1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 static int 38 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 39 { 40 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 41 efx_nic_fw_info_t enfi; 42 int ret; 43 int rc; 44 45 /* 46 * Return value of the callback is likely supposed to be 47 * equal to or greater than 0, nevertheless, if an error 48 * occurs, it will be desirable to pass it to the caller 49 */ 50 if ((fw_version == NULL) || (fw_size == 0)) 51 return -EINVAL; 52 53 rc = efx_nic_get_fw_version(sa->nic, &enfi); 54 if (rc != 0) 55 return -rc; 56 57 ret = snprintf(fw_version, fw_size, 58 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 59 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 60 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 61 if (ret < 0) 62 return ret; 63 64 if (enfi.enfi_dpcpu_fw_ids_valid) { 65 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 66 int ret_extra; 67 68 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 69 fw_size - dpcpu_fw_ids_offset, 70 " rx%" PRIx16 " tx%" PRIx16, 71 enfi.enfi_rx_dpcpu_fw_id, 72 enfi.enfi_tx_dpcpu_fw_id); 73 if (ret_extra < 0) 74 return ret_extra; 75 76 ret += ret_extra; 77 } 78 79 if (fw_size < (size_t)(++ret)) 80 return ret; 81 else 82 return 0; 83 } 84 85 static void 86 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 87 { 88 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 89 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 90 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 91 struct sfc_rss *rss = &sas->rss; 92 uint64_t txq_offloads_def = 0; 93 94 sfc_log_init(sa, "entry"); 95 96 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 97 dev_info->max_mtu = EFX_MAC_SDU_MAX; 98 99 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 100 101 /* Autonegotiation may be disabled */ 102 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 103 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 104 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 105 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 106 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 108 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 115 116 dev_info->max_rx_queues = sa->rxq_max; 117 dev_info->max_tx_queues = sa->txq_max; 118 119 /* By default packets are dropped if no descriptors are available */ 120 dev_info->default_rxconf.rx_drop_en = 1; 121 122 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 123 124 /* 125 * rx_offload_capa includes both device and queue offloads since 126 * the latter may be requested on a per device basis which makes 127 * sense when some offloads are needed to be set on all queues. 128 */ 129 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 130 dev_info->rx_queue_offload_capa; 131 132 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 133 134 /* 135 * tx_offload_capa includes both device and queue offloads since 136 * the latter may be requested on a per device basis which makes 137 * sense when some offloads are needed to be set on all queues. 138 */ 139 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 140 dev_info->tx_queue_offload_capa; 141 142 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 143 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 144 145 dev_info->default_txconf.offloads |= txq_offloads_def; 146 147 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 148 uint64_t rte_hf = 0; 149 unsigned int i; 150 151 for (i = 0; i < rss->hf_map_nb_entries; ++i) 152 rte_hf |= rss->hf_map[i].rte; 153 154 dev_info->reta_size = EFX_RSS_TBL_SIZE; 155 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 156 dev_info->flow_type_rss_offloads = rte_hf; 157 } 158 159 /* Initialize to hardware limits */ 160 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 161 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 162 /* The RXQ hardware requires that the descriptor count is a power 163 * of 2, but rx_desc_lim cannot properly describe that constraint. 164 */ 165 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 166 167 /* Initialize to hardware limits */ 168 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 169 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 170 /* 171 * The TXQ hardware requires that the descriptor count is a power 172 * of 2, but tx_desc_lim cannot properly describe that constraint 173 */ 174 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 175 176 if (sap->dp_rx->get_dev_info != NULL) 177 sap->dp_rx->get_dev_info(dev_info); 178 if (sap->dp_tx->get_dev_info != NULL) 179 sap->dp_tx->get_dev_info(dev_info); 180 181 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 182 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 183 } 184 185 static const uint32_t * 186 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 187 { 188 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 189 190 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 191 } 192 193 static int 194 sfc_dev_configure(struct rte_eth_dev *dev) 195 { 196 struct rte_eth_dev_data *dev_data = dev->data; 197 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 198 int rc; 199 200 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 201 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 202 203 sfc_adapter_lock(sa); 204 switch (sa->state) { 205 case SFC_ADAPTER_CONFIGURED: 206 /* FALLTHROUGH */ 207 case SFC_ADAPTER_INITIALIZED: 208 rc = sfc_configure(sa); 209 break; 210 default: 211 sfc_err(sa, "unexpected adapter state %u to configure", 212 sa->state); 213 rc = EINVAL; 214 break; 215 } 216 sfc_adapter_unlock(sa); 217 218 sfc_log_init(sa, "done %d", rc); 219 SFC_ASSERT(rc >= 0); 220 return -rc; 221 } 222 223 static int 224 sfc_dev_start(struct rte_eth_dev *dev) 225 { 226 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 227 int rc; 228 229 sfc_log_init(sa, "entry"); 230 231 sfc_adapter_lock(sa); 232 rc = sfc_start(sa); 233 sfc_adapter_unlock(sa); 234 235 sfc_log_init(sa, "done %d", rc); 236 SFC_ASSERT(rc >= 0); 237 return -rc; 238 } 239 240 static int 241 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 242 { 243 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 244 struct rte_eth_link current_link; 245 int ret; 246 247 sfc_log_init(sa, "entry"); 248 249 if (sa->state != SFC_ADAPTER_STARTED) { 250 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 251 } else if (wait_to_complete) { 252 efx_link_mode_t link_mode; 253 254 if (efx_port_poll(sa->nic, &link_mode) != 0) 255 link_mode = EFX_LINK_UNKNOWN; 256 sfc_port_link_mode_to_info(link_mode, ¤t_link); 257 258 } else { 259 sfc_ev_mgmt_qpoll(sa); 260 rte_eth_linkstatus_get(dev, ¤t_link); 261 } 262 263 ret = rte_eth_linkstatus_set(dev, ¤t_link); 264 if (ret == 0) 265 sfc_notice(sa, "Link status is %s", 266 current_link.link_status ? "UP" : "DOWN"); 267 268 return ret; 269 } 270 271 static void 272 sfc_dev_stop(struct rte_eth_dev *dev) 273 { 274 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 275 276 sfc_log_init(sa, "entry"); 277 278 sfc_adapter_lock(sa); 279 sfc_stop(sa); 280 sfc_adapter_unlock(sa); 281 282 sfc_log_init(sa, "done"); 283 } 284 285 static int 286 sfc_dev_set_link_up(struct rte_eth_dev *dev) 287 { 288 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 289 int rc; 290 291 sfc_log_init(sa, "entry"); 292 293 sfc_adapter_lock(sa); 294 rc = sfc_start(sa); 295 sfc_adapter_unlock(sa); 296 297 SFC_ASSERT(rc >= 0); 298 return -rc; 299 } 300 301 static int 302 sfc_dev_set_link_down(struct rte_eth_dev *dev) 303 { 304 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 305 306 sfc_log_init(sa, "entry"); 307 308 sfc_adapter_lock(sa); 309 sfc_stop(sa); 310 sfc_adapter_unlock(sa); 311 312 return 0; 313 } 