xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 223a29a25eb6bfe57cb19eeab45c44bfaaee99f2)
1 /*-
2  * Copyright (c) 2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * This software was jointly developed between OKTET Labs (under contract
6  * for Solarflare) and Solarflare Communications, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright notice,
12  *    this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright notice,
14  *    this list of conditions and the following disclaimer in the documentation
15  *    and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
27  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <rte_dev.h>
31 #include <rte_ethdev.h>
32 #include <rte_pci.h>
33 
34 #include "efx.h"
35 
36 #include "sfc.h"
37 #include "sfc_debug.h"
38 #include "sfc_log.h"
39 #include "sfc_kvargs.h"
40 #include "sfc_ev.h"
41 #include "sfc_rx.h"
42 #include "sfc_tx.h"
43 #include "sfc_flow.h"
44 
45 static void
46 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
47 {
48 	struct sfc_adapter *sa = dev->data->dev_private;
49 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
50 
51 	sfc_log_init(sa, "entry");
52 
53 	dev_info->pci_dev = RTE_DEV_TO_PCI(dev->device);
54 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
55 
56 	/* Autonegotiation may be disabled */
57 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
58 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
59 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
60 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
61 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
62 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
63 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
64 
65 	dev_info->max_rx_queues = sa->rxq_max;
66 	dev_info->max_tx_queues = sa->txq_max;
67 
68 	/* By default packets are dropped if no descriptors are available */
69 	dev_info->default_rxconf.rx_drop_en = 1;
70 
71 	dev_info->rx_offload_capa =
72 		DEV_RX_OFFLOAD_IPV4_CKSUM |
73 		DEV_RX_OFFLOAD_UDP_CKSUM |
74 		DEV_RX_OFFLOAD_TCP_CKSUM;
75 
76 	dev_info->tx_offload_capa =
77 		DEV_TX_OFFLOAD_IPV4_CKSUM |
78 		DEV_TX_OFFLOAD_UDP_CKSUM |
79 		DEV_TX_OFFLOAD_TCP_CKSUM;
80 
81 	dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP;
82 	if (!encp->enc_hw_tx_insert_vlan_enabled)
83 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL;
84 	else
85 		dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT;
86 
87 #if EFSYS_OPT_RX_SCALE
88 	if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) {
89 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
90 		dev_info->hash_key_size = SFC_RSS_KEY_SIZE;
91 		dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS;
92 	}
93 #endif
94 
95 	if (sa->tso)
96 		dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO;
97 
98 	dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
99 	dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
100 	/* The RXQ hardware requires that the descriptor count is a power
101 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
102 	 */
103 	dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
104 
105 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
106 	dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
107 	/*
108 	 * The TXQ hardware requires that the descriptor count is a power
109 	 * of 2, but tx_desc_lim cannot properly describe that constraint
110 	 */
111 	dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
112 }
113 
114 static const uint32_t *
115 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
116 {
117 	static const uint32_t ptypes[] = {
118 		RTE_PTYPE_L2_ETHER,
119 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
120 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
121 		RTE_PTYPE_L4_TCP,
122 		RTE_PTYPE_L4_UDP,
123 		RTE_PTYPE_UNKNOWN
124 	};
125 
126 	if (dev->rx_pkt_burst == sfc_recv_pkts)
127 		return ptypes;
128 
129 	return NULL;
130 }
131 
132 static int
133 sfc_dev_configure(struct rte_eth_dev *dev)
134 {
135 	struct rte_eth_dev_data *dev_data = dev->data;
136 	struct sfc_adapter *sa = dev_data->dev_private;
137 	int rc;
138 
139 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
140 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
141 
142 	sfc_adapter_lock(sa);
143 	switch (sa->state) {
144 	case SFC_ADAPTER_CONFIGURED:
145 		sfc_close(sa);
146 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
147 		/* FALLTHROUGH */
148 	case SFC_ADAPTER_INITIALIZED:
149 		rc = sfc_configure(sa);
150 		break;
151 	default:
152 		sfc_err(sa, "unexpected adapter state %u to configure",
153 			sa->state);
154 		rc = EINVAL;
155 		break;
156 	}
157 	sfc_adapter_unlock(sa);
158 
159 	sfc_log_init(sa, "done %d", rc);
160 	SFC_ASSERT(rc >= 0);
161 	return -rc;
162 }
163 
164 static int
165 sfc_dev_start(struct rte_eth_dev *dev)
166 {
167 	struct sfc_adapter *sa = dev->data->dev_private;
168 	int rc;
169 
170 	sfc_log_init(sa, "entry");
171 
172 	sfc_adapter_lock(sa);
173 	rc = sfc_start(sa);
174 	sfc_adapter_unlock(sa);
175 
176 	sfc_log_init(sa, "done %d", rc);
177 	SFC_ASSERT(rc >= 0);
178 	return -rc;
179 }
180 
181 static int
