1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) 2016-2017 Solarflare Communications Inc. 5 * All rights reserved. 6 * 7 * This software was jointly developed between OKTET Labs (under contract 8 * for Solarflare) and Solarflare Communications, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright notice, 14 * this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <rte_dev.h> 33 #include <rte_ethdev.h> 34 #include <rte_ethdev_pci.h> 35 #include <rte_pci.h> 36 #include <rte_errno.h> 37 38 #include "efx.h" 39 40 #include "sfc.h" 41 #include "sfc_debug.h" 42 #include "sfc_log.h" 43 #include "sfc_kvargs.h" 44 #include "sfc_ev.h" 45 #include "sfc_rx.h" 46 #include "sfc_tx.h" 47 #include "sfc_flow.h" 48 #include "sfc_dp.h" 49 #include "sfc_dp_rx.h" 50 51 static struct sfc_dp_list sfc_dp_head = 52 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 53 54 static int 55 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 56 { 57 struct sfc_adapter *sa = dev->data->dev_private; 58 efx_nic_fw_info_t enfi; 59 int ret; 60 int rc; 61 62 /* 63 * Return value of the callback is likely supposed to be 64 * equal to or greater than 0, nevertheless, if an error 65 * occurs, it will be desirable to pass it to the caller 66 */ 67 if ((fw_version == NULL) || (fw_size == 0)) 68 return -EINVAL; 69 70 rc = efx_nic_get_fw_version(sa->nic, &enfi); 71 if (rc != 0) 72 return -rc; 73 74 ret = snprintf(fw_version, fw_size, 75 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 76 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 77 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 78 if (ret < 0) 79 return ret; 80 81 if (enfi.enfi_dpcpu_fw_ids_valid) { 82 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 83 int ret_extra; 84 85 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 86 fw_size - dpcpu_fw_ids_offset, 87 " rx%" PRIx16 " tx%" PRIx16, 88 enfi.enfi_rx_dpcpu_fw_id, 89 enfi.enfi_tx_dpcpu_fw_id); 90 if (ret_extra < 0) 91 return ret_extra; 92 93 ret += ret_extra; 94 } 95 96 if (fw_size < (size_t)(++ret)) 97 return ret; 98 else 99 return 0; 100 } 101 102 static void 103 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 104 { 105 struct sfc_adapter *sa = dev->data->dev_private; 106 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 107 108 sfc_log_init(sa, "entry"); 109 110 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev); 111 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 112 113 /* Autonegotiation may be disabled */ 114 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 115 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 116 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 117 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 118 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 119 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 120 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 121 122 dev_info->max_rx_queues = sa->rxq_max; 123 dev_info->max_tx_queues = sa->txq_max; 124 125 /* By default packets are dropped if no descriptors are available */ 126 dev_info->default_rxconf.rx_drop_en = 1; 127 128 dev_info->rx_offload_capa = 129 DEV_RX_OFFLOAD_IPV4_CKSUM | 130 DEV_RX_OFFLOAD_UDP_CKSUM | 131 DEV_RX_OFFLOAD_TCP_CKSUM; 132 133 dev_info->tx_offload_capa = 134 DEV_TX_OFFLOAD_IPV4_CKSUM | 135 DEV_TX_OFFLOAD_UDP_CKSUM | 136 DEV_TX_OFFLOAD_TCP_CKSUM; 137 138 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 139 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 140 !encp->enc_hw_tx_insert_vlan_enabled) 141 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 142 else 143 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT; 144 145 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 146 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 147 148 #if EFSYS_OPT_RX_SCALE 149 if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) { 150 dev_info->reta_size = EFX_RSS_TBL_SIZE; 151 dev_info->hash_key_size = SFC_RSS_KEY_SIZE; 152 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 153 } 154 #endif 155 156 if (sa->tso) 157 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO; 158 159 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 160 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 161 /* The RXQ hardware requires that the descriptor count is a power 162 * of 2, but rx_desc_lim cannot properly describe that constraint. 163 */ 164 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 165 166 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 167 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 168 /* 169 * The TXQ hardware requires that the descriptor count is a power 170 * of 2, but tx_desc_lim cannot properly describe that constraint 171 */ 172 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 173 } 174 175 static const uint32_t * 176 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 177 { 178 struct sfc_adapter *sa = dev->data->dev_private; 179 180 return sa->dp_rx->supported_ptypes_get(); 181 } 182 183 static int 184 sfc_dev_configure(struct rte_eth_dev *dev) 185 { 186 struct rte_eth_dev_data *dev_data = dev->data; 187 struct sfc_adapter *sa = dev_data->dev_private; 188 int rc; 189 190 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 191 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 192 193 sfc_adapter_lock(sa); 194 switch (sa->state) { 195 case SFC_ADAPTER_CONFIGURED: 196 /* FALLTHROUGH */ 197 case SFC_ADAPTER_INITIALIZED: 198 rc = sfc_configure(sa); 199 break; 200 default: 201 sfc_err(sa, "unexpected adapter state %u to configure", 202 sa->state); 203 rc = EINVAL; 204 break; 205 } 206 sfc_adapter_unlock(sa); 207 208 sfc_log_init(sa, "done %d", rc); 209 SFC_ASSERT(rc >= 0); 210 return -rc; 211 } 212 213 static int 214 sfc_dev_start(struct rte_eth_dev *dev) 215 { 216 struct sfc_adapter *sa = dev->data->dev_private; 217 int rc; 218 219 sfc_log_init(sa, "entry"); 220 221 sfc_adapter_lock(sa); 222 rc = sfc_start(sa); 223 sfc_adapter_unlock(sa); 224 225 sfc_log_init(sa, "done %d", rc); 226 SFC_ASSERT(rc >= 0); 227 return -rc; 228 } 229 230 static int 231 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 232 { 233 struct sfc_adapter *sa = dev->data->dev_private; 234 struct rte_eth_link *dev_link = &dev->data->dev_link; 235 struct rte_eth_link old_link; 236 struct rte_eth_link current_link; 237 238 sfc_log_init(sa, "entry"); 239 240 retry: 241 EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t)); 242 *(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link); 243 244 if (sa->state != SFC_ADAPTER_STARTED) { 245 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 246 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 247 *(uint64_t *)&old_link, 248 *(uint64_t *)¤t_link)) 249 goto retry; 250 } else if (wait_to_complete) { 251 efx_link_mode_t link_mode; 252 253 if (efx_port_poll(sa->nic, &link_mode) != 0) 254 link_mode = EFX_LINK_UNKNOWN; 255 sfc_port_link_mode_to_info(link_mode, ¤t_link); 256 257 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 258 *(uint64_t *)&old_link, 259 *(uint64_t *)¤t_link)) 260 goto retry; 261 } else { 262 sfc_ev_mgmt_qpoll(sa); 263 *(int64_t *)¤t_link = 264 rte_atomic64_read((rte_atomic64_t *)dev_link); 265 } 266 267 if (old_link.link_status != current_link.link_status) 268 sfc_info(sa, "Link status is %s", 269 current_link.link_status ? "UP" : "DOWN"); 270 271 return old_link.link_status == current_link.link_status ? 0 : -1; 272 } 273 274 static void 275 sfc_dev_stop(struct rte_eth_dev *dev) 276 { 277 struct sfc_adapter *sa = dev->data->dev_private; 278 279 sfc_log_init(sa, "entry"); 280 281 sfc_adapter_lock(sa); 282 sfc_stop(sa); 283 sfc_adapter_unlock(sa); 284 285 sfc_log_init(sa, "done"); 286 } 287 288 static int 289 sfc_dev_set_link_up(struct rte_eth_dev *dev) 290 { 291 struct sfc_adapter *sa = dev->data->dev_private; 292 int rc; 293 294 sfc_log_init(sa, "entry"); 295 296 sfc_adapter_lock(sa); 297 rc = sfc_start(sa); 298 sfc_adapter_unlock(sa); 299 300 SFC_ASSERT(rc >= 0); 301 return -rc; 302 } 303 304 static int 305 sfc_dev_set_link_down(struct rte_eth_dev *dev) 306 { 307 struct sfc_adapter *sa = dev->data->dev_private; 308 309 sfc_log_init(sa, "entry"); 310 311 sfc_adapter_lock(sa); 312 sfc_stop(sa); 313 sfc_adapter_unlock(sa); 314 315 return 0; 316 } 317 318 static void 319 sfc_dev_close(struct rte_eth_dev *dev) 320 { 321 struct sfc_adapter *sa = dev->data->dev_private; 322 323 sfc_log_init(sa, "entry"); 324 325 sfc_adapter_lock(sa); 326 switch (sa->state) { 327 case SFC_ADAPTER_STARTED: 328 sfc_stop(sa); 329 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 330 /* FALLTHROUGH */ 331 case SFC_ADAPTER_CONFIGURED: 332 sfc_close(sa); 333 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 334 /* FALLTHROUGH */ 335 case SFC_ADAPTER_INITIALIZED: 336 break; 337 default: 338 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 339 break; 340 } 341 sfc_adapter_unlock(sa); 342 343 sfc_log_init(sa, "done"); 344 } 345 346 static void 347 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 348 boolean_t enabled) 349 { 350 struct sfc_port *port; 351 boolean_t *toggle; 352 struct sfc_adapter *sa = dev->data->dev_private; 353 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 354 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 355 356 sfc_adapter_lock(sa); 357 358 port = &sa->port; 359 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 360 361 if (*toggle != enabled) { 362 *toggle = enabled; 363 364 if (port->isolated) { 365 sfc_warn(sa, "isolated mode is active on the port"); 366 sfc_warn(sa, "the change is to be applied on the next " 367 "start provided that isolated mode is " 368 "disabled prior the next start"); 369 } else if ((sa->state == SFC_ADAPTER_STARTED) && 370 (sfc_set_rx_mode(sa) != 0)) { 371 *toggle = !(enabled); 372 sfc_warn(sa, "Failed to %s %s mode", 373 ((enabled) ? "enable" : "disable"), desc); 374 } 375 } 376 377 sfc_adapter_unlock(sa); 378 } 379 380 static void 381 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 382 { 383 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 384 } 385 386 static void 387 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 388 { 389 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 390 } 391 392 static void 393 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 394 { 395 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 396 } 397 398 static void 399 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 400 { 401 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 402 } 403 404 static int 405 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 406 uint16_t nb_rx_desc, unsigned int socket_id, 407 const struct rte_eth_rxconf *rx_conf, 408 struct rte_mempool *mb_pool) 409 { 410 struct sfc_adapter *sa = dev->data->dev_private; 411 int rc; 412 413 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 414 rx_queue_id, nb_rx_desc, socket_id); 415 416 sfc_adapter_lock(sa); 417 418 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 419 rx_conf, mb_pool); 420 if (rc != 0) 421 goto fail_rx_qinit; 422 423 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 424 425 sfc_adapter_unlock(sa); 426 427 return 0; 428 429 fail_rx_qinit: 430 sfc_adapter_unlock(sa); 431 SFC_ASSERT(rc > 0); 432 return -rc; 433 } 434 435 static void 436 sfc_rx_queue_release(void *queue) 437 { 438 struct sfc_dp_rxq *dp_rxq = queue; 439 struct sfc_rxq *rxq; 440 struct sfc_adapter *sa; 441 unsigned int sw_index; 442 443 if (dp_rxq == NULL) 444 return; 445 446 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 447 sa = rxq->evq->sa; 448 sfc_adapter_lock(sa); 449 450 sw_index = sfc_rxq_sw_index(rxq); 451 452 sfc_log_init(sa, "RxQ=%u", sw_index); 453 454 sa->eth_dev->data->rx_queues[sw_index] = NULL; 455 456 sfc_rx_qfini(sa, sw_index); 457 458 sfc_adapter_unlock(sa); 459 } 460 461 static int 462 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 463 uint16_t nb_tx_desc, unsigned int socket_id, 464 const struct rte_eth_txconf *tx_conf) 465 { 466 struct sfc_adapter *sa = dev->data->dev_private; 467 int rc; 468 469 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 470 tx_queue_id, nb_tx_desc, socket_id); 471 472 sfc_adapter_lock(sa); 473 474 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 475 if (rc != 0) 476 goto fail_tx_qinit; 477 478 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 479 480 sfc_adapter_unlock(sa); 481 return 0; 482 483 fail_tx_qinit: 484 sfc_adapter_unlock(sa); 485 SFC_ASSERT(rc > 0); 486 return -rc; 487 } 488 489 static void 490 sfc_tx_queue_release(void *queue) 491 { 492 struct sfc_dp_txq *dp_txq = queue; 493 struct sfc_txq *txq; 494 unsigned int sw_index; 495 struct sfc_adapter *sa; 496 497 if (dp_txq == NULL) 498 return; 499 500 txq = sfc_txq_by_dp_txq(dp_txq); 501 sw_index = sfc_txq_sw_index(txq); 502 503 SFC_ASSERT(txq->evq != NULL); 504 sa = txq->evq->sa; 505 506 sfc_log_init(sa, "TxQ = %u", sw_index); 507 508 sfc_adapter_lock(sa); 509 510 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 511 sa->eth_dev->data->tx_queues[sw_index] = NULL; 512 513 sfc_tx_qfini(sa, sw_index); 514 515 sfc_adapter_unlock(sa); 516 } 517 518 static void 519 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 520 { 521 struct sfc_adapter *sa = dev->data->dev_private; 522 struct sfc_port *port = &sa->port; 523 uint64_t *mac_stats; 524 525 rte_spinlock_lock(&port->mac_stats_lock); 526 527 if (sfc_port_update_mac_stats(sa) != 0) 528 goto unlock; 529 530 mac_stats = port->mac_stats_buf; 531 532 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 533 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 534 stats->ipackets = 535 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 536 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 537 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 538 stats->opackets = 539 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 540 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 541 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 542 stats->ibytes = 543 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 544 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 545 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 546 stats->obytes = 547 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 548 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 549 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 550 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 551 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 552 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 553 } else { 554 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 555 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 556 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 557 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 558 /* 559 * Take into account stats which are whenever supported 560 * on EF10. If some stat is not supported by current 561 * firmware variant or HW revision, it is guaranteed 562 * to be zero in mac_stats. 563 */ 564 stats->imissed = 565 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 566 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 567 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 568 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 569 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 570 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 571 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 572 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 573 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 574 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 575 stats->ierrors = 576 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 577 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 578 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 579 /* no oerrors counters supported on EF10 */ 580 } 581 582 unlock: 583 rte_spinlock_unlock(&port->mac_stats_lock); 584 } 585 586 static void 587 sfc_stats_reset(struct rte_eth_dev *dev) 588 { 589 struct sfc_adapter *sa = dev->data->dev_private; 590 struct sfc_port *port = &sa->port; 591 int rc; 592 593 if (sa->state != SFC_ADAPTER_STARTED) { 594 /* 595 * The operation cannot be done if port is not started; it 596 * will be scheduled to be done during the next port start 597 */ 598 port->mac_stats_reset_pending = B_TRUE; 599 return; 600 } 601 602 rc = sfc_port_reset_mac_stats(sa); 603 if (rc != 0) 604 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 605 } 606 607 static int 608 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 609 unsigned int xstats_count) 610 { 611 struct sfc_adapter *sa = dev->data->dev_private; 612 struct sfc_port *port = &sa->port; 613 uint64_t *mac_stats; 614 int rc; 615 unsigned int i; 616 int nstats = 0; 617 618 rte_spinlock_lock(&port->mac_stats_lock); 619 620 rc = sfc_port_update_mac_stats(sa); 621 if (rc != 0) { 622 SFC_ASSERT(rc > 0); 623 nstats = -rc; 624 goto unlock; 625 } 626 627 mac_stats = port->mac_stats_buf; 628 629 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 630 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 631 if (xstats != NULL && nstats < (int)xstats_count) { 632 xstats[nstats].id = nstats; 633 xstats[nstats].value = mac_stats[i]; 634 } 635 nstats++; 636 } 637 } 638 639 unlock: 640 rte_spinlock_unlock(&port->mac_stats_lock); 641 642 return nstats; 643 } 644 645 static int 646 sfc_xstats_get_names(struct rte_eth_dev *dev, 647 struct rte_eth_xstat_name *xstats_names, 648 unsigned int xstats_count) 649 { 650 struct sfc_adapter *sa = dev->data->dev_private; 651 struct sfc_port *port = &sa->port; 652 unsigned int i; 653 unsigned int nstats = 0; 654 655 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 656 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 657 if (xstats_names != NULL && nstats < xstats_count) 658 strncpy(xstats_names[nstats].name, 659 efx_mac_stat_name(sa->nic, i), 660 sizeof(xstats_names[0].name)); 661 nstats++; 662 } 663 } 664 665 return nstats; 666 } 667 668 static int 669 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 670 uint64_t *values, unsigned int n) 671 { 672 struct sfc_adapter *sa = dev->data->dev_private; 673 struct sfc_port *port = &sa->port; 674 uint64_t *mac_stats; 675 unsigned int nb_supported = 0; 676 unsigned int nb_written = 0; 677 unsigned int i; 678 int ret; 679 int rc; 680 681 if (unlikely(values == NULL) || 682 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 683 return port->mac_stats_nb_supported; 684 685 rte_spinlock_lock(&port->mac_stats_lock); 686 687 rc = sfc_port_update_mac_stats(sa); 688 if (rc != 0) { 689 SFC_ASSERT(rc > 0); 690 ret = -rc; 691 goto unlock; 692 } 693 694 mac_stats = port->mac_stats_buf; 695 696 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 697 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 698 continue; 699 700 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 701 values[nb_written++] = mac_stats[i]; 702 703 ++nb_supported; 704 } 705 706 ret = nb_written; 707 708 unlock: 709 rte_spinlock_unlock(&port->mac_stats_lock); 710 711 return ret; 712 } 713 714 static int 715 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 716 struct rte_eth_xstat_name *xstats_names, 717 const uint64_t *ids, unsigned int size) 718 { 719 struct sfc_adapter *sa = dev->data->dev_private; 720 struct