xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 200bc52e5aa0d72e70464c9cd22b55cf536ed13c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 
32 uint32_t sfc_logtype_driver;
33 
34 static struct sfc_dp_list sfc_dp_head =
35 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36 
37 static int
38 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
39 {
40 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
41 	efx_nic_fw_info_t enfi;
42 	int ret;
43 	int rc;
44 
45 	/*
46 	 * Return value of the callback is likely supposed to be
47 	 * equal to or greater than 0, nevertheless, if an error
48 	 * occurs, it will be desirable to pass it to the caller
49 	 */
50 	if ((fw_version == NULL) || (fw_size == 0))
51 		return -EINVAL;
52 
53 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
54 	if (rc != 0)
55 		return -rc;
56 
57 	ret = snprintf(fw_version, fw_size,
58 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
59 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
60 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
61 	if (ret < 0)
62 		return ret;
63 
64 	if (enfi.enfi_dpcpu_fw_ids_valid) {
65 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
66 		int ret_extra;
67 
68 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
69 				     fw_size - dpcpu_fw_ids_offset,
70 				     " rx%" PRIx16 " tx%" PRIx16,
71 				     enfi.enfi_rx_dpcpu_fw_id,
72 				     enfi.enfi_tx_dpcpu_fw_id);
73 		if (ret_extra < 0)
74 			return ret_extra;
75 
76 		ret += ret_extra;
77 	}
78 
79 	if (fw_size < (size_t)(++ret))
80 		return ret;
81 	else
82 		return 0;
83 }
84 
85 static void
86 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
87 {
88 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
89 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
90 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
91 	struct sfc_rss *rss = &sas->rss;
92 	uint64_t txq_offloads_def = 0;
93 
94 	sfc_log_init(sa, "entry");
95 
96 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
97 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
98 
99 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
100 
101 	/* Autonegotiation may be disabled */
102 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
103 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
104 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
105 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
106 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
107 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
108 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
109 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
110 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
111 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
112 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
113 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
114 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
115 
116 	dev_info->max_rx_queues = sa->rxq_max;
117 	dev_info->max_tx_queues = sa->txq_max;
118 
119 	/* By default packets are dropped if no descriptors are available */
120 	dev_info->default_rxconf.rx_drop_en = 1;
121 
122 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
123 
124 	/*
125 	 * rx_offload_capa includes both device and queue offloads since
126 	 * the latter may be requested on a per device basis which makes
127 	 * sense when some offloads are needed to be set on all queues.
128 	 */
129 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
130 				    dev_info->rx_queue_offload_capa;
131 
132 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
133 
134 	/*
135 	 * tx_offload_capa includes both device and queue offloads since
136 	 * the latter may be requested on a per device basis which makes
137 	 * sense when some offloads are needed to be set on all queues.
138 	 */
139 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
140 				    dev_info->tx_queue_offload_capa;
141 
142 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
143 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
144 
145 	dev_info->default_txconf.offloads |= txq_offloads_def;
146 
147 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
148 		uint64_t rte_hf = 0;
149 		unsigned int i;
150 
151 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
152 			rte_hf |= rss->hf_map[i].rte;
153 
154 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
155 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
156 		dev_info->flow_type_rss_offloads = rte_hf;
157 	}
158 
159 	/* Initialize to hardware limits */
160 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
161 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
162 	/* The RXQ hardware requires that the descriptor count is a power
163 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
164 	 */
165 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
166 
167 	/* Initialize to hardware limits */
168 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
169 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
170 	/*
171 	 * The TXQ hardware requires that the descriptor count is a power
172 	 * of 2, but tx_desc_lim cannot properly describe that constraint
173 	 */
174 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
175 
176 	if (sap->dp_rx->get_dev_info != NULL)
177 		sap->dp_rx->get_dev_info(dev_info);
178 	if (sap->dp_tx->get_dev_info != NULL)
179 		sap->dp_tx->get_dev_info(dev_info);
180 
181 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
182 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
183 }
184 
185 static const uint32_t *
186 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
187 {
188 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
189 
190 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
191 }
192 
193 static int
194 sfc_dev_configure(struct rte_eth_dev *dev)
195 {
196 	struct rte_eth_dev_data *dev_data = dev->data;
197 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
198 	int rc;
199 
200 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
201 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
202 
203 	sfc_adapter_lock(sa);
204 	switch (sa->state) {
205 	case SFC_ADAPTER_CONFIGURED:
206 		/* FALLTHROUGH */
207 	case SFC_ADAPTER_INITIALIZED:
208 		rc = sfc_configure(sa);
209 		break;
210 	default:
211 		sfc_err(sa, "unexpected adapter state %u to configure",
212 			sa->state);
213 		rc = EINVAL;
214 		break;
215 	}
216 	sfc_adapter_unlock(sa);
217 
218 	sfc_log_init(sa, "done %d", rc);
219 	SFC_ASSERT(rc >= 0);
220 	return -rc;
221 }
222 
223 static int
224 sfc_dev_start(struct rte_eth_dev *dev)
225 {
226 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
227 	int rc;
228 
229 	sfc_log_init(sa, "entry");
230 
231 	sfc_adapter_lock(sa);
232 	rc = sfc_start(sa);
233 	sfc_adapter_unlock(sa);
234 
235 	sfc_log_init(sa, "done %d", rc);
236 	SFC_ASSERT(rc >= 0);
237 	return -rc;
238 }
239 
240 static int
241 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
242 {
243 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
244 	struct rte_eth_link current_link;
245 	int ret;
246 
247 	sfc_log_init(sa, "entry");
248 
249 	if (sa->state != SFC_ADAPTER_STARTED) {
250 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
251 	} else if (wait_to_complete) {
252 		efx_link_mode_t link_mode;
253 
254 		if (efx_port_poll(sa->nic, &link_mode) != 0)
255 			link_mode = EFX_LINK_UNKNOWN;
256 		sfc_port_link_mode_to_info(link_mode, &current_link);
257 
258 	} else {
259 		sfc_ev_mgmt_qpoll(sa);
260 		rte_eth_linkstatus_get(dev, &current_link);
261 	}
262 
263 	ret = rte_eth_linkstatus_set(dev, &current_link);
264 	if (ret == 0)
265 		sfc_notice(sa, "Link status is %s",
266 			   current_link.link_status ? "UP" : "DOWN");
267 
268 	return ret;
269 }
270 
271 static void
272 sfc_dev_stop(struct rte_eth_dev *dev)
273 {
274 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
275 
276 	sfc_log_init(sa, "entry");
277 
278 	sfc_adapter_lock(sa);
279 	sfc_stop(sa);
280 	sfc_adapter_unlock(sa);
281 
282 	sfc_log_init(sa, "done");
283 }
284 
285 static int
286 sfc_dev_set_link_up(struct rte_eth_dev *dev)
287 {
288 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
289 	int rc;
290 