314 315 static void 316 sfc_dev_close(struct rte_eth_dev *dev) 317 { 318 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 319 320 sfc_log_init(sa, "entry"); 321 322 sfc_adapter_lock(sa); 323 switch (sa->state) { 324 case SFC_ADAPTER_STARTED: 325 sfc_stop(sa); 326 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 327 /* FALLTHROUGH */ 328 case SFC_ADAPTER_CONFIGURED: 329 sfc_close(sa); 330 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 331 /* FALLTHROUGH */ 332 case SFC_ADAPTER_INITIALIZED: 333 break; 334 default: 335 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 336 break; 337 } 338 sfc_adapter_unlock(sa); 339 340 sfc_log_init(sa, "done"); 341 } 342 343 static void 344 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 345 boolean_t enabled) 346 { 347 struct sfc_port *port; 348 boolean_t *toggle; 349 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 350 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 351 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 352 353 sfc_adapter_lock(sa); 354 355 port = &sa->port; 356 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 357 358 if (*toggle != enabled) { 359 *toggle = enabled; 360 361 if (sfc_sa2shared(sa)->isolated) { 362 sfc_warn(sa, "isolated mode is active on the port"); 363 sfc_warn(sa, "the change is to be applied on the next " 364 "start provided that isolated mode is " 365 "disabled prior the next start"); 366 } else if ((sa->state == SFC_ADAPTER_STARTED) && 367 (sfc_set_rx_mode(sa) != 0)) { 368 *toggle = !(enabled); 369 sfc_warn(sa, "Failed to %s %s mode", 370 ((enabled) ? "enable" : "disable"), desc); 371 } 372 } 373 374 sfc_adapter_unlock(sa); 375 } 376 377 static void 378 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 379 { 380 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 381 } 382 383 static void 384 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 385 { 386 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 387 } 388 389 static void 390 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 391 { 392 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 393 } 394 395 static void 396 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 397 { 398 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 399 } 400 401 static int 402 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 403 uint16_t nb_rx_desc, unsigned int socket_id, 404 const struct rte_eth_rxconf *rx_conf, 405 struct rte_mempool *mb_pool) 406 { 407 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 408 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 409 int rc; 410 411 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 412 rx_queue_id, nb_rx_desc, socket_id); 413 414 sfc_adapter_lock(sa); 415 416 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 417 rx_conf, mb_pool); 418 if (rc != 0) 419 goto fail_rx_qinit; 420 421 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 422 423 sfc_adapter_unlock(sa); 424 425 return 0; 426 427 fail_rx_qinit: 428 sfc_adapter_unlock(sa); 429 SFC_ASSERT(rc > 0); 430 return -rc; 431 } 432 433 static void 434 sfc_rx_queue_release(void *queue) 435 { 436 struct sfc_dp_rxq *dp_rxq = queue; 437 struct sfc_rxq *rxq; 438 struct sfc_adapter *sa; 439 unsigned int sw_index; 440 441 if (dp_rxq == NULL) 442 return; 443 444 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 445 sa = rxq->evq->sa; 446 sfc_adapter_lock(sa); 447 448 sw_index = dp_rxq->dpq.queue_id; 449 450 sfc_log_init(sa, "RxQ=%u", sw_index); 451 452 sfc_rx_qfini(sa, sw_index); 453 454 sfc_adapter_unlock(sa); 455 } 456 457 static int 458 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 459 uint16_t nb_tx_desc, unsigned int socket_id, 460 const struct rte_eth_txconf *tx_conf) 461 { 462 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 463 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 464 int rc; 465 466 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 467 tx_queue_id, nb_tx_desc, socket_id); 468 469 sfc_adapter_lock(sa); 470 471 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 472 if (rc != 0) 473 goto fail_tx_qinit; 474 475 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 476 477 sfc_adapter_unlock(sa); 478 return 0; 479 480 fail_tx_qinit: 481 sfc_adapter_unlock(sa); 482 SFC_ASSERT(rc > 0); 483 return -rc; 484 } 485 486 static void 487 sfc_tx_queue_release(void *queue) 488 { 489 struct sfc_dp_txq *dp_txq = queue; 490 struct sfc_txq *txq; 491 unsigned int sw_index; 492 struct sfc_adapter *sa; 493 494 if (dp_txq == NULL) 495 return; 496 497 txq = sfc_txq_by_dp_txq(dp_txq); 498 sw_index = dp_txq->dpq.queue_id; 499 500 SFC_ASSERT(txq->evq != NULL); 501 sa = txq->evq->sa; 502 503 sfc_log_init(sa, "TxQ = %u", sw_index); 504 505 sfc_adapter_lock(sa); 506 507 sfc_tx_qfini(sa, sw_index); 508 509 sfc_adapter_unlock(sa); 510 } 511 512 /* 513 * Some statistics are computed as A - B where A and B each increase 514 * monotonically with some hardware counter(s) and the counters are read 515 * asynchronously. 516 * 517 * If packet X is counted in A, but not counted in B yet, computed value is 518 * greater than real. 519 * 520 * If packet X is not counted in A at the moment of reading the counter, 521 * but counted in B at the moment of reading the counter, computed value 522 * is less than real. 523 * 524 * However, counter which grows backward is worse evil than slightly wrong 525 * value. So, let's try to guarantee that it never happens except may be 526 * the case when the MAC stats are zeroed as a result of a NIC reset. 527 */ 528 static void 529 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 530 { 531 if ((int64_t)(newval - *stat) > 0 || newval == 0) 532 *stat = newval; 533 } 534 535 static int 536 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 537 { 538 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 539 struct sfc_port *port = &sa->port; 540 uint64_t *mac_stats; 541 int ret; 542 543 rte_spinlock_lock(&port->mac_stats_lock); 544 545 ret = sfc_port_update_mac_stats(sa); 546 if (ret != 0) 547 goto unlock; 548 549 mac_stats = port->mac_stats_buf; 550 551 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 552 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 553 stats->ipackets = 554 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 555 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 556 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 557 stats->opackets = 558 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 559 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 560 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 561 stats->ibytes = 562 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 563 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 564 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 565 stats->obytes = 566 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 567 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 568 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 569 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 570 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 571 } else { 572 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 573 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 574 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 575 /* 576 * Take into account stats which are whenever supported 577 * on EF10. If some stat is not supported by current 578 * firmware variant or HW revision, it is guaranteed 579 * to be zero in mac_stats. 