182 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
183 {
184 	struct sfc_adapter *sa = dev->data->dev_private;
185 	struct rte_eth_link *dev_link = &dev->data->dev_link;
186 	struct rte_eth_link old_link;
187 	struct rte_eth_link current_link;
188 
189 	sfc_log_init(sa, "entry");
190 
191 retry:
192 	EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t));
193 	*(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link);
194 
195 	if (sa->state != SFC_ADAPTER_STARTED) {
196 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
197 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
198 					 *(uint64_t *)&old_link,
199 					 *(uint64_t *)&current_link))
200 			goto retry;
201 	} else if (wait_to_complete) {
202 		efx_link_mode_t link_mode;
203 
204 		if (efx_port_poll(sa->nic, &link_mode) != 0)
205 			link_mode = EFX_LINK_UNKNOWN;
206 		sfc_port_link_mode_to_info(link_mode, &current_link);
207 
208 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
209 					 *(uint64_t *)&old_link,
210 					 *(uint64_t *)&current_link))
211 			goto retry;
212 	} else {
213 		sfc_ev_mgmt_qpoll(sa);
214 		*(int64_t *)&current_link =
215 			rte_atomic64_read((rte_atomic64_t *)dev_link);
216 	}
217 
218 	if (old_link.link_status != current_link.link_status)
219 		sfc_info(sa, "Link status is %s",
220 			 current_link.link_status ? "UP" : "DOWN");
221 
222 	return old_link.link_status == current_link.link_status ? 0 : -1;
223 }
224 
225 static void
226 sfc_dev_stop(struct rte_eth_dev *dev)
227 {
228 	struct sfc_adapter *sa = dev->data->dev_private;
229 
230 	sfc_log_init(sa, "entry");
231 
232 	sfc_adapter_lock(sa);
233 	sfc_stop(sa);
234 	sfc_adapter_unlock(sa);
235 
236 	sfc_log_init(sa, "done");
237 }
238 
239 static int
240 sfc_dev_set_link_up(struct rte_eth_dev *dev)
241 {
242 	struct sfc_adapter *sa = dev->data->dev_private;
243 	int rc;
244 
245 	sfc_log_init(sa, "entry");
246 
247 	sfc_adapter_lock(sa);
248 	rc = sfc_start(sa);
249 	sfc_adapter_unlock(sa);
250 
251 	SFC_ASSERT(rc >= 0);
252 	return -rc;
253 }
254 
255 static int
256 sfc_dev_set_link_down(struct rte_eth_dev *dev)
257 {
258 	struct sfc_adapter *sa = dev->data->dev_private;
259 
260 	sfc_log_init(sa, "entry");
261 
262 	sfc_adapter_lock(sa);
263 	sfc_stop(sa);
264 	sfc_adapter_unlock(sa);
265 
266 	return 0;
267 }
268 
269 static void
270 sfc_dev_close(struct rte_eth_dev *dev)
271 {
272 	struct sfc_adapter *sa = dev->data->dev_private;
273 
274 	sfc_log_init(sa, "entry");
275 
276 	sfc_adapter_lock(sa);
277 	switch (sa->state) {
278 	case SFC_ADAPTER_STARTED:
279 		sfc_stop(sa);
280 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
281 		/* FALLTHROUGH */
282 	case SFC_ADAPTER_CONFIGURED:
283 		sfc_close(sa);
284 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
285 		/* FALLTHROUGH */
286 	case SFC_ADAPTER_INITIALIZED:
287 		break;
288 	default:
289 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
290 		break;
291 	}
292 	sfc_adapter_unlock(sa);
293 
294 	sfc_log_init(sa, "done");
295 }
296 
297 static void
298 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
299 		   boolean_t enabled)
300 {
301 	struct sfc_port *port;
302 	boolean_t *toggle;
303 	struct sfc_adapter *sa = dev->data->dev_private;
304 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
305 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
306 
307 	sfc_adapter_lock(sa);
308 
309 	port = &sa->port;
310 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
311 
312 	if (*toggle != enabled) {
313 		*toggle = enabled;
314 
315 		if ((sa->state == SFC_ADAPTER_STARTED) &&
316 		    (sfc_set_rx_mode(sa) != 0)) {
317 			*toggle = !(enabled);
318 			sfc_warn(sa, "Failed to %s %s mode",
319 				 ((enabled) ? "enable" : "disable"), desc);
320 		}
321 	}
322 
323 	sfc_adapter_unlock(sa);
324 }
325 
326 static void
327 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
328 {
329 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
330 }
331 
332 static void
333 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
334 {
335 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
336 }
337 
338 static void
339 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
340 {
341 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
342 }
343 
344 static void
345 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
346 {
347 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
348 }
349 
350 static int
351 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
352 		   uint16_t nb_rx_desc, unsigned int socket_id,
353 		   const struct rte_eth_rxconf *rx_conf,
354 		   struct rte_mempool *mb_pool)
355 {
356 	struct sfc_adapter *sa = dev->data->dev_private;
357 	int rc;
358 
359 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
360 		     rx_queue_id, nb_rx_desc, socket_id);
361 
362 	sfc_adapter_lock(sa);
363 
364 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
365 			  rx_conf, mb_pool);
366 	if (rc != 0)
367 		goto fail_rx_qinit;
368 
369 	dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq;
370 
371 	sfc_adapter_unlock(sa);
372 
373 	return 0;
374 
375 fail_rx_qinit:
376 	sfc_adapter_unlock(sa);
377 	SFC_ASSERT(rc > 0);
