1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 /* 50 * Return value of the callback is likely supposed to be 51 * equal to or greater than 0, nevertheless, if an error 52 * occurs, it will be desirable to pass it to the caller 53 */ 54 if ((fw_version == NULL) || (fw_size == 0)) 55 return -EINVAL; 56 57 rc = efx_nic_get_fw_version(sa->nic, &enfi); 58 if (rc != 0) 59 return -rc; 60 61 ret = snprintf(fw_version, fw_size, 62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 65 if (ret < 0) 66 return ret; 67 68 if (enfi.enfi_dpcpu_fw_ids_valid) { 69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 70 int ret_extra; 71 72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 73 fw_size - dpcpu_fw_ids_offset, 74 " rx%" PRIx16 " tx%" PRIx16, 75 enfi.enfi_rx_dpcpu_fw_id, 76 enfi.enfi_tx_dpcpu_fw_id); 77 if (ret_extra < 0) 78 return ret_extra; 79 80 ret += ret_extra; 81 } 82 83 if (fw_size < (size_t)(++ret)) 84 return ret; 85 else 86 return 0; 87 } 88 89 static void 90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 91 { 92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 95 struct sfc_rss *rss = &sas->rss; 96 uint64_t txq_offloads_def = 0; 97 98 sfc_log_init(sa, "entry"); 99 100 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 101 dev_info->max_mtu = EFX_MAC_SDU_MAX; 102 103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 104 105 /* Autonegotiation may be disabled */ 106 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 108 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 116 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 118 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 119 120 dev_info->max_rx_queues = sa->rxq_max; 121 dev_info->max_tx_queues = sa->txq_max; 122 123 /* By default packets are dropped if no descriptors are available */ 124 dev_info->default_rxconf.rx_drop_en = 1; 125 126 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 127 128 /* 129 * rx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 134 dev_info->rx_queue_offload_capa; 135 136 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 137 138 /* 139 * tx_offload_capa includes both device and queue offloads since 140 * the latter may be requested on a per device basis which makes 141 * sense when some offloads are needed to be set on all queues. 142 */ 143 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 144 dev_info->tx_queue_offload_capa; 145 146 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 147 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 148 149 dev_info->default_txconf.offloads |= txq_offloads_def; 150 151 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 152 uint64_t rte_hf = 0; 153 unsigned int i; 154 155 for (i = 0; i < rss->hf_map_nb_entries; ++i) 156 rte_hf |= rss->hf_map[i].rte; 157 158 dev_info->reta_size = EFX_RSS_TBL_SIZE; 159 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 160 dev_info->flow_type_rss_offloads = rte_hf; 161 } 162 163 /* Initialize to hardware limits */ 164 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 165 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 166 /* The RXQ hardware requires that the descriptor count is a power 167 * of 2, but rx_desc_lim cannot properly describe that constraint. 168 */ 169 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 170 171 /* Initialize to hardware limits */ 172 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 173 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 174 /* 175 * The TXQ hardware requires that the descriptor count is a power 176 * of 2, but tx_desc_lim cannot properly describe that constraint 177 */ 178 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 179 180 if (sap->dp_rx->get_dev_info != NULL) 181 sap->dp_rx->get_dev_info(dev_info); 182 if (sap->dp_tx->get_dev_info != NULL) 183 sap->dp_tx->get_dev_info(dev_info); 184 185 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 186 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 187 } 188 189 static const uint32_t * 190 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 191 { 192 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 193 194 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 195 } 196 197 static int 198 sfc_dev_configure(struct rte_eth_dev *dev) 199 { 200 struct rte_eth_dev_data *dev_data = dev->data; 201 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 202 int rc; 203 204 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 205 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 206 207 sfc_adapter_lock(sa); 208 switch (sa->state) { 209 case SFC_ADAPTER_CONFIGURED: 210 /* FALLTHROUGH */ 211 case SFC_ADAPTER_INITIALIZED: 212 rc = sfc_configure(sa); 213 break; 214 default: 215 sfc_err(sa, "unexpected adapter state %u to configure", 216 sa->state); 217 rc = EINVAL; 218 break; 219 } 220 sfc_adapter_unlock(sa); 221 222 sfc_log_init(sa, "done %d", rc); 223 SFC_ASSERT(rc >= 0); 224 return -rc; 225 } 226 227 static int 228 sfc_dev_start(struct rte_eth_dev *dev) 229 { 230 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 231 int rc; 232 233 sfc_log_init(sa, "entry"); 234 235 sfc_adapter_lock(sa); 236 rc = sfc_start(sa); 237 sfc_adapter_unlock(sa); 238 239 sfc_log_init(sa, "done %d", rc); 240 SFC_ASSERT(rc >= 0); 241 return -rc; 242 } 243 244 static int 245 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 246 { 247 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 248 struct rte_eth_link current_link; 249 int ret; 250 251 sfc_log_init(sa, "entry"); 252 253 if (sa->state != SFC_ADAPTER_STARTED) { 254 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 255 } else if (wait_to_complete) { 256 efx_link_mode_t link_mode; 257 258 if (efx_port_poll(sa->nic, &link_mode) != 0) 259 link_mode = EFX_LINK_UNKNOWN; 260 sfc_port_link_mode_to_info(link_mode, ¤t_link); 261 262 } else { 263 sfc_ev_mgmt_qpoll(sa); 264 rte_eth_linkstatus_get(dev, ¤t_link); 265 } 266 267 ret = rte_eth_linkstatus_set(dev, ¤t_link); 268 if (ret == 0) 269 sfc_notice(sa, "Link status is %s", 270 current_link.link_status ? "UP" : "DOWN"); 271 272 return ret; 273 } 274 275 static void 276 sfc_dev_stop(struct rte_eth_dev *dev) 277 { 278 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 279 280 sfc_log_init(sa, "entry"); 281 282 sfc_adapter_lock(sa); 283 sfc_stop(sa); 284 sfc_adapter_unlock(sa); 285 286 sfc_log_init(sa, "done"); 287 } 288 289 static int 290 sfc_dev_set_link_up(struct rte_eth_dev *dev) 291 { 292 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 293 int rc; 294 295 sfc_log_init(sa, "entry"); 296 297 sfc_adapter_lock(sa); 298 rc = sfc_start(sa); 299 sfc_adapter_unlock(sa); 300 301 SFC_ASSERT(rc >= 0); 302 return -rc; 303 } 304 305 static int 306 sfc_dev_set_link_down(struct rte_eth_dev *dev) 307 { 308 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 309 310 sfc_log_init(sa, "entry"); 311 312 sfc_adapter_lock(sa); 313 sfc_stop(sa); 314 sfc_adapter_unlock(sa); 315 316 return 0; 317 } 318 319 static void 320 sfc_dev_close(struct rte_eth_dev *dev) 321 { 322 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 323 324 sfc_log_init(sa, "entry"); 325 326 sfc_adapter_lock(sa); 327 switch (sa->state) { 328 case SFC_ADAPTER_STARTED: 329 sfc_stop(sa); 330 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 331 /* FALLTHROUGH */ 332 case SFC_ADAPTER_CONFIGURED: 333 sfc_close(sa); 334 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 335 /* FALLTHROUGH */ 336 case SFC_ADAPTER_INITIALIZED: 337 break; 338 default: 339 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 340 break; 341 } 342 343 /* 344 * Cleanup all resources in accordance with RTE_ETH_DEV_CLOSE_REMOVE. 345 * Rollback primary process sfc_eth_dev_init() below. 346 */ 347 348 sfc_eth_dev_clear_ops(dev); 349 350 sfc_detach(sa); 351 sfc_unprobe(sa); 352 353 sfc_kvargs_cleanup(sa); 354 355 sfc_adapter_unlock(sa); 356 sfc_adapter_lock_fini(sa); 357 358 sfc_log_init(sa, "done"); 359 360 /* Required for logging, so cleanup last */ 361 sa->eth_dev = NULL; 362 363 dev->process_private = NULL; 364 free(sa); 365 } 366 367 static void 368 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 369 boolean_t enabled) 370 { 371 struct sfc_port *port; 372 boolean_t *toggle; 373 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 374 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 375 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 376 377 sfc_adapter_lock(sa); 378 379 port = &sa->port; 380 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 381 382 if (*toggle != enabled) { 383 *toggle = enabled; 384 385 if (sfc_sa2shared(sa)->isolated) { 386 sfc_warn(sa, "isolated mode is active on the port"); 387 sfc_warn(sa, "the change is to be applied on the next " 388 "start provided that isolated mode is " 389 "disabled prior the next start"); 390 } else if ((sa->state == SFC_ADAPTER_STARTED) && 391 (sfc_set_rx_mode(sa) != 0)) { 392 *toggle = !