENT;
2509 			goto fail_dp_tx;
2510 		}
2511 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2512 			sfc_err(sa,
2513 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
2514 				tx_name);
2515 			rc = EINVAL;
2516 			goto fail_dp_tx_caps;
2517 		}
2518 	} else {
2519 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2520 		if (dp_tx == NULL) {
2521 			sfc_err(sa, "Tx datapath by caps %#x not found",
2522 				avail_caps);
2523 			rc = ENOENT;
2524 			goto fail_dp_tx;
2525 		}
2526 	}
2527 
2528 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2529 	if (sas->dp_tx_name == NULL) {
2530 		rc = ENOMEM;
2531 		goto fail_dp_tx_name;
2532 	}
2533 
2534 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2535 
2536 	sa->priv.dp_rx = dp_rx;
2537 	sa->priv.dp_tx = dp_tx;
2538 
2539 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2540 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2541 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2542 
2543 	dev->rx_queue_count = sfc_rx_queue_count;
2544 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2545 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2546 	dev->dev_ops = &sfc_eth_dev_ops;
2547 
2548 	return 0;
2549 
2550 fail_dp_tx_name:
2551 fail_dp_tx_caps:
2552 fail_dp_tx:
2553 fail_kvarg_tx_datapath:
2554 	rte_free(sas->dp_rx_name);
2555 	sas->dp_rx_name = NULL;
2556 
2557 fail_dp_rx_name:
2558 fail_dp_rx_caps:
2559 fail_dp_rx:
2560 fail_kvarg_rx_datapath:
2561 	return rc;
2562 }
2563 
2564 static void
2565 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2566 {
2567 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2568 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2569 
2570 	dev->dev_ops = NULL;
2571 	dev->tx_pkt_prepare = NULL;
2572 	dev->rx_pkt_burst = NULL;
2573 	dev->tx_pkt_burst = NULL;
2574 
2575 	rte_free(sas->dp_tx_name);
2576 	sas->dp_tx_name = NULL;
2577 	sa->priv.dp_tx = NULL;
2578 
2579 	rte_free(sas->dp_rx_name);
2580 	sas->dp_rx_name = NULL;
2581 	sa->priv.dp_rx = NULL;
2582 }
2583 
2584 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2585 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2586 	.reta_query			= sfc_dev_rss_reta_query,
2587 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2588 	.rxq_info_get			= sfc_rx_queue_info_get,
2589 	.txq_info_get			= sfc_tx_queue_info_get,
2590 };
2591 
2592 static int
2593 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2594 {
2595 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2596 	struct sfc_adapter_priv *sap;
2597 	const struct sfc_dp_rx *dp_rx;
2598 	const struct sfc_dp_tx *dp_tx;
2599 	int rc;
2600 
2601 	/*
2602 	 * Allocate process private data from heap, since it should not
2603 	 * be located in shared memory allocated using rte_malloc() API.
