xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 1bb4a528c41f4af4847bd3d58cc2b2b9f1ec9a27)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_flow_tunnel.h"
30 #include "sfc_dp.h"
31 #include "sfc_dp_rx.h"
32 #include "sfc_repr.h"
33 #include "sfc_sw_stats.h"
34 #include "sfc_switch.h"
35 
36 #define SFC_XSTAT_ID_INVALID_VAL  UINT64_MAX
37 #define SFC_XSTAT_ID_INVALID_NAME '\0'
38 
39 uint32_t sfc_logtype_driver;
40 
41 static struct sfc_dp_list sfc_dp_head =
42 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
43 
44 
45 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
46 
47 
48 static int
49 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
50 {
51 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
52 	efx_nic_fw_info_t enfi;
53 	int ret;
54 	int rc;
55 
56 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
57 	if (rc != 0)
58 		return -rc;
59 
60 	ret = snprintf(fw_version, fw_size,
61 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
62 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
63 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
64 	if (ret < 0)
65 		return ret;
66 
67 	if (enfi.enfi_dpcpu_fw_ids_valid) {
68 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
69 		int ret_extra;
70 
71 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
72 				     fw_size - dpcpu_fw_ids_offset,
73 				     " rx%" PRIx16 " tx%" PRIx16,
74 				     enfi.enfi_rx_dpcpu_fw_id,
75 				     enfi.enfi_tx_dpcpu_fw_id);
76 		if (ret_extra < 0)
77 			return ret_extra;
78 
79 		ret += ret_extra;
80 	}
81 
82 	if (fw_size < (size_t)(++ret))
83 		return ret;
84 	else
85 		return 0;
86 }
87 
88 static int
89 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
90 {
91 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
92 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
93 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
94 	struct sfc_rss *rss = &sas->rss;
95 	struct sfc_mae *mae = &sa->mae;
96 	uint64_t txq_offloads_def = 0;
97 
98 	sfc_log_init(sa, "entry");
99 
100 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
102 
103 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
104 
105 	dev_info->max_vfs = sa->sriov.num_vfs;
106 
107 	/* Autonegotiation may be disabled */
108 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
109 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
110 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
111 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
112 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
113 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
114 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
115 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
116 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
117 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
118 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
119 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
120 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
121 
122 	dev_info->max_rx_queues = sa->rxq_max;
123 	dev_info->max_tx_queues = sa->txq_max;
124 
125 	/* By default packets are dropped if no descriptors are available */
126 	dev_info->default_rxconf.rx_drop_en = 1;
127 
128 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
129 
130 	/*
131 	 * rx_offload_capa includes both device and queue offloads since
132 	 * the latter may be requested on a per device basis which makes
133 	 * sense when some offloads are needed to be set on all queues.
134 	 */
135 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
136 				    dev_info->rx_queue_offload_capa;
137 
138 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
139 
140 	/*
141 	 * tx_offload_capa includes both device and queue offloads since
142 	 * the latter may be requested on a per device basis which makes
143 	 * sense when some offloads are needed to be set on all queues.
144 	 */
145 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
146 				    dev_info->tx_queue_offload_capa;
147 
148 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
149 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
150 
151 	dev_info->default_txconf.offloads |= txq_offloads_def;
152 
153 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
154 		uint64_t rte_hf = 0;
155 		unsigned int i;
156 
157 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
158 			rte_hf |= rss->hf_map[i].rte;
159 
160 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
161 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
162 		dev_info->flow_type_rss_offloads = rte_hf;
163 	}
164 
165 	/* Initialize to hardware limits */
166 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
167 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
168 	/* The RXQ hardware requires that the descriptor count is a power
169 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
170 	 */
171 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
172 
173 	/* Initialize to hardware limits */
174 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
175 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
176 	/*
177 	 * The TXQ hardware requires that the descriptor count is a power
178 	 * of 2, but tx_desc_lim cannot properly describe that constraint
179 	 */
180 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
181 
182 	if (sap->dp_rx->get_dev_info != NULL)
183 		sap->dp_rx->get_dev_info(dev_info);
184 	if (sap->dp_tx->get_dev_info != NULL)
185 		sap->dp_tx->get_dev_info(dev_info);
186 
187 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
188 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
189 
190 	if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
191 		dev_info->switch_info.name = dev->device->driver->name;
192 		dev_info->switch_info.domain_id = mae->switch_domain_id;
193 		dev_info->switch_info.port_id = mae->switch_port_id;
194 	}
195 
196 	return 0;
197 }
198 
199 static const uint32_t *
200 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
201 {
202 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
203 
204 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
205 }
206 
207 static int
208 sfc_dev_configure(struct rte_eth_dev *dev)
209 {
210 	struct rte_eth_dev_data *dev_data = dev->data;
211 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
212 	int rc;
213 
214 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
215 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
216 
217 	sfc_adapter_lock(sa);
218 	switch (sa->state) {
219 	case SFC_ETHDEV_CONFIGURED:
220 		/* FALLTHROUGH */
221 	case SFC_ETHDEV_INITIALIZED:
222 		rc = sfc_configure(sa);
223 		break;
224 	default:
225 		sfc_err(sa, "unexpected adapter state %u to configure",
226 			sa->state);
227 		rc = EINVAL;
228 		break;
229 	}
230 	sfc_adapter_unlock(sa);
231 
232 	sfc_log_init(sa, "done %d", rc);
233 	SFC_ASSERT(rc >= 0);
234 	return -rc;
235 }
236 
237 static int
238 sfc_dev_start(struct rte_eth_dev *dev)
239 {
240 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
241 	int rc;
242 
243 	sfc_log_init(sa, "entry");
244 
245 	sfc_adapter_lock(sa);
246 	rc = sfc_start(sa);
247 	sfc_adapter_unlock(sa);
248 
249 	sfc_log_init(sa, "done %d", rc);
250 	SFC_ASSERT(rc >= 0);
251 	return -rc;
252 }
253 
254 static int
255 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
256 {
257 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
258 	struct rte_eth_link current_link;
259 	int ret;
260 
261 	sfc_log_init(sa, "entry");
262 
263 	if (sa->state != SFC_ETHDEV_STARTED) {
264 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
265 	} else if (wait_to_complete) {
266 		efx_link_mode_t link_mode;
267 
268 		if (efx_port_poll(sa->nic, &link_mode) != 0)
269 			link_mode = EFX_LINK_UNKNOWN;
270 		sfc_port_link_mode_to_info(link_mode, &current_link);
271 
272 	} else {
273 		sfc_ev_mgmt_qpoll(sa);
274 		rte_eth_linkstatus_get(dev, &current_link);
275 	}
276 
277 	ret = rte_eth_linkstatus_set(dev, &current_link);
278 	if (ret == 0)
279 		sfc_notice(sa, "Link status is %s",
280 			   current_link.link_status ? "UP" : "DOWN");
281 
282 	return ret;
283 }
284 
285 static int
286 sfc_dev_stop(struct rte_eth_dev *dev)
287 {
288 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
289 
290 	sfc_log_init(sa, "entry");
291 
292 	sfc_adapter_lock(sa);
293 	sfc_stop(sa);
294 	sfc_adapter_unlock(sa);
295 
296 	sfc_log_init(sa, "done");
297 
298 	return 0;
299 }
300 
301 static int
302 sfc_dev_set_link_up(struct rte_eth_dev *dev)
303 {
304 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
305 	int rc;
306 
307 	sfc_log_init(sa, "entry");
308 
309 	sfc_adapter_lock(sa);
310 	rc = sfc_start(sa);
311 	sfc_adapter_unlock(sa);
312 
313 	SFC_ASSERT(rc >= 0);
314 	return -rc;
315 }
316 
317 static int
318 sfc_dev_set_link_down(struct rte_eth_dev *dev)
319 {
320 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
321 
322 	sfc_log_init(sa, "entry");
323 
324 	sfc_adapter_lock(sa);
325 	sfc_stop(sa);
326 	sfc_adapter_unlock(sa);
327 
328 	return 0;
329 }
330 
331 static void
332 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
333 {
334 	free(dev->process_private);
335 	rte_eth_dev_release_port(dev);
336 }
337 
338 static int
339 sfc_dev_close(struct rte_eth_dev *dev)
340 {
341 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
342 
343 	sfc_log_init(sa, "entry");
344 
345 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
346 		sfc_eth_dev_secondary_clear_ops(dev);
347 		return 0;
348 	}
349 
350 	sfc_pre_detach(sa);
351 
352 	sfc_adapter_lock(sa);
353 	switch (sa->state) {
354 	case SFC_ETHDEV_STARTED:
355 		sfc_stop(sa);
356 		SFC_ASSERT(sa->state == SFC_ETHDEV_CONFIGURED);
357 		/* FALLTHROUGH */
358 	case SFC_ETHDEV_CONFIGURED:
359 		sfc_close(sa);
360 		SFC_ASSERT(sa->state == SFC_ETHDEV_INITIALIZED);
361 		/* FALLTHROUGH */
362 	case SFC_ETHDEV_INITIALIZED:
363 		break;
364 	default:
365 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
366 		break;
367 	}
368 
369 	/*
370 	 * Cleanup all resources.
371 	 * Rollback primary process sfc_eth_dev_init() below.
372 	 */
373 
374 	sfc_eth_dev_clear_ops(dev);
375 
376 	sfc_detach(sa);
377 	sfc_unprobe(sa);
378 
379 	sfc_kvargs_cleanup(sa);
380 
381 	sfc_adapter_unlock(sa);
382 	sfc_adapter_lock_fini(sa);
383 
384 	sfc_log_init(sa, "done");
385 
386 	/* Required for logging, so cleanup last */
387 	sa->eth_dev = NULL;
388 
389 	free(sa);
390 
391 	return 0;
392 }
393 
394 static int
395 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
396 		   boolean_t enabled)
397 {
398 	struct sfc_port *port;
399 	boolean_t *toggle;
400 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
401 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
402 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
403 	int rc = 0;
404 
405 	sfc_adapter_lock(sa);
406 
407 	port = &sa->port;
408 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
409 
410 	if (*toggle != enabled) {
411 		*toggle = enabled;
412 
413 		if (sfc_sa2shared(sa)->isolated) {
414 			sfc_warn(sa, "isolated mode is active on the port");
415 			sfc_warn(sa, "the change is to be applied on the next "
416 				     "start provided that isolated mode is "
417 				     "disabled prior the next start");
418 		} else if ((sa->state == SFC_ETHDEV_STARTED) &&
419 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
420 			*toggle = !(enabled);
421 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
422 				 ((enabled) ? "enable" : "disable"), desc, rc);
423 
424 			/*
425 			 * For promiscuous and all-multicast filters a
426 			 * permission failure should be reported as an
427 			 * unsupported filter.
428 			 */
429 			if (rc == EPERM)
430 				rc = ENOTSUP;
431 		}
432 	}
433 
434 	sfc_adapter_unlock(sa);
435 	return rc;
436 }
437 
438 static int
439 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
440 {
441 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
442 
443 	SFC_ASSERT(rc >= 0);
444 	return -rc;
445 }
446 
447 static int
448 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
449 {
450 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
451 
452 	SFC_ASSERT(rc >= 0);
453 	return -rc;
454 }
455 
456 static int
457 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
458 {
459 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
460 
461 	SFC_ASSERT(rc >= 0);
462 	return -rc;
463 }
464 
465 static int
466 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
467 {
468 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
469 
470 	SFC_ASSERT(rc >= 0);
471 	return -rc;
472 }
473 
474 static int
475 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
476 		   uint16_t nb_rx_desc, unsigned int socket_id,
477 		   const struct rte_eth_rxconf *rx_conf,
478 		   struct rte_mempool *mb_pool)
479 {
480 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
481 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
482 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
483 	struct sfc_rxq_info *rxq_info;
484 	sfc_sw_index_t sw_index;
485 	int rc;
486 
487 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
488 		     ethdev_qid, nb_rx_desc, socket_id);
489 
490 	sfc_adapter_lock(sa);
491 
492 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
493 	rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
494 			  rx_conf, mb_pool);
495 	if (rc != 0)
496 		goto fail_rx_qinit;
497 
498 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
499 	dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
500 
501 	sfc_adapter_unlock(sa);
502 
503 	return 0;
504 
505 fail_rx_qinit:
506 	sfc_adapter_unlock(sa);
507 	SFC_ASSERT(rc > 0);
508 	return -rc;
509 }
510 
511 static void
512 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
513 {
514 	struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
515 	struct sfc_rxq *rxq;
516 	struct sfc_adapter *sa;
517 	sfc_sw_index_t sw_index;
518 
519 	if (dp_rxq == NULL)
520 		return;
521 
522 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
523 	sa = rxq->evq->sa;
524 	sfc_adapter_lock(sa);
525 
526 	sw_index = dp_rxq->dpq.queue_id;
527 
528 	sfc_log_init(sa, "RxQ=%u", sw_index);
529 
530 	sfc_rx_qfini(sa, sw_index);
531 
532 	sfc_adapter_unlock(sa);
533 }
534 
535 static int
536 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
537 		   uint16_t nb_tx_desc, unsigned int socket_id,
538 		   const struct rte_eth_txconf *tx_conf)
539 {
540 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
541 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
542 	struct sfc_txq_info *txq_info;
543 	sfc_sw_index_t sw_index;
544 	int rc;
545 
546 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
547 		     ethdev_qid, nb_tx_desc, socket_id);
548 
549 	sfc_adapter_lock(sa);
550 
551 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
552 	rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
553 	if (rc != 0)
554 		goto fail_tx_qinit;
555 
556 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
557 	dev->data->tx_queues[ethdev_qid] = txq_info->dp;
558 
559 	sfc_adapter_unlock(sa);
560 	return 0;
561 
562 fail_tx_qinit:
563 	sfc_adapter_unlock(sa);
564 	SFC_ASSERT(rc > 0);
565 	return -rc;
566 }
567 
568 static void
569 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
570 {
571 	struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
572 	struct sfc_txq *txq;
573 	sfc_sw_index_t sw_index;
574 	struct sfc_adapter *sa;
575 
576 	if (dp_txq == NULL)
577 		return;
578 
579 	txq = sfc_txq_by_dp_txq(dp_txq);
580 	sw_index = dp_txq->dpq.queue_id;
581 
582 	SFC_ASSERT(txq->evq != NULL);
583 	sa = txq->evq->sa;
584 
585 	sfc_log_init(sa, "TxQ = %u", sw_index);
586 
587 	sfc_adapter_lock(sa);
588 
589 	sfc_tx_qfini(sa, sw_index);
590 
591 	sfc_adapter_unlock(sa);
592 }
593 
594 static void
595 sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
596 {
597 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
598 	uint64_t pkts_sum = 0;
599 	uint64_t bytes_sum = 0;
600 	unsigned int i;
601 
602 	for (i = 0; i < sas->ethdev_rxq_count; ++i) {
603 		struct sfc_rxq_info *rxq_info;
604 
605 		rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i);
606 		if (rxq_info->state & SFC_RXQ_INITIALIZED) {
607 			union sfc_pkts_bytes qstats;
608 
609 			sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats);
610 			pkts_sum += qstats.pkts -
611 					sa->sw_stats.reset_rx_pkts[i];
612 			bytes_sum += qstats.bytes -
613 					sa->sw_stats.reset_rx_bytes[i];
614 		}
615 	}
616 
617 	*pkts = pkts_sum;
618 	*bytes = bytes_sum;
619 }
620 
621 static void
622 sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
623 {
624 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
625 	uint64_t pkts_sum = 0;
626 	uint64_t bytes_sum = 0;
627 	unsigned int i;
628 
629 	for (i = 0; i < sas->ethdev_txq_count; ++i) {
630 		struct sfc_txq_info *txq_info;
631 
632 		txq_info = sfc_txq_info_by_ethdev_qid(sas, i);
633 		if (txq_info->state & SFC_TXQ_INITIALIZED) {
634 			union sfc_pkts_bytes qstats;
635 
636 			sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats);
637 			pkts_sum += qstats.pkts -
638 					sa->sw_stats.reset_tx_pkts[i];
639 			bytes_sum += qstats.bytes -
640 					sa->sw_stats.reset_tx_bytes[i];
641 		}
642 	}
643 
644 	*pkts = pkts_sum;
645 	*bytes = bytes_sum;
646 }
647 
648 /*
649  * Some statistics are computed as A - B where A and B each increase
650  * monotonically with some hardware counter(s) and the counters are read
651  * asynchronously.
652  *
653  * If packet X is counted in A, but not counted in B yet, computed value is
654  * greater than real.
655  *
656  * If packet X is not counted in A at the moment of reading the counter,
657  * but counted in B at the moment of reading the counter, computed value
658  * is less than real.
659  *
660  * However, counter which grows backward is worse evil than slightly wrong
661  * value. So, let's try to guarantee that it never happens except may be
662  * the case when the MAC stats are zeroed as a result of a NIC reset.
663  */
664 static void
665 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
666 {
667 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
668 		*stat = newval;
669 }
670 
671 static int
672 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
673 {
674 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
675 	bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS;
676 	bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS;
677 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
678 	struct sfc_port *port = &sa->port;
679 	uint64_t *mac_stats;
680 	int ret;
681 
682 	sfc_adapter_lock(sa);
683 
684 	if (have_dp_rx_stats)
685 		sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes);
686 	if (have_dp_tx_stats)
687 		sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes);
688 
689 	ret = sfc_port_update_mac_stats(sa, B_FALSE);
690 	if (ret != 0)
691 		goto unlock;
692 
693 	mac_stats = port->mac_stats_buf;
694 
695 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
696 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
697 		if (!have_dp_rx_stats) {
698 			stats->ipackets =
699 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
700 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
701 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
702 			stats->ibytes =
703 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
704 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
705 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
706 
707 			/* CRC is included in these stats, but shouldn't be */
708 			stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
709 		}
710 		if (!have_dp_tx_stats) {
711 			stats->opackets =
712 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
713 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
714 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
715 			stats->obytes =
716 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
717 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
718 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
719 
720 			/* CRC is included in these stats, but shouldn't be */
721 			stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
722 		}
723 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
724 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
725 	} else {
726 		if (!have_dp_tx_stats) {
727 			stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
728 			stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] -
729 				mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
730 		}
731 
732 		/*
733 		 * Take into account stats which are whenever supported
734 		 * on EF10. If some stat is not supported by current
735 		 * firmware variant or HW revision, it is guaranteed
736 		 * to be zero in mac_stats.
737 		 */
738 		stats->imissed =
739 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
740 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
741 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
742 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
743 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
744 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
745 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
746 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
747 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
748 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
749 		stats->ierrors =
750 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
751 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
752 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
753 		/* no oerrors counters supported on EF10 */
754 
755 		if (!have_dp_rx_stats) {
756 			/* Exclude missed, errors and pauses from Rx packets */
757 			sfc_update_diff_stat(&port->ipackets,
758 				mac_stats[EFX_MAC_RX_PKTS] -
759 				mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
760 				stats->imissed - stats->ierrors);
761 			stats->ipackets = port->ipackets;
762 			stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] -
763 				mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
764 		}
765 	}
766 
767 unlock:
768 	sfc_adapter_unlock(sa);
769 	SFC_ASSERT(ret >= 0);
770 	return -ret;
771 }
772 
773 static int
774 sfc_stats_reset(struct rte_eth_dev *dev)
775 {
776 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
777 	struct sfc_port *port = &sa->port;
778 	int rc;
779 
780 	sfc_adapter_lock(sa);
781 
782 	if (sa->state != SFC_ETHDEV_STARTED) {
783 		/*
784 		 * The operation cannot be done if port is not started; it
785 		 * will be scheduled to be done during the next port start
786 		 */
787 		port->mac_stats_reset_pending = B_TRUE;
788 		sfc_adapter_unlock(sa);
789 		return 0;
790 	}
791 
792 	rc = sfc_port_reset_mac_stats(sa);
793 	if (rc != 0)
794 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
795 
796 	sfc_sw_xstats_reset(sa);
797 
798 	sfc_adapter_unlock(sa);
799 
800 	SFC_ASSERT(rc >= 0);
801 	return -rc;
802 }
803 
804 static unsigned int
805 sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
806 {
807 	struct sfc_port *port = &sa->port;
808 	unsigned int nb_supported;
809 
810 	sfc_adapter_lock(sa);
811 	nb_supported = port->mac_stats_nb_supported +
812 		       sfc_sw_xstats_get_nb_supported(sa);
813 	sfc_adapter_unlock(sa);
814 
815 	return nb_supported;
816 }
817 
818 static int
819 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
820 	       unsigned int xstats_count)
821 {
822 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
823 	unsigned int nb_written = 0;
824 	unsigned int nb_supported = 0;
825 	int rc;
826 
827 	if (unlikely(xstats == NULL))
828 		return sfc_xstats_get_nb_supported(sa);
829 
830 	rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
831 	if (rc < 0)
832 		return rc;
833 
834 	nb_supported = rc;
835 	sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
836 			       &nb_supported);
837 
838 	return nb_supported;
839 }
840 
841 static int
842 sfc_xstats_get_names(struct rte_eth_dev *dev,
843 		     struct rte_eth_xstat_name *xstats_names,
844 		     unsigned int xstats_count)
845 {
846 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
847 	struct sfc_port *port = &sa->port;
848 	unsigned int i;
849 	unsigned int nstats = 0;
850 	unsigned int nb_written = 0;
851 	int ret;
852 
853 	if (unlikely(xstats_names == NULL))
854 		return sfc_xstats_get_nb_supported(sa);
855 
856 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
857 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
858 			if (nstats < xstats_count) {
859 				strlcpy(xstats_names[nstats].name,
860 					efx_mac_stat_name(sa->nic, i),
861 					sizeof(xstats_names[0].name));
862 				nb_written++;
863 			}
864 			nstats++;
865 		}
866 	}
867 
868 	ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
869 				      &nb_written, &nstats);
870 	if (ret != 0) {
871 		SFC_ASSERT(ret < 0);
872 		return ret;
873 	}
874 
875 	return nstats;
876 }
877 
878 static int
879 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
880 		     uint64_t *values, unsigned int n)
881 {
882 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
883 	struct sfc_port *port = &sa->port;
884 	unsigned int nb_supported;
885 	unsigned int i;
886 	int rc;
887 
888 	if (unlikely(ids == NULL || values == NULL))
889 		return -EINVAL;
890 
891 	/*
892 	 * Values array could be filled in nonsequential order. Fill values with
893 	 * constant indicating invalid ID first.
894 	 */
895 	for (i = 0; i < n; i++)
896 		values[i] = SFC_XSTAT_ID_INVALID_VAL;
897 
898 	rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
899 	if (rc != 0)
900 		return rc;
901 
902 	nb_supported = port->mac_stats_nb_supported;
903 	sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
904 
905 	/* Return number of written stats before invalid ID is encountered. */
906 	for (i = 0; i < n; i++) {
907 		if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
908 			return i;
909 	}
910 
911 	return n;
912 }
913 
914 static int
915 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
916 			   const uint64_t *ids,
917 			   struct rte_eth_xstat_name *xstats_names,
918 			   unsigned int size)
919 {
920 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
921 	struct sfc_port *port = &sa->port;
922 	unsigned int nb_supported;
923 	unsigned int i;
924 	int ret;
925 
926 	if (unlikely(xstats_names == NULL && ids != NULL) ||
927 	    unlikely(xstats_names != NULL && ids == NULL))
928 		return -EINVAL;
929 
930 	if (unlikely(xstats_names == NULL && ids == NULL))
931 		return sfc_xstats_get_nb_supported(sa);
932 
933 	/*
934 	 * Names array could be filled in nonsequential order. Fill names with
935 	 * string indicating invalid ID first.