378 	return -rc;
379 }
380 
381 static void
382 sfc_rx_queue_release(void *queue)
383 {
384 	struct sfc_rxq *rxq = queue;
385 	struct sfc_adapter *sa;
386 	unsigned int sw_index;
387 
388 	if (rxq == NULL)
389 		return;
390 
391 	sa = rxq->evq->sa;
392 	sfc_adapter_lock(sa);
393 
394 	sw_index = sfc_rxq_sw_index(rxq);
395 
396 	sfc_log_init(sa, "RxQ=%u", sw_index);
397 
398 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
399 
400 	sfc_rx_qfini(sa, sw_index);
401 
402 	sfc_adapter_unlock(sa);
403 }
404 
405 static int
406 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
407 		   uint16_t nb_tx_desc, unsigned int socket_id,
408 		   const struct rte_eth_txconf *tx_conf)
409 {
410 	struct sfc_adapter *sa = dev->data->dev_private;
411 	int rc;
412 
413 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
414 		     tx_queue_id, nb_tx_desc, socket_id);
415 
416 	sfc_adapter_lock(sa);
417 
418 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
419 	if (rc != 0)
420 		goto fail_tx_qinit;
421 
422 	dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq;
423 
424 	sfc_adapter_unlock(sa);
425 	return 0;
426 
427 fail_tx_qinit:
428 	sfc_adapter_unlock(sa);
429 	SFC_ASSERT(rc > 0);
430 	return -rc;
431 }
432 
433 static void
434 sfc_tx_queue_release(void *queue)
435 {
436 	struct sfc_txq *txq = queue;
437 	unsigned int sw_index;
438 	struct sfc_adapter *sa;
439 
440 	if (txq == NULL)
441 		return;
442 
443 	sw_index = sfc_txq_sw_index(txq);
444 
445 	SFC_ASSERT(txq->evq != NULL);
446 	sa = txq->evq->sa;
447 
448 	sfc_log_init(sa, "TxQ = %u", sw_index);
449 
450 	sfc_adapter_lock(sa);
451 
452 	SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues);
453 	sa->eth_dev->data->tx_queues[sw_index] = NULL;
454 
455 	sfc_tx_qfini(sa, sw_index);
456 
457 	sfc_adapter_unlock(sa);
458 }
459 
460 static void
461 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
462 {
463 	struct sfc_adapter *sa = dev->data->dev_private;
464 	struct sfc_port *port = &sa->port;
465 	uint64_t *mac_stats;
466 
467 	rte_spinlock_lock(&port->mac_stats_lock);
468 
469 	if (sfc_port_update_mac_stats(sa) != 0)
470 		goto unlock;
471 
472 	mac_stats = port->mac_stats_buf;
473 
474 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
475 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
476 		stats->ipackets =
477 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
478 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
479 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
480 		stats->opackets =
481 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
482 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
483 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
484 		stats->ibytes =
485 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
486 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
487 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
488 		stats->obytes =
489 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
490 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
491 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
492 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW];
493 		stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
494 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
495 	} else {
496 		stats->ipackets = mac_stats[EFX_MAC_RX_PKTS];
497 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
498 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
499 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
500 		/*
501 		 * Take into account stats which are whenever supported
502 		 * on EF10. If some stat is not supported by current
503 		 * firmware variant or HW revision, it is guaranteed
504 		 * to be zero in mac_stats.
505 		 */
506 		stats->imissed =
507 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
508 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
509 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
510 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
511 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
512 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
513 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
514 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
515 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
516 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
517 		stats->ierrors =
518 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
519 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
520 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
521 		/* no oerrors counters supported on EF10 */
522 	}
523 
524 unlock:
525 	rte_spinlock_unlock(&port->mac_stats_lock);
526 }
527 
528 static void
529 sfc_stats_reset(struct rte_eth_dev *dev)
530 {
531 	struct sfc_adapter *sa = dev->data->dev_private;
532 	struct sfc_port *port = &sa->port;
533 	int rc;
534 
535 	if (sa->state != SFC_ADAPTER_STARTED) {
536 		/*
537 		 * The operation cannot be done if port is not started; it
538 		 * will be scheduled to be done during the next port start
539 		 */
540 		port->mac_stats_reset_pending = B_TRUE;
541 		return;
542 	}
543 
544 	rc = sfc_port_reset_mac_stats(sa);