291 	sfc_log_init(sa, "entry");
292 
293 	sfc_adapter_lock(sa);
294 	rc = sfc_start(sa);
295 	sfc_adapter_unlock(sa);
296 
297 	SFC_ASSERT(rc >= 0);
298 	return -rc;
299 }
300 
301 static int
302 sfc_dev_set_link_down(struct rte_eth_dev *dev)
303 {
304 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
305 
306 	sfc_log_init(sa, "entry");
307 
308 	sfc_adapter_lock(sa);
309 	sfc_stop(sa);
310 	sfc_adapter_unlock(sa);
311 
312 	return 0;
313 }
314 
315 static void
316 sfc_dev_close(struct rte_eth_dev *dev)
317 {
318 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
319 
320 	sfc_log_init(sa, "entry");
321 
322 	sfc_adapter_lock(sa);
323 	switch (sa->state) {
324 	case SFC_ADAPTER_STARTED:
325 		sfc_stop(sa);
326 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
327 		/* FALLTHROUGH */
328 	case SFC_ADAPTER_CONFIGURED:
329 		sfc_close(sa);
330 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
331 		/* FALLTHROUGH */
332 	case SFC_ADAPTER_INITIALIZED:
333 		break;
334 	default:
335 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
336 		break;
337 	}
338 	sfc_adapter_unlock(sa);
339 
340 	sfc_log_init(sa, "done");
341 }
342 
343 static void
344 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
345 		   boolean_t enabled)
346 {
347 	struct sfc_port *port;
348 	boolean_t *toggle;
349 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
350 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
351 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
352 
353 	sfc_adapter_lock(sa);
354 
355 	port = &sa->port;
356 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
357 
358 	if (*toggle != enabled) {
359 		*toggle = enabled;
360 
361 		if (sfc_sa2shared(sa)->isolated) {
362 			sfc_warn(sa, "isolated mode is active on the port");
363 			sfc_warn(sa, "the change is to be applied on the next "
364 				     "start provided that isolated mode is "
365 				     "disabled prior the next start");
366 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
367 			   (sfc_set_rx_mode(sa) != 0)) {
368 			*toggle = !(enabled);
369 			sfc_warn(sa, "Failed to %s %s mode",
370 				 ((enabled) ? "enable" : "disable"), desc);
371 		}
372 	}
373 
374 	sfc_adapter_unlock(sa);
375 }
376 
377 static void
378 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
379 {
380 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
381 }
382 
383 static void
384 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
385 {
386 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
387 }
388 
389 static void
390 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
391 {
392 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
393 }
394 
395 static void
396 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
397 {
398 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
399 }
400 
401 static int
402 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
403 		   uint16_t nb_rx_desc, unsigned int socket_id,
404 		   const struct rte_eth_rxconf *rx_conf,
405 		   struct rte_mempool *mb_pool)
406 {
407 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
408 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
409 	int rc;
410 
411 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
412 		     rx_queue_id, nb_rx_desc, socket_id);
413 
414 	sfc_adapter_lock(sa);
415 
416 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
417 			  rx_conf, mb_pool);
418 	if (rc != 0)
419 		goto fail_rx_qinit;
420 
421 	dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
422 
423 	sfc_adapter_unlock(sa);
424 
425 	return 0;
426 
427 fail_rx_qinit:
428 	sfc_adapter_unlock(sa);
429 	SFC_ASSERT(rc > 0);
430 	return -rc;
431 }
432 
433 static void
434 sfc_rx_queue_release(void *queue)
435 {
436 	struct sfc_dp_rxq *dp_rxq = queue;
437 	struct sfc_rxq *rxq;
438 	struct sfc_adapter *sa;
439 	unsigned int sw_index;
440 
441 	if (dp_rxq == NULL)
442 		return;
443 
444 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
445 	sa = rxq->evq->sa;
446 	sfc_adapter_lock(sa);
447 
448 	sw_index = dp_rxq->dpq.queue_id;
449 
450 	sfc_log_init(sa, "RxQ=%u", sw_index);
451 
452 	sfc_rx_qfini(sa, sw_index);
453 
454 	sfc_adapter_unlock(sa);
455 }
456 
457 static int
458 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
459 		   uint16_t nb_tx_desc, unsigned int socket_id,
460 		   const struct rte_eth_txconf *tx_conf)
461 {
462 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
463 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
464 	int rc;
465 
466 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
467 		     tx_queue_id, nb_tx_desc, socket_id);
468 
469 	sfc_adapter_lock(sa);
470 
471 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
472 	if (rc != 0)
473 		goto fail_tx_qinit;
474 
475 	dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
476 
477 	sfc_adapter_unlock(sa);
478 	return 0;
479 
480 fail_tx_qinit:
481 	sfc_adapter_unlock(sa);
482 	SFC_ASSERT(rc > 0);
483 	return -rc;
484 }
485 
486 static void
487 sfc_tx_queue_release(void *queue)
488 {
489 	struct sfc_dp_txq *dp_txq = queue;
490 	struct sfc_txq *txq;
491 	unsigned int sw_index;
492 	struct sfc_adapter *sa;
493 
494 	if (dp_txq == NULL)
495 		return;
496 
497 	txq = sfc_txq_by_dp_txq(dp_txq);
498 	sw_index = dp_txq->dpq.queue_id;
499 
500 	SFC_ASSERT(txq->evq != NULL);
501 	sa = txq->evq->sa;
502 
503 	sfc_log_init(sa, "TxQ = %u", sw_index);
504 
505 	sfc_adapter_lock(sa);
506 
507 	sfc_tx_qfini(sa, sw_index);
508 
509 	sfc_adapter_unlock(sa);
510 }
511 
512 /*
513  * Some statistics are computed as A - B where A and B each increase
514  * monotonically with some hardware counter(s) and the counters are read
515  * asynchronously.
516  *
517  * If packet X is counted in A, but not counted in B yet, computed value is
518  * greater than real.
519  *
520  * If packet X is not counted in A at the moment of reading the counter,
521  * but counted in B at the moment of reading the counter, computed value
522  * is less than real.
523  *
524  * However, counter which grows backward is worse evil than slightly wrong
525  * value. So, let's try to guarantee that it never happens except may be
526  * the case when the MAC stats are zeroed as a result of a NIC reset.
527  */
528 static void
529 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
530 {
531 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
532 		*stat = newval;
533 }
534 
535 static int
536 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
537 {
538 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
539 	struct sfc_port *port = &sa->port;
540 	uint64_t *mac_stats;
541 	int ret;
542 
543 	rte_spinlock_lock(&port->mac_stats_lock);
544 
545 	ret = sfc_port_update_mac_stats(sa);
546 	if (ret != 0)
547 		goto unlock;
548 
549 	mac_stats = port->mac_stats_buf;
550 
551 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
552 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
553 		stats->ipackets =
554 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
555 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
556 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
557 		stats->opackets =
558 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
559 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
560 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
561 		stats->ibytes =
562 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
563 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
564 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
565 		stats->obytes =
566 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
567 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
568 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
569 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
570 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
571 	} else {
572 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
573 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
574 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
575 		/*
576 		 * Take into account stats which are whenever supported
577 		 * on EF10. If some stat is not supported by current
578 		 * firmware variant or HW revision, it is guaranteed
579 		 * to be zero in mac_stats.