936 	 */
937 	for (i = 0; i < size; i++)
938 		xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
939 
940 	sfc_adapter_lock(sa);
941 
942 	SFC_ASSERT(port->mac_stats_nb_supported <=
943 		   RTE_DIM(port->mac_stats_by_id));
944 
945 	for (i = 0; i < size; i++) {
946 		if (ids[i] < port->mac_stats_nb_supported) {
947 			strlcpy(xstats_names[i].name,
948 				efx_mac_stat_name(sa->nic,
949 						 port->mac_stats_by_id[ids[i]]),
950 				sizeof(xstats_names[0].name));
951 		}
952 	}
953 
954 	nb_supported = port->mac_stats_nb_supported;
955 
956 	sfc_adapter_unlock(sa);
957 
958 	ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
959 					    &nb_supported);
960 	if (ret != 0) {
961 		SFC_ASSERT(ret < 0);
962 		return ret;
963 	}
964 
965 	/* Return number of written names before invalid ID is encountered. */
966 	for (i = 0; i < size; i++) {
967 		if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
968 			return i;
969 	}
970 
971 	return size;
972 }
973 
974 static int
975 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
976 {
977 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
978 	unsigned int wanted_fc, link_fc;
979 
980 	memset(fc_conf, 0, sizeof(*fc_conf));
981 
982 	sfc_adapter_lock(sa);
983 
984 	if (sa->state == SFC_ETHDEV_STARTED)
985 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
986 	else
987 		link_fc = sa->port.flow_ctrl;
988 
989 	switch (link_fc) {
990 	case 0:
991 		fc_conf->mode = RTE_FC_NONE;
992 		break;
993 	case EFX_FCNTL_RESPOND:
994 		fc_conf->mode = RTE_FC_RX_PAUSE;
995 		break;
996 	case EFX_FCNTL_GENERATE:
997 		fc_conf->mode = RTE_FC_TX_PAUSE;
998 		break;
999 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
1000 		fc_conf->mode = RTE_FC_FULL;
1001 		break;
1002 	default:
1003 		sfc_err(sa, "%s: unexpected flow control value %#x",
1004 			__func__, link_fc);
1005 	}
1006 
1007 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
1008 
1009 	sfc_adapter_unlock(sa);
1010 
1011 	return 0;
1012 }
1013 
1014 static int
1015 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1016 {
1017 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1018 	struct sfc_port *port = &sa->port;
1019 	unsigned int fcntl;
1020 	int rc;
1021 
1022 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
1023 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
1024 	    fc_conf->mac_ctrl_frame_fwd != 0) {
1025 		sfc_err(sa, "unsupported flow control settings specified");
1026 		rc = EINVAL;
1027 		goto fail_inval;
1028 	}
1029 
1030 	switch (fc_conf->mode) {
1031 	case RTE_FC_NONE:
1032 		fcntl = 0;
1033 		break;
1034 	case RTE_FC_RX_PAUSE:
1035 		fcntl = EFX_FCNTL_RESPOND;
1036 		break;
1037 	case RTE_FC_TX_PAUSE:
1038 		fcntl = EFX_FCNTL_GENERATE;
1039 		break;
1040 	case RTE_FC_FULL:
1041 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
1042 		break;
1043 	default:
1044 		rc = EINVAL;
1045 		goto fail_inval;
1046 	}
1047 
1048 	sfc_adapter_lock(sa);
1049 
1050 	if (sa->state == SFC_ETHDEV_STARTED) {
1051 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
1052 		if (rc != 0)
1053 			goto fail_mac_fcntl_set;
1054 	}
1055 
1056 	port->flow_ctrl = fcntl;
1057 	port->flow_ctrl_autoneg = fc_conf->autoneg;
1058 
1059 	sfc_adapter_unlock(sa);
1060 
1061 	return 0;
1062 
1063 fail_mac_fcntl_set:
1064 	sfc_adapter_unlock(sa);
1065 fail_inval:
1066 	SFC_ASSERT(rc > 0);
1067 	return -rc;
1068 }
1069 
1070 static int
1071 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
1072 {
1073 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1074 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1075 	boolean_t scatter_enabled;
1076 	const char *error;
1077 	unsigned int i;
1078 
1079 	for (i = 0; i < sas->rxq_count; i++) {
1080 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
1081 			continue;
1082 
1083 		scatter_enabled = (sas->rxq_info[i].type_flags &
1084 				   EFX_RXQ_FLAG_SCATTER);
1085 
1086 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
1087 					  encp->enc_rx_prefix_size,
1088 					  scatter_enabled,
1089 					  encp->enc_rx_scatter_max, &error)) {
1090 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1091 				error);
1092 			return EINVAL;
1093 		}
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 static int
1100 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1101 {
1102 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1103 	size_t pdu = EFX_MAC_PDU(mtu);
1104 	size_t old_pdu;
1105 	int rc;
1106 
1107 	sfc_log_init(sa, "mtu=%u", mtu);
1108 
1109 	rc = EINVAL;
1110 	if (pdu < EFX_MAC_PDU_MIN) {
1111 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1112 			(unsigned int)mtu, (unsigned int)pdu,
1113 			EFX_MAC_PDU_MIN);
1114 		goto fail_inval;
1115 	}
1116 	if (pdu > EFX_MAC_PDU_MAX) {
1117 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1118 			(unsigned int)mtu, (unsigned int)pdu,
1119 			(unsigned int)EFX_MAC_PDU_MAX);
1120 		goto fail_inval;
1121 	}
1122 
1123 	sfc_adapter_lock(sa);
1124 
1125 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1126 	if (rc != 0)
1127 		goto fail_check_scatter;
1128 
1129 	if (pdu != sa->port.pdu) {
1130 		if (sa->state == SFC_ETHDEV_STARTED) {
1131 			sfc_stop(sa);
1132 
1133 			old_pdu = sa->port.pdu;
1134 			sa->port.pdu = pdu;
1135 			rc = sfc_start(sa);
1136 			if (rc != 0)
1137 				goto fail_start;
1138 		} else {
1139 			sa->port.pdu = pdu;
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * The driver does not use it, but other PMDs update jumbo frame
1145 	 * flag when MTU is set.
1146 	 */
1147 	if (mtu > RTE_ETHER_MTU) {
1148 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1149 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1150 	}
1151 
1152 	sfc_adapter_unlock(sa);
1153 
1154 	sfc_log_init(sa, "done");
1155 	return 0;
1156 
1157 fail_start:
1158 	sa->port.pdu = old_pdu;
1159 	if (sfc_start(sa) != 0)
1160 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1161 			"PDU max size - port is stopped",
1162 			(unsigned int)pdu, (unsigned int)old_pdu);
1163 
1164 fail_check_scatter:
1165 	sfc_adapter_unlock(sa);
1166 
1167 fail_inval:
1168 	sfc_log_init(sa, "failed %d", rc);
1169 	SFC_ASSERT(rc > 0);
1170 	return -rc;
1171 }
1172 static int
1173 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1174 {
1175 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1176 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1177 	struct sfc_port *port = &sa->port;
1178 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1179 	int rc = 0;
1180 
1181 	sfc_adapter_lock(sa);
1182 
1183 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1184 		goto unlock;
1185 
1186 	/*
1187 	 * Copy the address to the device private data so that
1188 	 * it could be recalled in the case of adapter restart.
1189 	 */
1190 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1191 
1192 	/*
1193 	 * Neither of the two following checks can return
1194 	 * an error. The new MAC address is preserved in
1195 	 * the device private data and can be activated
1196 	 * on the next port start if the user prevents
1197 	 * isolated mode from being enabled.
1198 	 */
1199 	if (sfc_sa2shared(sa)->isolated) {
1200 		sfc_warn(sa, "isolated mode is active on the port");
1201 		sfc_warn(sa, "will not set MAC address");
1202 		goto unlock;
1203 	}
1204 
1205 	if (sa->state != SFC_ETHDEV_STARTED) {
1206 		sfc_notice(sa, "the port is not started");
1207 		sfc_notice(sa, "the new MAC address will be set on port start");
1208 
1209 		goto unlock;
1210 	}
1211 
1212 	if (encp->enc_allow_set_mac_with_installed_filters) {
1213 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1214 		if (rc != 0) {
1215 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1216 			goto unlock;
1217 		}
1218 
1219 		/*
1220 		 * Changing the MAC address by means of MCDI request
1221 		 * has no effect on received traffic, therefore
1222 		 * we also need to update unicast filters
1223 		 */
1224 		rc = sfc_set_rx_mode_unchecked(sa);
1225 		if (rc != 0) {
1226 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1227 			/* Rollback the old address */
1228 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1229 			(void)sfc_set_rx_mode_unchecked(sa);
1230 		}
1231 	} else {
1232 		sfc_warn(sa, "cannot set MAC address with filters installed");
1233 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1234 		sfc_warn(sa, "(some traffic may be dropped)");
1235 
1236 		/*
1237 		 * Since setting MAC address with filters installed is not
1238 		 * allowed on the adapter, the new MAC address will be set
1239 		 * by means of adapter restart. sfc_start() shall retrieve
1240 		 * the new address from the device private data and set it.
1241 		 */
1242 		sfc_stop(sa);
1243 		rc = sfc_start(sa);
1244 		if (rc != 0)
1245 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1246 	}
1247 
1248 unlock:
1249 	if (rc != 0)
1250 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1251 
1252 	sfc_adapter_unlock(sa);
1253 
1254 	SFC_ASSERT(rc >= 0);
1255 	return -rc;
1256 }
1257 
1258 
1259 static int
1260 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1261 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1262 {
1263 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1264 	struct sfc_port *port = &sa->port;
1265 	uint8_t *mc_addrs = port->mcast_addrs;
1266 	int rc;
1267 	unsigned int i;
1268 
1269 	if (sfc_sa2shared(sa)->isolated) {
1270 		sfc_err(sa, "isolated mode is active on the port");
1271 		sfc_err(sa, "will not set multicast address list");
1272 		return -ENOTSUP;
1273 	}
1274 
1275 	if (mc_addrs == NULL)
1276 		return -ENOBUFS;
1277 
1278 	if (nb_mc_addr > port->max_mcast_addrs) {
1279 		sfc_err(sa, "too many multicast addresses: %u > %u",
1280 			 nb_mc_addr, port->max_mcast_addrs);
1281 		return -EINVAL;
1282 	}
1283 
1284 	for (i = 0; i < nb_mc_addr; ++i) {
1285 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1286 				 EFX_MAC_ADDR_LEN);
1287 		mc_addrs += EFX_MAC_ADDR_LEN;
1288 	}
1289 
1290 	port->nb_mcast_addrs = nb_mc_addr;
1291 
1292 	if (sa->state != SFC_ETHDEV_STARTED)
1293 		return 0;
1294 
1295 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1296 					port->nb_mcast_addrs);
1297 	if (rc != 0)
1298 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1299 
1300 	SFC_ASSERT(rc >= 0);
1301 	return -rc;
1302 }
1303 
1304 /*
1305  * The function is used by the secondary process as well. It must not
1306  * use any process-local pointers from the adapter data.
1307  */
1308 static void
1309 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1310 		      struct rte_eth_rxq_info *qinfo)
1311 {
1312 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1313 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1314 	struct sfc_rxq_info *rxq_info;
1315 
1316 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1317 
1318 	qinfo->mp = rxq_info->refill_mb_pool;
1319 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1320 	qinfo->conf.rx_drop_en = 1;
1321 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1322 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1323 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1324 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1325 		qinfo->scattered_rx = 1;
1326 	}
1327 	qinfo->nb_desc = rxq_info->entries;
1328 }
1329 
1330 /*
1331  * The function is used by the secondary process as well. It must not
1332  * use any process-local pointers from the adapter data.
1333  */
1334 static void
1335 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1336 		      struct rte_eth_txq_info *qinfo)
1337 {
1338 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1339 	struct sfc_txq_info *txq_info;
1340 
1341 	SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1342 
1343 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1344 
1345 	memset(qinfo, 0, sizeof(*qinfo));
1346 
1347 	qinfo->conf.offloads = txq_info->offloads;
1348 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1349 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1350 	qinfo->nb_desc = txq_info->entries;
1351 }
1352 
1353 /*
1354  * The function is used by the secondary process as well. It must not
1355  * use any process-local pointers from the adapter data.
1356  */
1357 static uint32_t
1358 sfc_rx_queue_count(void *rx_queue)
1359 {
1360 	struct sfc_dp_rxq *dp_rxq = rx_queue;
1361 	const struct sfc_dp_rx *dp_rx;
1362 	struct sfc_rxq_info *rxq_info;
1363 
1364 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1365 	rxq_info = sfc_rxq_info_by_dp_rxq(dp_rxq);
1366 
1367 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1368 		return 0;
1369 
1370 	return dp_rx->qdesc_npending(dp_rxq);
1371 }
1372 
1373 /*
1374  * The function is used by the secondary process as well. It must not
1375  * use any process-local pointers from the adapter data.