2604 	 */
2605 	sap = calloc(1, sizeof(*sap));
2606 	if (sap == NULL) {
2607 		rc = ENOMEM;
2608 		goto fail_alloc_priv;
2609 	}
2610 
2611 	sap->logtype_main = logtype_main;
2612 
2613 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2614 	if (dp_rx == NULL) {
2615 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2616 			"cannot find %s Rx datapath", sas->dp_rx_name);
2617 		rc = ENOENT;
2618 		goto fail_dp_rx;
2619 	}
2620 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2621 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2622 			"%s Rx datapath does not support multi-process",
2623 			sas->dp_rx_name);
2624 		rc = EINVAL;
2625 		goto fail_dp_rx_multi_process;
2626 	}
2627 
2628 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2629 	if (dp_tx == NULL) {
2630 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2631 			"cannot find %s Tx datapath", sas->dp_tx_name);
2632 		rc = ENOENT;
2633 		goto fail_dp_tx;
2634 	}
2635 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2636 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2637 			"%s Tx datapath does not support multi-process",
2638 			sas->dp_tx_name);
2639 		rc = EINVAL;
2640 		goto fail_dp_tx_multi_process;
2641 	}
2642 
2643 	sap->dp_rx = dp_rx;
2644 	sap->dp_tx = dp_tx;
2645 
2646 	dev->process_private = sap;
2647 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2648 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2649 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2650 	dev->rx_queue_count = sfc_rx_queue_count;
2651 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2652 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2653 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2654 
2655 	return 0;
2656 
2657 fail_dp_tx_multi_process:
2658 fail_dp_tx:
2659 fail_dp_rx_multi_process:
2660 fail_dp_rx:
2661 	free(sap);
2662 
2663 fail_alloc_priv:
2664 	return rc;
2665 }
2666 
2667 static void
2668 sfc_register_dp(void)
2669 {
2670 	/* Register once */
2671 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2672 		/* Prefer EF10 datapath */
2673 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2674 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2675 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2676 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2677 
2678 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2679 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2680 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2681 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2682 	}
2683 }
2684 
2685 static int
2686 sfc_parse_switch_mode(struct sfc_adapter *sa, bool has_representors)
2687 {
2688 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
2689 	const char *switch_mode = NULL;
2690 	int rc;
2691 
2692 	sfc_log_init(sa, "entry");
2693 
2694 	rc = sfc_kvargs_process(sa, SFC_KVARG_SWITCH_MODE,
2695 				sfc_kvarg_string_handler, &switch_mode);
2696 	if (rc != 0)
2697 		goto fail_kvargs;
2698 
2699 	if (switch_mode == NULL) {
2700 		sa->switchdev = encp->enc_mae_admin &&
2701 				(!encp->enc_datapath_cap_evb ||
2702 				 has_representors);
2703 	} else if (strcasecmp(switch_mode, SFC_KVARG_SWITCH_MODE_LEGACY) == 0) {
2704 		sa->switchdev = false;
2705 	} else if (strcasecmp(switch_mode,
2706 			      SFC_KVARG_SWITCH_MODE_SWITCHDEV) == 0) {
2707 		sa->switchdev = true;
2708 	} else {
2709 		sfc_err(sa, "invalid switch mode device argument '%s'",
2710 			switch_mode);
2711 		rc = EINVAL;
2712 		goto fail_mode;
2713 	}
2714 
2715 	sfc_log_init(sa, "done");
2716 
2717 	return 0;
2718 
2719 fail_mode:
2720 fail_kvargs:
2721 	sfc_log_init(sa, "failed: %s", rte_strerror(rc));
2722 
2723 	return rc;
2724 }
2725 
2726 static int
2727 sfc_eth_dev_init(struct rte_eth_dev *dev, void *init_params)
2728 {
2729 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2730 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2731 	struct sfc_ethdev_init_data *init_data = init_params;
2732 	uint32_t logtype_main;
2733 	struct sfc_adapter *sa;
2734 	int rc;
2735 	const efx_nic_cfg_t *encp;
2736 	const struct rte_ether_addr *from;
2737 	int ret;
2738 
2739 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2740 			SFC_EFX_DEV_CLASS_NET) {
2741 		SFC_GENERIC_LOG(DEBUG,
2742 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2743 		return 1;
2744 	}
2745 
2746 	rc = sfc_dp_mport_register();
2747 	if (rc != 0)
2748 		return rc;
2749 
2750 	sfc_register_dp();
2751 
2752 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2753 					    SFC_LOGTYPE_MAIN_STR,
2754 					    RTE_LOG_NOTICE);
2755 
2756 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2757 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2758 
2759 	/* Required for logging */
2760 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2761 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2762 			pci_dev->addr.domain, pci_dev->addr.bus,
2763 			pci_dev->addr.devid, pci_dev->addr.function,
2764 			dev->data->port_id);
2765 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2766 		SFC_GENERIC_LOG(ERR,
2767 			"reserved log prefix is too short for " PCI_PRI_FMT,
2768 			pci_dev->addr.domain, pci_dev->addr.bus,
2769 			pci_dev->addr.devid, pci_dev->addr.function);
2770 		return -EINVAL;
2771 	}
2772 	sas->pci_addr = pci_dev->addr;
2773 	sas->port_id = dev->data->port_id;
2774 
2775 	/*
2776 	 * Allocate process private data from heap, since it should not
2777 	 * be located in shared memory allocated using rte_malloc() API.