580 		 */
581 		stats->imissed =
582 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
583 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
584 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
585 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
586 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
587 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
588 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
589 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
590 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
591 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
592 		stats->ierrors =
593 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
594 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
595 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
596 		/* no oerrors counters supported on EF10 */
597 
598 		/* Exclude missed, errors and pauses from Rx packets */
599 		sfc_update_diff_stat(&port->ipackets,
600 			mac_stats[EFX_MAC_RX_PKTS] -
601 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
602 			stats->imissed - stats->ierrors);
603 		stats->ipackets = port->ipackets;
604 	}
605 
606 unlock:
607 	rte_spinlock_unlock(&port->mac_stats_lock);
608 	SFC_ASSERT(ret >= 0);
609 	return -ret;
610 }
611 
612 static void
613 sfc_stats_reset(struct rte_eth_dev *dev)
614 {
615 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
616 	struct sfc_port *port = &sa->port;
617 	int rc;
618 
619 	if (sa->state != SFC_ADAPTER_STARTED) {
620 		/*
621 		 * The operation cannot be done if port is not started; it
622 		 * will be scheduled to be done during the next port start
623 		 */
624 		port->mac_stats_reset_pending = B_TRUE;
625 		return;
626 	}
627 
628 	rc = sfc_port_reset_mac_stats(sa);
629 	if (rc != 0)
630 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
631 }
632 
633 static int
634 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
635 	       unsigned int xstats_count)
636 {
637 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
638 	struct sfc_port *port = &sa->port;
639 	uint64_t *mac_stats;
640 	int rc;
641 	unsigned int i;
642 	int nstats = 0;
643 
644 	rte_spinlock_lock(&port->mac_stats_lock);
645 
646 	rc = sfc_port_update_mac_stats(sa);
647 	if (rc != 0) {
648 		SFC_ASSERT(rc > 0);
649 		nstats = -rc;
650 		goto unlock;
651 	}
652 
653 	mac_stats = port->mac_stats_buf;
654 
655 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
656 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
657 			if (xstats != NULL && nstats < (int)xstats_count) {
658 				xstats[nstats].id = nstats;
659 				xstats[nstats].value = mac_stats[i];
660 			}
661 			nstats++;
662 		}
663 	}
664 
665 unlock:
666 	rte_spinlock_unlock(&port->mac_stats_lock);
667 
668 	return nstats;
669 }
670 
671 static int
672 sfc_xstats_get_names(struct rte_eth_dev *dev,
673 		     struct rte_eth_xstat_name *xstats_names,
674 		     unsigned int xstats_count)
675 {
676 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
677 	struct sfc_port *port = &sa->port;
678 	unsigned int i;
679 	unsigned int nstats = 0;
680 
681 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
682 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
683 			if (xstats_names != NULL && nstats < xstats_count)
684 				strlcpy(xstats_names[nstats].name,
685 					efx_mac_stat_name(sa->nic, i),
686 					sizeof(xstats_names[0].name));
687 			nstats++;
688 		}
689 	}
690 
691 	return nstats;
692 }
693 
694 static int
695 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
696 		     uint64_t *values, unsigned int n)
697 {
698 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
699 	struct sfc_port *port = &sa->port;
700 	uint64_t *mac_stats;
701 	unsigned int nb_supported = 0;
702 	unsigned int nb_written = 0;
703 	unsigned int i;
704 	int ret;
705 	int rc;
706 
707 	if (unlikely(values == NULL) ||
708 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
709 		return port->mac_stats_nb_supported;
710 
711 	rte_spinlock_lock(&port->mac_stats_lock);
712 
713 	rc = sfc_port_update_mac_stats(sa);
714 	if (rc != 0) {
715 		SFC_ASSERT(rc > 0);
716 		ret = -rc;
717 		goto unlock;
718 	}
719 
720 	mac_stats = port->mac_stats_buf;
721 
722 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
723 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
724 			continue;
725 
726 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
727 			values[nb_written++] = mac_stats[i];
728 
729 		++nb_supported;
730 	}
731 
732 	ret = nb_written;
733 
734 unlock:
735 	rte_spinlock_unlock(&port->mac_stats_lock);
736 
737 	return ret;
738 }
739 
740 static int
741 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
742 			   struct rte_eth_xstat_name *xstats_names,
743 			   const uint64_t *ids, unsigned int size)
744 {
745 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
746 	struct sfc_port *port = &sa->port;
747 	unsigned int nb_supported = 0;
748 	unsigned int nb_written = 0;
749 	unsigned int i;
750 
751 	if (unlikely(xstats_names == NULL) ||
752 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
753 		return port->mac_stats_nb_supported;
754 
755 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
756 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
757 			continue;
758 
759 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
760 			char *name = xstats_names[nb_written++].name;
761 
762 			strlcpy(name, efx_mac_stat_name(sa->nic, i),
763 				sizeof(xstats_names[0].name));
764 		}
765 
766 		++nb_supported;
767 	}
768 
769 	return nb_written;
770 }
771 
772 static int
773 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
774 {
775 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
776 	unsigned int wanted_fc, link_fc;
777 
778 	memset(fc_conf, 0, sizeof(*fc_conf));
779 
780 	sfc_adapter_lock(sa);
781 
782 	if (sa->state == SFC_ADAPTER_STARTED)
783 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
784 	else
785 		link_fc = sa->port.flow_ctrl;
786 
787 	switch (link_fc) {
788 	case 0:
789 		fc_conf->mode = RTE_FC_NONE;
790 		break;
791 	case EFX_FCNTL_RESPOND:
792 		fc_conf->mode = RTE_FC_RX_PAUSE;
793 		break;
794 	case EFX_FCNTL_GENERATE:
795 		fc_conf->mode = RTE_FC_TX_PAUSE;
796 		break;
797 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
798 		fc_conf->mode = RTE_FC_FULL;
799 		break;
800 	default:
801 		sfc_err(sa, "%s: unexpected flow control value %#x",
802 			__func__, link_fc);
803 	}
804 
805 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
806 
807 	sfc_adapter_unlock(sa);
808 
809 	return 0;
810 }
811 
812 static int
813 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
814 {
815 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
816 	struct sfc_port *port = &sa->port;
817 	unsigned int fcntl;
818 	int rc;
819 
820 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
821 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
822 	    fc_conf->mac_ctrl_frame_fwd != 0) {
823 		sfc_err(sa, "unsupported flow control settings specified");
824 		rc = EINVAL;
825 		goto fail_inval;
826 	}
827 
828 	switch (fc_conf->mode) {
829 	case RTE_FC_NONE:
830 		fcntl = 0;
831 		break;
832 	case RTE_FC_RX_PAUSE:
833 		fcntl = EFX_FCNTL_RESPOND;
834 		break;
835 	case RTE_FC_TX_PAUSE:
836 		fcntl = EFX_FCNTL_GENERATE;
837 		break;
838 	case RTE_FC_FULL:
839 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
840 		break;
841 	default:
842 		rc = EINVAL;
843 		goto fail_inval;
844 	}
845 
846 	sfc_adapter_lock(sa);
847 
848 	if (sa->state == SFC_ADAPTER_STARTED) {
849 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
850 		if (rc != 0)
851 			goto fail_mac_fcntl_set;
852 	}
853 
854 	port->flow_ctrl = fcntl;
855 	port->flow_ctrl_autoneg = fc_conf->autoneg;
856 
857 	sfc_adapter_unlock(sa);
858 
859 	return 0;
860 
861 fail_mac_fcntl_set:
862 	sfc_adapter_unlock(sa);
863 fail_inval:
864 	SFC_ASSERT(rc > 0);
865 	return -rc;
866 }
867 
868 static int
869 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
870 {
871 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
872 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
873 	boolean_t scatter_enabled;
874 	const char *error;
875 	unsigned int i;
876 
877 	for (i = 0; i < sas->rxq_count; i++) {
878 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
879 			continue;
880 
881 		scatter_enabled = (sas->rxq_info[i].type_flags &
882 				   EFX_RXQ_FLAG_SCATTER);
883 
884 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
885 					  encp->enc_rx_prefix_size,
886 					  scatter_enabled, &error)) {
887 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
888 				error);
889 			return EINVAL;
890 		}
891 	}
892 
893 	return 0;
894 }
895 
896 static int
897 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
898 {
899 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
900 	size_t pdu = EFX_MAC_PDU(mtu);
901 	size_t old_pdu;
902 	int rc;
903 
904 	sfc_log_init(sa, "mtu=%u", mtu);
905 
906 	rc = EINVAL;
907 	if (pdu < EFX_MAC_PDU_MIN) {
908 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
909 			(unsigned int)mtu, (unsigned int)pdu,
910 			EFX_MAC_PDU_MIN);
911 		goto fail_inval;
912 	}
913 	if (pdu > EFX_MAC_PDU_MAX) {
914 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
915 			(unsigned int)mtu, (unsigned int)pdu,
916 			EFX_MAC_PDU_MAX);
917 		goto fail_inval;
918 	}
919 
920 	sfc_adapter_lock(sa);
921 
922 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
923 	if (rc != 0)
924 		goto fail_check_scatter;
925 
926 	if (pdu != sa->port.pdu) {
927 		if (sa->state == SFC_ADAPTER_STARTED) {
928 			sfc_stop(sa);
929 
930 			old_pdu = sa->port.pdu;
931 			sa->port.pdu = pdu;
932 			rc = sfc_start(sa);
933 			if (rc != 0)
934 				goto fail_start;
935 		} else {
936 			sa->port.pdu = pdu;
937 		}
938 	}
939 
940 	/*
941 	 * The driver does not use it, but other PMDs update jumbo frame
942 	 * flag and max_rx_pkt_len when MTU is set.