1376  */
1377 static int
1378 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1379 {
1380 	struct sfc_dp_rxq *dp_rxq = queue;
1381 	const struct sfc_dp_rx *dp_rx;
1382 
1383 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1384 
1385 	return dp_rx->qdesc_status(dp_rxq, offset);
1386 }
1387 
1388 /*
1389  * The function is used by the secondary process as well. It must not
1390  * use any process-local pointers from the adapter data.
1391  */
1392 static int
1393 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1394 {
1395 	struct sfc_dp_txq *dp_txq = queue;
1396 	const struct sfc_dp_tx *dp_tx;
1397 
1398 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1399 
1400 	return dp_tx->qdesc_status(dp_txq, offset);
1401 }
1402 
1403 static int
1404 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1405 {
1406 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1407 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1408 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1409 	struct sfc_rxq_info *rxq_info;
1410 	sfc_sw_index_t sw_index;
1411 	int rc;
1412 
1413 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1414 
1415 	sfc_adapter_lock(sa);
1416 
1417 	rc = EINVAL;
1418 	if (sa->state != SFC_ETHDEV_STARTED)
1419 		goto fail_not_started;
1420 
1421 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1422 	if (rxq_info->state != SFC_RXQ_INITIALIZED)
1423 		goto fail_not_setup;
1424 
1425 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1426 	rc = sfc_rx_qstart(sa, sw_index);
1427 	if (rc != 0)
1428 		goto fail_rx_qstart;
1429 
1430 	rxq_info->deferred_started = B_TRUE;
1431 
1432 	sfc_adapter_unlock(sa);
1433 
1434 	return 0;
1435 
1436 fail_rx_qstart:
1437 fail_not_setup:
1438 fail_not_started:
1439 	sfc_adapter_unlock(sa);
1440 	SFC_ASSERT(rc > 0);
1441 	return -rc;
1442 }
1443 
1444 static int
1445 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1446 {
1447 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1448 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1449 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1450 	struct sfc_rxq_info *rxq_info;
1451 	sfc_sw_index_t sw_index;
1452 
1453 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1454 
1455 	sfc_adapter_lock(sa);
1456 
1457 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1458 	sfc_rx_qstop(sa, sw_index);
1459 
1460 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1461 	rxq_info->deferred_started = B_FALSE;
1462 
1463 	sfc_adapter_unlock(sa);
1464 
1465 	return 0;
1466 }
1467 
1468 static int
1469 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1470 {
1471 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1472 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1473 	struct sfc_txq_info *txq_info;
1474 	sfc_sw_index_t sw_index;
1475 	int rc;
1476 
1477 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1478 
1479 	sfc_adapter_lock(sa);
1480 
1481 	rc = EINVAL;
1482 	if (sa->state != SFC_ETHDEV_STARTED)
1483 		goto fail_not_started;
1484 
1485 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1486 	if (txq_info->state != SFC_TXQ_INITIALIZED)
1487 		goto fail_not_setup;
1488 
1489 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1490 	rc = sfc_tx_qstart(sa, sw_index);
1491 	if (rc != 0)
1492 		goto fail_tx_qstart;
1493 
1494 	txq_info->deferred_started = B_TRUE;
1495 
1496 	sfc_adapter_unlock(sa);
1497 	return 0;
1498 
1499 fail_tx_qstart:
1500 
1501 fail_not_setup:
1502 fail_not_started:
1503 	sfc_adapter_unlock(sa);
1504 	SFC_ASSERT(rc > 0);
1505 	return -rc;
1506 }
1507 
1508 static int
1509 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1510 {
1511 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1512 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1513 	struct sfc_txq_info *txq_info;
1514 	sfc_sw_index_t sw_index;
1515 
1516 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1517 
1518 	sfc_adapter_lock(sa);
1519 
1520 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1521 	sfc_tx_qstop(sa, sw_index);
1522 
1523 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1524 	txq_info->deferred_started = B_FALSE;
1525 
1526 	sfc_adapter_unlock(sa);
1527 	return 0;
1528 }
1529 
1530 static efx_tunnel_protocol_t
1531 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1532 {
1533 	switch (rte_type) {
1534 	case RTE_TUNNEL_TYPE_VXLAN:
1535 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1536 	case RTE_TUNNEL_TYPE_GENEVE:
1537 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1538 	default:
1539 		return EFX_TUNNEL_NPROTOS;
1540 	}
1541 }
1542 
1543 enum sfc_udp_tunnel_op_e {
1544 	SFC_UDP_TUNNEL_ADD_PORT,
1545 	SFC_UDP_TUNNEL_DEL_PORT,
1546 };
1547 
1548 static int
1549 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1550 		      struct rte_eth_udp_tunnel *tunnel_udp,
1551 		      enum sfc_udp_tunnel_op_e op)
1552 {
1553 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1554 	efx_tunnel_protocol_t tunnel_proto;
1555 	int rc;
1556 
1557 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1558 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1559 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1560 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1561 
1562 	tunnel_proto =
1563 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1564 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1565 		rc = ENOTSUP;
1566 		goto fail_bad_proto;
1567 	}
1568 
1569 	sfc_adapter_lock(sa);
1570 
1571 	switch (op) {
1572 	case SFC_UDP_TUNNEL_ADD_PORT:
1573 		rc = efx_tunnel_config_udp_add(sa->nic,
1574 					       tunnel_udp->udp_port,
1575 					       tunnel_proto);
1576 		break;
1577 	case SFC_UDP_TUNNEL_DEL_PORT:
1578 		rc = efx_tunnel_config_udp_remove(sa->nic,
1579 						  tunnel_udp->udp_port,
1580 						  tunnel_proto);
1581 		break;
1582 	default:
1583 		rc = EINVAL;
1584 		goto fail_bad_op;
1585 	}
1586 
1587 	if (rc != 0)
1588 		goto fail_op;
1589 
1590 	if (sa->state == SFC_ETHDEV_STARTED) {
1591 		rc = efx_tunnel_reconfigure(sa->nic);
1592 		if (rc == EAGAIN) {
1593 			/*
1594 			 * Configuration is accepted by FW and MC reboot
1595 			 * is initiated to apply the changes. MC reboot
1596 			 * will be handled in a usual way (MC reboot
1597 			 * event on management event queue and adapter
1598 			 * restart).
1599 			 */
1600 			rc = 0;
1601 		} else if (rc != 0) {
1602 			goto fail_reconfigure;
1603 		}
1604 	}
1605 
1606 	sfc_adapter_unlock(sa);
1607 	return 0;
1608 
1609 fail_reconfigure:
1610 	/* Remove/restore entry since the change makes the trouble */
1611 	switch (op) {
1612 	case SFC_UDP_TUNNEL_ADD_PORT:
1613 		(void)efx_tunnel_config_udp_remove(sa->nic,
1614 						   tunnel_udp->udp_port,
1615 						   tunnel_proto);
1616 		break;
1617 	case SFC_UDP_TUNNEL_DEL_PORT:
1618 		(void)efx_tunnel_config_udp_add(sa->nic,
1619 						tunnel_udp->udp_port,
1620 						tunnel_proto);
1621 		break;
1622 	}
1623 
1624 fail_op:
1625 fail_bad_op:
1626 	sfc_adapter_unlock(sa);
1627 
1628 fail_bad_proto:
1629 	SFC_ASSERT(rc > 0);
1630 	return -rc;
1631 }
1632 
1633 static int
1634 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1635 			    struct rte_eth_udp_tunnel *tunnel_udp)
1636 {
1637 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1638 }
1639 
1640 static int
1641 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1642 			    struct rte_eth_udp_tunnel *tunnel_udp)
1643 {
1644 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1645 }
1646 
1647 /*
1648  * The function is used by the secondary process as well. It must not
1649  * use any process-local pointers from the adapter data.
1650  */
1651 static int
1652 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1653 			  struct rte_eth_rss_conf *rss_conf)
1654 {
1655 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1656 	struct sfc_rss *rss = &sas->rss;
1657 
1658 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1659 		return -ENOTSUP;
1660 
1661 	/*
1662 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1663 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1664 	 * flags which corresponds to the active EFX configuration stored
1665 	 * locally in 'sfc_adapter' and kept up-to-date
1666 	 */
1667 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1668 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1669 	if (rss_conf->rss_key != NULL)
1670 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1671 
1672 	return 0;
1673 }
1674 
1675 static int
1676 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1677 			struct rte_eth_rss_conf *rss_conf)
1678 {
1679 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1680 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1681 	unsigned int efx_hash_types;
1682 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1683 	unsigned int n_contexts;
1684 	unsigned int mode_i = 0;
1685 	unsigned int key_i = 0;
1686 	unsigned int i = 0;
1687 	int rc = 0;
1688 
1689 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1690 
1691 	if (sfc_sa2shared(sa)->isolated)
1692 		return -ENOTSUP;
1693 
1694 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1695 		sfc_err(sa, "RSS is not available");
1696 		return -ENOTSUP;
1697 	}
1698 
1699 	if (rss->channels == 0) {
1700 		sfc_err(sa, "RSS is not configured");
1701 		return -EINVAL;
1702 	}
1703 
1704 	if ((rss_conf->rss_key != NULL) &&
1705 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1706 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1707 			sizeof(rss->key));
1708 		return -EINVAL;
1709 	}
1710 
1711 	sfc_adapter_lock(sa);
1712 
1713 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1714 	if (rc != 0)
1715 		goto fail_rx_hf_rte_to_efx;
1716 
1717 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1718 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1719 					   rss->hash_alg, efx_hash_types,
1720 					   B_TRUE);
1721 		if (rc != 0)
1722 			goto fail_scale_mode_set;
1723 	}
1724 
1725 	if (rss_conf->rss_key != NULL) {
1726 		if (sa->state == SFC_ETHDEV_STARTED) {
1727 			for (key_i = 0; key_i < n_contexts; key_i++) {
1728 				rc = efx_rx_scale_key_set(sa->nic,
1729 							  contexts[key_i],
1730 							  rss_conf->rss_key,
1731 							  sizeof(rss->key));
1732 				if (rc != 0)
1733 					goto fail_scale_key_set;
1734 			}
1735 		}
1736 
1737 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1738 	}
1739 
1740 	rss->hash_types = efx_hash_types;
1741 
1742 	sfc_adapter_unlock(sa);
1743 
1744 	return 0;
1745 
1746 fail_scale_key_set:
1747 	for (i = 0; i < key_i; i++) {
1748 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1749 					 sizeof(rss->key)) != 0)
1750 			sfc_err(sa, "failed to restore RSS key");
1751 	}
1752 
1753 fail_scale_mode_set:
1754 	for (i = 0; i < mode_i; i++) {
1755 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1756 					  EFX_RX_HASHALG_TOEPLITZ,
1757 					  rss->hash_types, B_TRUE) != 0)
1758 			sfc_err(sa, "failed to restore RSS mode");
1759 	}
1760 
1761 fail_rx_hf_rte_to_efx:
1762 	sfc_adapter_unlock(sa);
1763 	return -rc;
1764 }
1765 
1766 /*
1767  * The function is used by the secondary process as well. It must not
1768  * use any process-local pointers from the adapter data.