580 */ 581 stats->imissed = 582 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 583 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 584 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 585 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 586 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 587 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 588 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 589 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 590 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 591 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 592 stats->ierrors = 593 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 594 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 595 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 596 /* no oerrors counters supported on EF10 */ 597 598 /* Exclude missed, errors and pauses from Rx packets */ 599 sfc_update_diff_stat(&port->ipackets, 600 mac_stats[EFX_MAC_RX_PKTS] - 601 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 602 stats->imissed - stats->ierrors); 603 stats->ipackets = port->ipackets; 604 } 605 606 unlock: 607 rte_spinlock_unlock(&port->mac_stats_lock); 608 SFC_ASSERT(ret >= 0); 609 return -ret; 610 } 611 612 static void 613 sfc_stats_reset(struct rte_eth_dev *dev) 614 { 615 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 616 struct sfc_port *port = &sa->port; 617 int rc; 618 619 if (sa->state != SFC_ADAPTER_STARTED) { 620 /* 621 * The operation cannot be done if port is not started; it 622 * will be scheduled to be done during the next port start 623 */ 624 port->mac_stats_reset_pending = B_TRUE; 625 return; 626 } 627 628 rc = sfc_port_reset_mac_stats(sa); 629 if (rc != 0) 630 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 631 } 632 633 static int 634 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 635 unsigned int xstats_count) 636 { 637 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 638 struct sfc_port *port = &sa->port; 639 uint64_t *mac_stats; 640 int rc; 641 unsigned int i; 642 int nstats = 0; 643 644 rte_spinlock_lock(&port->mac_stats_lock); 645 646 rc = sfc_port_update_mac_stats(sa); 647 if (rc != 0) { 648 SFC_ASSERT(rc > 0); 649 nstats = -rc; 650 goto unlock; 651 } 652 653 mac_stats = port->mac_stats_buf; 654 655 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 656 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 657 if (xstats != NULL && nstats < (int)xstats_count) { 658 xstats[nstats].id = nstats; 659 xstats[nstats].value = mac_stats[i]; 660 } 661 nstats++; 662 } 663 } 664 665 unlock: 666 rte_spinlock_unlock(&port->mac_stats_lock); 667 668 return nstats; 669 } 670 671 static int 672 sfc_xstats_get_names(struct rte_eth_dev *dev, 673 struct rte_eth_xstat_name *xstats_names, 674 unsigned int xstats_count) 675 { 676 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 677 struct sfc_port *port = &sa->port; 678 unsigned int i; 679 unsigned int nstats = 0; 680 681 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 682 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 683 if (xstats_names != NULL && nstats < xstats_count) 684 strlcpy(xstats_names[nstats].name, 685 efx_mac_stat_name(sa->nic, i), 686 sizeof(xstats_names[0].name)); 687 nstats++; 688 } 689 } 690 691 return nstats; 692 } 693 694 static int 695 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 696 uint64_t *values, unsigned int n) 697 { 698 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 699 struct sfc_port *port = &sa->port; 700 uint64_t *mac_stats; 701 unsigned int nb_supported = 0; 702 unsigned int nb_written = 0; 703 unsigned int i; 704 int ret; 705 int rc; 706 707 if (unlikely(values == NULL) || 708 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 709 return port->mac_stats_nb_supported; 710 711 rte_spinlock_lock(&port->mac_stats_lock); 712 713 rc = sfc_port_update_mac_stats(sa); 714 if (rc != 0) { 715 SFC_ASSERT(rc > 0); 716 ret = -rc; 717 goto unlock; 718 } 719 720 mac_stats = port->mac_stats_buf; 721 722 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 723 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 724 continue; 725 726 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 727 values[nb_written++] = mac_stats[i]; 728 729 ++nb_supported; 730 } 731 732 ret = nb_written; 733 734 unlock: 735 rte_spinlock_unlock(&port->mac_stats_lock); 736 737 return ret; 738 } 739 740 static int 741 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 742 struct rte_eth_xstat_name *xstats_names, 743 const uint64_t *ids, unsigned int size) 744 { 745 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 746 struct sfc_port *port = &sa->port; 747 unsigned int nb_supported = 0; 748 unsigned int nb_written = 0; 749 unsigned int i; 750 751 if (unlikely(xstats_names == NULL) || 752 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 753 return port->mac_stats_nb_supported; 754 755 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 756 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 757 continue; 758 759 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 760 char *name = xstats_names[nb_written++].name; 761 762 strlcpy(name, efx_mac_stat_name(sa->nic, i), 763 sizeof(xstats_names[0].name)); 764 } 765 766 ++nb_supported; 767 } 768 769 return nb_written; 770 } 771 772 static int 773 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 774 { 775 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 776 unsigned int wanted_fc, link_fc; 777 778 memset(fc_conf, 0, sizeof(*fc_conf)); 779 780 sfc_adapter_lock(sa); 781 782 if (sa->state == SFC_ADAPTER_STARTED) 783 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 784 else 785 link_fc = sa->port.flow_ctrl; 786 787 switch (link_fc) { 788 case 0: 789 fc_conf->mode = RTE_FC_NONE; 790 break; 791 case EFX_FCNTL_RESPOND: 792 fc_conf->mode = RTE_FC_RX_PAUSE; 793 break; 794 case EFX_FCNTL_GENERATE: 795 fc_conf->mode = RTE_FC_TX_PAUSE; 796 break; 797 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 798 fc_conf->mode = RTE_FC_FULL; 799 break; 800 default: 801 sfc_err(sa, "%s: unexpected flow control value %#x", 802 __func__, link_fc); 803 } 804 805 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 806 807 sfc_adapter_unlock(sa); 808 809 return 0; 810 } 811 812 static int 813 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 814 { 815 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 816 struct sfc_port *port = &sa->port; 817 unsigned int fcntl; 818 int rc; 819 820 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 821 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 822 fc_conf->mac_ctrl_frame_fwd != 0) { 823 sfc_err(sa, "unsupported flow control settings specified"); 824 rc = EINVAL; 825 goto fail_inval; 826 } 827 828 switch (fc_conf->mode) { 829 case RTE_FC_NONE: 830 fcntl = 0; 831 break; 832 case RTE_FC_RX_PAUSE: 833 fcntl = EFX_FCNTL_RESPOND; 834 break; 835 case RTE_FC_TX_PAUSE: 836 fcntl = EFX_FCNTL_GENERATE; 837 break; 838 case RTE_FC_FULL: 839 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 840 break; 841 default: 842 rc = EINVAL; 843 goto fail_inval; 844 } 845 846 sfc_adapter_lock(sa); 847 848 if (sa->state == SFC_ADAPTER_STARTED) { 849 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 850 if (rc != 0) 851 goto fail_mac_fcntl_set; 852 } 853 854 port->flow_ctrl = fcntl; 855 port->flow_ctrl_autoneg = fc_conf->autoneg; 856 857 sfc_adapter_unlock(sa); 858 859 return 0; 860 861 fail_mac_fcntl_set: 862 sfc_adapter_unlock(sa); 863 fail_inval: 864 SFC_ASSERT(rc > 0); 865 return -rc; 866 } 867 868 static int 869 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 870 { 871 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 872 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 873 boolean_t scatter_enabled; 874 const char *error; 875 unsigned int i; 876 877 for (i = 0; i < sas->rxq_count; i++) { 