943 	 */
944 	if (mtu > RTE_ETHER_MAX_LEN) {
945 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
946 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
947 	}
948 
949 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
950 
951 	sfc_adapter_unlock(sa);
952 
953 	sfc_log_init(sa, "done");
954 	return 0;
955 
956 fail_start:
957 	sa->port.pdu = old_pdu;
958 	if (sfc_start(sa) != 0)
959 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
960 			"PDU max size - port is stopped",
961 			(unsigned int)pdu, (unsigned int)old_pdu);
962 
963 fail_check_scatter:
964 	sfc_adapter_unlock(sa);
965 
966 fail_inval:
967 	sfc_log_init(sa, "failed %d", rc);
968 	SFC_ASSERT(rc > 0);
969 	return -rc;
970 }
971 static int
972 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
973 {
974 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
975 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
976 	struct sfc_port *port = &sa->port;
977 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
978 	int rc = 0;
979 
980 	sfc_adapter_lock(sa);
981 
982 	/*
983 	 * Copy the address to the device private data so that
984 	 * it could be recalled in the case of adapter restart.
985 	 */
986 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
987 
988 	/*
989 	 * Neither of the two following checks can return
990 	 * an error. The new MAC address is preserved in
991 	 * the device private data and can be activated
992 	 * on the next port start if the user prevents
993 	 * isolated mode from being enabled.
994 	 */
995 	if (sfc_sa2shared(sa)->isolated) {
996 		sfc_warn(sa, "isolated mode is active on the port");
997 		sfc_warn(sa, "will not set MAC address");
998 		goto unlock;
999 	}
1000 
1001 	if (sa->state != SFC_ADAPTER_STARTED) {
1002 		sfc_notice(sa, "the port is not started");
1003 		sfc_notice(sa, "the new MAC address will be set on port start");
1004 
1005 		goto unlock;
1006 	}
1007 
1008 	if (encp->enc_allow_set_mac_with_installed_filters) {
1009 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1010 		if (rc != 0) {
1011 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1012 			goto unlock;
1013 		}
1014 
1015 		/*
1016 		 * Changing the MAC address by means of MCDI request
1017 		 * has no effect on received traffic, therefore
1018 		 * we also need to update unicast filters
1019 		 */
1020 		rc = sfc_set_rx_mode(sa);
1021 		if (rc != 0) {
1022 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1023 			/* Rollback the old address */
1024 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1025 			(void)sfc_set_rx_mode(sa);
1026 		}
1027 	} else {
1028 		sfc_warn(sa, "cannot set MAC address with filters installed");
1029 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1030 		sfc_warn(sa, "(some traffic may be dropped)");
1031 
1032 		/*
1033 		 * Since setting MAC address with filters installed is not
1034 		 * allowed on the adapter, the new MAC address will be set
1035 		 * by means of adapter restart. sfc_start() shall retrieve
1036 		 * the new address from the device private data and set it.
1037 		 */
1038 		sfc_stop(sa);
1039 		rc = sfc_start(sa);
1040 		if (rc != 0)
1041 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1042 	}
1043 
1044 unlock:
1045 	if (rc != 0)
1046 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1047 
1048 	sfc_adapter_unlock(sa);
1049 
1050 	SFC_ASSERT(rc >= 0);
1051 	return -rc;
1052 }
1053 
1054 
1055 static int
1056 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1057 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1058 {
1059 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1060 	struct sfc_port *port = &sa->port;
1061 	uint8_t *mc_addrs = port->mcast_addrs;
1062 	int rc;
1063 	unsigned int i;
1064 
1065 	if (sfc_sa2shared(sa)->isolated) {
1066 		sfc_err(sa, "isolated mode is active on the port");
1067 		sfc_err(sa, "will not set multicast address list");
1068 		return -ENOTSUP;
1069 	}
1070 
1071 	if (mc_addrs == NULL)
1072 		return -ENOBUFS;
1073 
1074 	if (nb_mc_addr > port->max_mcast_addrs) {
1075 		sfc_err(sa, "too many multicast addresses: %u > %u",
1076 			 nb_mc_addr, port->max_mcast_addrs);
1077 		return -EINVAL;
1078 	}
1079 
1080 	for (i = 0; i < nb_mc_addr; ++i) {
1081 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1082 				 EFX_MAC_ADDR_LEN);
1083 		mc_addrs += EFX_MAC_ADDR_LEN;
1084 	}
1085 
1086 	port->nb_mcast_addrs = nb_mc_addr;
1087 
1088 	if (sa->state != SFC_ADAPTER_STARTED)
1089 		return 0;
1090 
1091 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1092 					port->nb_mcast_addrs);
1093 	if (rc != 0)
1094 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1095 
1096 	SFC_ASSERT(rc >= 0);
1097 	return -rc;
1098 }
1099 
1100 /*
1101  * The function is used by the secondary process as well. It must not
1102  * use any process-local pointers from the adapter data.
1103  */
1104 static void
1105 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1106 		      struct rte_eth_rxq_info *qinfo)
1107 {
1108 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1109 	struct sfc_rxq_info *rxq_info;
1110 
1111 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1112 
1113 	rxq_info = &sas->rxq_info[rx_queue_id];
1114 
1115 	qinfo->mp = rxq_info->refill_mb_pool;
1116 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1117 	qinfo->conf.rx_drop_en = 1;
1118 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1119 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1120 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1121 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1122 		qinfo->scattered_rx = 1;
1123 	}
1124 	qinfo->nb_desc = rxq_info->entries;
1125 }
1126 
1127 /*
1128  * The function is used by the secondary process as well. It must not
1129  * use any process-local pointers from the adapter data.
1130  */
1131 static void
1132 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1133 		      struct rte_eth_txq_info *qinfo)
1134 {
1135 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1136 	struct sfc_txq_info *txq_info;
1137 
1138 	SFC_ASSERT(tx_queue_id < sas->txq_count);
1139 
1140 	txq_info = &sas->txq_info[tx_queue_id];
1141 
1142 	memset(qinfo, 0, sizeof(*qinfo));
1143 
1144 	qinfo->conf.offloads = txq_info->offloads;
1145 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1146 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1147 	qinfo->nb_desc = txq_info->entries;
1148 }
1149 
1150 /*
1151  * The function is used by the secondary process as well. It must not
1152  * use any process-local pointers from the adapter data.
1153  */
1154 static uint32_t
1155 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1156 {
1157 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1158 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1159 	struct sfc_rxq_info *rxq_info;
1160 
1161 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1162 	rxq_info = &sas->rxq_info[rx_queue_id];
1163 
1164 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1165 		return 0;
1166 
1167 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1168 }
1169 
1170 /*
1171  * The function is used by the secondary process as well. It must not
1172  * use any process-local pointers from the adapter data.
1173  */
1174 static int
1175 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1176 {
1177 	struct sfc_dp_rxq *dp_rxq = queue;
1178 	const struct sfc_dp_rx *dp_rx;
1179 
1180 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1181 
1182 	return offset < dp_rx->qdesc_npending(dp_rxq);
1183 }
1184 
1185 /*
1186  * The function is used by the secondary process as well. It must not
1187  * use any process-local pointers from the adapter data.