1769  */
1770 static int
1771 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1772 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1773 		       uint16_t reta_size)
1774 {
1775 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1776 	struct sfc_rss *rss = &sas->rss;
1777 	int entry;
1778 
1779 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1780 		return -ENOTSUP;
1781 
1782 	if (rss->channels == 0)
1783 		return -EINVAL;
1784 
1785 	if (reta_size != EFX_RSS_TBL_SIZE)
1786 		return -EINVAL;
1787 
1788 	for (entry = 0; entry < reta_size; entry++) {
1789 		int grp = entry / RTE_RETA_GROUP_SIZE;
1790 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1791 
1792 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1793 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 static int
1800 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1801 			struct rte_eth_rss_reta_entry64 *reta_conf,
1802 			uint16_t reta_size)
1803 {
1804 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1805 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1806 	unsigned int *rss_tbl_new;
1807 	uint16_t entry;
1808 	int rc = 0;
1809 
1810 
1811 	if (sfc_sa2shared(sa)->isolated)
1812 		return -ENOTSUP;
1813 
1814 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1815 		sfc_err(sa, "RSS is not available");
1816 		return -ENOTSUP;
1817 	}
1818 
1819 	if (rss->channels == 0) {
1820 		sfc_err(sa, "RSS is not configured");
1821 		return -EINVAL;
1822 	}
1823 
1824 	if (reta_size != EFX_RSS_TBL_SIZE) {
1825 		sfc_err(sa, "RETA size is wrong (should be %u)",
1826 			EFX_RSS_TBL_SIZE);
1827 		return -EINVAL;
1828 	}
1829 
1830 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1831 	if (rss_tbl_new == NULL)
1832 		return -ENOMEM;
1833 
1834 	sfc_adapter_lock(sa);
1835 
1836 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1837 
1838 	for (entry = 0; entry < reta_size; entry++) {
1839 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1840 		struct rte_eth_rss_reta_entry64 *grp;
1841 
1842 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1843 
1844 		if (grp->mask & (1ull << grp_idx)) {
1845 			if (grp->reta[grp_idx] >= rss->channels) {
1846 				rc = EINVAL;
1847 				goto bad_reta_entry;
1848 			}
1849 			rss_tbl_new[entry] = grp->reta[grp_idx];
1850 		}
1851 	}
1852 
1853 	if (sa->state == SFC_ETHDEV_STARTED) {
1854 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1855 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1856 		if (rc != 0)
1857 			goto fail_scale_tbl_set;
1858 	}
1859 
1860 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1861 
1862 fail_scale_tbl_set:
1863 bad_reta_entry:
1864 	sfc_adapter_unlock(sa);
1865 
1866 	rte_free(rss_tbl_new);
1867 
1868 	SFC_ASSERT(rc >= 0);
1869 	return -rc;
1870 }
1871 
1872 static int
1873 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1874 		     const struct rte_flow_ops **ops)
1875 {
1876 	*ops = &sfc_flow_ops;
1877 	return 0;
1878 }
1879 
1880 static int
1881 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1882 {
1883 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1884 
1885 	/*
1886 	 * If Rx datapath does not provide callback to check mempool,
1887 	 * all pools are supported.
1888 	 */
1889 	if (sap->dp_rx->pool_ops_supported == NULL)
1890 		return 1;
1891 
1892 	return sap->dp_rx->pool_ops_supported(pool);
1893 }
1894 
1895 static int
1896 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1897 {
1898 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1899 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1900 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1901 	struct sfc_rxq_info *rxq_info;
1902 
1903 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1904 
1905 	return sap->dp_rx->intr_enable(rxq_info->dp);
1906 }
1907 
1908 static int
1909 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1910 {
1911 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1912 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1913 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1914 	struct sfc_rxq_info *rxq_info;
1915 
1916 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1917 
1918 	return sap->dp_rx->intr_disable(rxq_info->dp);
1919 }
1920 
1921 struct sfc_mport_journal_ctx {
1922 	struct sfc_adapter		*sa;
1923 	uint16_t			switch_domain_id;
1924 	uint32_t			mcdi_handle;
1925 	bool				controllers_assigned;
1926 	efx_pcie_interface_t		*controllers;
1927 	size_t				nb_controllers;
1928 };
1929 
1930 static int
1931 sfc_journal_ctx_add_controller(struct sfc_mport_journal_ctx *ctx,
1932 			       efx_pcie_interface_t intf)
1933 {
1934 	efx_pcie_interface_t *new_controllers;
1935 	size_t i, target;
1936 	size_t new_size;
1937 
1938 	if (ctx->controllers == NULL) {
1939 		ctx->controllers = rte_malloc("sfc_controller_mapping",
1940 					      sizeof(ctx->controllers[0]), 0);
1941 		if (ctx->controllers == NULL)
1942 			return ENOMEM;
1943 
1944 		ctx->controllers[0] = intf;
1945 		ctx->nb_controllers = 1;
1946 
1947 		return 0;
1948 	}
1949 
1950 	for (i = 0; i < ctx->nb_controllers; i++) {
1951 		if (ctx->controllers[i] == intf)
1952 			return 0;
1953 		if (ctx->controllers[i] > intf)
1954 			break;
1955 	}
1956 	target = i;
1957 
1958 	ctx->nb_controllers += 1;
1959 	new_size = ctx->nb_controllers * sizeof(ctx->controllers[0]);
1960 
1961 	new_controllers = rte_realloc(ctx->controllers, new_size, 0);
1962 	if (new_controllers == NULL) {
1963 		rte_free(ctx->controllers);
1964 		return ENOMEM;
1965 	}
1966 	ctx->controllers = new_controllers;
1967 
1968 	for (i = target + 1; i < ctx->nb_controllers; i++)
1969 		ctx->controllers[i] = ctx->controllers[i - 1];
1970 
1971 	ctx->controllers[target] = intf;
1972 
1973 	return 0;
1974 }
1975 
1976 static efx_rc_t
1977 sfc_process_mport_journal_entry(struct sfc_mport_journal_ctx *ctx,
1978 				efx_mport_desc_t *mport)
1979 {
1980 	struct sfc_mae_switch_port_request req;
1981 	efx_mport_sel_t entity_selector;
1982 	efx_mport_sel_t ethdev_mport;
1983 	uint16_t switch_port_id;
1984 	efx_rc_t efx_rc;
1985 	int rc;
1986 
1987 	sfc_dbg(ctx->sa,
1988 		"processing mport id %u (controller %u pf %u vf %u)",
1989 		mport->emd_id.id, mport->emd_vnic.ev_intf,
1990 		mport->emd_vnic.ev_pf, mport->emd_vnic.ev_vf);
1991 	efx_mae_mport_invalid(&ethdev_mport);
1992 
1993 	if (!ctx->controllers_assigned) {
1994 		rc = sfc_journal_ctx_add_controller(ctx,
1995 						    mport->emd_vnic.ev_intf);
1996 		if (rc != 0)
1997 			return rc;
1998 	}
1999 
2000 	/* Build Mport selector */
2001 	efx_rc = efx_mae_mport_by_pcie_mh_function(mport->emd_vnic.ev_intf,
2002 						mport->emd_vnic.ev_pf,
2003 						mport->emd_vnic.ev_vf,
2004 						&entity_selector);
2005 	if (efx_rc != 0) {
2006 		sfc_err(ctx->sa, "failed to build entity mport selector for c%upf%uvf%u",
2007 			mport->emd_vnic.ev_intf,
2008 			mport->emd_vnic.ev_pf,
2009 			mport->emd_vnic.ev_vf);
2010 		return efx_rc;
2011 	}
2012 
2013 	rc = sfc_mae_switch_port_id_by_entity(ctx->switch_domain_id,
2014 					      &entity_selector,
2015 					      SFC_MAE_SWITCH_PORT_REPRESENTOR,
2016 					      &switch_port_id);
2017 	switch (rc) {
2018 	case 0:
2019 		/* Already registered */
2020 		break;
2021 	case ENOENT:
2022 		/*
2023 		 * No representor has been created for this entity.
2024 		 * Create a dummy switch registry entry with an invalid ethdev
2025 		 * mport selector. When a corresponding representor is created,
2026 		 * this entry will be updated.
2027 		 */
2028 		req.type = SFC_MAE_SWITCH_PORT_REPRESENTOR;
2029 		req.entity_mportp = &entity_selector;
2030 		req.ethdev_mportp = &ethdev_mport;
2031 		req.ethdev_port_id = RTE_MAX_ETHPORTS;
2032 		req.port_data.repr.intf = mport->emd_vnic.ev_intf;
2033 		req.port_data.repr.pf = mport->emd_vnic.ev_pf;
2034 		req.port_data.repr.vf = mport->emd_vnic.ev_vf;
2035 
2036 		rc = sfc_mae_assign_switch_port(ctx->switch_domain_id,
2037 						&req, &switch_port_id);
2038 		if (rc != 0) {
2039 			sfc_err(ctx->sa,
2040 				"failed to assign MAE switch port for c%upf%uvf%u: %s",
2041 				mport->emd_vnic.ev_intf,
2042 				mport->emd_vnic.ev_pf,
2043 				mport->emd_vnic.ev_vf,
2044 				rte_strerror(rc));
2045 			return rc;
2046 		}
2047 		break;
2048 	default:
2049 		sfc_err(ctx->sa, "failed to find MAE switch port for c%upf%uvf%u: %s",
2050 			mport->emd_vnic.ev_intf,
2051 			mport->emd_vnic.ev_pf,
2052 			mport->emd_vnic.ev_vf,
2053 			rte_strerror(rc));
2054 		return rc;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 static efx_rc_t
2061 sfc_process_mport_journal_cb(void *data, efx_mport_desc_t *mport,
2062 			     size_t mport_len)
2063 {
2064 	struct sfc_mport_journal_ctx *ctx = data;
2065 
2066 	if (ctx == NULL || ctx->sa == NULL) {
2067 		sfc_err(ctx->sa, "received NULL context or SFC adapter");
2068 		return EINVAL;
2069 	}
2070 
2071 	if (mport_len != sizeof(*mport)) {
2072 		sfc_err(ctx->sa, "actual and expected mport buffer sizes differ");
2073 		return EINVAL;
2074 	}
2075 
2076 	SFC_ASSERT(sfc_adapter_is_locked(ctx->sa));
2077 
2078 	/*
2079 	 * If a zombie flag is set, it means the mport has been marked for
2080 	 * deletion and cannot be used for any new operations. The mport will
2081 	 * be destroyed completely once all references to it are released.