2778 	 */
2779 	sa = calloc(1, sizeof(*sa));
2780 	if (sa == NULL) {
2781 		rc = ENOMEM;
2782 		goto fail_alloc_sa;
2783 	}
2784 
2785 	dev->process_private = sa;
2786 
2787 	/* Required for logging */
2788 	sa->priv.shared = sas;
2789 	sa->priv.logtype_main = logtype_main;
2790 
2791 	sa->eth_dev = dev;
2792 
2793 	/* Copy PCI device info to the dev->data */
2794 	rte_eth_copy_pci_info(dev, pci_dev);
2795 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2796 
2797 	rc = sfc_kvargs_parse(sa);
2798 	if (rc != 0)
2799 		goto fail_kvargs_parse;
2800 
2801 	sfc_log_init(sa, "entry");
2802 
2803 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2804 	if (dev->data->mac_addrs == NULL) {
2805 		rc = ENOMEM;
2806 		goto fail_mac_addrs;
2807 	}
2808 
2809 	sfc_adapter_lock_init(sa);
2810 	sfc_adapter_lock(sa);
2811 
2812 	sfc_log_init(sa, "probing");
2813 	rc = sfc_probe(sa);
2814 	if (rc != 0)
2815 		goto fail_probe;
2816 
2817 	/*
2818 	 * Selecting a default switch mode requires the NIC to be probed and
2819 	 * to have its capabilities filled in.
2820 	 */
2821 	rc = sfc_parse_switch_mode(sa, init_data->nb_representors > 0);
2822 	if (rc != 0)
2823 		goto fail_switch_mode;
2824 
2825 	sfc_log_init(sa, "set device ops");
2826 	rc = sfc_eth_dev_set_ops(dev);
2827 	if (rc != 0)
2828 		goto fail_set_ops;
2829 
2830 	sfc_log_init(sa, "attaching");
2831 	rc = sfc_attach(sa);
2832 	if (rc != 0)
2833 		goto fail_attach;
2834 
2835 	if (sa->switchdev && sa->mae.status != SFC_MAE_STATUS_ADMIN) {
2836 		sfc_err(sa,
2837 			"failed to enable switchdev mode without admin MAE privilege");
2838 		rc = ENOTSUP;
2839 		goto fail_switchdev_no_mae;
2840 	}
2841 
2842 	encp = efx_nic_cfg_get(sa->nic);
2843 
2844 	/*
2845 	 * The arguments are really reverse order in comparison to
2846 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2847 	 */
2848 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2849 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2850 
2851 	/*
2852 	 * Setup the NIC DMA mapping handler. All internal mempools
2853 	 * MUST be created on attach before this point, and the
2854 	 * adapter MUST NOT create mempools with the adapter lock
2855 	 * held after this point.
2856 	 */
2857 	rc = sfc_nic_dma_attach(sa);
2858 	if (rc != 0)
2859 		goto fail_nic_dma_attach;
2860 
2861 	sfc_adapter_unlock(sa);
2862 
2863 	sfc_log_init(sa, "done");
2864 	return 0;
2865 
2866 fail_nic_dma_attach:
2867 fail_switchdev_no_mae:
2868 	sfc_detach(sa);
2869 
2870 fail_attach:
2871 	sfc_eth_dev_clear_ops(dev);
2872 
2873 fail_set_ops:
2874 fail_switch_mode:
2875 	sfc_unprobe(sa);
2876 
2877 fail_probe:
2878 	sfc_adapter_unlock(sa);
2879 	sfc_adapter_lock_fini(sa);
2880 	rte_free(dev->data->mac_addrs);
2881 	dev->data->mac_addrs = NULL;
2882 
2883 fail_mac_addrs:
2884 	sfc_kvargs_cleanup(sa);
2885 
2886 fail_kvargs_parse:
2887 	sfc_log_init(sa, "failed %d", rc);
2888 	dev->process_private = NULL;
2889 	free(sa);
2890 
2891 fail_alloc_sa:
2892 	SFC_ASSERT(rc > 0);
2893 	return -rc;
2894 }
2895 
2896 static int
2897 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2898 {
2899 	sfc_dev_close(dev);
2900 
2901 	return 0;
2902 }
2903 