sfc_port *port = &sa->port; 721 unsigned int nb_supported = 0; 722 unsigned int nb_written = 0; 723 unsigned int i; 724 725 if (unlikely(xstats_names == NULL) || 726 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 727 return port->mac_stats_nb_supported; 728 729 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 730 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 731 continue; 732 733 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 734 char *name = xstats_names[nb_written++].name; 735 736 strncpy(name, efx_mac_stat_name(sa->nic, i), 737 sizeof(xstats_names[0].name)); 738 name[sizeof(xstats_names[0].name) - 1] = '\0'; 739 } 740 741 ++nb_supported; 742 } 743 744 return nb_written; 745 } 746 747 static int 748 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 749 { 750 struct sfc_adapter *sa = dev->data->dev_private; 751 unsigned int wanted_fc, link_fc; 752 753 memset(fc_conf, 0, sizeof(*fc_conf)); 754 755 sfc_adapter_lock(sa); 756 757 if (sa->state == SFC_ADAPTER_STARTED) 758 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 759 else 760 link_fc = sa->port.flow_ctrl; 761 762 switch (link_fc) { 763 case 0: 764 fc_conf->mode = RTE_FC_NONE; 765 break; 766 case EFX_FCNTL_RESPOND: 767 fc_conf->mode = RTE_FC_RX_PAUSE; 768 break; 769 case EFX_FCNTL_GENERATE: 770 fc_conf->mode = RTE_FC_TX_PAUSE; 771 break; 772 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 773 fc_conf->mode = RTE_FC_FULL; 774 break; 775 default: 776 sfc_err(sa, "%s: unexpected flow control value %#x", 777 __func__, link_fc); 778 } 779 780 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 781 782 sfc_adapter_unlock(sa); 783 784 return 0; 785 } 786 787 static int 788 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 789 { 790 struct sfc_adapter *sa = dev->data->dev_private; 791 struct sfc_port *port = &sa->port; 792 unsigned int fcntl; 793 int rc; 794 795 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 796 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 797 fc_conf->mac_ctrl_frame_fwd != 0) { 798 sfc_err(sa, "unsupported flow control settings specified"); 799 rc = EINVAL; 800 goto fail_inval; 801 } 802 803 switch (fc_conf->mode) { 804 case RTE_FC_NONE: 805 fcntl = 0; 806 break; 807 case RTE_FC_RX_PAUSE: 808 fcntl = EFX_FCNTL_RESPOND; 809 break; 810 case RTE_FC_TX_PAUSE: 811 fcntl = EFX_FCNTL_GENERATE; 812 break; 813 case RTE_FC_FULL: 814 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 815 break; 816 default: 817 rc = EINVAL; 818 goto fail_inval; 819 } 820 821 sfc_adapter_lock(sa); 822 823 if (sa->state == SFC_ADAPTER_STARTED) { 824 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 825 if (rc != 0) 826 goto fail_mac_fcntl_set; 827 } 828 829 port->flow_ctrl = fcntl; 830 port->flow_ctrl_autoneg = fc_conf->autoneg; 831 832 sfc_adapter_unlock(sa); 833 834 return 0; 835 836 fail_mac_fcntl_set: 837 sfc_adapter_unlock(sa); 838 fail_inval: 839 SFC_ASSERT(rc > 0); 840 return -rc; 841 } 842 843 static int 844 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 845 { 846 struct sfc_adapter *sa = dev->data->dev_private; 847 size_t pdu = EFX_MAC_PDU(mtu); 848 size_t old_pdu; 849 int rc; 850 851 sfc_log_init(sa, "mtu=%u", mtu); 852 853 rc = EINVAL; 854 if (pdu < EFX_MAC_PDU_MIN) { 855 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 856 (unsigned int)mtu, (unsigned int)pdu, 857 EFX_MAC_PDU_MIN); 858 goto fail_inval; 859 } 860 if (pdu > EFX_MAC_PDU_MAX) { 861 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 862 (unsigned int)mtu, (unsigned int)pdu, 863 EFX_MAC_PDU_MAX); 864 goto fail_inval; 865 } 866 867 sfc_adapter_lock(sa); 868 869 if (pdu != sa->port.pdu) { 870 if (sa->state == SFC_ADAPTER_STARTED) { 871 sfc_stop(sa); 872 873 old_pdu = sa->port.pdu; 874 sa->port.pdu = pdu; 875 rc = sfc_start(sa); 876 if (rc != 0) 877 goto fail_start; 878 } else { 879 sa->port.pdu = pdu; 880 } 881 } 882 883 /* 884 * The driver does not use it, but other PMDs update jumbo_frame 885 * flag and max_rx_pkt_len when MTU is set. 886 */ 887 dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN); 888 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 889 890 sfc_adapter_unlock(sa); 891 892 sfc_log_init(sa, "done"); 893 return 0; 894 895 fail_start: 896 sa->port.pdu = old_pdu; 897 if (sfc_start(sa) != 0) 898 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 899 "PDU max size - port is stopped", 900 (unsigned int)pdu, (unsigned int)old_pdu); 901 sfc_adapter_unlock(sa); 902 903 fail_inval: 904 sfc_log_init(sa, "failed %d", rc); 905 SFC_ASSERT(rc > 0); 906 return -rc; 907 } 908 static void 909 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 910 { 911 struct sfc_adapter *sa = dev->data->dev_private; 912 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 913 struct sfc_port *port = &sa->port; 914 int rc; 915 916 sfc_adapter_lock(sa); 917 918 if (port->isolated) { 919 sfc_err(sa, "isolated mode is active on the port"); 920 sfc_err(sa, "will not set MAC address"); 921 goto unlock; 922 } 923 924 if (sa->state != SFC_ADAPTER_STARTED) { 925 sfc_info(sa, "the port is not started"); 926 sfc_info(sa, "the new MAC address will be set on port start"); 927 928 goto unlock; 929 } 930 931 if (encp->enc_allow_set_mac_with_installed_filters) { 932 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 933 if (rc != 0) { 934 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 935 goto unlock; 936 } 937 938 /* 939 * Changing the MAC address by means of MCDI request 940 * has no effect on received traffic, therefore 941 * we also need to update unicast filters 942 */ 943 rc = sfc_set_rx_mode(sa); 944 if (rc != 0) 945 sfc_err(sa, "cannot set filter (rc = %u)", rc); 946 } else { 947 sfc_warn(sa, "cannot set MAC address with filters installed"); 948 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 949 sfc_warn(sa, "(some traffic may be dropped)"); 950 951 /* 952 * Since setting MAC address with filters installed is not 953 * allowed on the adapter, one needs to simply restart adapter 954 * so that the new MAC address will be taken from an outer 955 * storage and set flawlessly by means of sfc_start() call 956 */ 957 sfc_stop(sa); 958 rc = sfc_start(sa); 959 if (rc != 0) 960 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 961 } 962 963 unlock: 964 sfc_adapter_unlock(sa); 965 } 966 967 968 static int 969 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 970 uint32_t nb_mc_addr) 971 { 972 struct sfc_adapter *sa = dev->data->dev_private; 973 struct sfc_port *port = &sa->port; 974 uint8_t *mc_addrs = port->mcast_addrs; 975 int rc; 976 unsigned int i; 977 978 if (port->isolated) { 979 sfc_err(sa, "isolated mode is active on the port"); 980 sfc_err(sa, "will not set multicast address list"); 981 return -ENOTSUP; 982 } 983 984 if (mc_addrs == NULL) 985 return -ENOBUFS; 986 987 if (nb_mc_addr > port->max_mcast_addrs) { 988 sfc_err(sa, "too many multicast addresses: %u > %u", 989 nb_mc_addr, port->max_mcast_addrs); 990 return -EINVAL; 991 } 992 993 for (i = 0; i < nb_mc_addr; ++i) { 994 (void)rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 995 EFX_MAC_ADDR_LEN); 996 mc_addrs += EFX_MAC_ADDR_LEN; 997 } 998 999 port->nb_mcast_addrs = nb_mc_addr; 1000 1001 if (sa->state != SFC_ADAPTER_STARTED) 1002 return 0; 1003 1004 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1005 port->nb_mcast_addrs); 1006 if (rc != 0) 1007 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1008 1009 SFC_ASSERT(rc > 0); 1010 return -rc; 1011 } 1012 1013 /* 1014 * The function is used by the secondary process as well. It must not 1015 * use any process-local pointers from the adapter data. 1016 */ 1017 static void 1018 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1019 struct rte_eth_rxq_info *qinfo) 1020 { 1021 struct sfc_adapter *sa = dev->data->dev_private; 1022 struct sfc_rxq_info *rxq_info; 1023 struct sfc_rxq *rxq; 1024 1025 sfc_adapter_lock(sa); 1026 1027 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1028 1029 rxq_info = &sa->rxq_info[rx_queue_id]; 1030 rxq = rxq_info->rxq; 1031 SFC_ASSERT(rxq != NULL); 1032 1033 qinfo->mp = rxq->refill_mb_pool; 1034 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1035 qinfo->conf.rx_drop_en = 1; 1036 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1037 qinfo->scattered_rx = (rxq_info->type == EFX_RXQ_TYPE_SCATTER); 1038 qinfo->nb_desc = rxq_info->entries; 1039 1040 sfc_adapter_unlock(sa); 1041 } 1042 1043 /* 1044 * The function is used by the secondary process as well. It must not 1045 * use any process-local pointers from the adapter data. 1046 */ 1047 static void 1048 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1049 struct rte_eth_txq_info *qinfo) 1050 { 1051 struct sfc_adapter *sa = dev->data->dev_private; 1052 struct sfc_txq_info *txq_info; 1053 1054 sfc_adapter_lock(sa); 1055 1056 SFC_ASSERT(tx_queue_id < sa->txq_count); 1057 1058 txq_info = &sa->txq_info[tx_queue_id]; 1059 SFC_ASSERT(txq_info->txq != NULL); 1060 1061 memset(qinfo, 0, sizeof(*qinfo)); 1062 1063 qinfo->conf.txq_flags = txq_info->txq->flags; 1064 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1065 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1066 qinfo->nb_desc = txq_info->entries; 1067 1068 sfc_adapter_unlock(sa); 1069 } 1070 1071 static uint32_t 1072 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1073 { 1074 struct sfc_adapter *sa = dev->data->dev_private; 1075 1076 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1077 1078 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1079 } 1080 1081 static int 1082 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1083 { 1084 struct sfc_dp_rxq *dp_rxq = queue; 1085 1086 return sfc_rx_qdesc_done(dp_rxq, offset); 1087 } 1088 1089 static int 1090 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1091 { 1092 struct sfc_dp_rxq *dp_rxq = queue; 1093 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1094 1095 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1096 } 1097 1098 static int 1099 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1100 { 1101 struct sfc_adapter *sa = dev->data->dev_private; 1102 int rc; 1103 1104 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1105 1106 sfc_adapter_lock(sa); 1107 1108 rc = EINVAL; 1109 if (sa->state != SFC_ADAPTER_STARTED) 1110 goto fail_not_started; 1111 1112 rc = sfc_rx_qstart(sa, rx_queue_id); 1113 if (rc != 0) 1114 goto fail_rx_qstart; 1115 1116 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1117 1118 sfc_adapter_unlock(sa); 1119 1120 return 0; 1121 1122 fail_rx_qstart: 1123 fail_not_started: 1124 sfc_adapter_unlock(sa); 1125 SFC_ASSERT(rc > 0); 1126 return -rc; 1127 } 1128 1129 static int 1130 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1131 { 1132 struct sfc_adapter *sa = dev->data->dev_private; 1133 1134 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1135 1136 sfc_adapter_lock(sa); 1137 sfc_rx_qstop(sa, rx_queue_id); 1138 1139 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1140 1141 sfc_adapter_unlock(sa); 1142 1143 return 0; 1144 } 1145 1146 static int 1147 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1148 { 1149 struct sfc_adapter *sa = dev->data->dev_private; 1150 int rc; 1151 1152 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1153 1154 sfc_adapter_lock(sa); 1155 1156 rc = EINVAL; 1157 if (sa->state != SFC_ADAPTER_STARTED) 1158 goto fail_not_started; 1159 1160 rc = sfc_tx_qstart(sa, tx_queue_id); 1161 if (rc != 0) 1162 goto fail_tx_qstart; 1163 1164 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1165 1166 sfc_adapter_unlock(sa); 1167 return 0; 1168 1169 fail_tx_qstart: 1170 1171 fail_not_started: 1172 sfc_adapter_unlock(sa); 1173 SFC_ASSERT(rc > 0); 1174 return -rc; 1175 } 1176 1177 static int 1178 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1179 { 1180 struct sfc_adapter *sa = dev->data->dev_private; 1181 1182 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1183 1184 sfc_adapter_lock(sa); 1185 1186 sfc_tx_qstop(sa, tx_queue_id); 1187 1188 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1189 1190 sfc_adapter_unlock(sa); 1191 return 0; 1192 } 1193 1194 #if EFSYS_OPT_RX_SCALE 1195 static int 1196 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1197 struct rte_eth_rss_conf *rss_conf) 1198 { 1199 struct sfc_adapter *sa = dev->data->dev_private; 1200 struct sfc_port *port = &sa->port; 1201 1202 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1203 return -ENOTSUP; 1204 1205 if (sa->rss_channels == 0) 1206 return -EINVAL; 1207 1208 sfc_adapter_lock(sa); 1209 1210 /* 1211 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1212 * hence, conversion is done here to derive a correct set of ETH_RSS 1213 * flags which corresponds to the active EFX configuration stored 1214 * locally in 'sfc_adapter' and kept up-to-date 1215 */ 1216 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types); 