1188  */
1189 static int
1190 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1191 {
1192 	struct sfc_dp_rxq *dp_rxq = queue;
1193 	const struct sfc_dp_rx *dp_rx;
1194 
1195 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1196 
1197 	return dp_rx->qdesc_status(dp_rxq, offset);
1198 }
1199 
1200 /*
1201  * The function is used by the secondary process as well. It must not
1202  * use any process-local pointers from the adapter data.
1203  */
1204 static int
1205 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1206 {
1207 	struct sfc_dp_txq *dp_txq = queue;
1208 	const struct sfc_dp_tx *dp_tx;
1209 
1210 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1211 
1212 	return dp_tx->qdesc_status(dp_txq, offset);
1213 }
1214 
1215 static int
1216 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1217 {
1218 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1219 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1220 	int rc;
1221 
1222 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1223 
1224 	sfc_adapter_lock(sa);
1225 
1226 	rc = EINVAL;
1227 	if (sa->state != SFC_ADAPTER_STARTED)
1228 		goto fail_not_started;
1229 
1230 	if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1231 		goto fail_not_setup;
1232 
1233 	rc = sfc_rx_qstart(sa, rx_queue_id);
1234 	if (rc != 0)
1235 		goto fail_rx_qstart;
1236 
1237 	sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1238 
1239 	sfc_adapter_unlock(sa);
1240 
1241 	return 0;
1242 
1243 fail_rx_qstart:
1244 fail_not_setup:
1245 fail_not_started:
1246 	sfc_adapter_unlock(sa);
1247 	SFC_ASSERT(rc > 0);
1248 	return -rc;
1249 }
1250 
1251 static int
1252 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1253 {
1254 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1255 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1256 
1257 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1258 
1259 	sfc_adapter_lock(sa);
1260 	sfc_rx_qstop(sa, rx_queue_id);
1261 
1262 	sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1263 
1264 	sfc_adapter_unlock(sa);
1265 
1266 	return 0;
1267 }
1268 
1269 static int
1270 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1271 {
1272 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1273 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1274 	int rc;
1275 
1276 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1277 
1278 	sfc_adapter_lock(sa);
1279 
1280 	rc = EINVAL;
1281 	if (sa->state != SFC_ADAPTER_STARTED)
1282 		goto fail_not_started;
1283 
1284 	if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1285 		goto fail_not_setup;
1286 
1287 	rc = sfc_tx_qstart(sa, tx_queue_id);
1288 	if (rc != 0)
1289 		goto fail_tx_qstart;
1290 
1291 	sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1292 
1293 	sfc_adapter_unlock(sa);
1294 	return 0;
1295 
1296 fail_tx_qstart:
1297 
1298 fail_not_setup:
1299 fail_not_started:
1300 	sfc_adapter_unlock(sa);
1301 	SFC_ASSERT(rc > 0);
1302 	return -rc;
1303 }
1304 
1305 static int
1306 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1307 {
1308 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1309 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1310 
1311 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1312 
1313 	sfc_adapter_lock(sa);
1314 
1315 	sfc_tx_qstop(sa, tx_queue_id);
1316 
1317 	sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1318 
1319 	sfc_adapter_unlock(sa);
1320 	return 0;
1321 }
1322 
1323 static efx_tunnel_protocol_t
1324 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1325 {
1326 	switch (rte_type) {
1327 	case RTE_TUNNEL_TYPE_VXLAN:
1328 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1329 	case RTE_TUNNEL_TYPE_GENEVE:
1330 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1331 	default:
1332 		return EFX_TUNNEL_NPROTOS;
1333 	}
1334 }
1335 
1336 enum sfc_udp_tunnel_op_e {
1337 	SFC_UDP_TUNNEL_ADD_PORT,
1338 	SFC_UDP_TUNNEL_DEL_PORT,
1339 };
1340 
1341 static int
1342 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1343 		      struct rte_eth_udp_tunnel *tunnel_udp,
1344 		      enum sfc_udp_tunnel_op_e op)
1345 {
1346 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1347 	efx_tunnel_protocol_t tunnel_proto;
1348 	int rc;
1349 
1350 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1351 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1352 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1353 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1354 
1355 	tunnel_proto =
1356 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1357 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1358 		rc = ENOTSUP;
1359 		goto fail_bad_proto;
1360 	}
1361 
1362 	sfc_adapter_lock(sa);
1363 
1364 	switch (op) {
1365 	case SFC_UDP_TUNNEL_ADD_PORT:
1366 		rc = efx_tunnel_config_udp_add(sa->nic,
1367 					       tunnel_udp->udp_port,
1368 					       tunnel_proto);
1369 		break;
1370 	case SFC_UDP_TUNNEL_DEL_PORT:
1371 		rc = efx_tunnel_config_udp_remove(sa->nic,
1372 						  tunnel_udp->udp_port,
1373 						  tunnel_proto);
1374 		break;
1375 	default:
1376 		rc = EINVAL;
1377 		goto fail_bad_op;
1378 	}
1379 
1380 	if (rc != 0)
1381 		goto fail_op;
1382 
1383 	if (sa->state == SFC_ADAPTER_STARTED) {
1384 		rc = efx_tunnel_reconfigure(sa->nic);
1385 		if (rc == EAGAIN) {
1386 			/*
1387 			 * Configuration is accepted by FW and MC reboot
1388 			 * is initiated to apply the changes. MC reboot
1389 			 * will be handled in a usual way (MC reboot
1390 			 * event on management event queue and adapter
1391 			 * restart).
1392 			 */
1393 			rc = 0;
1394 		} else if (rc != 0) {
1395 			goto fail_reconfigure;
1396 		}
1397 	}
1398 
1399 	sfc_adapter_unlock(sa);
1400 	return 0;
1401 
1402 fail_reconfigure:
1403 	/* Remove/restore entry since the change makes the trouble */
1404 	switch (op) {
1405 	case SFC_UDP_TUNNEL_ADD_PORT:
1406 		(void)efx_tunnel_config_udp_remove(sa->nic,
1407 						   tunnel_udp->udp_port,
1408 						   tunnel_proto);
1409 		break;
1410 	case SFC_UDP_TUNNEL_DEL_PORT:
1411 		(void)efx_tunnel_config_udp_add(sa->nic,
1412 						tunnel_udp->udp_port,
1413 						tunnel_proto);
1414 		break;
1415 	}
1416 
1417 fail_op:
1418 fail_bad_op:
1419 	sfc_adapter_unlock(sa);
1420 
1421 fail_bad_proto:
1422 	SFC_ASSERT(rc > 0);
1423 	return -rc;
1424 }
1425 
1426 static int
1427 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1428 			    struct rte_eth_udp_tunnel *tunnel_udp)
1429 {
1430 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1431 }
1432 
1433 static int
1434 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1435 			    struct rte_eth_udp_tunnel *tunnel_udp)
1436 {
1437 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1438 }
1439 
1440 /*
1441  * The function is used by the secondary process as well. It must not
1442  * use any process-local pointers from the adapter data.