2904 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2905 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2906 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2907 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2908 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2909 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2910 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2911 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2912 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2913 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2914 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD_VF) },
2915 	{ .vendor_id = 0 /* sentinel */ }
2916 };
2917 
2918 static int
2919 sfc_parse_rte_devargs(const char *args, struct rte_eth_devargs *devargs)
2920 {
2921 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
2922 	int rc;
2923 
2924 	if (args != NULL) {
2925 		rc = rte_eth_devargs_parse(args, &eth_da);
2926 		if (rc != 0) {
2927 			SFC_GENERIC_LOG(ERR,
2928 					"Failed to parse generic devargs '%s'",
2929 					args);
2930 			return rc;
2931 		}
2932 	}
2933 
2934 	*devargs = eth_da;
2935 
2936 	return 0;
2937 }
2938 
2939 static int
2940 sfc_eth_dev_find_or_create(struct rte_pci_device *pci_dev,
2941 			   struct sfc_ethdev_init_data *init_data,
2942 			   struct rte_eth_dev **devp,
2943 			   bool *dev_created)
2944 {
2945 	struct rte_eth_dev *dev;
2946 	bool created = false;
2947 	int rc;
2948 
2949 	dev = rte_eth_dev_allocated(pci_dev->device.name);
2950 	if (dev == NULL) {
2951 		rc = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
2952 					sizeof(struct sfc_adapter_shared),
2953 					eth_dev_pci_specific_init, pci_dev,
2954 					sfc_eth_dev_init, init_data);
2955 		if (rc != 0) {
2956 			SFC_GENERIC_LOG(ERR, "Failed to create sfc ethdev '%s'",
2957 					pci_dev->device.name);
2958 			return rc;
2959 		}
2960 
2961 		created = true;
2962 
2963 		dev = rte_eth_dev_allocated(pci_dev->device.name);
2964 		if (dev == NULL) {
2965 			SFC_GENERIC_LOG(ERR,
2966 				"Failed to find allocated sfc ethdev '%s'",
2967 				pci_dev->device.name);
2968 			return -ENODEV;
2969 		}
2970 	}
2971 
2972 	*devp = dev;
2973 	*dev_created = created;
2974 
2975 	return 0;
2976 }
2977 
2978 static int
2979 sfc_eth_dev_create_repr(struct sfc_adapter *sa,
2980 			efx_pcie_interface_t controller,
2981 			uint16_t port,
2982 			uint16_t repr_port,
2983 			enum rte_eth_representor_type type)
2984 {
2985 	struct sfc_repr_entity_info entity;
2986 	efx_mport_sel_t mport_sel;
2987 	int rc;
2988 
2989 	switch (type) {
2990 	case RTE_ETH_REPRESENTOR_NONE:
2991 		return 0;
2992 	case RTE_ETH_REPRESENTOR_VF:
2993 	case RTE_ETH_REPRESENTOR_PF:
2994 		break;
2995 	case RTE_ETH_REPRESENTOR_SF:
2996 		sfc_err(sa, "SF representors are not supported");
2997 		return ENOTSUP;
2998 	default:
2999 		sfc_err(sa, "unknown representor type: %d", type);
3000 		return ENOTSUP;
3001 	}
3002 
3003 	rc = efx_mae_mport_by_pcie_mh_function(controller,
3004 					       port,
3005 					       repr_port,
3006 					       &mport_sel);
3007 	if (rc != 0) {
3008 		sfc_err(sa,
3009 			"failed to get m-port selector for controller %u port %u repr_port %u: %s",
3010 			controller, port, repr_port, rte_strerror(-rc));
3011 		return rc;
3012 	}
3013 
3014 	memset(&entity, 0, sizeof(entity));