1217 rss_conf->rss_key_len = SFC_RSS_KEY_SIZE; 1218 if (rss_conf->rss_key != NULL) 1219 rte_memcpy(rss_conf->rss_key, sa->rss_key, SFC_RSS_KEY_SIZE); 1220 1221 sfc_adapter_unlock(sa); 1222 1223 return 0; 1224 } 1225 1226 static int 1227 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1228 struct rte_eth_rss_conf *rss_conf) 1229 { 1230 struct sfc_adapter *sa = dev->data->dev_private; 1231 struct sfc_port *port = &sa->port; 1232 unsigned int efx_hash_types; 1233 int rc = 0; 1234 1235 if (port->isolated) 1236 return -ENOTSUP; 1237 1238 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1239 sfc_err(sa, "RSS is not available"); 1240 return -ENOTSUP; 1241 } 1242 1243 if (sa->rss_channels == 0) { 1244 sfc_err(sa, "RSS is not configured"); 1245 return -EINVAL; 1246 } 1247 1248 if ((rss_conf->rss_key != NULL) && 1249 (rss_conf->rss_key_len != sizeof(sa->rss_key))) { 1250 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1251 sizeof(sa->rss_key)); 1252 return -EINVAL; 1253 } 1254 1255 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1256 sfc_err(sa, "unsupported hash functions requested"); 1257 return -EINVAL; 1258 } 1259 1260 sfc_adapter_lock(sa); 1261 1262 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1263 1264 rc = efx_rx_scale_mode_set(sa->nic, EFX_RX_HASHALG_TOEPLITZ, 1265 efx_hash_types, B_TRUE); 1266 if (rc != 0) 1267 goto fail_scale_mode_set; 1268 1269 if (rss_conf->rss_key != NULL) { 1270 if (sa->state == SFC_ADAPTER_STARTED) { 1271 rc = efx_rx_scale_key_set(sa->nic, rss_conf->rss_key, 1272 sizeof(sa->rss_key)); 1273 if (rc != 0) 1274 goto fail_scale_key_set; 1275 } 1276 1277 rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key)); 1278 } 1279 1280 sa->rss_hash_types = efx_hash_types; 1281 1282 sfc_adapter_unlock(sa); 1283 1284 return 0; 1285 1286 fail_scale_key_set: 1287 if (efx_rx_scale_mode_set(sa->nic, EFX_RX_HASHALG_TOEPLITZ, 1288 sa->rss_hash_types, B_TRUE) != 0) 1289 sfc_err(sa, "failed to restore RSS mode"); 1290 1291 fail_scale_mode_set: 1292 sfc_adapter_unlock(sa); 1293 return -rc; 1294 } 1295 1296 static int 1297 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1298 struct rte_eth_rss_reta_entry64 *reta_conf, 1299 uint16_t reta_size) 1300 { 1301 struct sfc_adapter *sa = dev->data->dev_private; 1302 struct sfc_port *port = &sa->port; 1303 int entry; 1304 1305 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1306 return -ENOTSUP; 1307 1308 if (sa->rss_channels == 0) 1309 return -EINVAL; 1310 1311 if (reta_size != EFX_RSS_TBL_SIZE) 1312 return -EINVAL; 1313 1314 sfc_adapter_lock(sa); 1315 1316 for (entry = 0; entry < reta_size; entry++) { 1317 int grp = entry / RTE_RETA_GROUP_SIZE; 1318 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1319 1320 if ((reta_conf[grp].mask >> grp_idx) & 1) 1321 reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry]; 1322 } 1323 1324 sfc_adapter_unlock(sa); 1325 1326 return 0; 1327 } 1328 1329 static int 1330 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1331 struct rte_eth_rss_reta_entry64 *reta_conf, 1332 uint16_t reta_size) 1333 { 1334 struct sfc_adapter *sa = dev->data->dev_private; 1335 struct sfc_port *port = &sa->port; 1336 unsigned int *rss_tbl_new; 1337 uint16_t entry; 1338 int rc; 1339 1340 1341 if (port->isolated) 1342 return -ENOTSUP; 1343 1344 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1345 sfc_err(sa, "RSS is not available"); 1346 return -ENOTSUP; 1347 } 1348 1349 if (sa->rss_channels == 0) { 1350 sfc_err(sa, "RSS is not configured"); 1351 return -EINVAL; 1352 } 1353 1354 if (reta_size != EFX_RSS_TBL_SIZE) { 1355 sfc_err(sa, "RETA size is wrong (should be %u)", 1356 EFX_RSS_TBL_SIZE); 1357 return -EINVAL; 1358 } 1359 1360 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0); 1361 if (rss_tbl_new == NULL) 1362 return -ENOMEM; 1363 1364 sfc_adapter_lock(sa); 1365 1366 rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl)); 1367 1368 for (entry = 0; entry < reta_size; entry++) { 1369 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1370 struct rte_eth_rss_reta_entry64 *grp; 1371 1372 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1373 1374 if (grp->mask & (1ull << grp_idx)) { 1375 if (grp->reta[grp_idx] >= sa->rss_channels) { 1376 rc = EINVAL; 1377 goto bad_reta_entry; 1378 } 1379 rss_tbl_new[entry] = grp->reta[grp_idx]; 1380 } 1381 } 1382 1383 rc = efx_rx_scale_tbl_set(sa->nic, rss_tbl_new, EFX_RSS_TBL_SIZE); 1384 if (rc == 0) 1385 rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl)); 1386 1387 bad_reta_entry: 1388 sfc_adapter_unlock(sa); 1389 1390 rte_free(rss_tbl_new); 1391 1392 SFC_ASSERT(rc >= 0); 1393 return -rc; 1394 } 1395 #endif 1396 1397 static int 1398 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1399 enum rte_filter_op filter_op, 1400 void *arg) 1401 { 1402 struct sfc_adapter *sa = dev->data->dev_private; 1403 int rc = ENOTSUP; 1404 1405 sfc_log_init(sa, "entry"); 1406 1407 switch (filter_type) { 1408 case RTE_ETH_FILTER_NONE: 1409 sfc_err(sa, "Global filters configuration not supported"); 1410 break; 1411 case RTE_ETH_FILTER_MACVLAN: 1412 sfc_err(sa, "MACVLAN filters not supported"); 1413 break; 1414 case RTE_ETH_FILTER_ETHERTYPE: 1415 sfc_err(sa, "EtherType filters not supported"); 1416 break; 1417 case RTE_ETH_FILTER_FLEXIBLE: 1418 sfc_err(sa, "Flexible filters not supported"); 1419 break; 1420 case RTE_ETH_FILTER_SYN: 1421 sfc_err(sa, "SYN filters not supported"); 1422 break; 1423 case RTE_ETH_FILTER_NTUPLE: 1424 sfc_err(sa, "NTUPLE filters not supported"); 1425 break; 1426 case RTE_ETH_FILTER_TUNNEL: 1427 sfc_err(sa, "Tunnel filters not supported"); 1428 break; 1429 case RTE_ETH_FILTER_FDIR: 1430 sfc_err(sa, "Flow Director filters not supported"); 1431 break; 1432 case RTE_ETH_FILTER_HASH: 1433 sfc_err(sa, "Hash filters not supported"); 1434 break; 1435 case RTE_ETH_FILTER_GENERIC: 1436 if (filter_op != RTE_ETH_FILTER_GET) { 1437 rc = EINVAL; 1438 } else { 1439 *(const void **)arg = &sfc_flow_ops; 1440 rc = 0; 1441 } 1442 break; 1443 default: 1444 sfc_err(sa, "Unknown filter type %u", filter_type); 1445 break; 1446 } 1447 1448 sfc_log_init(sa, "exit: %d", -rc); 1449 SFC_ASSERT(rc >= 0); 1450 return -rc; 1451 } 1452 1453 static const struct eth_dev_ops sfc_eth_dev_ops = { 1454 .dev_configure = sfc_dev_configure, 1455 .dev_start = sfc_dev_start, 1456 .dev_stop = sfc_dev_stop, 1457 .dev_set_link_up = sfc_dev_set_link_up, 1458 .dev_set_link_down = sfc_dev_set_link_down, 