2082 	 */
2083 	if (mport->emd_zombie) {
2084 		sfc_dbg(ctx->sa, "mport is a zombie, skipping");
2085 		return 0;
2086 	}
2087 	if (mport->emd_type != EFX_MPORT_TYPE_VNIC) {
2088 		sfc_dbg(ctx->sa, "mport is not a VNIC, skipping");
2089 		return 0;
2090 	}
2091 	if (mport->emd_vnic.ev_client_type != EFX_MPORT_VNIC_CLIENT_FUNCTION) {
2092 		sfc_dbg(ctx->sa, "mport is not a function, skipping");
2093 		return 0;
2094 	}
2095 	if (mport->emd_vnic.ev_handle == ctx->mcdi_handle) {
2096 		sfc_dbg(ctx->sa, "mport is this driver instance, skipping");
2097 		return 0;
2098 	}
2099 
2100 	return sfc_process_mport_journal_entry(ctx, mport);
2101 }
2102 
2103 static int
2104 sfc_process_mport_journal(struct sfc_adapter *sa)
2105 {
2106 	struct sfc_mport_journal_ctx ctx;
2107 	const efx_pcie_interface_t *controllers;
2108 	size_t nb_controllers;
2109 	efx_rc_t efx_rc;
2110 	int rc;
2111 
2112 	memset(&ctx, 0, sizeof(ctx));
2113 	ctx.sa = sa;
2114 	ctx.switch_domain_id = sa->mae.switch_domain_id;
2115 
2116 	efx_rc = efx_mcdi_get_own_client_handle(sa->nic, &ctx.mcdi_handle);
2117 	if (efx_rc != 0) {
2118 		sfc_err(sa, "failed to get own MCDI handle");
2119 		SFC_ASSERT(efx_rc > 0);
2120 		return efx_rc;
2121 	}
2122 
2123 	rc = sfc_mae_switch_domain_controllers(ctx.switch_domain_id,
2124 					       &controllers, &nb_controllers);
2125 	if (rc != 0) {
2126 		sfc_err(sa, "failed to get controller mapping");
2127 		return rc;
2128 	}
2129 
2130 	ctx.controllers_assigned = controllers != NULL;
2131 	ctx.controllers = NULL;
2132 	ctx.nb_controllers = 0;
2133 
2134 	efx_rc = efx_mae_read_mport_journal(sa->nic,
2135 					    sfc_process_mport_journal_cb, &ctx);
2136 	if (efx_rc != 0) {
2137 		sfc_err(sa, "failed to process MAE mport journal");
2138 		SFC_ASSERT(efx_rc > 0);
2139 		return efx_rc;
2140 	}
2141 
2142 	if (controllers == NULL) {
2143 		rc = sfc_mae_switch_domain_map_controllers(ctx.switch_domain_id,
2144 							   ctx.controllers,
2145 							   ctx.nb_controllers);
2146 		if (rc != 0)
2147 			return rc;
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 static void
2154 sfc_count_representors_cb(enum sfc_mae_switch_port_type type,
2155 			  const efx_mport_sel_t *ethdev_mportp __rte_unused,
2156 			  uint16_t ethdev_port_id __rte_unused,
2157 			  const efx_mport_sel_t *entity_mportp __rte_unused,
2158 			  uint16_t switch_port_id __rte_unused,
2159 			  union sfc_mae_switch_port_data *port_datap
2160 				__rte_unused,
2161 			  void *user_datap)
2162 {
2163 	int *counter = user_datap;
2164 
2165 	SFC_ASSERT(counter != NULL);
2166 
2167 	if (type == SFC_MAE_SWITCH_PORT_REPRESENTOR)
2168 		(*counter)++;
2169 }
2170 
2171 struct sfc_get_representors_ctx {
2172 	struct rte_eth_representor_info	*info;
2173 	struct sfc_adapter		*sa;
2174 	uint16_t			switch_domain_id;
2175 	const efx_pcie_interface_t	*controllers;
2176 	size_t				nb_controllers;
2177 };
2178 
2179 static void
2180 sfc_get_representors_cb(enum sfc_mae_switch_port_type type,
2181 			const efx_mport_sel_t *ethdev_mportp __rte_unused,
2182 			uint16_t ethdev_port_id __rte_unused,
2183 			const efx_mport_sel_t *entity_mportp __rte_unused,
2184 			uint16_t switch_port_id,
2185 			union sfc_mae_switch_port_data *port_datap,
2186 			void *user_datap)
2187 {
2188 	struct sfc_get_representors_ctx *ctx = user_datap;
2189 	struct rte_eth_representor_range *range;
2190 	int ret;
2191 	int rc;
2192 
2193 	SFC_ASSERT(ctx != NULL);
2194 	SFC_ASSERT(ctx->info != NULL);
2195 	SFC_ASSERT(ctx->sa != NULL);
2196 
2197 	if (type != SFC_MAE_SWITCH_PORT_REPRESENTOR) {
2198 		sfc_dbg(ctx->sa, "not a representor, skipping");
2199 		return;
2200 	}
2201 	if (ctx->info->nb_ranges >= ctx->info->nb_ranges_alloc) {
2202 		sfc_dbg(ctx->sa, "info structure is full already");
2203 		return;
2204 	}
2205 
2206 	range = &ctx->info->ranges[ctx->info->nb_ranges];
2207 	rc = sfc_mae_switch_controller_from_mapping(ctx->controllers,
2208 						    ctx->nb_controllers,
2209 						    port_datap->repr.intf,
2210 						    &range->controller);
2211 	if (rc != 0) {
2212 		sfc_err(ctx->sa, "invalid representor controller: %d",
2213 			port_datap->repr.intf);
2214 		range->controller = -1;
2215 	}
2216 	range->pf = port_datap->repr.pf;
2217 	range->id_base = switch_port_id;
2218 	range->id_end = switch_port_id;
2219 
2220 	if (port_datap->repr.vf != EFX_PCI_VF_INVALID) {
2221 		range->type = RTE_ETH_REPRESENTOR_VF;
2222 		range->vf = port_datap->repr.vf;
2223 		ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2224 			       "c%dpf%dvf%d", range->controller, range->pf,
2225 			       range->vf);
2226 	} else {
2227 		range->type = RTE_ETH_REPRESENTOR_PF;
2228 		ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2229 			 "c%dpf%d", range->controller, range->pf);
2230 	}
2231 	if (ret >= RTE_DEV_NAME_MAX_LEN) {
2232 		sfc_err(ctx->sa, "representor name has been truncated: %s",
2233 			range->name);
2234 	}
2235 
2236 	ctx->info->nb_ranges++;
2237 }
2238 
2239 static int
2240 sfc_representor_info_get(struct rte_eth_dev *dev,
2241 			 struct rte_eth_representor_info *info)
2242 {
2243 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2244 	struct sfc_get_representors_ctx get_repr_ctx;
2245 	const efx_nic_cfg_t *nic_cfg;
2246 	uint16_t switch_domain_id;
2247 	uint32_t nb_repr;
2248 	int controller;
2249 	int rc;
2250 
2251 	sfc_adapter_lock(sa);
2252 
2253 	if (sa->mae.status != SFC_MAE_STATUS_SUPPORTED) {
2254 		sfc_adapter_unlock(sa);
2255 		return -ENOTSUP;
2256 	}
2257 
2258 	rc = sfc_process_mport_journal(sa);
2259 	if (rc != 0) {
2260 		sfc_adapter_unlock(sa);
2261 		SFC_ASSERT(rc > 0);
2262 		return -rc;
2263 	}
2264 
2265 	switch_domain_id = sa->mae.switch_domain_id;
2266 
2267 	nb_repr = 0;
2268 	rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2269 					  sfc_count_representors_cb,
2270 					  &nb_repr);
2271 	if (rc != 0) {
2272 		sfc_adapter_unlock(sa);
2273 		SFC_ASSERT(rc > 0);
2274 		return -rc;
2275 	}
2276 
2277 	if (info == NULL) {
2278 		sfc_adapter_unlock(sa);
2279 		return nb_repr;
2280 	}
2281 
2282 	rc = sfc_mae_switch_domain_controllers(switch_domain_id,
2283 					       &get_repr_ctx.controllers,
2284 					       &get_repr_ctx.nb_controllers);
2285 	if (rc != 0) {
2286 		sfc_adapter_unlock(sa);
2287 		SFC_ASSERT(rc > 0);
2288 		return -rc;
2289 	}
2290 
2291 	nic_cfg = efx_nic_cfg_get(sa->nic);
2292 
2293 	rc = sfc_mae_switch_domain_get_controller(switch_domain_id,
2294 						  nic_cfg->enc_intf,
2295 						  &controller);
2296 	if (rc != 0) {
2297 		sfc_err(sa, "invalid controller: %d", nic_cfg->enc_intf);
2298 		controller = -1;
2299 	}
2300 
2301 	info->controller = controller;
2302 	info->pf = nic_cfg->enc_pf;
2303 
2304 	get_repr_ctx.info = info;
2305 	get_repr_ctx.sa = sa;
2306 	get_repr_ctx.switch_domain_id = switch_domain_id;
2307 	rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2308 					  sfc_get_representors_cb,
2309 					  &get_repr_ctx);
2310 	if (rc != 0) {
2311 		sfc_adapter_unlock(sa);
2312 		SFC_ASSERT(rc > 0);
2313 		return -rc;
2314 	}
2315 
2316 	sfc_adapter_unlock(sa);
2317 	return nb_repr;
2318 }
2319 
2320 static int
2321 sfc_rx_metadata_negotiate(struct rte_eth_dev *dev, uint64_t *features)
2322 {
2323 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2324 	uint64_t supported = 0;
2325 
2326 	sfc_adapter_lock(sa);
2327 
2328 	if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_FLAG) != 0)
2329 		supported |= RTE_ETH_RX_METADATA_USER_FLAG;
2330 
2331 	if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_MARK) != 0)
2332 		supported |= RTE_ETH_RX_METADATA_USER_MARK;
2333 
2334 	if (sfc_flow_tunnel_is_supported(sa))
2335 		supported |= RTE_ETH_RX_METADATA_TUNNEL_ID;
2336 
2337 	sa->negotiated_rx_metadata = supported & *features;
2338 	*features = sa->negotiated_rx_metadata;
2339 
2340 	sfc_adapter_unlock(sa);
2341 
2342 	return 0;
2343 }
2344 
2345 static const struct eth_dev_ops sfc_eth_dev_ops = {
2346 	.dev_configure			= sfc_dev_configure,
2347 	.dev_start			= sfc_dev_start,
2348 	.dev_stop			= sfc_dev_stop,
2349 	.dev_set_link_up		= sfc_dev_set_link_up,
2350 	.dev_set_link_down		= sfc_dev_set_link_down,
2351 	.dev_close			= sfc_dev_close,
2352 	.promiscuous_enable		= sfc_dev_promisc_enable,
2353 	.promiscuous_disable		= sfc_dev_promisc_disable,
2354 	.allmulticast_enable		= sfc_dev_allmulti_enable,
2355 	.allmulticast_disable		= sfc_dev_allmulti_disable,
2356 	.link_update			= sfc_dev_link_update,
2357 	.stats_get			= sfc_stats_get,
2358 	.stats_reset			= sfc_stats_reset,
2359 	.xstats_get			= sfc_xstats_get,
2360 	.xstats_reset			= sfc_stats_reset,
2361 	.xstats_get_names		= sfc_xstats_get_names,
2362 	.dev_infos_get			= sfc_dev_infos_get,
2363 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2364 	.mtu_set			= sfc_dev_set_mtu,
2365 	.rx_queue_start			= sfc_rx_queue_start,
2366 	.rx_queue_stop			= sfc_rx_queue_stop,
2367 	.tx_queue_start			= sfc_tx_queue_start,
2368 	.tx_queue_stop			= sfc_tx_queue_stop,
2369 	.rx_queue_setup			= sfc_rx_queue_setup,
2370 	.rx_queue_release		= sfc_rx_queue_release,
2371 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
2372 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
2373 	.tx_queue_setup			= sfc_tx_queue_setup,
2374 	.tx_queue_release		= sfc_tx_queue_release,
2375 	.flow_ctrl_get			= sfc_flow_ctrl_get,
2376 	.flow_ctrl_set			= sfc_flow_ctrl_set,
2377 	.mac_addr_set			= sfc_mac_addr_set,
2378 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
2379 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
2380 	.reta_update			= sfc_dev_rss_reta_update,
2381 	.reta_query			= sfc_dev_rss_reta_query,
2382 	.rss_hash_update		= sfc_dev_rss_hash_update,
2383 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2384 	.flow_ops_get			= sfc_dev_flow_ops_get,
2385 	.set_mc_addr_list		= sfc_set_mc_addr_list,
2386 	.rxq_info_get			= sfc_rx_queue_info_get,
2387 	.txq_info_get			= sfc_tx_queue_info_get,
2388 	.fw_version_get			= sfc_fw_version_get,
2389 	.xstats_get_by_id		= sfc_xstats_get_by_id,
2390 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
2391 	.pool_ops_supported		= sfc_pool_ops_supported,
2392 	.representor_info_get		= sfc_representor_info_get,
2393 	.rx_metadata_negotiate		= sfc_rx_metadata_negotiate,
2394 };
2395 
2396 struct sfc_ethdev_init_data {
2397 	uint16_t		nb_representors;
2398 };
2399 
2400 /**
2401  * Duplicate a string in potentially shared memory required for
2402  * multi-process support.
2403  *
2404  * strdup() allocates from process-local heap/memory.