545 	if (rc != 0)
546 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
547 }
548 
549 static int
550 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
551 	       unsigned int xstats_count)
552 {
553 	struct sfc_adapter *sa = dev->data->dev_private;
554 	struct sfc_port *port = &sa->port;
555 	uint64_t *mac_stats;
556 	int rc;
557 	unsigned int i;
558 	int nstats = 0;
559 
560 	rte_spinlock_lock(&port->mac_stats_lock);
561 
562 	rc = sfc_port_update_mac_stats(sa);
563 	if (rc != 0) {
564 		SFC_ASSERT(rc > 0);
565 		nstats = -rc;
566 		goto unlock;
567 	}
568 
569 	mac_stats = port->mac_stats_buf;
570 
571 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
572 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
573 			if (xstats != NULL && nstats < (int)xstats_count) {
574 				xstats[nstats].id = nstats;
575 				xstats[nstats].value = mac_stats[i];
576 			}
577 			nstats++;
578 		}
579 	}
580 
581 unlock:
582 	rte_spinlock_unlock(&port->mac_stats_lock);
583 
584 	return nstats;
585 }
586 
587 static int
588 sfc_xstats_get_names(struct rte_eth_dev *dev,
589 		     struct rte_eth_xstat_name *xstats_names,
590 		     unsigned int xstats_count)
591 {
592 	struct sfc_adapter *sa = dev->data->dev_private;
593 	struct sfc_port *port = &sa->port;
594 	unsigned int i;
595 	unsigned int nstats = 0;
596 
597 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
598 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
599 			if (xstats_names != NULL && nstats < xstats_count)
600 				strncpy(xstats_names[nstats].name,
601 					efx_mac_stat_name(sa->nic, i),
602 					sizeof(xstats_names[0].name));
603 			nstats++;
604 		}
605 	}
606 
607 	return nstats;
608 }
609 
610 static int
611 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
612 {
613 	struct sfc_adapter *sa = dev->data->dev_private;
614 	unsigned int wanted_fc, link_fc;
615 
616 	memset(fc_conf, 0, sizeof(*fc_conf));
617 
618 	sfc_adapter_lock(sa);
619 
620 	if (sa->state == SFC_ADAPTER_STARTED)
621 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
622 	else
623 		link_fc = sa->port.flow_ctrl;
624 
625 	switch (link_fc) {
626 	case 0:
627 		fc_conf->mode = RTE_FC_NONE;
628 		break;
629 	case EFX_FCNTL_RESPOND:
630 		fc_conf->mode = RTE_FC_RX_PAUSE;
631 		break;
632 	case EFX_FCNTL_GENERATE:
633 		fc_conf->mode = RTE_FC_TX_PAUSE;
634 		break;
635 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
636 		fc_conf->mode = RTE_FC_FULL;
637 		break;
638 	default:
639 		sfc_err(sa, "%s: unexpected flow control value %#x",
640 			__func__, link_fc);
641 	}
642 
643 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
644 
645 	sfc_adapter_unlock(sa);
646 
647 	return 0;
648 }
649 
650 static int
651 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
652 {
653 	struct sfc_adapter *sa = dev->data->dev_private;
654 	struct sfc_port *port = &sa->port;
655 	unsigned int fcntl;
656 	int rc;
657 
658 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
659 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
660 	    fc_conf->mac_ctrl_frame_fwd != 0) {
661 		sfc_err(sa, "unsupported flow control settings specified");
662 		rc = EINVAL;
663 		goto fail_inval;
664 	}
665 
666 	switch (fc_conf->mode) {
667 	case RTE_FC_NONE:
668 		fcntl = 0;
669 		break;
670 	case RTE_FC_RX_PAUSE:
671 		fcntl = EFX_FCNTL_RESPOND;
672 		break;
673 	case RTE_FC_TX_PAUSE:
674 		fcntl = EFX_FCNTL_GENERATE;
675 		break;
676 	case RTE_FC_FULL:
677 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
678 		break;
679 	default:
680 		rc = EINVAL;
681 		goto fail_inval;
682 	}
683 
684 	sfc_adapter_lock(sa);
685 
686 	if (sa->state == SFC_ADAPTER_STARTED) {
687 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
688 		if (rc != 0)
689 			goto fail_mac_fcntl_set;
690 	}
691 
692 	port->flow_ctrl = fcntl;
693 	port->flow_ctrl_autoneg = fc_conf->autoneg;
694 
695 	sfc_adapter_unlock(sa);
696 
697 	return 0;
698 
699 fail_mac_fcntl_set:
700 	sfc_adapter_unlock(sa);
701 fail_inval:
702 	SFC_ASSERT(rc > 0);
703 	return -rc;
704 }
705 
706 static int
707 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
708 {
709 	struct sfc_adapter *sa = dev->data->dev_private;
710 	size_t pdu = EFX_MAC_PDU(mtu);
711 	size_t old_pdu;
712 	int rc;
713 
714 	sfc_log_init(sa, "mtu=%u", mtu);
715 
716 	rc = EINVAL;
717 	if (pdu < EFX_MAC_PDU_MIN) {
718 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
719 			(unsigned int)mtu, (unsigned int)pdu,
720 			EFX_MAC_PDU_MIN);
721 		goto fail_inval;
722 	}
723 	if (pdu > EFX_MAC_PDU_MAX) {
724 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
725 			(unsigned int)mtu, (unsigned int)pdu,
726 			EFX_MAC_PDU_MAX);
727 		goto fail_inval;
728 	}
729 
730 	sfc_adapter_lock(sa);
731 
732 	if (pdu != sa->port.pdu) {
733 		if (sa->state == SFC_ADAPTER_STARTED) {
734 			sfc_stop(sa);
735 
736 			old_pdu = sa->port.pdu;
737 			sa->port.pdu = pdu;
738 			rc = sfc_start(sa);
739 			if (rc != 0)
740 				goto fail_start;
741 		} else {
742 			sa->port.pdu = pdu;
743 		}
744 	}
745 
746 	/*
747 	 * The driver does not use it, but other PMDs update jumbo_frame
748 	 * flag and max_rx_pkt_len when MTU is set.