1459 .dev_close = sfc_dev_close, 1460 .promiscuous_enable = sfc_dev_promisc_enable, 1461 .promiscuous_disable = sfc_dev_promisc_disable, 1462 .allmulticast_enable = sfc_dev_allmulti_enable, 1463 .allmulticast_disable = sfc_dev_allmulti_disable, 1464 .link_update = sfc_dev_link_update, 1465 .stats_get = sfc_stats_get, 1466 .stats_reset = sfc_stats_reset, 1467 .xstats_get = sfc_xstats_get, 1468 .xstats_reset = sfc_stats_reset, 1469 .xstats_get_names = sfc_xstats_get_names, 1470 .dev_infos_get = sfc_dev_infos_get, 1471 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1472 .mtu_set = sfc_dev_set_mtu, 1473 .rx_queue_start = sfc_rx_queue_start, 1474 .rx_queue_stop = sfc_rx_queue_stop, 1475 .tx_queue_start = sfc_tx_queue_start, 1476 .tx_queue_stop = sfc_tx_queue_stop, 1477 .rx_queue_setup = sfc_rx_queue_setup, 1478 .rx_queue_release = sfc_rx_queue_release, 1479 .rx_queue_count = sfc_rx_queue_count, 1480 .rx_descriptor_done = sfc_rx_descriptor_done, 1481 .rx_descriptor_status = sfc_rx_descriptor_status, 1482 .tx_queue_setup = sfc_tx_queue_setup, 1483 .tx_queue_release = sfc_tx_queue_release, 1484 .flow_ctrl_get = sfc_flow_ctrl_get, 1485 .flow_ctrl_set = sfc_flow_ctrl_set, 1486 .mac_addr_set = sfc_mac_addr_set, 1487 #if EFSYS_OPT_RX_SCALE 1488 .reta_update = sfc_dev_rss_reta_update, 1489 .reta_query = sfc_dev_rss_reta_query, 1490 .rss_hash_update = sfc_dev_rss_hash_update, 1491 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1492 #endif 1493 .filter_ctrl = sfc_dev_filter_ctrl, 1494 .set_mc_addr_list = sfc_set_mc_addr_list, 1495 .rxq_info_get = sfc_rx_queue_info_get, 1496 .txq_info_get = sfc_tx_queue_info_get, 1497 .fw_version_get = sfc_fw_version_get, 1498 .xstats_get_by_id = sfc_xstats_get_by_id, 1499 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1500 }; 1501 1502 /** 1503 * Duplicate a string in potentially shared memory required for 1504 * multi-process support. 1505 * 1506 * strdup() allocates from process-local heap/memory. 1507 */ 1508 static char * 1509 sfc_strdup(const char *str) 1510 { 1511 size_t size; 1512 char *copy; 1513 1514 if (str == NULL) 1515 return NULL; 1516 1517 size = strlen(str) + 1; 1518 copy = rte_malloc(__func__, size, 0); 1519 if (copy != NULL) 1520 rte_memcpy(copy, str, size); 1521 1522 return copy; 1523 } 1524 1525 static int 1526 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1527 { 1528 struct sfc_adapter *sa = dev->data->dev_private; 1529 unsigned int avail_caps = 0; 1530 const char *rx_name = NULL; 1531 const char *tx_name = NULL; 1532 int rc; 1533 1534 switch (sa->family) { 1535 case EFX_FAMILY_HUNTINGTON: 1536 case EFX_FAMILY_MEDFORD: 1537 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1538 break; 1539 default: 1540 break; 1541 } 1542 1543 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1544 sfc_kvarg_string_handler, &rx_name); 1545 if (rc != 0) 1546 goto fail_kvarg_rx_datapath; 1547 1548 if (rx_name != NULL) { 1549 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1550 if (sa->dp_rx == NULL) { 1551 sfc_err(sa, "Rx datapath %s not found", rx_name); 1552 rc = ENOENT; 1553 goto fail_dp_rx; 1554 } 1555 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1556 sfc_err(sa, 1557 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1558 rx_name); 1559 rc = EINVAL; 1560 goto fail_dp_rx_caps; 1561 } 1562 } else { 1563 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1564 if (sa->dp_rx == NULL) { 1565 sfc_err(sa, "Rx datapath by caps %#x not found", 1566 avail_caps); 1567 rc = ENOENT; 1568 goto fail_dp_rx; 1569 } 1570 } 1571 1572 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1573 if (sa->dp_rx_name == NULL) { 1574 rc = ENOMEM; 1575 goto fail_dp_rx_name; 1576 } 1577 1578 sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name); 1579 1580 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1581 1582 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1583 sfc_kvarg_string_handler, &tx_name); 1584 if (rc != 0) 1585 goto fail_kvarg_tx_datapath; 1586 1587 if (tx_name != NULL) { 1588 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1589 if (sa->dp_tx == NULL) { 1590 sfc_err(sa, "Tx datapath %s not found", tx_name); 1591 rc = ENOENT; 1592 goto fail_dp_tx; 1593 } 1594 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1595 sfc_err(sa, 1596 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1597 tx_name); 1598 rc = EINVAL; 1599 goto fail_dp_tx_caps; 1600 } 1601 } else { 1602 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1603 if (sa->dp_tx == NULL) { 1604 sfc_err(sa, "Tx datapath by caps %#x not found", 1605 avail_caps); 1606 rc = ENOENT; 1607 goto fail_dp_tx; 1608 } 1609 } 1610 1611 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1612 if (sa->dp_tx_name == NULL) { 1613 rc = ENOMEM; 1614 goto fail_dp_tx_name; 1615 } 1616 1617 sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name); 1618 1619 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1620 1621 dev->dev_ops = &sfc_eth_dev_ops; 1622 1623 return 0; 1624 1625 fail_dp_tx_name: 1626 fail_dp_tx_caps: 1627 sa->dp_tx = NULL; 1628 1629 fail_dp_tx: 1630 fail_kvarg_tx_datapath: 1631 rte_free(sa->dp_rx_name); 1632 sa->dp_rx_name = NULL; 1633 1634 fail_dp_rx_name: 1635 fail_dp_rx_caps: 1636 sa->dp_rx = NULL; 1637 1638 fail_dp_rx: 1639 fail_kvarg_rx_datapath: 1640 return rc; 1641 } 1642 1643 static void 1644 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1645 { 1646 struct sfc_adapter *sa = dev->data->dev_private; 1647 1648 dev->dev_ops = NULL; 1649 dev->rx_pkt_burst = NULL; 1650 dev->tx_pkt_burst = NULL; 1651 1652 rte_free(sa->dp_tx_name); 1653 sa->dp_tx_name = NULL; 1654 sa->dp_tx = NULL; 1655 1656 rte_free(sa->dp_rx_name); 1657 sa->dp_rx_name = NULL; 1658 sa->dp_rx = NULL; 1659 } 1660 1661 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1662 .rxq_info_get = sfc_rx_queue_info_get, 1663 .txq_info_get = sfc_tx_queue_info_get, 1664 }; 1665 1666 static int 1667 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1668 { 1669 /* 1670 * Device private data has really many process-local pointers. 