878 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 879 continue; 880 881 scatter_enabled = (sas->rxq_info[i].type_flags & 882 EFX_RXQ_FLAG_SCATTER); 883 884 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 885 encp->enc_rx_prefix_size, 886 scatter_enabled, &error)) { 887 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 888 error); 889 return EINVAL; 890 } 891 } 892 893 return 0; 894 } 895 896 static int 897 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 898 { 899 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 900 size_t pdu = EFX_MAC_PDU(mtu); 901 size_t old_pdu; 902 int rc; 903 904 sfc_log_init(sa, "mtu=%u", mtu); 905 906 rc = EINVAL; 907 if (pdu < EFX_MAC_PDU_MIN) { 908 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 909 (unsigned int)mtu, (unsigned int)pdu, 910 EFX_MAC_PDU_MIN); 911 goto fail_inval; 912 } 913 if (pdu > EFX_MAC_PDU_MAX) { 914 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 915 (unsigned int)mtu, (unsigned int)pdu, 916 EFX_MAC_PDU_MAX); 917 goto fail_inval; 918 } 919 920 sfc_adapter_lock(sa); 921 922 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 923 if (rc != 0) 924 goto fail_check_scatter; 925 926 if (pdu != sa->port.pdu) { 927 if (sa->state == SFC_ADAPTER_STARTED) { 928 sfc_stop(sa); 929 930 old_pdu = sa->port.pdu; 931 sa->port.pdu = pdu; 932 rc = sfc_start(sa); 933 if (rc != 0) 934 goto fail_start; 935 } else { 936 sa->port.pdu = pdu; 937 } 938 } 939 940 /* 941 * The driver does not use it, but other PMDs update jumbo frame 942 * flag and max_rx_pkt_len when MTU is set. 943 */ 944 if (mtu > RTE_ETHER_MAX_LEN) { 945 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 946 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 947 } 948 949 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 950 951 sfc_adapter_unlock(sa); 952 953 sfc_log_init(sa, "done"); 954 return 0; 955 956 fail_start: 957 sa->port.pdu = old_pdu; 958 if (sfc_start(sa) != 0) 959 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 960 "PDU max size - port is stopped", 961 (unsigned int)pdu, (unsigned int)old_pdu); 962 963 fail_check_scatter: 964 sfc_adapter_unlock(sa); 965 966 fail_inval: 967 sfc_log_init(sa, "failed %d", rc); 968 SFC_ASSERT(rc > 0); 969 return -rc; 970 } 971 static int 972 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 973 { 974 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 975 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 976 struct sfc_port *port = &sa->port; 977 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 978 int rc = 0; 979 980 sfc_adapter_lock(sa); 981 982 /* 983 * Copy the address to the device private data so that 984 * it could be recalled in the case of adapter restart. 985 */ 986 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 987 988 /* 989 * Neither of the two following checks can return 990 * an error. The new MAC address is preserved in 991 * the device private data and can be activated 992 * on the next port start if the user prevents 993 * isolated mode from being enabled. 994 */ 995 if (sfc_sa2shared(sa)->isolated) { 996 sfc_warn(sa, "isolated mode is active on the port"); 997 sfc_warn(sa, "will not set MAC address"); 998 goto unlock; 999 } 1000 1001 if (sa->state != SFC_ADAPTER_STARTED) { 1002 sfc_notice(sa, "the port is not started"); 1003 sfc_notice(sa, "the new MAC address will be set on port start"); 1004 1005 goto unlock; 1006 } 1007 1008 if (encp->enc_allow_set_mac_with_installed_filters) { 1009 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1010 if (rc != 0) { 1011 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1012 goto unlock; 1013 } 1014 1015 /* 1016 * Changing the MAC address by means of MCDI request 1017 * has no effect on received traffic, therefore 1018 * we also need to update unicast filters 1019 */ 1020 rc = sfc_set_rx_mode(sa); 1021 if (rc != 0) { 1022 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1023 /* Rollback the old address */ 1024 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1025 (void)sfc_set_rx_mode(sa); 1026 } 1027 } else { 1028 sfc_warn(sa, "cannot set MAC address with filters installed"); 1029 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1030 sfc_warn(sa, "(some traffic may be dropped)"); 1031 1032 /* 1033 * Since setting MAC address with filters installed is not 1034 * allowed on the adapter, the new MAC address will be set 1035 * by means of adapter restart. sfc_start() shall retrieve 1036 * the new address from the device private data and set it. 1037 */ 1038 sfc_stop(sa); 1039 rc = sfc_start(sa); 1040 if (rc != 0) 1041 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1042 } 1043 1044 unlock: 1045 if (rc != 0) 1046 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1047 1048 sfc_adapter_unlock(sa); 1049 1050 SFC_ASSERT(rc >= 0); 1051 return -rc; 1052 } 1053 1054 1055 static int 1056 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1057 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1058 { 1059 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1060 struct sfc_port *port = &sa->port; 1061 uint8_t *mc_addrs = port->mcast_addrs; 1062 int rc; 1063 unsigned int i; 1064 1065 if (sfc_sa2shared(sa)->isolated) { 1066 sfc_err(sa, "isolated mode is active on the port"); 1067 sfc_err(sa, "will not set multicast address list"); 1068 return -ENOTSUP; 1069 } 1070 1071 if (mc_addrs == NULL) 1072 return -ENOBUFS; 1073 1074 if (nb_mc_addr > port->max_mcast_addrs) { 1075 sfc_err(sa, "too many multicast addresses: %u > %u", 1076 nb_mc_addr, port->max_mcast_addrs); 1077 return -EINVAL; 1078 } 1079 1080 for (i = 0; i < nb_mc_addr; ++i) { 1081 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1082 EFX_MAC_ADDR_LEN); 1083 mc_addrs += EFX_MAC_ADDR_LEN; 1084 } 1085 1086 port->nb_mcast_addrs = nb_mc_addr; 1087 1088 if (sa->state != SFC_ADAPTER_STARTED) 1089 return 0; 1090 1091 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1092 port->nb_mcast_addrs); 1093 if (rc != 0) 1094 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1095 1096 SFC_ASSERT(rc >= 0); 1097 return -rc; 1098 } 1099 1100 /* 1101 * The function is used by the secondary process as well. It must not 1102 * use any process-local pointers from the adapter data. 1103 */ 1104 static void 1105 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1106 struct rte_eth_rxq_info *qinfo) 1107 { 1108 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1109 struct sfc_rxq_info *rxq_info; 1110 1111 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1112 1113 rxq_info = &sas->rxq_info[rx_queue_id]; 1114 1115 qinfo->mp = rxq_info->refill_mb_pool; 1116 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1117 qinfo->conf.rx_drop_en = 1; 1118 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1119 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1120 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1121 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1122 qinfo->scattered_rx = 1; 1123 } 1124 qinfo->nb_desc = rxq_info->entries; 1125 } 1126 1127 /* 1128 * The function is used by the secondary process as well. It must not 1129 * use any process-local pointers from the adapter data. 1130 */ 1131 static void 1132 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1133 struct rte_eth_txq_info *qinfo) 1134 { 1135 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1136 struct sfc_txq_info *txq_info; 1137 1138 SFC_ASSERT(tx_queue_id < sas->txq_count); 1139 1140 txq_info = &sas->txq_info[tx_queue_id]; 1141 1142 memset(qinfo, 0, sizeof(*qinfo)); 1143 1144 qinfo->conf.offloads = txq_info->offloads; 1145 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1146 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1147 