2405  */
2406 static char *
2407 sfc_strdup(const char *str)
2408 {
2409 	size_t size;
2410 	char *copy;
2411 
2412 	if (str == NULL)
2413 		return NULL;
2414 
2415 	size = strlen(str) + 1;
2416 	copy = rte_malloc(__func__, size, 0);
2417 	if (copy != NULL)
2418 		rte_memcpy(copy, str, size);
2419 
2420 	return copy;
2421 }
2422 
2423 static int
2424 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
2425 {
2426 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2427 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2428 	const struct sfc_dp_rx *dp_rx;
2429 	const struct sfc_dp_tx *dp_tx;
2430 	const efx_nic_cfg_t *encp;
2431 	unsigned int avail_caps = 0;
2432 	const char *rx_name = NULL;
2433 	const char *tx_name = NULL;
2434 	int rc;
2435 
2436 	switch (sa->family) {
2437 	case EFX_FAMILY_HUNTINGTON:
2438 	case EFX_FAMILY_MEDFORD:
2439 	case EFX_FAMILY_MEDFORD2:
2440 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
2441 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
2442 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
2443 		break;
2444 	case EFX_FAMILY_RIVERHEAD:
2445 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
2446 		break;
2447 	default:
2448 		break;
2449 	}
2450 
2451 	encp = efx_nic_cfg_get(sa->nic);
2452 	if (encp->enc_rx_es_super_buffer_supported)
2453 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
2454 
2455 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
2456 				sfc_kvarg_string_handler, &rx_name);
2457 	if (rc != 0)
2458 		goto fail_kvarg_rx_datapath;
2459 
2460 	if (rx_name != NULL) {
2461 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
2462 		if (dp_rx == NULL) {
2463 			sfc_err(sa, "Rx datapath %s not found", rx_name);
2464 			rc = ENOENT;
2465 			goto fail_dp_rx;
2466 		}
2467 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
2468 			sfc_err(sa,
2469 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
2470 				rx_name);
2471 			rc = EINVAL;
2472 			goto fail_dp_rx_caps;
2473 		}
2474 	} else {
2475 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
2476 		if (dp_rx == NULL) {
2477 			sfc_err(sa, "Rx datapath by caps %#x not found",
2478 				avail_caps);
2479 			rc = ENOENT;
2480 			goto fail_dp_rx;
2481 		}
2482 	}
2483 
2484 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
2485 	if (sas->dp_rx_name == NULL) {
2486 		rc = ENOMEM;
2487 		goto fail_dp_rx_name;
2488 	}
2489 
2490 	if (strcmp(dp_rx->dp.name, SFC_KVARG_DATAPATH_EF10_ESSB) == 0) {
2491 		/* FLAG and MARK are always available from Rx prefix. */
2492 		sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_FLAG;
2493 		sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_MARK;
2494 	}
2495 
2496 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
2497 
2498 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
2499 				sfc_kvarg_string_handler, &tx_name);
2500 	if (rc != 0)
2501 		goto fail_kvarg_tx_datapath;
2502 
2503 	if (tx_name != NULL) {
2504 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
2505 		if (dp_tx == NULL) {
2506 			sfc_err(sa, "Tx datapath %s not found", tx_name);
2507 			rc = ENOENT;
2508 			goto fail_dp_tx;
2509 		}
2510 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2511 			sfc_err(sa,
2512 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
2513 				tx_name);
2514 			rc = EINVAL;
2515 			goto fail_dp_tx_caps;
2516 		}
2517 	} else {
2518 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2519 		if (dp_tx == NULL) {
2520 			sfc_err(sa, "Tx datapath by caps %#x not found",
2521 				avail_caps);
2522 			rc = ENOENT;
2523 			goto fail_dp_tx;
2524 		}
2525 	}
2526 
2527 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2528 	if (sas->dp_tx_name == NULL) {
2529 		rc = ENOMEM;
2530 		goto fail_dp_tx_name;
2531 	}
2532 
2533 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2534 
2535 	sa->priv.dp_rx = dp_rx;
2536 	sa->priv.dp_tx = dp_tx;
2537 
2538 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2539 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2540 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2541 
2542 	dev->rx_queue_count = sfc_rx_queue_count;
2543 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2544 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2545 	dev->dev_ops = &sfc_eth_dev_ops;
2546 
2547 	return 0;
2548 
2549 fail_dp_tx_name:
2550 fail_dp_tx_caps:
2551 fail_dp_tx:
2552 fail_kvarg_tx_datapath:
2553 	rte_free(sas->dp_rx_name);
2554 	sas->dp_rx_name = NULL;
2555 
2556 fail_dp_rx_name:
2557 fail_dp_rx_caps:
2558 fail_dp_rx:
2559 fail_kvarg_rx_datapath:
2560 	return rc;
2561 }
2562 
2563 static void
2564 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2565 {
2566 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2567 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2568 
2569 	dev->dev_ops = NULL;
2570 	dev->tx_pkt_prepare = NULL;
2571 	dev->rx_pkt_burst = NULL;
2572 	dev->tx_pkt_burst = NULL;
2573 
2574 	rte_free(sas->dp_tx_name);
2575 	sas->dp_tx_name = NULL;
2576 	sa->priv.dp_tx = NULL;
2577 
2578 	rte_free(sas->dp_rx_name);
2579 	sas->dp_rx_name = NULL;
2580 	sa->priv.dp_rx = NULL;
2581 }
2582 
2583 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2584 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2585 	.reta_query			= sfc_dev_rss_reta_query,
2586 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2587 	.rxq_info_get			= sfc_rx_queue_info_get,
2588 	.txq_info_get			= sfc_tx_queue_info_get,
2589 };
2590 
2591 static int
2592 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2593 {
2594 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2595 	struct sfc_adapter_priv *sap;
2596 	const struct sfc_dp_rx *dp_rx;
2597 	const struct sfc_dp_tx *dp_tx;
2598 	int rc;
2599 
2600 	/*
2601 	 * Allocate process private data from heap, since it should not
2602 	 * be located in shared memory allocated using rte_malloc() API.
2603 	 */
2604 	sap = calloc(1, sizeof(*sap));
2605 	if (sap == NULL) {
2606 		rc = ENOMEM;
2607 		goto fail_alloc_priv;
2608 	}
2609 
2610 	sap->logtype_main = logtype_main;
2611 
2612 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2613 	if (dp_rx == NULL) {
2614 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2615 			"cannot find %s Rx datapath", sas->dp_rx_name);
2616 		rc = ENOENT;
2617 		goto fail_dp_rx;
2618 	}
2619 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2620 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2621 			"%s Rx datapath does not support multi-process",
2622 			sas->dp_rx_name);
2623 		rc = EINVAL;
2624 		goto fail_dp_rx_multi_process;
2625 	}
2626 
2627 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2628 	if (dp_tx == NULL) {
2629 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2630 			"cannot find %s Tx datapath", sas->dp_tx_name);
2631 		rc = ENOENT;
2632 		goto fail_dp_tx;
2633 	}
2634 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2635 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2636 			"%s Tx datapath does not support multi-process",
2637 			sas->dp_tx_name);
2638 		rc = EINVAL;
2639 		goto fail_dp_tx_multi_process;
2640 	}
2641 
2642 	sap->dp_rx = dp_rx;
2643 	sap->dp_tx = dp_tx;
2644 
2645 	dev->process_private = sap;
2646 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2647 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2648 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2649 	dev->rx_queue_count = sfc_rx_queue_count;
2650 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2651 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2652 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2653 
2654 	return 0;
2655 
2656 fail_dp_tx_multi_process:
2657 fail_dp_tx:
2658 fail_dp_rx_multi_process:
2659 fail_dp_rx:
2660 	free(sap);
2661 
2662 fail_alloc_priv:
2663 	return rc;
2664 }
2665 
2666 static void
2667 sfc_register_dp(void)
2668 {
2669 	/* Register once */
2670 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2671 		/* Prefer EF10 datapath */
2672 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2673 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2674 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2675 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2676 
2677 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2678 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2679 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2680 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2681 	}
2682 }
2683 
2684 static int
2685 sfc_parse_switch_mode(struct sfc_adapter *sa, bool has_representors)
2686 {
2687 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
2688 	const char *switch_mode = NULL;
2689 	int rc;
2690 
2691 	sfc_log_init(sa, "entry");
2692 
2693 	rc = sfc_kvargs_process(sa, SFC_KVARG_SWITCH_MODE,
2694 				sfc_kvarg_string_handler, &switch_mode);
2695 	if (rc != 0)
2696 		goto fail_kvargs;
2697 
2698 	if (switch_mode == NULL) {
2699 		sa->switchdev = encp->enc_mae_supported &&
2700 				(!encp->enc_datapath_cap_evb ||
2701 				 has_representors);
2702 	} else if (strcasecmp(switch_mode, SFC_KVARG_SWITCH_MODE_LEGACY) == 0) {
2703 		sa->switchdev = false;
2704 	} else if (strcasecmp(switch_mode,
2705 			      SFC_KVARG_SWITCH_MODE_SWITCHDEV) == 0) {
2706 		sa->switchdev = true;
2707 	} else {
2708 		sfc_err(sa, "invalid switch mode device argument '%s'",
2709 			switch_mode);
2710 		rc = EINVAL;
2711 		goto fail_mode;
2712 	}
2713 
2714 	sfc_log_init(sa, "done");
2715 
2716 	return 0;
2717 
2718 fail_mode:
2719 fail_kvargs:
2720 	sfc_log_init(sa, "failed: %s", rte_strerror(rc));
2721 
2722 	return rc;
2723 }
2724 
2725 static int
2726 sfc_eth_dev_init(struct rte_eth_dev *dev, void *init_params)
2727 {
2728 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2729 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2730 	struct sfc_ethdev_init_data *init_data = init_params;
2731 	uint32_t logtype_main;
2732 	struct sfc_adapter *sa;
2733 	int rc;
2734 	const efx_nic_cfg_t *encp;
2735 	const struct rte_ether_addr *from;
2736 	int ret;
2737 
2738 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2739 			SFC_EFX_DEV_CLASS_NET) {
2740 		SFC_GENERIC_LOG(DEBUG,
2741 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2742 		return 1;
2743 	}
2744 
2745 	rc = sfc_dp_mport_register();
2746 	if (rc != 0)
2747 		return rc;
2748 
2749 	sfc_register_dp();
2750 
2751 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2752 					    SFC_LOGTYPE_MAIN_STR,
2753 					    RTE_LOG_NOTICE);
2754 
2755 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2756 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2757 
2758 	/* Required for logging */
2759 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2760 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2761 			pci_dev->addr.domain, pci_dev->addr.bus,
2762 			pci_dev->addr.devid, pci_dev->addr.function,
2763 			dev->data->port_id);
2764 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2765 		SFC_GENERIC_LOG(ERR,
2766 			"reserved log prefix is too short for " PCI_PRI_FMT,
2767 			pci_dev->addr.domain, pci_dev->addr.bus,
2768 			pci_dev->addr.devid, pci_dev->addr.function);
2769 		return -EINVAL;
2770 	}
2771 	sas->pci_addr = pci_dev->addr;
2772 	sas->port_id = dev->data->port_id;
2773 
2774 	/*
2775 	 * Allocate process private data from heap, since it should not
2776 	 * be located in shared memory allocated using rte_malloc() API.
2777 	 */
2778 	sa = calloc(1, sizeof(*sa));
2779 	if (sa == NULL) {
2780 		rc = ENOMEM;
2781 		goto fail_alloc_sa;
2782 	}
2783 
2784 	dev->process_private = sa;
2785 
2786 	/* Required for logging */
2787 	sa->priv.shared = sas;
2788 	sa->priv.logtype_main = logtype_main;
2789 
2790 	sa->eth_dev = dev;
2791 
2792 	/* Copy PCI device info to the dev->data */
2793 	rte_eth_copy_pci_info(dev, pci_dev);
2794 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2795 
2796 	rc = sfc_kvargs_parse(sa);
2797 	if (rc != 0)
2798 		goto fail_kvargs_parse;
2799 
2800 	sfc_log_init(sa, "entry");
2801 
2802 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2803 	if (dev->data->mac_addrs == NULL) {
2804 		rc = ENOMEM;
2805 		goto fail_mac_addrs;
2806 	}
2807 
2808 	sfc_adapter_lock_init(sa);
2809 	sfc_adapter_lock(sa);
2810 
2811 	sfc_log_init(sa, "probing");
2812 	rc = sfc_probe(sa);
2813 	if (rc != 0)
2814 		goto fail_probe;
2815 
2816 	/*
2817 	 * Selecting a default switch mode requires the NIC to be probed and
2818 	 * to have its capabilities filled in.