(enabled); 393 sfc_warn(sa, "Failed to %s %s mode", 394 ((enabled) ? "enable" : "disable"), desc); 395 } 396 } 397 398 sfc_adapter_unlock(sa); 399 } 400 401 static void 402 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 403 { 404 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 405 } 406 407 static void 408 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 409 { 410 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 411 } 412 413 static void 414 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 415 { 416 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 417 } 418 419 static void 420 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 421 { 422 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 423 } 424 425 static int 426 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 427 uint16_t nb_rx_desc, unsigned int socket_id, 428 const struct rte_eth_rxconf *rx_conf, 429 struct rte_mempool *mb_pool) 430 { 431 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 432 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 433 int rc; 434 435 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 436 rx_queue_id, nb_rx_desc, socket_id); 437 438 sfc_adapter_lock(sa); 439 440 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 441 rx_conf, mb_pool); 442 if (rc != 0) 443 goto fail_rx_qinit; 444 445 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 446 447 sfc_adapter_unlock(sa); 448 449 return 0; 450 451 fail_rx_qinit: 452 sfc_adapter_unlock(sa); 453 SFC_ASSERT(rc > 0); 454 return -rc; 455 } 456 457 static void 458 sfc_rx_queue_release(void *queue) 459 { 460 struct sfc_dp_rxq *dp_rxq = queue; 461 struct sfc_rxq *rxq; 462 struct sfc_adapter *sa; 463 unsigned int sw_index; 464 465 if (dp_rxq == NULL) 466 return; 467 468 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 469 sa = rxq->evq->sa; 470 sfc_adapter_lock(sa); 471 472 sw_index = dp_rxq->dpq.queue_id; 473 474 sfc_log_init(sa, "RxQ=%u", sw_index); 475 476 sfc_rx_qfini(sa, sw_index); 477 478 sfc_adapter_unlock(sa); 479 } 480 481 static int 482 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 483 uint16_t nb_tx_desc, unsigned int socket_id, 484 const struct rte_eth_txconf *tx_conf) 485 { 486 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 487 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 488 int rc; 489 490 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 491 tx_queue_id, nb_tx_desc, socket_id); 492 493 sfc_adapter_lock(sa); 494 495 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 496 if (rc != 0) 497 goto fail_tx_qinit; 498 499 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 500 501 sfc_adapter_unlock(sa); 502 return 0; 503 504 fail_tx_qinit: 505 sfc_adapter_unlock(sa); 506 SFC_ASSERT(rc > 0); 507 return -rc; 508 } 509 510 static void 511 sfc_tx_queue_release(void *queue) 512 { 513 struct sfc_dp_txq *dp_txq = queue; 514 struct sfc_txq *txq; 515 unsigned int sw_index; 516 struct sfc_adapter *sa; 517 518 if (dp_txq == NULL) 519 return; 520 521 txq = sfc_txq_by_dp_txq(dp_txq); 522 sw_index = dp_txq->dpq.queue_id; 523 524 SFC_ASSERT(txq->evq != NULL); 525 sa = txq->evq->sa; 526 527 sfc_log_init(sa, "TxQ = %u", sw_index); 528 529 sfc_adapter_lock(sa); 530 531 sfc_tx_qfini(sa, sw_index); 532 533 sfc_adapter_unlock(sa); 534 } 535 536 /* 537 * Some statistics are computed as A - B where A and B each increase 538 * monotonically with some hardware counter(s) and the counters are read 539 * asynchronously. 540 * 541 * If packet X is counted in A, but not counted in B yet, computed value is 542 * greater than real. 543 * 544 * If packet X is not counted in A at the moment of reading the counter, 545 * but counted in B at the moment of reading the counter, computed value 546 * is less than real. 547 * 548 * However, counter which grows backward is worse evil than slightly wrong 549 * value. So, let's try to guarantee that it never happens except may be 550 * the case when the MAC stats are zeroed as a result of a NIC reset. 