qinfo->nb_desc = txq_info->entries; 1148 } 1149 1150 /* 1151 * The function is used by the secondary process as well. It must not 1152 * use any process-local pointers from the adapter data. 1153 */ 1154 static uint32_t 1155 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1156 { 1157 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1158 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1159 struct sfc_rxq_info *rxq_info; 1160 1161 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1162 rxq_info = &sas->rxq_info[rx_queue_id]; 1163 1164 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1165 return 0; 1166 1167 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1168 } 1169 1170 /* 1171 * The function is used by the secondary process as well. It must not 1172 * use any process-local pointers from the adapter data. 1173 */ 1174 static int 1175 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1176 { 1177 struct sfc_dp_rxq *dp_rxq = queue; 1178 const struct sfc_dp_rx *dp_rx; 1179 1180 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1181 1182 return offset < dp_rx->qdesc_npending(dp_rxq); 1183 } 1184 1185 /* 1186 * The function is used by the secondary process as well. It must not 1187 * use any process-local pointers from the adapter data. 1188 */ 1189 static int 1190 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1191 { 1192 struct sfc_dp_rxq *dp_rxq = queue; 1193 const struct sfc_dp_rx *dp_rx; 1194 1195 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1196 1197 return dp_rx->qdesc_status(dp_rxq, offset); 1198 } 1199 1200 /* 1201 * The function is used by the secondary process as well. It must not 1202 * use any process-local pointers from the adapter data. 1203 */ 1204 static int 1205 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1206 { 1207 struct sfc_dp_txq *dp_txq = queue; 1208 const struct sfc_dp_tx *dp_tx; 1209 1210 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1211 1212 return dp_tx->qdesc_status(dp_txq, offset); 1213 } 1214 1215 static int 1216 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1217 { 1218 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1219 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1220 int rc; 1221 1222 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1223 1224 sfc_adapter_lock(sa); 1225 1226 rc = EINVAL; 1227 if (sa->state != SFC_ADAPTER_STARTED) 1228 goto fail_not_started; 1229 1230 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1231 goto fail_not_setup; 1232 1233 rc = sfc_rx_qstart(sa, rx_queue_id); 1234 if (rc != 0) 1235 goto fail_rx_qstart; 1236 1237 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1238 1239 sfc_adapter_unlock(sa); 1240 1241 return 0; 1242 1243 fail_rx_qstart: 1244 fail_not_setup: 1245 fail_not_started: 1246 sfc_adapter_unlock(sa); 1247 SFC_ASSERT(rc > 0); 1248 return -rc; 1249 } 1250 1251 static int 1252 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1253 { 1254 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1255 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1256 1257 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1258 1259 sfc_adapter_lock(sa); 1260 sfc_rx_qstop(sa, rx_queue_id); 1261 1262 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1263 1264 sfc_adapter_unlock(sa); 1265 1266 return 0; 1267 } 1268 1269 static int 1270 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1271 { 1272 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1273 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1274 int rc; 1275 1276 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1277 1278 sfc_adapter_lock(sa); 1279 1280 rc = EINVAL; 1281 if (sa->state != SFC_ADAPTER_STARTED) 1282 goto fail_not_started; 1283 1284 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1285 goto fail_not_setup; 1286 1287 rc = sfc_tx_qstart(sa, tx_queue_id); 1288 if (rc != 0) 1289 goto fail_tx_qstart; 1290 1291 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1292 1293 sfc_adapter_unlock(sa); 1294 return 0; 1295 1296 fail_tx_qstart: 1297 1298 fail_not_setup: 1299 fail_not_started: 1300 sfc_adapter_unlock(sa); 1301 SFC_ASSERT(rc > 0); 1302 return -rc; 1303 } 1304 1305 static int 1306 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1307 { 1308 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1309 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1310 1311 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1312 1313 sfc_adapter_lock(sa); 1314 1315 sfc_tx_qstop(sa, tx_queue_id); 1316 1317 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1318 1319 sfc_adapter_unlock(sa); 1320 return 0; 1321 } 1322 1323 static efx_tunnel_protocol_t 1324 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1325 { 1326 switch (rte_type) { 1327 case RTE_TUNNEL_TYPE_VXLAN: 1328 return EFX_TUNNEL_PROTOCOL_VXLAN; 1329 case RTE_TUNNEL_TYPE_GENEVE: 1330 return EFX_TUNNEL_PROTOCOL_GENEVE; 1331 default: 1332 return EFX_TUNNEL_NPROTOS; 1333 } 1334 } 1335 1336 enum sfc_udp_tunnel_op_e { 1337 SFC_UDP_TUNNEL_ADD_PORT, 1338 SFC_UDP_TUNNEL_DEL_PORT, 1339 }; 1340 1341 static int 1342 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1343 struct rte_eth_udp_tunnel *tunnel_udp, 1344 enum sfc_udp_tunnel_op_e op) 1345 { 1346 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1347 efx_tunnel_protocol_t tunnel_proto; 1348 int rc; 1349 1350 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1351 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1352 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1353 tunnel_udp->udp_port, tunnel_udp->prot_type); 1354 1355 tunnel_proto = 1356 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1357 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1358 rc = ENOTSUP; 1359 goto fail_bad_proto; 1360 } 1361 1362 sfc_adapter_lock(sa); 1363 1364 switch (op) { 1365 case SFC_UDP_TUNNEL_ADD_PORT: 1366 rc = efx_tunnel_config_udp_add(sa->nic, 1367 tunnel_udp->udp_port, 1368 tunnel_proto); 1369 break; 1370 case SFC_UDP_TUNNEL_DEL_PORT: 1371 rc = efx_tunnel_config_udp_remove(sa->nic, 1372 tunnel_udp->udp_port, 1373 tunnel_proto); 1374 break; 1375 default: 1376 rc = EINVAL; 1377 goto fail_bad_op; 1378 } 1379 1380 if (rc != 0) 1381 goto fail_op; 1382 1383 if (sa->state == SFC_ADAPTER_STARTED) { 1384 rc = efx_tunnel_reconfigure(sa->nic); 1385 if (rc == EAGAIN) { 1386 /* 1387 * Configuration is accepted by FW and MC reboot 1388 * is initiated to apply the changes. MC reboot 1389 * will be handled in a usual way (MC reboot 1390 * event on management event queue and adapter 1391 * restart). 