1671 * Below code should be extremely careful to use data located 1672 * in shared memory only. 1673 */ 1674 struct sfc_adapter *sa = dev->data->dev_private; 1675 const struct sfc_dp_rx *dp_rx; 1676 const struct sfc_dp_tx *dp_tx; 1677 int rc; 1678 1679 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1680 if (dp_rx == NULL) { 1681 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1682 rc = ENOENT; 1683 goto fail_dp_rx; 1684 } 1685 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1686 sfc_err(sa, "%s Rx datapath does not support multi-process", 1687 sa->dp_tx_name); 1688 rc = EINVAL; 1689 goto fail_dp_rx_multi_process; 1690 } 1691 1692 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1693 if (dp_tx == NULL) { 1694 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1695 rc = ENOENT; 1696 goto fail_dp_tx; 1697 } 1698 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1699 sfc_err(sa, "%s Tx datapath does not support multi-process", 1700 sa->dp_tx_name); 1701 rc = EINVAL; 1702 goto fail_dp_tx_multi_process; 1703 } 1704 1705 dev->rx_pkt_burst = dp_rx->pkt_burst; 1706 dev->tx_pkt_burst = dp_tx->pkt_burst; 1707 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1708 1709 return 0; 1710 1711 fail_dp_tx_multi_process: 1712 fail_dp_tx: 1713 fail_dp_rx_multi_process: 1714 fail_dp_rx: 1715 return rc; 1716 } 1717 1718 static void 1719 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1720 { 1721 dev->dev_ops = NULL; 1722 dev->tx_pkt_burst = NULL; 1723 dev->rx_pkt_burst = NULL; 1724 } 1725 1726 static void 1727 sfc_register_dp(void) 1728 { 1729 /* Register once */ 1730 if (TAILQ_EMPTY(&sfc_dp_head)) { 1731 /* Prefer EF10 datapath */ 1732 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1733 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1734 1735 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1736 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1737 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1738 } 1739 } 1740 1741 static int 1742 sfc_eth_dev_init(struct rte_eth_dev *dev) 1743 { 1744 struct sfc_adapter *sa = dev->data->dev_private; 1745 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1746 int rc; 1747 const efx_nic_cfg_t *encp; 1748 const struct ether_addr *from; 1749 1750 sfc_register_dp(); 1751 1752 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1753 return -sfc_eth_dev_secondary_set_ops(dev); 1754 1755 /* Required for logging */ 1756 sa->pci_addr = pci_dev->addr; 1757 sa->port_id = dev->data->port_id; 1758 1759 sa->eth_dev = dev; 1760 1761 /* Copy PCI device info to the dev->data */ 1762 rte_eth_copy_pci_info(dev, pci_dev); 1763 1764 dev->data->dev_flags |= RTE_ETH_DEV_DETACHABLE; 1765 1766 rc = sfc_kvargs_parse(sa); 1767 if (rc != 0) 1768 goto fail_kvargs_parse; 1769 1770 rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT, 1771 sfc_kvarg_bool_handler, &sa->debug_init); 1772 if (rc != 0) 1773 goto fail_kvarg_debug_init; 1774 1775 sfc_log_init(sa, "entry"); 1776 1777 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1778 if (dev->data->mac_addrs == NULL) { 1779 rc = ENOMEM; 1780 goto fail_mac_addrs; 1781 } 1782 1783 sfc_adapter_lock_init(sa); 1784 sfc_adapter_lock(sa); 1785 1786 sfc_log_init(sa, "probing"); 1787 rc = sfc_probe(sa); 1788 if (rc != 0) 1789 goto fail_probe; 1790 1791 sfc_log_init(sa, "set device ops"); 1792 rc = sfc_eth_dev_set_ops(dev); 1793 if (rc != 0) 1794 goto fail_set_ops; 1795 1796 sfc_log_init(sa, "attaching"); 1797 rc = sfc_attach(sa); 1798 if (rc != 0) 1799 goto fail_attach; 1800 1801 encp = efx_nic_cfg_get(sa->nic); 1802 1803 /* 1804 * The arguments are really reverse order in comparison to 1805 * Linux kernel. Copy from NIC config to Ethernet device data. 1806 */ 1807 from = (const struct ether_addr *)(encp->enc_mac_addr); 1808 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1809 1810 sfc_adapter_unlock(sa); 1811 1812 sfc_log_init(sa, "done"); 1813 return 0; 1814 1815 fail_attach: 1816 sfc_eth_dev_clear_ops(dev); 1817 1818 fail_set_ops: 1819 sfc_unprobe(sa); 1820 1821 fail_probe: 1822 sfc_adapter_unlock(sa); 1823 sfc_adapter_lock_fini(sa); 1824 rte_free(dev->data->mac_addrs); 1825 dev->data->mac_addrs = NULL; 1826 1827 fail_mac_addrs: 1828 fail_kvarg_debug_init: 1829 sfc_kvargs_cleanup(sa); 1830 1831 fail_kvargs_parse: 1832 sfc_log_init(sa, "failed %d", rc); 1833 SFC_ASSERT(rc > 0); 1834 return -rc; 1835 } 1836 1837 static int 1838 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 1839 { 1840 struct sfc_adapter *sa; 1841 1842 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 1843 sfc_eth_dev_secondary_clear_ops(dev); 1844 return 0; 1845 } 1846 1847 sa = dev->data->dev_private; 1848 sfc_log_init(sa, "entry"); 1849 1850 sfc_adapter_lock(sa); 1851 1852 sfc_eth_dev_clear_ops(dev); 1853 1854 sfc_detach(sa); 1855 sfc_unprobe(sa); 1856 1857 rte_free(dev->data->mac_addrs); 1858 dev->data->mac_addrs = NULL; 1859 1860 sfc_kvargs_cleanup(sa); 1861 1862 sfc_adapter_unlock(sa); 1863 sfc_adapter_lock_fini(sa); 1864 1865 sfc_log_init(sa, "done"); 1866 1867 /* Required for logging, so cleanup last */ 1868 sa->eth_dev = NULL; 1869 return 0; 1870 } 1871 1872 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 1873 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 1874 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 1875 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 1876 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 1877 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 1878 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 1879 { .vendor_id = 0 /* sentinel */ } 1880 }; 1881 1882 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1883 struct rte_pci_device *pci_dev) 1884 { 1885 return rte_eth_dev_pci_generic_probe(pci_dev, 1886 sizeof(struct sfc_adapter), sfc_eth_dev_init); 1887 } 1888 1889 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 1890 { 1891 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 1892 } 1893 1894 static struct rte_pci_driver sfc_efx_pmd = { 1895 .id_table = pci_id_sfc_efx_map, 1896 .drv_flags = 1897 RTE_PCI_DRV_INTR_LSC | 1898 RTE_PCI_DRV_NEED_MAPPING, 1899 .probe = sfc_eth_dev_pci_probe, 1900 .remove = sfc_eth_dev_pci_remove, 1901 }; 1902 1903 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 1904 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 1905 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 1906 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 1907 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 1908 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 1909 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 1910 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> " 1911 SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " " 1912 SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL); 1913