3015 	entity.type = type;
3016 	entity.intf = controller;
3017 	entity.pf = port;
3018 	entity.vf = repr_port;
3019 
3020 	rc = sfc_repr_create(sa->eth_dev, &entity, sa->mae.switch_domain_id,
3021 			     &mport_sel);
3022 	if (rc != 0) {
3023 		sfc_err(sa,
3024 			"failed to create representor for controller %u port %u repr_port %u: %s",
3025 			controller, port, repr_port, rte_strerror(-rc));
3026 		return rc;
3027 	}
3028 
3029 	return 0;
3030 }
3031 
3032 static int
3033 sfc_eth_dev_create_repr_port(struct sfc_adapter *sa,
3034 			     const struct rte_eth_devargs *eth_da,
3035 			     efx_pcie_interface_t controller,
3036 			     uint16_t port)
3037 {
3038 	int first_error = 0;
3039 	uint16_t i;
3040 	int rc;
3041 
3042 	if (eth_da->type == RTE_ETH_REPRESENTOR_PF) {
3043 		return sfc_eth_dev_create_repr(sa, controller, port,
3044 					       EFX_PCI_VF_INVALID,
3045 					       eth_da->type);
3046 	}
3047 
3048 	for (i = 0; i < eth_da->nb_representor_ports; i++) {
3049 		rc = sfc_eth_dev_create_repr(sa, controller, port,
3050 					     eth_da->representor_ports[i],
3051 					     eth_da->type);
3052 		if (rc != 0 && first_error == 0)
3053 			first_error = rc;
3054 	}
3055 
3056 	return first_error;
3057 }
3058 
3059 static int
3060 sfc_eth_dev_create_repr_controller(struct sfc_adapter *sa,
3061 				   const struct rte_eth_devargs *eth_da,
3062 				   efx_pcie_interface_t controller)
3063 {
3064 	const efx_nic_cfg_t *encp;
3065 	int first_error = 0;
3066 	uint16_t default_port;
3067 	uint16_t i;
3068 	int rc;
3069 
3070 	if (eth_da->nb_ports == 0) {
3071 		encp = efx_nic_cfg_get(sa->nic);
3072 		default_port = encp->enc_intf == controller ? encp->enc_pf : 0;
3073 		return sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3074 						    default_port);
3075 	}
3076 
3077 	for (i = 0; i < eth_da->nb_ports; i++) {
3078 		rc = sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3079 						  eth_da->ports[i]);
3080 		if (rc != 0 && first_error == 0)
3081 			first_error = rc;
3082 	}
3083 
3084 	return first_error;
3085 }
3086 
3087 static int
3088 sfc_eth_dev_create_representors(struct rte_eth_dev *dev,
3089 				const struct rte_eth_devargs *eth_da)
3090 {
3091 	efx_pcie_interface_t intf;
3092 	const efx_nic_cfg_t *encp;
3093 	struct sfc_adapter *sa;
3094 	uint16_t switch_domain_id;
3095 	uint16_t i;
3096 	int rc;
3097 
3098 	sa = sfc_adapter_by_eth_dev(dev);
3099 	switch_domain_id = sa->mae.switch_domain_id;
3100 
3101 	switch (eth_da->type) {
3102 	case RTE_ETH_REPRESENTOR_NONE:
3103 		return 0;
3104 	case RTE_ETH_REPRESENTOR_PF:
3105 	case RTE_ETH_REPRESENTOR_VF:
3106 		break;
3107 	case RTE_ETH_REPRESENTOR_SF:
3108 		sfc_err(sa, "SF representors are not supported");
3109 		return -ENOTSUP;
3110 	default:
3111 		sfc_err(sa, "unknown representor type: %d",
3112 			eth_da->type);
3113 		return -ENOTSUP;
3114 	}
3115 
3116 	if (!sa->switchdev) {
3117 		sfc_err(sa, "cannot create representors in non-switchdev mode");
3118 		return -EINVAL;
3119 	}
3120 
3121 	if (!sfc_repr_available(sfc_sa2shared(sa))) {
3122 		sfc_err(sa, "cannot create representors: unsupported");
3123 
3124 		return -ENOTSUP;
3125 	}
3126 
3127 	/*
3128 	 * This is needed to construct the DPDK controller -> EFX interface
3129 	 * mapping.