1392 */ 1393 rc = 0; 1394 } else if (rc != 0) { 1395 goto fail_reconfigure; 1396 } 1397 } 1398 1399 sfc_adapter_unlock(sa); 1400 return 0; 1401 1402 fail_reconfigure: 1403 /* Remove/restore entry since the change makes the trouble */ 1404 switch (op) { 1405 case SFC_UDP_TUNNEL_ADD_PORT: 1406 (void)efx_tunnel_config_udp_remove(sa->nic, 1407 tunnel_udp->udp_port, 1408 tunnel_proto); 1409 break; 1410 case SFC_UDP_TUNNEL_DEL_PORT: 1411 (void)efx_tunnel_config_udp_add(sa->nic, 1412 tunnel_udp->udp_port, 1413 tunnel_proto); 1414 break; 1415 } 1416 1417 fail_op: 1418 fail_bad_op: 1419 sfc_adapter_unlock(sa); 1420 1421 fail_bad_proto: 1422 SFC_ASSERT(rc > 0); 1423 return -rc; 1424 } 1425 1426 static int 1427 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1428 struct rte_eth_udp_tunnel *tunnel_udp) 1429 { 1430 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1431 } 1432 1433 static int 1434 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1435 struct rte_eth_udp_tunnel *tunnel_udp) 1436 { 1437 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1438 } 1439 1440 /* 1441 * The function is used by the secondary process as well. It must not 1442 * use any process-local pointers from the adapter data. 1443 */ 1444 static int 1445 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1446 struct rte_eth_rss_conf *rss_conf) 1447 { 1448 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1449 struct sfc_rss *rss = &sas->rss; 1450 1451 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1452 return -ENOTSUP; 1453 1454 /* 1455 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1456 * hence, conversion is done here to derive a correct set of ETH_RSS 1457 * flags which corresponds to the active EFX configuration stored 1458 * locally in 'sfc_adapter' and kept up-to-date 1459 */ 1460 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1461 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1462 if (rss_conf->rss_key != NULL) 1463 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1464 1465 return 0; 1466 } 1467 1468 static int 1469 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1470 struct rte_eth_rss_conf *rss_conf) 1471 { 1472 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1473 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1474 unsigned int efx_hash_types; 1475 int rc = 0; 1476 1477 if (sfc_sa2shared(sa)->isolated) 1478 return -ENOTSUP; 1479 1480 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1481 sfc_err(sa, "RSS is not available"); 1482 return -ENOTSUP; 1483 } 1484 1485 if (rss->channels == 0) { 1486 sfc_err(sa, "RSS is not configured"); 1487 return -EINVAL; 1488 } 1489 1490 if ((rss_conf->rss_key != NULL) && 1491 (rss_conf->rss_key_len != sizeof(rss->key))) { 1492 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1493 sizeof(rss->key)); 1494 return -EINVAL; 1495 } 1496 1497 sfc_adapter_lock(sa); 1498 1499 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1500 if (rc != 0) 1501 goto fail_rx_hf_rte_to_efx; 1502 1503 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1504 rss->hash_alg, efx_hash_types, B_TRUE); 1505 if (rc != 0) 1506 goto fail_scale_mode_set; 1507 1508 if (rss_conf->rss_key != NULL) { 1509 if (sa->state == SFC_ADAPTER_STARTED) { 1510 rc = efx_rx_scale_key_set(sa->nic, 1511 EFX_RSS_CONTEXT_DEFAULT, 1512 rss_conf->rss_key, 1513 sizeof(rss->key)); 1514 if (rc != 0) 1515 goto fail_scale_key_set; 1516 } 1517 1518 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1519 } 1520 1521 rss->hash_types = efx_hash_types; 1522 1523 sfc_adapter_unlock(sa); 1524 1525 return 0; 1526 1527 fail_scale_key_set: 1528 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1529 EFX_RX_HASHALG_TOEPLITZ, 1530 rss->hash_types, B_TRUE) != 0) 1531 sfc_err(sa, "failed to restore RSS mode"); 1532 1533 fail_scale_mode_set: 1534 fail_rx_hf_rte_to_efx: 1535 sfc_adapter_unlock(sa); 1536 return -rc; 1537 } 1538 1539 /* 1540 * The function is used by the secondary process as well. It must not 1541 * use any process-local pointers from the adapter data. 1542 */ 1543 static int 1544 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1545 struct rte_eth_rss_reta_entry64 *reta_conf, 1546 uint16_t reta_size) 1547 { 1548 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1549 struct sfc_rss *rss = &sas->rss; 1550 int entry; 1551 1552 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1553 return -ENOTSUP; 1554 1555 if (rss->channels == 0) 1556 return -EINVAL; 1557 1558 if (reta_size != EFX_RSS_TBL_SIZE) 1559 return -EINVAL; 1560 1561 for (entry = 0; entry < reta_size; entry++) { 1562 int grp = entry / RTE_RETA_GROUP_SIZE; 1563 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1564 1565 if ((reta_conf[grp].mask >> grp_idx) & 1) 1566 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1567 } 1568 1569 return 0; 1570 } 1571 1572 static int 1573 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1574 struct rte_eth_rss_reta_entry64 *reta_conf, 1575 uint16_t reta_size) 1576 { 1577 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1578 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1579 unsigned int *rss_tbl_new; 1580 uint16_t entry; 1581 int rc = 0; 1582 1583 1584 if (sfc_sa2shared(sa)->isolated) 1585 return -ENOTSUP; 1586 1587 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1588 sfc_err(sa, "RSS is not available"); 1589 return -ENOTSUP; 1590 } 1591 1592 if (rss->channels == 0) { 1593 sfc_err(sa, "RSS is not configured"); 1594 return -EINVAL; 1595 } 1596 1597 if (reta_size != EFX_RSS_TBL_SIZE) { 1598 sfc_err(sa, "RETA size is wrong (should be %u)", 1599 EFX_RSS_TBL_SIZE); 1600 return -EINVAL; 1601 } 1602 1603 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1604 if (rss_tbl_new == NULL) 1605 return -ENOMEM; 1606 1607 sfc_adapter_lock(sa); 1608 1609 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1610 1611 for (entry = 0; entry < reta_size; entry++) { 1612 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1613 struct rte_eth_rss_reta_entry64 *grp; 1614 1615 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1616 1617 if (grp->mask & (1ull << grp_idx)) { 1618 if (grp->reta[grp_idx] >= rss->channels) { 1619 rc = EINVAL; 1620 goto bad_reta_entry; 1621 } 1622 rss_tbl_new[entry] = grp->reta[grp_idx]; 1623 } 1624 } 1625 1626 if (sa->state == SFC_ADAPTER_STARTED) { 1627 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1628 rss_tbl_new, EFX_RSS_TBL_SIZE); 1629 if (rc != 0) 1630 goto fail_scale_tbl_set; 1631 } 1632 1633 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1634 1635 fail_scale_tbl_set: 1636 bad_reta_entry: 1637 sfc_adapter_unlock(sa); 1638 1639 rte_free(rss_tbl_new); 1640 1641 SFC_ASSERT(rc >= 0); 1642 return -rc; 1643 } 1644 1645 static int 1646 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1647 enum rte_filter_op filter_op, 1648 void *arg) 1649 { 1650 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1651 int rc = ENOTSUP; 1652 1653 sfc_log_init(sa, "entry"); 1654 1655 switch (filter_type) { 1656 case RTE_ETH_FILTER_NONE: 1657 sfc_err(sa, "Global filters configuration not supported"); 1658 break; 1659 case RTE_ETH_FILTER_MACVLAN: 1660 sfc_err(sa, "MACVLAN filters not supported"); 1661 break; 1662 case RTE_ETH_FILTER_ETHERTYPE: 1663 sfc_err(sa, "EtherType filters not supported"); 1664 break; 1665 case RTE_ETH_FILTER_FLEXIBLE: 1666 sfc_err(sa, "Flexible filters not supported"); 1667 break; 1668 case RTE_ETH_FILTER_SYN: 1669 sfc_err(sa, "SYN filters not supported"); 1670 break; 1671 case RTE_ETH_FILTER_NTUPLE: 1672 sfc_err(sa, "NTUPLE filters not supported"); 1673 break; 1674 case RTE_ETH_FILTER_TUNNEL: 1675 sfc_err(sa, "Tunnel filters not supported"); 1676 break; 1677 case RTE_ETH_FILTER_FDIR: 1678 sfc_err(sa, "Flow Director filters not supported"); 1679 break; 1680 case RTE_ETH_FILTER_HASH: 1681 sfc_err(sa, "Hash filters not supported"); 1682 break; 1683 case RTE_ETH_FILTER_GENERIC: 1684 if (filter_op != RTE_ETH_FILTER_GET) { 1685 rc = EINVAL; 1686 } else { 1687 *(const void **)arg = &sfc_flow_ops; 1688 rc = 0; 1689 } 1690 break; 1691 default: 1692 sfc_err(sa, "Unknown filter type %u", filter_type); 1693 break; 1694 } 1695 1696 sfc_log_init(sa, "exit: %d", -rc); 1697 SFC_ASSERT(rc >= 0); 1698 return -rc; 1699 } 1700 1701 static int 1702 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1703 { 1704 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1705 1706 /* 1707 * If Rx datapath does not provide callback to check mempool, 1708 * all pools are supported. 