749 	 */
750 	dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN);
751 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
752 
753 	sfc_adapter_unlock(sa);
754 
755 	sfc_log_init(sa, "done");
756 	return 0;
757 
758 fail_start:
759 	sa->port.pdu = old_pdu;
760 	if (sfc_start(sa) != 0)
761 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
762 			"PDU max size - port is stopped",
763 			(unsigned int)pdu, (unsigned int)old_pdu);
764 	sfc_adapter_unlock(sa);
765 
766 fail_inval:
767 	sfc_log_init(sa, "failed %d", rc);
768 	SFC_ASSERT(rc > 0);
769 	return -rc;
770 }
771 static void
772 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
773 {
774 	struct sfc_adapter *sa = dev->data->dev_private;
775 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
776 	int rc;
777 
778 	sfc_adapter_lock(sa);
779 
780 	if (sa->state != SFC_ADAPTER_STARTED) {
781 		sfc_info(sa, "the port is not started");
782 		sfc_info(sa, "the new MAC address will be set on port start");
783 
784 		goto unlock;
785 	}
786 
787 	if (encp->enc_allow_set_mac_with_installed_filters) {
788 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
789 		if (rc != 0) {
790 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
791 			goto unlock;
792 		}
793 
794 		/*
795 		 * Changing the MAC address by means of MCDI request
796 		 * has no effect on received traffic, therefore
797 		 * we also need to update unicast filters
798 		 */
799 		rc = sfc_set_rx_mode(sa);
800 		if (rc != 0)
801 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
802 	} else {
803 		sfc_warn(sa, "cannot set MAC address with filters installed");
804 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
805 		sfc_warn(sa, "(some traffic may be dropped)");
806 
807 		/*
808 		 * Since setting MAC address with filters installed is not
809 		 * allowed on the adapter, one needs to simply restart adapter
810 		 * so that the new MAC address will be taken from an outer
811 		 * storage and set flawlessly by means of sfc_start() call
812 		 */
813 		sfc_stop(sa);
814 		rc = sfc_start(sa);
815 		if (rc != 0)
816 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
817 	}
818 
819 unlock:
820 	sfc_adapter_unlock(sa);
821 }
822 
823 
824 static int
825 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
826 		     uint32_t nb_mc_addr)
827 {
828 	struct sfc_adapter *sa = dev->data->dev_private;
829 	struct sfc_port *port = &sa->port;
830 	uint8_t *mc_addrs = port->mcast_addrs;
831 	int rc;
832 	unsigned int i;
833 
834 	if (mc_addrs == NULL)
835 		return -ENOBUFS;
836 
837 	if (nb_mc_addr > port->max_mcast_addrs) {
838 		sfc_err(sa, "too many multicast addresses: %u > %u",
839 			 nb_mc_addr, port->max_mcast_addrs);
840 		return -EINVAL;
841 	}
842 
843 	for (i = 0; i < nb_mc_addr; ++i) {
844 		(void)rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
845 				 EFX_MAC_ADDR_LEN);
846 		mc_addrs += EFX_MAC_ADDR_LEN;
847 	}
848 
849 	port->nb_mcast_addrs = nb_mc_addr;
850 
851 	if (sa->state != SFC_ADAPTER_STARTED)
852 		return 0;
853 
854 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
855 					port->nb_mcast_addrs);
856 	if (rc != 0)
857 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
858 
859 	SFC_ASSERT(rc > 0);
860 	return -rc;
861 }
862 
863 static void
864 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
865 		      struct rte_eth_rxq_info *qinfo)
866 {
867 	struct sfc_adapter *sa = dev->data->dev_private;
868 	struct sfc_rxq_info *rxq_info;
869 	struct sfc_rxq *rxq;
870 
871 	sfc_adapter_lock(sa);
872 
873 	SFC_ASSERT(rx_queue_id < sa->rxq_count);
874 
875 	rxq_info = &sa->rxq_info[rx_queue_id];
876 	rxq = rxq_info->rxq;
877 	SFC_ASSERT(rxq != NULL);
878 
879 	qinfo->mp = rxq->refill_mb_pool;
880 	qinfo->conf.rx_free_thresh = rxq->refill_threshold;
881 	qinfo->conf.rx_drop_en = 1;
882 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
883 	qinfo->scattered_rx = (rxq_info->type == EFX_RXQ_TYPE_SCATTER);
884 	qinfo->nb_desc = rxq_info->entries;
885 
886 	sfc_adapter_unlock(sa);
887 }
888 
889 static void
890 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
891 		      struct rte_eth_txq_info *qinfo)
892 {
893 	struct sfc_adapter *sa = dev->data->dev_private;
894 	struct sfc_txq_info *txq_info;
895 
896 	sfc_adapter_lock(sa);
897 
898 	SFC_ASSERT(tx_queue_id < sa->txq_count);
899 
900 	txq_info = &sa->txq_info[tx_queue_id];
901 	SFC_ASSERT(txq_info->txq != NULL);
902 
903 	memset(qinfo, 0, sizeof(*qinfo));
904 
905 	qinfo->conf.txq_flags = txq_info->txq->flags;
906 	qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
907 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
908 	qinfo->nb_desc = txq_info->entries;
909 
910 	sfc_adapter_unlock(sa);
911 }
912 
913 static uint32_t
914 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
915 {
916 	struct sfc_adapter *sa = dev->data->dev_private;
917 
918 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
919 
920 	return sfc_rx_qdesc_npending(sa, rx_queue_id);
921 }
922 
923 static int
924 sfc_rx_descriptor_done(void *queue, uint16_t offset)
925 {