1443  */
1444 static int
1445 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1446 			  struct rte_eth_rss_conf *rss_conf)
1447 {
1448 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1449 	struct sfc_rss *rss = &sas->rss;
1450 
1451 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1452 		return -ENOTSUP;
1453 
1454 	/*
1455 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1456 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1457 	 * flags which corresponds to the active EFX configuration stored
1458 	 * locally in 'sfc_adapter' and kept up-to-date
1459 	 */
1460 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1461 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1462 	if (rss_conf->rss_key != NULL)
1463 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1464 
1465 	return 0;
1466 }
1467 
1468 static int
1469 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1470 			struct rte_eth_rss_conf *rss_conf)
1471 {
1472 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1473 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1474 	unsigned int efx_hash_types;
1475 	int rc = 0;
1476 
1477 	if (sfc_sa2shared(sa)->isolated)
1478 		return -ENOTSUP;
1479 
1480 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1481 		sfc_err(sa, "RSS is not available");
1482 		return -ENOTSUP;
1483 	}
1484 
1485 	if (rss->channels == 0) {
1486 		sfc_err(sa, "RSS is not configured");
1487 		return -EINVAL;
1488 	}
1489 
1490 	if ((rss_conf->rss_key != NULL) &&
1491 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1492 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1493 			sizeof(rss->key));
1494 		return -EINVAL;
1495 	}
1496 
1497 	sfc_adapter_lock(sa);
1498 
1499 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1500 	if (rc != 0)
1501 		goto fail_rx_hf_rte_to_efx;
1502 
1503 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1504 				   rss->hash_alg, efx_hash_types, B_TRUE);
1505 	if (rc != 0)
1506 		goto fail_scale_mode_set;
1507 
1508 	if (rss_conf->rss_key != NULL) {
1509 		if (sa->state == SFC_ADAPTER_STARTED) {
1510 			rc = efx_rx_scale_key_set(sa->nic,
1511 						  EFX_RSS_CONTEXT_DEFAULT,
1512 						  rss_conf->rss_key,
1513 						  sizeof(rss->key));
1514 			if (rc != 0)
1515 				goto fail_scale_key_set;
1516 		}
1517 
1518 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1519 	}
1520 
1521 	rss->hash_types = efx_hash_types;
1522 
1523 	sfc_adapter_unlock(sa);
1524 
1525 	return 0;
1526 
1527 fail_scale_key_set:
1528 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1529 				  EFX_RX_HASHALG_TOEPLITZ,
1530 				  rss->hash_types, B_TRUE) != 0)
1531 		sfc_err(sa, "failed to restore RSS mode");
1532 
1533 fail_scale_mode_set:
1534 fail_rx_hf_rte_to_efx:
1535 	sfc_adapter_unlock(sa);
1536 	return -rc;
1537 }
1538 
1539 /*
1540  * The function is used by the secondary process as well. It must not
1541  * use any process-local pointers from the adapter data.
1542  */
1543 static int
1544 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1545 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1546 		       uint16_t reta_size)
1547 {
1548 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1549 	struct sfc_rss *rss = &sas->rss;
1550 	int entry;
1551 
1552 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1553 		return -ENOTSUP;
1554 
1555 	if (rss->channels == 0)
1556 		return -EINVAL;
1557 
1558 	if (reta_size != EFX_RSS_TBL_SIZE)
1559 		return -EINVAL;
1560 
1561 	for (entry = 0; entry < reta_size; entry++) {
1562 		int grp = entry / RTE_RETA_GROUP_SIZE;
1563 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1564 
1565 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1566 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static int
1573 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1574 			struct rte_eth_rss_reta_entry64 *reta_conf,
1575 			uint16_t reta_size)
1576 {
1577 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1578 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1579 	unsigned int *rss_tbl_new;
1580 	uint16_t entry;
1581 	int rc = 0;
1582 
1583 
1584 	if (sfc_sa2shared(sa)->isolated)
1585 		return -ENOTSUP;
1586 
1587 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1588 		sfc_err(sa, "RSS is not available");
1589 		return -ENOTSUP;
1590 	}
1591 
1592 	if (rss->channels == 0) {
1593 		sfc_err(sa, "RSS is not configured");
1594 		return -EINVAL;
1595 	}
1596 
1597 	if (reta_size != EFX_RSS_TBL_SIZE) {
1598 		sfc_err(sa, "RETA size is wrong (should be %u)",
1599 			EFX_RSS_TBL_SIZE);
1600 		return -EINVAL;
1601 	}
1602 
1603 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1604 	if (rss_tbl_new == NULL)
1605 		return -ENOMEM;
1606 
1607 	sfc_adapter_lock(sa);
1608 
1609 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1610 
1611 	for (entry = 0; entry < reta_size; entry++) {
1612 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1613 		struct rte_eth_rss_reta_entry64 *grp;
1614 
1615 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1616 
1617 		if (grp->mask & (1ull << grp_idx)) {
1618 			if (grp->reta[grp_idx] >= rss->channels) {
1619 				rc = EINVAL;
1620 				goto bad_reta_entry;
1621 			}
1622 			rss_tbl_new[entry] = grp->reta[grp_idx];
1623 		}
1624 	}
1625 
1626 	if (sa->state == SFC_ADAPTER_STARTED) {
1627 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1628 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1629 		if (rc != 0)
1630 			goto fail_scale_tbl_set;
1631 	}
1632 
1633 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1634 
1635 fail_scale_tbl_set:
1636 bad_reta_entry:
1637 	sfc_adapter_unlock(sa);
1638 
1639 	rte_free(rss_tbl_new);
1640 
1641 	SFC_ASSERT(rc >= 0);
1642 	return -rc;
1643 }
1644 
1645 static int
1646 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1647 		    enum rte_filter_op filter_op,
1648 		    void *arg)
1649 {
1650 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1651 	int rc = ENOTSUP;
1652 
1653 	sfc_log_init(sa, "entry");
1654 
1655 	switch (filter_type) {
1656 	case RTE_ETH_FILTER_NONE:
1657 		sfc_err(sa, "Global filters configuration not supported");
1658 		break;
1659 	case RTE_ETH_FILTER_MACVLAN:
1660 		sfc_err(sa, "MACVLAN filters not supported");
1661 		break;
1662 	case RTE_ETH_FILTER_ETHERTYPE:
1663 		sfc_err(sa, "EtherType filters not supported");
1664 		break;
1665 	case RTE_ETH_FILTER_FLEXIBLE:
1666 		sfc_err(sa, "Flexible filters not supported");
1667 		break;
1668 	case RTE_ETH_FILTER_SYN:
1669 		sfc_err(sa, "SYN filters not supported");
1670 		break;
1671 	case RTE_ETH_FILTER_NTUPLE:
1672 		sfc_err(sa, "NTUPLE filters not supported");
1673 		break;
1674 	case RTE_ETH_FILTER_TUNNEL:
1675 		sfc_err(sa, "Tunnel filters not supported");
1676 		break;
1677 	case RTE_ETH_FILTER_FDIR:
1678 		sfc_err(sa, "Flow Director filters not supported");
1679 		break;
1680 	case RTE_ETH_FILTER_HASH:
1681 		sfc_err(sa, "Hash filters not supported");
1682 		break;
1683 	case RTE_ETH_FILTER_GENERIC:
1684 		if (filter_op != RTE_ETH_FILTER_GET) {
1685 			rc = EINVAL;
1686 		} else {
1687 			*(const void **)arg = &sfc_flow_ops;
1688 			rc = 0;
1689 		}
1690 		break;
1691 	default:
1692 		sfc_err(sa, "Unknown filter type %u", filter_type);
1693 		break;
1694 	}
1695 
1696 	sfc_log_init(sa, "exit: %d", -rc);
1697 	SFC_ASSERT(rc >= 0);
1698 	return -rc;
1699 }
1700 
1701 static int
1702 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1703 {
1704 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1705 
1706 	/*
1707 	 * If Rx datapath does not provide callback to check mempool,
1708 	 * all pools are supported.