1709 */ 1710 if (sap->dp_rx->pool_ops_supported == NULL) 1711 return 1; 1712 1713 return sap->dp_rx->pool_ops_supported(pool); 1714 } 1715 1716 static const struct eth_dev_ops sfc_eth_dev_ops = { 1717 .dev_configure = sfc_dev_configure, 1718 .dev_start = sfc_dev_start, 1719 .dev_stop = sfc_dev_stop, 1720 .dev_set_link_up = sfc_dev_set_link_up, 1721 .dev_set_link_down = sfc_dev_set_link_down, 1722 .dev_close = sfc_dev_close, 1723 .promiscuous_enable = sfc_dev_promisc_enable, 1724 .promiscuous_disable = sfc_dev_promisc_disable, 1725 .allmulticast_enable = sfc_dev_allmulti_enable, 1726 .allmulticast_disable = sfc_dev_allmulti_disable, 1727 .link_update = sfc_dev_link_update, 1728 .stats_get = sfc_stats_get, 1729 .stats_reset = sfc_stats_reset, 1730 .xstats_get = sfc_xstats_get, 1731 .xstats_reset = sfc_stats_reset, 1732 .xstats_get_names = sfc_xstats_get_names, 1733 .dev_infos_get = sfc_dev_infos_get, 1734 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1735 .mtu_set = sfc_dev_set_mtu, 1736 .rx_queue_start = sfc_rx_queue_start, 1737 .rx_queue_stop = sfc_rx_queue_stop, 1738 .tx_queue_start = sfc_tx_queue_start, 1739 .tx_queue_stop = sfc_tx_queue_stop, 1740 .rx_queue_setup = sfc_rx_queue_setup, 1741 .rx_queue_release = sfc_rx_queue_release, 1742 .rx_queue_count = sfc_rx_queue_count, 1743 .rx_descriptor_done = sfc_rx_descriptor_done, 1744 .rx_descriptor_status = sfc_rx_descriptor_status, 1745 .tx_descriptor_status = sfc_tx_descriptor_status, 1746 .tx_queue_setup = sfc_tx_queue_setup, 1747 .tx_queue_release = sfc_tx_queue_release, 1748 .flow_ctrl_get = sfc_flow_ctrl_get, 1749 .flow_ctrl_set = sfc_flow_ctrl_set, 1750 .mac_addr_set = sfc_mac_addr_set, 1751 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1752 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1753 .reta_update = sfc_dev_rss_reta_update, 1754 .reta_query = sfc_dev_rss_reta_query, 1755 .rss_hash_update = sfc_dev_rss_hash_update, 1756 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1757 .filter_ctrl = sfc_dev_filter_ctrl, 1758 .set_mc_addr_list = sfc_set_mc_addr_list, 1759 .rxq_info_get = sfc_rx_queue_info_get, 1760 .txq_info_get = sfc_tx_queue_info_get, 1761 .fw_version_get = sfc_fw_version_get, 1762 .xstats_get_by_id = sfc_xstats_get_by_id, 1763 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1764 .pool_ops_supported = sfc_pool_ops_supported, 1765 }; 1766 1767 /** 1768 * Duplicate a string in potentially shared memory required for 1769 * multi-process support. 1770 * 1771 * strdup() allocates from process-local heap/memory. 1772 */ 1773 static char * 1774 sfc_strdup(const char *str) 1775 { 1776 size_t size; 1777 char *copy; 1778 1779 if (str == NULL) 1780 return NULL; 1781 1782 size = strlen(str) + 1; 1783 copy = rte_malloc(__func__, size, 0); 1784 if (copy != NULL) 1785 rte_memcpy(copy, str, size); 1786 1787 return copy; 1788 } 1789 1790 static int 1791 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1792 { 1793 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1794 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1795 const struct sfc_dp_rx *dp_rx; 1796 const struct sfc_dp_tx *dp_tx; 1797 const efx_nic_cfg_t *encp; 1798 unsigned int avail_caps = 0; 1799 const char *rx_name = NULL; 1800 const char *tx_name = NULL; 1801 int rc; 1802 1803 switch (sa->family) { 1804 case EFX_FAMILY_HUNTINGTON: 1805 case EFX_FAMILY_MEDFORD: 1806 case EFX_FAMILY_MEDFORD2: 1807 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1808 break; 1809 default: 1810 break; 1811 } 1812 1813 encp = efx_nic_cfg_get(sa->nic); 1814 if (encp->enc_rx_es_super_buffer_supported) 1815 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1816 1817 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1818 sfc_kvarg_string_handler, &rx_name); 1819 if (rc != 0) 1820 goto fail_kvarg_rx_datapath; 1821 1822 if (rx_name != NULL) { 1823 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1824 if (dp_rx == NULL) { 1825 sfc_err(sa, "Rx datapath %s not found", rx_name); 1826 rc = ENOENT; 1827 goto fail_dp_rx; 1828 } 1829 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1830 sfc_err(sa, 1831 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1832 rx_name); 1833 rc = EINVAL; 1834 goto fail_dp_rx_caps; 1835 } 1836 } else { 1837 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1838 if (dp_rx == NULL) { 1839 sfc_err(sa, "Rx datapath by caps %#x not found", 1840 avail_caps); 1841 rc = ENOENT; 1842 goto fail_dp_rx; 1843 } 1844 } 1845 1846 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1847 if (sas->dp_rx_name == NULL) { 1848 rc = ENOMEM; 1849 goto fail_dp_rx_name; 1850 } 1851 1852 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1853 1854 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1855 sfc_kvarg_string_handler, &tx_name); 1856 if (rc != 0) 1857 goto fail_kvarg_tx_datapath; 1858 1859 if (tx_name != NULL) { 1860 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1861 if (dp_tx == NULL) { 1862 sfc_err(sa, "Tx datapath %s not found", tx_name); 1863 rc = ENOENT; 1864 goto fail_dp_tx; 1865 } 1866 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1867 sfc_err(sa, 1868 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1869 tx_name); 1870 rc = EINVAL; 1871 goto fail_dp_tx_caps; 1872 } 1873 } else { 1874 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1875 if (dp_tx == NULL) { 1876 sfc_err(sa, "Tx datapath by caps %#x not found", 1877 avail_caps); 1878 rc = ENOENT; 1879 goto fail_dp_tx; 1880 } 1881 } 1882 1883 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1884 if (sas->dp_tx_name == NULL) { 1885 rc = ENOMEM; 1886 goto fail_dp_tx_name; 1887 } 1888 1889 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1890 1891 sa->priv.dp_rx = dp_rx; 1892 sa->priv.dp_tx = dp_tx; 1893 1894 dev->rx_pkt_burst = dp_rx->pkt_burst; 1895 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 1896 dev->tx_pkt_burst = dp_tx->pkt_burst; 1897 1898 dev->dev_ops = &sfc_eth_dev_ops; 1899 1900 return 0; 1901 1902 fail_dp_tx_name: 1903 fail_dp_tx_caps: 1904 fail_dp_tx: 1905 fail_kvarg_tx_datapath: 1906 rte_free(sas->dp_rx_name); 1907 sas->dp_rx_name = NULL; 1908 1909 fail_dp_rx_name: 1910 fail_dp_rx_caps: 1911 fail_dp_rx: 1912 fail_kvarg_rx_datapath: 1913 return rc; 1914 } 1915 1916 static void 1917 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1918 { 1919 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1920 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1921 1922 dev->dev_ops = NULL; 1923 dev->tx_pkt_prepare = NULL; 1924 dev->rx_pkt_burst = NULL; 1925 dev->tx_pkt_burst = NULL; 1926 1927 rte_free(sas->dp_tx_name); 1928 sas->dp_tx_name = NULL; 1929 sa->priv.dp_tx = NULL; 1930 1931 rte_free(sas->dp_rx_name); 1932 sas->dp_rx_name = NULL; 1933 sa->priv.dp_rx = NULL; 1934 } 1935 1936 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1937 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1938 .rx_queue_count = sfc_rx_queue_count, 1939 .rx_descriptor_done = sfc_rx_descriptor_done, 1940 .rx_descriptor_status = sfc_rx_descriptor_status, 1941 .tx_descriptor_status = sfc_tx_descriptor_status, 1942 .reta_query = sfc_dev_rss_reta_query, 1943 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1944 .rxq_info_get = sfc_rx_queue_info_get, 1945 .txq_info_get = sfc_tx_queue_info_get, 1946 }; 1947 1948 static int 1949 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 1950 { 1951 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1952 struct sfc_adapter_priv *sap; 1953 const struct sfc_dp_rx *dp_rx; 1954 const struct sfc_dp_tx *dp_tx; 1955 int rc; 1956 1957 /* 1958 * Allocate process private data from heap, since it should not 1959 * be located in shared memory allocated using rte_malloc() API. 1960 */ 1961 sap = calloc(1, sizeof(*sap)); 1962 if (sap == NULL) { 1963 rc = ENOMEM; 1964 goto fail_alloc_priv; 1965 } 1966 1967 sap->logtype_main = logtype_main; 1968 1969 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 1970 if (dp_rx == NULL) { 1971 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1972 "cannot find %s Rx datapath", sas->dp_rx_name); 1973 rc = ENOENT; 1974 goto fail_dp_rx; 1975 } 1976 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1977 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1978 "%s Rx datapath does not support multi-process", 1979 sas->dp_rx_name); 1980 rc = EINVAL; 1981 goto fail_dp_rx_multi_process; 1982 } 1983 1984 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 1985 if (dp_tx == NULL) { 1986 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1987 "cannot find %s Tx datapath", sas->dp_tx_name); 1988 rc = ENOENT; 1989 goto fail_dp_tx; 1990 } 1991 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1992 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1993 "%s Tx datapath does not support multi-process", 1994 sas->dp_tx_name); 1995 rc = EINVAL; 1996 goto fail_dp_tx_multi_process; 1997 } 1998 1999 sap->dp_rx = dp_rx; 2000 sap->dp_tx = dp_tx; 2001 2002 dev->process_private = sap; 2003 dev->rx_pkt_burst = dp_rx->pkt_burst; 2004 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2005 dev->tx_pkt_burst = dp_tx->pkt_burst; 2006 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2007 2008 return 0; 2009 2010 fail_dp_tx_multi_process: 2011 fail_dp_tx: 2012 fail_dp_rx_multi_process: 2013 fail_dp_rx: 2014 free(sap); 2015 2016 fail_alloc_priv: 2017 return rc; 2018 } 2019 2020 static void 2021 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 2022 { 2023 free(dev->process_private); 2024 dev->process_private = NULL; 2025 dev->dev_ops = NULL; 2026 dev->tx_pkt_prepare = NULL; 2027 dev->tx_pkt_burst = NULL; 2028 dev->rx_pkt_burst = NULL; 2029 } 2030 2031 static void 2032 sfc_register_dp(void) 2033 { 2034 /* Register once */ 2035 if (TAILQ_EMPTY(&sfc_dp_head)) { 2036 /* Prefer EF10 datapath */ 2037 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2038 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2039 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2040 2041 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2042 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2043 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2044 } 2045 } 2046 2047 static int 2048 sfc_eth_dev_init(struct rte_eth_dev *dev) 2049 { 2050 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2051 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2052 uint32_t logtype_main; 2053 struct sfc_adapter *sa; 2054 int rc; 2055 const efx_nic_cfg_t *encp; 2056 const struct rte_ether_addr *from; 2057 2058 sfc_register_dp(); 2059 2060 logtype_main = sfc_register_logtype(&pci_dev->addr, 2061 SFC_LOGTYPE_MAIN_STR, 2062 RTE_LOG_NOTICE); 2063 2064 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2065 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2066 2067 /* Required for logging */ 2068 sas->pci_addr = pci_dev->addr; 2069 sas->port_id = dev->data->port_id; 2070 2071 /* 2072 * Allocate process private data from heap, since it should not 2073 * be located in shared memory allocated using rte_malloc() API. 2074 */ 2075 sa = calloc(1, sizeof(*sa)); 2076 if (sa == NULL) { 2077 rc = ENOMEM; 2078 goto fail_alloc_sa; 2079 } 2080 2081 dev->process_private = sa; 2082 2083 /* Required for logging */ 2084 sa->priv.shared = sas; 2085 sa->priv.logtype_main = logtype_main; 2086 2087 sa->eth_dev = dev; 2088 2089 /* Copy PCI device info to the dev->data */ 2090 rte_eth_copy_pci_info(dev, pci_dev); 2091 2092 rc = sfc_kvargs_parse(sa); 2093 if (rc != 0) 2094 goto fail_kvargs_parse; 2095 2096 sfc_log_init(sa, "entry"); 2097 2098 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2099 if (dev->data->mac_addrs == NULL) { 2100 rc = ENOMEM; 2101 goto fail_mac_addrs; 2102 } 2103 2104 sfc_adapter_lock_init(sa); 2105 sfc_adapter_lock(sa); 2106 2107 sfc_log_init(sa, "probing"); 2108 rc = sfc_probe(sa); 2109 if (rc != 0) 2110 goto fail_probe; 2111 2112 sfc_log_init(sa, "set device ops"); 2113 rc = sfc_eth_dev_set_ops(dev); 2114 if (rc != 0) 2115 goto fail_set_ops; 2116 2117 sfc_log_init(sa, "attaching"); 2118 rc = sfc_attach(sa); 2119 if (rc != 0) 2120 goto fail_attach; 2121 2122 encp = efx_nic_cfg_get(sa->nic); 2123 2124 /* 2125 * The arguments are really reverse order in comparison to 2126 * Linux kernel. Copy from NIC config to Ethernet device data. 2127 */ 2128 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2129 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2130 2131 sfc_adapter_unlock(sa); 2132 2133 sfc_log_init(sa, "done"); 2134 return 0; 2135 2136 fail_attach: 2137 sfc_eth_dev_clear_ops(dev); 2138 2139 fail_set_ops: 2140 sfc_unprobe(sa); 2141 2142 fail_probe: 2143 sfc_adapter_unlock(sa); 2144 sfc_adapter_lock_fini(sa); 2145 rte_free(dev->data->mac_addrs); 2146 dev->data->mac_addrs = NULL; 2147 2148 fail_mac_addrs: 2149 sfc_kvargs_cleanup(sa); 2150 2151 fail_kvargs_parse: 2152 sfc_log_init(sa, "failed %d", rc); 2153 dev->process_private = NULL; 2154 free(sa); 2155 2156 fail_alloc_sa: 2157 SFC_ASSERT(rc > 0); 2158 return -rc; 2159 } 2160 2161 static int 2162 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2163 { 2164 struct sfc_adapter *sa; 2165 2166 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2167 sfc_eth_dev_secondary_clear_ops(dev); 2168 return 0; 2169 } 2170 2171 sa = sfc_adapter_by_eth_dev(dev); 2172 sfc_log_init(sa, "entry"); 2173 2174 sfc_adapter_lock(sa); 2175 2176 sfc_eth_dev_clear_ops(dev); 2177 2178 sfc_detach(sa); 2179 sfc_unprobe(sa); 2180 2181 sfc_kvargs_cleanup(sa); 2182 2183 sfc_adapter_unlock(sa); 2184 sfc_adapter_lock_fini(sa); 2185 2186 sfc_log_init(sa, "done"); 2187 2188 /* Required for logging, so cleanup last */ 2189 sa->eth_dev = NULL; 2190 2191 dev->process_private = NULL; 2192 free(sa); 2193 2194 return 0; 2195 } 2196 2197 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2198 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2199 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2200 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2201 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2202 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2203 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2204 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2205 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2206 { .vendor_id = 0 /* sentinel */ } 2207 }; 2208 2209 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2210 struct rte_pci_device *pci_dev) 2211 { 2212 return rte_eth_dev_pci_generic_probe(pci_dev, 2213 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2214 } 2215 2216 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2217 { 2218 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2219 } 2220 2221 static struct rte_pci_driver sfc_efx_pmd = { 2222 .id_table = pci_id_sfc_efx_map, 2223 .drv_flags = 2224 RTE_PCI_DRV_INTR_LSC | 2225 RTE_PCI_DRV_NEED_MAPPING, 2226 .probe = sfc_eth_dev_pci_probe, 2227 .remove = sfc_eth_dev_pci_remove, 2228 }; 2229 2230 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2231 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2232 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2233 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2234 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2235 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2236 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2237 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2238 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2239 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2240 2241 RTE_INIT(sfc_driver_register_logtype) 2242 { 2243 int ret; 2244 2245 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2246 RTE_LOG_NOTICE); 2247 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2248 } 2249