3130 	 */
3131 	sfc_adapter_lock(sa);
3132 	rc = sfc_process_mport_journal(sa);
3133 	sfc_adapter_unlock(sa);
3134 	if (rc != 0) {
3135 		SFC_ASSERT(rc > 0);
3136 		return -rc;
3137 	}
3138 
3139 	if (eth_da->nb_mh_controllers > 0) {
3140 		for (i = 0; i < eth_da->nb_mh_controllers; i++) {
3141 			rc = sfc_mae_switch_domain_get_intf(switch_domain_id,
3142 						eth_da->mh_controllers[i],
3143 						&intf);
3144 			if (rc != 0) {
3145 				sfc_err(sa, "failed to get representor");
3146 				continue;
3147 			}
3148 			sfc_eth_dev_create_repr_controller(sa, eth_da, intf);
3149 		}
3150 	} else {
3151 		encp = efx_nic_cfg_get(sa->nic);
3152 		sfc_eth_dev_create_repr_controller(sa, eth_da, encp->enc_intf);
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3159 	struct rte_pci_device *pci_dev)
3160 {
3161 	struct sfc_ethdev_init_data init_data;
3162 	struct rte_eth_devargs eth_da;
3163 	struct rte_eth_dev *dev;
3164 	bool dev_created;
3165 	int rc;
3166 
3167 	if (pci_dev->device.devargs != NULL) {
3168 		rc = sfc_parse_rte_devargs(pci_dev->device.devargs->args,
3169 					   &eth_da);
3170 		if (rc != 0)
3171 			return rc;
3172 	} else {
3173 		memset(&eth_da, 0, sizeof(eth_da));
3174 	}
3175 
3176 	/* If no VF representors specified, check for PF ones */
3177 	if (eth_da.nb_representor_ports > 0)
3178 		init_data.nb_representors = eth_da.nb_representor_ports;
3179 	else
3180 		init_data.nb_representors = eth_da.nb_ports;
3181 
3182 	if (init_data.nb_representors > 0 &&
3183 	    rte_eal_process_type() != RTE_PROC_PRIMARY) {
3184 		SFC_GENERIC_LOG(ERR,
3185 			"Create representors from secondary process not supported, dev '%s'",
3186 			pci_dev->device.name);
3187 		return -ENOTSUP;
3188 	}
3189 
3190 	/*
3191 	 * Driver supports RTE_PCI_DRV_PROBE_AGAIN. Hence create device only
3192 	 * if it does not already exist. Re-probing an existing device is
3193 	 * expected to allow additional representors to be configured.
3194 	 */
3195 	rc = sfc_eth_dev_find_or_create(pci_dev, &init_data, &dev,
3196 					&dev_created);
3197 	if (rc != 0)
3198 		return rc;
3199 
3200 	rc = sfc_eth_dev_create_representors(dev, &eth_da);
3201 	if (rc != 0) {
3202 		if (dev_created)
3203 			(void)rte_eth_dev_destroy(dev, sfc_eth_dev_uninit);
3204 
3205 		return rc;
3206 	}
3207 
3208 	return 0;
3209 }
3210 
3211 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
3212 {
3213 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
3214 }
3215 
3216 static struct rte_pci_driver sfc_efx_pmd = {
3217 	.id_table = pci_id_sfc_efx_map,
3218 	.drv_flags =
3219 		RTE_PCI_DRV_INTR_LSC |
3220 		RTE_PCI_DRV_NEED_MAPPING |
3221 		RTE_PCI_DRV_PROBE_AGAIN,
3222 	.probe = sfc_eth_dev_pci_probe,
3223 	.remove = sfc_eth_dev_pci_remove,
3224 };
3225 
3226 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
3227 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
3228 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
3229 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
3230 	SFC_KVARG_SWITCH_MODE "=" SFC_KVARG_VALUES_SWITCH_MODE " "
3231 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
3232 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
3233 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
3234 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
3235 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
3236 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
3237 
3238 RTE_INIT(sfc_driver_register_logtype)
3239 {
3240 	int ret;
3241 
3242 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
3243 						   RTE_LOG_NOTICE);
3244 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_EAL : ret;
3245 }
3246