1709 	 */
1710 	if (sap->dp_rx->pool_ops_supported == NULL)
1711 		return 1;
1712 
1713 	return sap->dp_rx->pool_ops_supported(pool);
1714 }
1715 
1716 static const struct eth_dev_ops sfc_eth_dev_ops = {
1717 	.dev_configure			= sfc_dev_configure,
1718 	.dev_start			= sfc_dev_start,
1719 	.dev_stop			= sfc_dev_stop,
1720 	.dev_set_link_up		= sfc_dev_set_link_up,
1721 	.dev_set_link_down		= sfc_dev_set_link_down,
1722 	.dev_close			= sfc_dev_close,
1723 	.promiscuous_enable		= sfc_dev_promisc_enable,
1724 	.promiscuous_disable		= sfc_dev_promisc_disable,
1725 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1726 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1727 	.link_update			= sfc_dev_link_update,
1728 	.stats_get			= sfc_stats_get,
1729 	.stats_reset			= sfc_stats_reset,
1730 	.xstats_get			= sfc_xstats_get,
1731 	.xstats_reset			= sfc_stats_reset,
1732 	.xstats_get_names		= sfc_xstats_get_names,
1733 	.dev_infos_get			= sfc_dev_infos_get,
1734 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1735 	.mtu_set			= sfc_dev_set_mtu,
1736 	.rx_queue_start			= sfc_rx_queue_start,
1737 	.rx_queue_stop			= sfc_rx_queue_stop,
1738 	.tx_queue_start			= sfc_tx_queue_start,
1739 	.tx_queue_stop			= sfc_tx_queue_stop,
1740 	.rx_queue_setup			= sfc_rx_queue_setup,
1741 	.rx_queue_release		= sfc_rx_queue_release,
1742 	.rx_queue_count			= sfc_rx_queue_count,
1743 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1744 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1745 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1746 	.tx_queue_setup			= sfc_tx_queue_setup,
1747 	.tx_queue_release		= sfc_tx_queue_release,
1748 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1749 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1750 	.mac_addr_set			= sfc_mac_addr_set,
1751 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1752 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1753 	.reta_update			= sfc_dev_rss_reta_update,
1754 	.reta_query			= sfc_dev_rss_reta_query,
1755 	.rss_hash_update		= sfc_dev_rss_hash_update,
1756 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1757 	.filter_ctrl			= sfc_dev_filter_ctrl,
1758 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1759 	.rxq_info_get			= sfc_rx_queue_info_get,
1760 	.txq_info_get			= sfc_tx_queue_info_get,
1761 	.fw_version_get			= sfc_fw_version_get,
1762 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1763 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1764 	.pool_ops_supported		= sfc_pool_ops_supported,
1765 };
1766 
1767 /**
1768  * Duplicate a string in potentially shared memory required for
1769  * multi-process support.
1770  *
1771  * strdup() allocates from process-local heap/memory.
1772  */
1773 static char *
1774 sfc_strdup(const char *str)
1775 {
1776 	size_t size;
1777 	char *copy;
1778 
1779 	if (str == NULL)
1780 		return NULL;
1781 
1782 	size = strlen(str) + 1;
1783 	copy = rte_malloc(__func__, size, 0);
1784 	if (copy != NULL)
1785 		rte_memcpy(copy, str, size);
1786 
1787 	return copy;
1788 }
1789 
1790 static int
1791 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1792 {
1793 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1794 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1795 	const struct sfc_dp_rx *dp_rx;
1796 	const struct sfc_dp_tx *dp_tx;
1797 	const efx_nic_cfg_t *encp;
1798 	unsigned int avail_caps = 0;
1799 	const char *rx_name = NULL;
1800 	const char *tx_name = NULL;
1801 	int rc;
1802 
1803 	switch (sa->family) {
1804 	case EFX_FAMILY_HUNTINGTON:
1805 	case EFX_FAMILY_MEDFORD:
1806 	case EFX_FAMILY_MEDFORD2:
1807 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1808 		break;
1809 	default:
1810 		break;
1811 	}
1812 
1813 	encp = efx_nic_cfg_get(sa->nic);
1814 	if (encp->enc_rx_es_super_buffer_supported)
1815 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1816 
1817 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1818 				sfc_kvarg_string_handler, &rx_name);
1819 	if (rc != 0)
1820 		goto fail_kvarg_rx_datapath;
1821 
1822 	if (rx_name != NULL) {
1823 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1824 		if (dp_rx == NULL) {
1825 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1826 			rc = ENOENT;
1827 			goto fail_dp_rx;
1828 		}
1829 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1830 			sfc_err(sa,
1831 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1832 				rx_name);
1833 			rc = EINVAL;
1834 			goto fail_dp_rx_caps;
1835 		}
1836 	} else {
1837 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1838 		if (dp_rx == NULL) {
1839 			sfc_err(sa, "Rx datapath by caps %#x not found",
1840 				avail_caps);
1841 			rc = ENOENT;
1842 			goto fail_dp_rx;
1843 		}
1844 	}
1845 
1846 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1847 	if (sas->dp_rx_name == NULL) {
1848 		rc = ENOMEM;
1849 		goto fail_dp_rx_name;
1850 	}
1851 
1852 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1853 
1854 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1855 				sfc_kvarg_string_handler, &tx_name);
1856 	if (rc != 0)
1857 		goto fail_kvarg_tx_datapath;
1858 
1859 	if (tx_name != NULL) {
1860 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1861 		if (dp_tx == NULL) {
1862 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1863 			rc = ENOENT;
1864 			goto fail_dp_tx;
1865 		}
1866 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1867 			sfc_err(sa,
1868 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1869 				tx_name);
1870 			rc = EINVAL;
1871 			goto fail_dp_tx_caps;
1872 		}
1873 	} else {
1874 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1875 		if (dp_tx == NULL) {
1876 			sfc_err(sa, "Tx datapath by caps %#x not found",
1877 				avail_caps);
1878 			rc = ENOENT;
1879 			goto fail_dp_tx;
1880 		}
1881 	}
1882 
1883 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
1884 	if (sas->dp_tx_name == NULL) {
1885 		rc = ENOMEM;
1886 		goto fail_dp_tx_name;
1887 	}
1888 
1889 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
1890 
1891 	sa->priv.dp_rx = dp_rx;
1892 	sa->priv.dp_tx = dp_tx;
1893 
1894 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1895 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
1896 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1897 
1898 	dev->dev_ops = &sfc_eth_dev_ops;
1899 
1900 	return 0;
1901 
1902 fail_dp_tx_name:
1903 fail_dp_tx_caps:
1904 fail_dp_tx:
1905 fail_kvarg_tx_datapath:
1906 	rte_free(sas->dp_rx_name);
1907 	sas->dp_rx_name = NULL;
1908 
1909 fail_dp_rx_name:
1910 fail_dp_rx_caps:
1911 fail_dp_rx:
1912 fail_kvarg_rx_datapath:
1913 	return rc;
1914 }
1915 
1916 static void
1917 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1918 {
1919 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1920 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1921 
1922 	dev->dev_ops = NULL;
1923 	dev->tx_pkt_prepare = NULL;
1924 	dev->rx_pkt_burst = NULL;
1925 	dev->tx_pkt_burst = NULL;
1926 
1927 	rte_free(sas->dp_tx_name);
1928 	sas->dp_tx_name = NULL;
1929 	sa->priv.dp_tx = NULL;
1930 
1931 	rte_free(sas->dp_rx_name);
1932 	sas->dp_rx_name = NULL;
1933 	sa->priv.dp_rx = NULL;
1934 }
1935 
1936 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1937 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1938 	.rx_queue_count			= sfc_rx_queue_count,
1939 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1940 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1941 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1942 	.reta_query			= sfc_dev_rss_reta_query,
1943 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1944 	.rxq_info_get			= sfc_rx_queue_info_get,
1945 	.txq_info_get			= sfc_tx_queue_info_get,
1946 };
1947 
1948 static int
1949 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
1950 {
1951 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1952 	struct sfc_adapter_priv *sap;
1953 	const struct sfc_dp_rx *dp_rx;
1954 	const struct sfc_dp_tx *dp_tx;
1955 	int rc;
1956 
1957 	/*
1958 	 * Allocate process private data from heap, since it should not
1959 	 * be located in shared memory allocated using rte_malloc() API.