926 	struct sfc_rxq *rxq = queue;
927 
928 	return sfc_rx_qdesc_done(rxq, offset);
929 }
930 
931 static int
932 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
933 {
934 	struct sfc_adapter *sa = dev->data->dev_private;
935 	int rc;
936 
937 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
938 
939 	sfc_adapter_lock(sa);
940 
941 	rc = EINVAL;
942 	if (sa->state != SFC_ADAPTER_STARTED)
943 		goto fail_not_started;
944 
945 	rc = sfc_rx_qstart(sa, rx_queue_id);
946 	if (rc != 0)
947 		goto fail_rx_qstart;
948 
949 	sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
950 
951 	sfc_adapter_unlock(sa);
952 
953 	return 0;
954 
955 fail_rx_qstart:
956 fail_not_started:
957 	sfc_adapter_unlock(sa);
958 	SFC_ASSERT(rc > 0);
959 	return -rc;
960 }
961 
962 static int
963 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
964 {
965 	struct sfc_adapter *sa = dev->data->dev_private;
966 
967 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
968 
969 	sfc_adapter_lock(sa);
970 	sfc_rx_qstop(sa, rx_queue_id);
971 
972 	sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
973 
974 	sfc_adapter_unlock(sa);
975 
976 	return 0;
977 }
978 
979 static int
980 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
981 {
982 	struct sfc_adapter *sa = dev->data->dev_private;
983 	int rc;
984 
985 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
986 
987 	sfc_adapter_lock(sa);
988 
989 	rc = EINVAL;
990 	if (sa->state != SFC_ADAPTER_STARTED)
991 		goto fail_not_started;
992 
993 	rc = sfc_tx_qstart(sa, tx_queue_id);
994 	if (rc != 0)
995 		goto fail_tx_qstart;
996 
997 	sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
998 
999 	sfc_adapter_unlock(sa);
1000 	return 0;
1001 
1002 fail_tx_qstart:
1003 
1004 fail_not_started:
1005 	sfc_adapter_unlock(sa);
1006 	SFC_ASSERT(rc > 0);
1007 	return -rc;
1008 }
1009 
1010 static int
1011 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1012 {
1013 	struct sfc_adapter *sa = dev->data->dev_private;
1014 
1015 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1016 
1017 	sfc_adapter_lock(sa);
1018 
1019 	sfc_tx_qstop(sa, tx_queue_id);
1020 
1021 	sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1022 
1023 	sfc_adapter_unlock(sa);
1024 	return 0;
1025 }
1026 
1027 #if EFSYS_OPT_RX_SCALE
1028 static int
1029 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1030 			  struct rte_eth_rss_conf *rss_conf)
1031 {
1032 	struct sfc_adapter *sa = dev->data->dev_private;
1033 
1034 	if ((sa->rss_channels == 1) ||
1035 	    (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE))
1036 		return -ENOTSUP;
1037 
1038 	sfc_adapter_lock(sa);
1039 
1040 	/*
1041 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1042 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1043 	 * flags which corresponds to the active EFX configuration stored
1044 	 * locally in 'sfc_adapter' and kept up-to-date
1045 	 */
1046 	rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types);
1047 	rss_conf->rss_key_len = SFC_RSS_KEY_SIZE;
1048 	if (rss_conf->rss_key != NULL)
1049 		rte_memcpy(rss_conf->rss_key, sa->rss_key, SFC_RSS_KEY_SIZE);
1050 
1051 	sfc_adapter_unlock(sa);
1052 
1053 	return 0;
1054 }
1055 
1056 static int
1057 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1058 			struct rte_eth_rss_conf *rss_conf)
1059 {
1060 	struct sfc_adapter *sa = dev->data->dev_private;
1061 	unsigned int efx_hash_types;
1062 	int rc = 0;
1063 
1064 	if ((sa->rss_channels == 1) ||
1065 	    (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE)) {
1066 		sfc_err(sa, "RSS is not available");
1067 		return -ENOTSUP;
1068 	}
1069 
1070 	if ((rss_conf->rss_key != NULL) &&
1071 	    (rss_conf->rss_key_len != sizeof(sa->rss_key))) {
1072 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1073 			sizeof(sa->rss_key));
1074 		return -EINVAL;
1075 	}
1076 
1077 	if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) {
1078 		sfc_err(sa, "unsupported hash functions requested");
1079 		return -EINVAL;
1080 	}
1081 
1082 	sfc_adapter_lock(sa);
1083 
1084 	efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf);
1085 
1086 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RX_HASHALG_TOEPLITZ,
1087 				   efx_hash_types, B_TRUE);
1088 	if (rc != 0)
1089 		goto fail_scale_mode_set;
1090 
1091 	if (rss_conf->rss_key != NULL) {
1092 		if (sa->state == SFC_ADAPTER_STARTED) {
1093 			rc = efx_rx_scale_key_set(sa->nic, rss_conf->rss_key,
1094 						  sizeof(sa->rss_key));
1095 			if (rc != 0)
1096 				goto fail_scale_key_set;
1097 		}
1098 
1099 		rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key));
1100 	}
1101 
1102 	sa->rss_hash_types = efx_hash_types;
1103 
1104 	sfc_adapter_unlock(sa);
1105 
1106 	return 0;
1107 
1108 fail_scale_key_set:
1109 	if (efx_rx_scale_mode_set(sa->nic, EFX_RX_HASHALG_TOEPLITZ,
1110 				  sa->rss_hash_types, B_TRUE) != 0)
1111 		sfc_err(sa, "failed to restore RSS mode");
1112 
1113 fail_scale_mode_set:
1114 	sfc_adapter_unlock(sa);
1115 	return -rc;
1116 }
1117 
1118 static int