2819 	 */
2820 	rc = sfc_parse_switch_mode(sa, init_data->nb_representors > 0);
2821 	if (rc != 0)
2822 		goto fail_switch_mode;
2823 
2824 	sfc_log_init(sa, "set device ops");
2825 	rc = sfc_eth_dev_set_ops(dev);
2826 	if (rc != 0)
2827 		goto fail_set_ops;
2828 
2829 	sfc_log_init(sa, "attaching");
2830 	rc = sfc_attach(sa);
2831 	if (rc != 0)
2832 		goto fail_attach;
2833 
2834 	if (sa->switchdev && sa->mae.status != SFC_MAE_STATUS_SUPPORTED) {
2835 		sfc_err(sa,
2836 			"failed to enable switchdev mode without MAE support");
2837 		rc = ENOTSUP;
2838 		goto fail_switchdev_no_mae;
2839 	}
2840 
2841 	encp = efx_nic_cfg_get(sa->nic);
2842 
2843 	/*
2844 	 * The arguments are really reverse order in comparison to
2845 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2846 	 */
2847 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2848 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2849 
2850 	sfc_adapter_unlock(sa);
2851 
2852 	sfc_log_init(sa, "done");
2853 	return 0;
2854 
2855 fail_switchdev_no_mae:
2856 	sfc_detach(sa);
2857 
2858 fail_attach:
2859 	sfc_eth_dev_clear_ops(dev);
2860 
2861 fail_set_ops:
2862 fail_switch_mode:
2863 	sfc_unprobe(sa);
2864 
2865 fail_probe:
2866 	sfc_adapter_unlock(sa);
2867 	sfc_adapter_lock_fini(sa);
2868 	rte_free(dev->data->mac_addrs);
2869 	dev->data->mac_addrs = NULL;
2870 
2871 fail_mac_addrs:
2872 	sfc_kvargs_cleanup(sa);
2873 
2874 fail_kvargs_parse:
2875 	sfc_log_init(sa, "failed %d", rc);
2876 	dev->process_private = NULL;
2877 	free(sa);
2878 
2879 fail_alloc_sa:
2880 	SFC_ASSERT(rc > 0);
2881 	return -rc;
2882 }
2883 
2884 static int
2885 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2886 {
2887 	sfc_dev_close(dev);
2888 
2889 	return 0;
2890 }
2891 
2892 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2893 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2894 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2895 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2896 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2897 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2898 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2899 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2900 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2901 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2902 	{ .vendor_id = 0 /* sentinel */ }
2903 };
2904 
2905 static int
2906 sfc_parse_rte_devargs(const char *args, struct rte_eth_devargs *devargs)
2907 {
2908 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
2909 	int rc;
2910 
2911 	if (args != NULL) {
2912 		rc = rte_eth_devargs_parse(args, &eth_da);
2913 		if (rc != 0) {
2914 			SFC_GENERIC_LOG(ERR,
2915 					"Failed to parse generic devargs '%s'",
2916 					args);
2917 			return rc;
2918 		}
2919 	}
2920 
2921 	*devargs = eth_da;
2922 
2923 	return 0;
2924 }
2925 
2926 static int
2927 sfc_eth_dev_find_or_create(struct rte_pci_device *pci_dev,
2928 			   struct sfc_ethdev_init_data *init_data,
2929 			   struct rte_eth_dev **devp,
2930 			   bool *dev_created)
2931 {
2932 	struct rte_eth_dev *dev;
2933 	bool created = false;
2934 	int rc;
2935 
2936 	dev = rte_eth_dev_allocated(pci_dev->device.name);
2937 	if (dev == NULL) {
2938 		rc = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
2939 					sizeof(struct sfc_adapter_shared),
2940 					eth_dev_pci_specific_init, pci_dev,
2941 					sfc_eth_dev_init, init_data);
2942 		if (rc != 0) {
2943 			SFC_GENERIC_LOG(ERR, "Failed to create sfc ethdev '%s'",
2944 					pci_dev->device.name);
2945 			return rc;
2946 		}
2947 
2948 		created = true;
2949 
2950 		dev = rte_eth_dev_allocated(pci_dev->device.name);
2951 		if (dev == NULL) {
2952 			SFC_GENERIC_LOG(ERR,
2953 				"Failed to find allocated sfc ethdev '%s'",
2954 				pci_dev->device.name);
2955 			return -ENODEV;
2956 		}
2957 	}
2958 
2959 	*devp = dev;
2960 	*dev_created = created;
2961 
2962 	return 0;
2963 }
2964 
2965 static int
2966 sfc_eth_dev_create_repr(struct sfc_adapter *sa,
2967 			efx_pcie_interface_t controller,
2968 			uint16_t port,
2969 			uint16_t repr_port,
2970 			enum rte_eth_representor_type type)
2971 {
2972 	struct sfc_repr_entity_info entity;
2973 	efx_mport_sel_t mport_sel;
2974 	int rc;
2975 
2976 	switch (type) {
2977 	case RTE_ETH_REPRESENTOR_NONE:
2978 		return 0;
2979 	case RTE_ETH_REPRESENTOR_VF:
2980 	case RTE_ETH_REPRESENTOR_PF:
2981 		break;
2982 	case RTE_ETH_REPRESENTOR_SF:
2983 		sfc_err(sa, "SF representors are not supported");
2984 		return ENOTSUP;
2985 	default:
2986 		sfc_err(sa, "unknown representor type: %d", type);
2987 		return ENOTSUP;
2988 	}
2989 
2990 	rc = efx_mae_mport_by_pcie_mh_function(controller,
2991 					       port,
2992 					       repr_port,
2993 					       &mport_sel);
2994 	if (rc != 0) {
2995 		sfc_err(sa,
2996 			"failed to get m-port selector for controller %u port %u repr_port %u: %s",
2997 			controller, port, repr_port, rte_strerror(-rc));
2998 		return rc;
2999 	}
3000 
3001 	memset(&entity, 0, sizeof(entity));
3002 	entity.type = type;
3003 	entity.intf = controller;
3004 	entity.pf = port;
3005 	entity.vf = repr_port;
3006 
3007 	rc = sfc_repr_create(sa->eth_dev, &entity, sa->mae.switch_domain_id,
3008 			     &mport_sel);
3009 	if (rc != 0) {
3010 		sfc_err(sa,
3011 			"failed to create representor for controller %u port %u repr_port %u: %s",
3012 			controller, port, repr_port, rte_strerror(-rc));
3013 		return rc;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 static int
3020 sfc_eth_dev_create_repr_port(struct sfc_adapter *sa,
3021 			     const struct rte_eth_devargs *eth_da,
3022 			     efx_pcie_interface_t controller,
3023 			     uint16_t port)
3024 {
3025 	int first_error = 0;
3026 	uint16_t i;
3027 	int rc;
3028 
3029 	if (eth_da->type == RTE_ETH_REPRESENTOR_PF) {
3030 		return sfc_eth_dev_create_repr(sa, controller, port,
3031 					       EFX_PCI_VF_INVALID,
3032 					       eth_da->type);
3033 	}
3034 
3035 	for (i = 0; i < eth_da->nb_representor_ports; i++) {
3036 		rc = sfc_eth_dev_create_repr(sa, controller, port,
3037 					     eth_da->representor_ports[i],
3038 					     eth_da->type);
3039 		if (rc != 0 && first_error == 0)
3040 			first_error = rc;
3041 	}
3042 
3043 	return first_error;
3044 }
3045 
3046 static int
3047 sfc_eth_dev_create_repr_controller(struct sfc_adapter *sa,
3048 				   const struct rte_eth_devargs *eth_da,
3049 				   efx_pcie_interface_t controller)
3050 {
3051 	const efx_nic_cfg_t *encp;
3052 	int first_error = 0;
3053 	uint16_t default_port;
3054 	uint16_t i;
3055 	int rc;
3056 
3057 	if (eth_da->nb_ports == 0) {
3058 		encp = efx_nic_cfg_get(sa->nic);
3059 		default_port = encp->enc_intf == controller ? encp->enc_pf : 0;
3060 		return sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3061 						    default_port);
3062 	}
3063 
3064 	for (i = 0; i < eth_da->nb_ports; i++) {
3065 		rc = sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3066 						  eth_da->ports[i]);
3067 		if (rc != 0 && first_error == 0)
3068 			first_error = rc;
3069 	}
3070 
3071 	return first_error;
3072 }
3073 
3074 static int
3075 sfc_eth_dev_create_representors(struct rte_eth_dev *dev,
3076 				const struct rte_eth_devargs *eth_da)
3077 {
3078 	efx_pcie_interface_t intf;
3079 	const efx_nic_cfg_t *encp;
3080 	struct sfc_adapter *sa;
3081 	uint16_t switch_domain_id;
3082 	uint16_t i;
3083 	int rc;
3084 
3085 	sa = sfc_adapter_by_eth_dev(dev);
3086 	switch_domain_id = sa->mae.switch_domain_id;
3087 
3088 	switch (eth_da->type) {
3089 	case RTE_ETH_REPRESENTOR_NONE:
3090 		return 0;
3091 	case RTE_ETH_REPRESENTOR_PF:
3092 	case RTE_ETH_REPRESENTOR_VF:
3093 		break;
3094 	case RTE_ETH_REPRESENTOR_SF:
3095 		sfc_err(sa, "SF representors are not supported");
3096 		return -ENOTSUP;
3097 	default:
3098 		sfc_err(sa, "unknown representor type: %d",
3099 			eth_da->type);
3100 		return -ENOTSUP;
3101 	}
3102 
3103 	if (!sa->switchdev) {
3104 		sfc_err(sa, "cannot create representors in non-switchdev mode");
3105 		return -EINVAL;
3106 	}
3107 
3108 	if (!sfc_repr_available(sfc_sa2shared(sa))) {
3109 		sfc_err(sa, "cannot create representors: unsupported");
3110 
3111 		return -ENOTSUP;
3112 	}
3113 
3114 	/*
3115 	 * This is needed to construct the DPDK controller -> EFX interface
3116 	 * mapping.
3117 	 */
3118 	sfc_adapter_lock(sa);
3119 	rc = sfc_process_mport_journal(sa);
3120 	sfc_adapter_unlock(sa);
3121 	if (rc != 0) {
3122 		SFC_ASSERT(rc > 0);
3123 		return -rc;
3124 	}
3125 
3126 	if (eth_da->nb_mh_controllers > 0) {
3127 		for (i = 0; i < eth_da->nb_mh_controllers; i++) {
3128 			rc = sfc_mae_switch_domain_get_intf(switch_domain_id,
3129 						eth_da->mh_controllers[i],
3130 						&intf);
3131 			if (rc != 0) {
3132 				sfc_err(sa, "failed to get representor");
3133 				continue;
3134 			}
3135 			sfc_eth_dev_create_repr_controller(sa, eth_da, intf);
3136 		}
3137 	} else {
3138 		encp = efx_nic_cfg_get(sa->nic);
3139 		sfc_eth_dev_create_repr_controller(sa, eth_da, encp->enc_intf);
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3146 	struct rte_pci_device *pci_dev)
3147 {
3148 	struct sfc_ethdev_init_data init_data;
3149 	struct rte_eth_devargs eth_da;
3150 	struct rte_eth_dev *dev;
3151 	bool dev_created;
3152 	int rc;
3153 
3154 	if (pci_dev->device.devargs != NULL) {
3155 		rc = sfc_parse_rte_devargs(pci_dev->device.devargs->args,
3156 					   &eth_da);
3157 		if (rc != 0)
3158 			return rc;
3159 	} else {
3160 		memset(&eth_da, 0, sizeof(eth_da));
3161 	}
3162 
3163 	/* If no VF representors specified, check for PF ones */
3164 	if (eth_da.nb_representor_ports > 0)
3165 		init_data.nb_representors = eth_da.nb_representor_ports;
3166 	else
3167 		init_data.nb_representors = eth_da.nb_ports;
3168 
3169 	if (init_data.nb_representors > 0 &&
3170 	    rte_eal_process_type() != RTE_PROC_PRIMARY) {
3171 		SFC_GENERIC_LOG(ERR,
3172 			"Create representors from secondary process not supported, dev '%s'",
3173 			pci_dev->device.name);
3174 		return -ENOTSUP;
3175 	}
3176 
3177 	/*
3178 	 * Driver supports RTE_PCI_DRV_PROBE_AGAIN. Hence create device only
3179 	 * if it does not already exist. Re-probing an existing device is
3180 	 * expected to allow additional representors to be configured.
3181 	 */
3182 	rc = sfc_eth_dev_find_or_create(pci_dev, &init_data, &dev,
3183 					&dev_created);
3184 	if (rc != 0)
3185 		return rc;
3186 
3187 	rc = sfc_eth_dev_create_representors(dev, &eth_da);
3188 	if (rc != 0) {
3189 		if (dev_created)
3190 			(void)rte_eth_dev_destroy(dev, sfc_eth_dev_uninit);
3191 
3192 		return rc;
3193 	}
3194 
3195 	return 0;
3196 }
3197 
3198 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
3199 {
3200 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
3201 }
3202 
3203 static struct rte_pci_driver sfc_efx_pmd = {
3204 	.id_table = pci_id_sfc_efx_map,
3205 	.drv_flags =
3206 		RTE_PCI_DRV_INTR_LSC |
3207 		RTE_PCI_DRV_NEED_MAPPING |
3208 		RTE_PCI_DRV_PROBE_AGAIN,
3209 	.probe = sfc_eth_dev_pci_probe,
3210 	.remove = sfc_eth_dev_pci_remove,
3211 };
3212 
3213 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
3214 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
3215 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
3216 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
3217 	SFC_KVARG_SWITCH_MODE "=" SFC_KVARG_VALUES_SWITCH_MODE " "
3218 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
3219 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
3220 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
3221 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
3222 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
3223 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
3224 
3225 RTE_INIT(sfc_driver_register_logtype)
3226 {
3227 	int ret;
3228 
3229 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
3230 						   RTE_LOG_NOTICE);
3231 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
3232 }
3233