1960 	 */
1961 	sap = calloc(1, sizeof(*sap));
1962 	if (sap == NULL) {
1963 		rc = ENOMEM;
1964 		goto fail_alloc_priv;
1965 	}
1966 
1967 	sap->logtype_main = logtype_main;
1968 
1969 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
1970 	if (dp_rx == NULL) {
1971 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
1972 			"cannot find %s Rx datapath", sas->dp_rx_name);
1973 		rc = ENOENT;
1974 		goto fail_dp_rx;
1975 	}
1976 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1977 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
1978 			"%s Rx datapath does not support multi-process",
1979 			sas->dp_rx_name);
1980 		rc = EINVAL;
1981 		goto fail_dp_rx_multi_process;
1982 	}
1983 
1984 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
1985 	if (dp_tx == NULL) {
1986 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
1987 			"cannot find %s Tx datapath", sas->dp_tx_name);
1988 		rc = ENOENT;
1989 		goto fail_dp_tx;
1990 	}
1991 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1992 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
1993 			"%s Tx datapath does not support multi-process",
1994 			sas->dp_tx_name);
1995 		rc = EINVAL;
1996 		goto fail_dp_tx_multi_process;
1997 	}
1998 
1999 	sap->dp_rx = dp_rx;
2000 	sap->dp_tx = dp_tx;
2001 
2002 	dev->process_private = sap;
2003 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2004 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2005 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2006 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2007 
2008 	return 0;
2009 
2010 fail_dp_tx_multi_process:
2011 fail_dp_tx:
2012 fail_dp_rx_multi_process:
2013 fail_dp_rx:
2014 	free(sap);
2015 
2016 fail_alloc_priv:
2017 	return rc;
2018 }
2019 
2020 static void
2021 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
2022 {
2023 	free(dev->process_private);
2024 	dev->process_private = NULL;
2025 	dev->dev_ops = NULL;
2026 	dev->tx_pkt_prepare = NULL;
2027 	dev->tx_pkt_burst = NULL;
2028 	dev->rx_pkt_burst = NULL;
2029 }
2030 
2031 static void
2032 sfc_register_dp(void)
2033 {
2034 	/* Register once */
2035 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2036 		/* Prefer EF10 datapath */
2037 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2038 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2039 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2040 
2041 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2042 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2043 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2044 	}
2045 }
2046 
2047 static int
2048 sfc_eth_dev_init(struct rte_eth_dev *dev)
2049 {
2050 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2051 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2052 	uint32_t logtype_main;
2053 	struct sfc_adapter *sa;
2054 	int rc;
2055 	const efx_nic_cfg_t *encp;
2056 	const struct rte_ether_addr *from;
2057 
2058 	sfc_register_dp();
2059 
2060 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2061 					    SFC_LOGTYPE_MAIN_STR,
2062 					    RTE_LOG_NOTICE);
2063 
2064 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2065 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2066 
2067 	/* Required for logging */
2068 	sas->pci_addr = pci_dev->addr;
2069 	sas->port_id = dev->data->port_id;
2070 
2071 	/*
2072 	 * Allocate process private data from heap, since it should not
2073 	 * be located in shared memory allocated using rte_malloc() API.
2074 	 */
2075 	sa = calloc(1, sizeof(*sa));
2076 	if (sa == NULL) {
2077 		rc = ENOMEM;
2078 		goto fail_alloc_sa;
2079 	}
2080 
2081 	dev->process_private = sa;
2082 
2083 	/* Required for logging */
2084 	sa->priv.shared = sas;
2085 	sa->priv.logtype_main = logtype_main;
2086 
2087 	sa->eth_dev = dev;
2088 
2089 	/* Copy PCI device info to the dev->data */
2090 	rte_eth_copy_pci_info(dev, pci_dev);
2091 
2092 	rc = sfc_kvargs_parse(sa);
2093 	if (rc != 0)
2094 		goto fail_kvargs_parse;
2095 
2096 	sfc_log_init(sa, "entry");
2097 
2098 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2099 	if (dev->data->mac_addrs == NULL) {
2100 		rc = ENOMEM;
2101 		goto fail_mac_addrs;
2102 	}
2103 
2104 	sfc_adapter_lock_init(sa);
2105 	sfc_adapter_lock(sa);
2106 
2107 	sfc_log_init(sa, "probing");
2108 	rc = sfc_probe(sa);
2109 	if (rc != 0)
2110 		goto fail_probe;
2111 
2112 	sfc_log_init(sa, "set device ops");
2113 	rc = sfc_eth_dev_set_ops(dev);
2114 	if (rc != 0)
2115 		goto fail_set_ops;
2116 
2117 	sfc_log_init(sa, "attaching");
2118 	rc = sfc_attach(sa);
2119 	if (rc != 0)
2120 		goto fail_attach;
2121 
2122 	encp = efx_nic_cfg_get(sa->nic);
2123 
2124 	/*
2125 	 * The arguments are really reverse order in comparison to
2126 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2127 	 */
2128 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2129 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2130 
2131 	sfc_adapter_unlock(sa);
2132 
2133 	sfc_log_init(sa, "done");
2134 	return 0;
2135 
2136 fail_attach:
2137 	sfc_eth_dev_clear_ops(dev);
2138 
2139 fail_set_ops:
2140 	sfc_unprobe(sa);
2141 
2142 fail_probe:
2143 	sfc_adapter_unlock(sa);
2144 	sfc_adapter_lock_fini(sa);
2145 	rte_free(dev->data->mac_addrs);
2146 	dev->data->mac_addrs = NULL;
2147 
2148 fail_mac_addrs:
2149 	sfc_kvargs_cleanup(sa);
2150 
2151 fail_kvargs_parse:
2152 	sfc_log_init(sa, "failed %d", rc);
2153 	dev->process_private = NULL;
2154 	free(sa);
2155 
2156 fail_alloc_sa:
2157 	SFC_ASSERT(rc > 0);
2158 	return -rc;
2159 }
2160 
2161 static int
2162 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2163 {
2164 	struct sfc_adapter *sa;
2165 
2166 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2167 		sfc_eth_dev_secondary_clear_ops(dev);
2168 		return 0;
2169 	}
2170 
2171 	sa = sfc_adapter_by_eth_dev(dev);
2172 	sfc_log_init(sa, "entry");
2173 
2174 	sfc_adapter_lock(sa);
2175 
2176 	sfc_eth_dev_clear_ops(dev);
2177 
2178 	sfc_detach(sa);
2179 	sfc_unprobe(sa);
2180 
2181 	sfc_kvargs_cleanup(sa);
2182 
2183 	sfc_adapter_unlock(sa);
2184 	sfc_adapter_lock_fini(sa);
2185 
2186 	sfc_log_init(sa, "done");
2187 
2188 	/* Required for logging, so cleanup last */
2189 	sa->eth_dev = NULL;
2190 
2191 	dev->process_private = NULL;
2192 	free(sa);
2193 
2194 	return 0;
2195 }
2196 
2197 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2198 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2199 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2200 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2201 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2202 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2203 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2204 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2205 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2206 	{ .vendor_id = 0 /* sentinel */ }
2207 };
2208 
2209 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2210 	struct rte_pci_device *pci_dev)
2211 {
2212 	return rte_eth_dev_pci_generic_probe(pci_dev,
2213 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2214 }
2215 
2216 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2217 {
2218 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2219 }
2220 
2221 static struct rte_pci_driver sfc_efx_pmd = {
2222 	.id_table = pci_id_sfc_efx_map,
2223 	.drv_flags =
2224 		RTE_PCI_DRV_INTR_LSC |
2225 		RTE_PCI_DRV_NEED_MAPPING,
2226 	.probe = sfc_eth_dev_pci_probe,
2227 	.remove = sfc_eth_dev_pci_remove,
2228 };
2229 
2230 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2231 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2232 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2233 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2234 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2235 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2236 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2237 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2238 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2239 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2240 
2241 RTE_INIT(sfc_driver_register_logtype)
2242 {
2243 	int ret;
2244 
2245 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2246 						   RTE_LOG_NOTICE);
2247 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2248 }
2249