1119 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1120 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1121 		       uint16_t reta_size)
1122 {
1123 	struct sfc_adapter *sa = dev->data->dev_private;
1124 	int entry;
1125 
1126 	if ((sa->rss_channels == 1) ||
1127 	    (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE))
1128 		return -ENOTSUP;
1129 
1130 	if (reta_size != EFX_RSS_TBL_SIZE)
1131 		return -EINVAL;
1132 
1133 	sfc_adapter_lock(sa);
1134 
1135 	for (entry = 0; entry < reta_size; entry++) {
1136 		int grp = entry / RTE_RETA_GROUP_SIZE;
1137 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1138 
1139 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1140 			reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry];
1141 	}
1142 
1143 	sfc_adapter_unlock(sa);
1144 
1145 	return 0;
1146 }
1147 
1148 static int
1149 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1150 			struct rte_eth_rss_reta_entry64 *reta_conf,
1151 			uint16_t reta_size)
1152 {
1153 	struct sfc_adapter *sa = dev->data->dev_private;
1154 	unsigned int *rss_tbl_new;
1155 	uint16_t entry;
1156 	int rc;
1157 
1158 
1159 	if ((sa->rss_channels == 1) ||
1160 	    (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE)) {
1161 		sfc_err(sa, "RSS is not available");
1162 		return -ENOTSUP;
1163 	}
1164 
1165 	if (reta_size != EFX_RSS_TBL_SIZE) {
1166 		sfc_err(sa, "RETA size is wrong (should be %u)",
1167 			EFX_RSS_TBL_SIZE);
1168 		return -EINVAL;
1169 	}
1170 
1171 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0);
1172 	if (rss_tbl_new == NULL)
1173 		return -ENOMEM;
1174 
1175 	sfc_adapter_lock(sa);
1176 
1177 	rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl));
1178 
1179 	for (entry = 0; entry < reta_size; entry++) {
1180 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1181 		struct rte_eth_rss_reta_entry64 *grp;
1182 
1183 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1184 
1185 		if (grp->mask & (1ull << grp_idx)) {
1186 			if (grp->reta[grp_idx] >= sa->rss_channels) {
1187 				rc = EINVAL;
1188 				goto bad_reta_entry;
1189 			}
1190 			rss_tbl_new[entry] = grp->reta[grp_idx];
1191 		}
1192 	}
1193 
1194 	rc = efx_rx_scale_tbl_set(sa->nic, rss_tbl_new, EFX_RSS_TBL_SIZE);
1195 	if (rc == 0)
1196 		rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl));
1197 
1198 bad_reta_entry:
1199 	sfc_adapter_unlock(sa);
1200 
1201 	rte_free(rss_tbl_new);
1202 
1203 	SFC_ASSERT(rc >= 0);
1204 	return -rc;
1205 }
1206 #endif
1207 
1208 static int
1209 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1210 		    enum rte_filter_op filter_op,
1211 		    void *arg)
1212 {
1213 	struct sfc_adapter *sa = dev->data->dev_private;
1214 	int rc = ENOTSUP;
1215 
1216 	sfc_log_init(sa, "entry");
1217 
1218 	switch (filter_type) {
1219 	case RTE_ETH_FILTER_NONE:
1220 		sfc_err(sa, "Global filters configuration not supported");
1221 		break;
1222 	case RTE_ETH_FILTER_MACVLAN:
1223 		sfc_err(sa, "MACVLAN filters not supported");
1224 		break;
1225 	case RTE_ETH_FILTER_ETHERTYPE:
1226 		sfc_err(sa, "EtherType filters not supported");
1227 		break;
1228 	case RTE_ETH_FILTER_FLEXIBLE:
1229 		sfc_err(sa, "Flexible filters not supported");
1230 		break;
1231 	case RTE_ETH_FILTER_SYN:
1232 		sfc_err(sa, "SYN filters not supported");
1233 		break;
1234 	case RTE_ETH_FILTER_NTUPLE:
1235 		sfc_err(sa, "NTUPLE filters not supported");
1236 		break;
1237 	case RTE_ETH_FILTER_TUNNEL:
1238 		sfc_err(sa, "Tunnel filters not supported");
1239 		break;
1240 	case RTE_ETH_FILTER_FDIR:
1241 		sfc_err(sa, "Flow Director filters not supported");
1242 		break;
1243 	case RTE_ETH_FILTER_HASH:
1244 		sfc_err(sa, "Hash filters not supported");
1245 		break;
1246 	case RTE_ETH_FILTER_GENERIC:
1247 		if (filter_op != RTE_ETH_FILTER_GET) {
1248 			rc = EINVAL;
1249 		} else {
1250 			*(const void **)arg = &sfc_flow_ops;
1251 			rc = 0;
1252 		}
1253 		break;
1254 	default:
1255 		sfc_err(sa, "Unknown filter type %u", filter_type);
1256 		break;
1257 	}
1258 
1259 	sfc_log_init(sa, "exit: %d", -rc);
1260 	SFC_ASSERT(rc >= 0);
1261 	return -rc;
1262 }
1263 
1264 static const struct eth_dev_ops sfc_eth_dev_ops = {
1265 	.dev_configure			= sfc_dev_configure,
1266 	.dev_start			= sfc_dev_start,
1267 	.dev_stop			= sfc_dev_stop,
1268 	.dev_set_link_up		= sfc_dev_set_link_up,
1269 	.dev_set_link_down		= sfc_dev_set_link_down,
1270 	.dev_close			= sfc_dev_close,
1271 	.promiscuous_enable		= sfc_dev_promisc_enable,
1272 	.promiscuous_disable		= sfc_dev_promisc_disable,
1273 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1274 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1275 	.link_update			= sfc_dev_link_update,
1276 	.stats_get			= sfc_stats_get,
1277 	.stats_reset			= sfc_stats_reset,
1278 	.xstats_get			= sfc_xstats_get,
1279 	.xstats_reset			= sfc_stats_reset,
1280 	.xstats_get_names		= sfc_xstats_get_names,
1281 	.dev_infos_get			= sfc_dev_infos_get,
1282 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1283 	.mtu_set			= sfc_dev_set_mtu,
1284 	.rx_queue_start			= sfc_rx_queue_start,
1285 	.rx_queue_stop			= sfc_rx_queue_stop,
1286 	.tx_queue_start			= sfc_tx_queue_start,
1287 	.tx_queue_stop			= sfc_tx_queue_stop,
1288 	.rx_queue_setup			= sfc_rx_queue_setup,
1289 	.rx_queue_release		= sfc_rx_queue_release,
1290 	.rx_queue_count			= sfc_rx_queue_count,
1291 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1292 	.tx_queue_setup			= sfc_tx_queue_setup,
1293 	.tx_queue_release		= sfc_tx_queue_release,
1294 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1295 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1296 	.mac_addr_set			= sfc_mac_addr_set,
1297 #if EFSYS_OPT_RX_SCALE
1298 	.reta_update			= sfc_dev_rss_reta_update,
1299 	.reta_query			= sfc_dev_rss_reta_query,
1300 	.rss_hash_update		= sfc_dev_rss_hash_update,
1301 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1302 #endif
1303 	.filter_ctrl			= sfc_dev_filter_ctrl,
1304 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1305 	.rxq_info_get			= sfc_rx_queue_info_get,
1306 	.txq_info_get			= sfc_tx_queue_info_get,
1307 };
1308 
1309 static int
1310 sfc_eth_dev_init(struct rte_eth_dev *dev)
1311 {
1312 	struct sfc_adapter *sa = dev->data->dev_private;
1313 	struct rte_pci_device *pci_dev = SFC_DEV_TO_PCI(dev);
1314 	int rc;
1315 	const efx_nic_cfg_t *encp;
1316 	const struct ether_addr *from;
1317 
1318 	/* Required for logging */
1319 	sa->eth_dev = dev;
1320 
1321 	/* Copy PCI device info to the dev->data */
1322 	rte_eth_copy_pci_info(dev, pci_dev);
1323 
1324 	rc = sfc_kvargs_parse(sa);
1325 	if (rc != 0)
1326 		goto fail_kvargs_parse;
1327 
1328 	rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT,
1329 				sfc_kvarg_bool_handler, &sa->debug_init);
1330 	if (rc != 0)
1331 		goto fail_kvarg_debug_init;
1332 
1333 	sfc_log_init(sa, "entry");
1334 
1335 	dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
1336 	if (dev->data->mac_addrs == NULL) {
1337 		rc = ENOMEM;
1338 		goto fail_mac_addrs;
1339 	}
1340 
1341 	sfc_adapter_lock_init(sa);
1342 	sfc_adapter_lock(sa);
1343 
1344 	sfc_log_init(sa, "attaching");
1345 	rc = sfc_attach(sa);
1346 	if (rc != 0)
1347 		goto fail_attach;
1348 
1349 	encp = efx_nic_cfg_get(sa->nic);
1350 
1351 	/*
1352 	 * The arguments are really reverse order in comparison to
1353 	 * Linux kernel. Copy from NIC config to Ethernet device data.
1354 	 */
1355 	from = (const struct ether_addr *)(encp->enc_mac_addr);
1356 	ether_addr_copy(from, &dev->data->mac_addrs[0]);
1357 
1358 	dev->dev_ops = &sfc_eth_dev_ops;
1359 	dev->rx_pkt_burst = &sfc_recv_pkts;
1360 	dev->tx_pkt_burst = &sfc_xmit_pkts;
1361 
1362 	sfc_adapter_unlock(sa);
1363 
1364 	sfc_log_init(sa, "done");
1365 	return 0;
1366 
1367 fail_attach:
1368 	sfc_adapter_unlock(sa);
1369 	sfc_adapter_lock_fini(sa);
1370 	rte_free(dev->data->mac_addrs);
1371 	dev->data->mac_addrs = NULL;
1372 
1373 fail_mac_addrs:
1374 fail_kvarg_debug_init:
1375 	sfc_kvargs_cleanup(sa);
1376 
1377 fail_kvargs_parse:
1378 	sfc_log_init(sa, "failed %d", rc);
1379 	SFC_ASSERT(rc > 0);
1380 	return -rc;
1381 }
1382 
1383 static int
1384 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
1385 {
1386 	struct sfc_adapter *sa = dev->data->dev_private;
1387 
1388 	sfc_log_init(sa, "entry");
1389 
1390 	sfc_adapter_lock(sa);
1391 
1392 	sfc_detach(sa);
1393 
1394 	rte_free(dev->data->mac_addrs);
1395 	dev->data->mac_addrs = NULL;
1396 
1397 	dev->dev_ops = NULL;
1398 	dev->rx_pkt_burst = NULL;
1399 	dev->tx_pkt_burst = NULL;
1400 
1401 	sfc_kvargs_cleanup(sa);
1402 
1403 	sfc_adapter_unlock(sa);
1404 	sfc_adapter_lock_fini(sa);
1405 
1406 	sfc_log_init(sa, "done");
1407 
1408 	/* Required for logging, so cleanup last */
1409 	sa->eth_dev = NULL;
1410 	return 0;
1411 }
1412 
1413 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
1414 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
1415 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
1416 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
1417 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
1418 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
1419 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
1420 	{ .vendor_id = 0 /* sentinel */ }
1421 };
1422 
1423 static struct eth_driver sfc_efx_pmd = {
1424 	.pci_drv = {
1425 		.id_table = pci_id_sfc_efx_map,
1426 		.drv_flags =
1427 			RTE_PCI_DRV_INTR_LSC |
1428 			RTE_PCI_DRV_NEED_MAPPING,
1429 		.probe = rte_eth_dev_pci_probe,
1430 		.remove = rte_eth_dev_pci_remove,
1431 	},
1432 	.eth_dev_init = sfc_eth_dev_init,
1433 	.eth_dev_uninit = sfc_eth_dev_uninit,
1434 	.dev_private_size = sizeof(struct sfc_adapter),
1435 };
1436 
1437 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd.pci_drv);
1438 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
1439 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio");
1440 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
1441 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
1442 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> "
1443 	SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " "
1444 	SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL);
1445