551 */ 552 static void 553 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 554 { 555 if ((int64_t)(newval - *stat) > 0 || newval == 0) 556 *stat = newval; 557 } 558 559 static int 560 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 561 { 562 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 563 struct sfc_port *port = &sa->port; 564 uint64_t *mac_stats; 565 int ret; 566 567 rte_spinlock_lock(&port->mac_stats_lock); 568 569 ret = sfc_port_update_mac_stats(sa); 570 if (ret != 0) 571 goto unlock; 572 573 mac_stats = port->mac_stats_buf; 574 575 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 576 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 577 stats->ipackets = 578 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 579 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 580 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 581 stats->opackets = 582 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 583 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 584 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 585 stats->ibytes = 586 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 587 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 588 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 589 stats->obytes = 590 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 591 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 592 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 593 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 594 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 595 } else { 596 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 597 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 598 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 599 /* 600 * Take into account stats which are whenever supported 601 * on EF10. If some stat is not supported by current 602 * firmware variant or HW revision, it is guaranteed 603 * to be zero in mac_stats. 604 */ 605 stats->imissed = 606 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 607 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 608 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 609 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 610 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 611 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 612 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 613 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 614 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 615 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 616 stats->ierrors = 617 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 618 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 619 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 620 /* no oerrors counters supported on EF10 */ 621 622 /* Exclude missed, errors and pauses from Rx packets */ 623 sfc_update_diff_stat(&port->ipackets, 624 mac_stats[EFX_MAC_RX_PKTS] - 625 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 626 stats->imissed - stats->ierrors); 627 stats->ipackets = port->ipackets; 628 } 629 630 unlock: 631 rte_spinlock_unlock(&port->mac_stats_lock); 632 SFC_ASSERT(ret >= 0); 633 return -ret; 634 } 635 636 static void 637 sfc_stats_reset(struct rte_eth_dev *dev) 638 { 639 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 640 struct sfc_port *port = &sa->port; 641 int rc; 642 643 if (sa->state != SFC_ADAPTER_STARTED) { 644 /* 645 * The operation cannot be done if port is not started; it 646 * will be scheduled to be done during the next port start 647 */ 648 port->mac_stats_reset_pending = B_TRUE; 649 return; 650 } 651 652 rc = sfc_port_reset_mac_stats(sa); 653 if (rc != 0) 654 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 655 } 656 657 static int 658 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 659 unsigned int xstats_count) 660 { 661 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 662 struct sfc_port *port = &sa->port; 663 uint64_t *mac_stats; 664 int rc; 665 unsigned int i; 666 int nstats = 0; 667 668 rte_spinlock_lock(&port->mac_stats_lock); 669 670 rc = sfc_port_update_mac_stats(sa); 671 if (rc != 0) { 672 SFC_ASSERT(rc > 0); 673 nstats = -rc; 674 goto unlock; 675 } 676 677 mac_stats = port->mac_stats_buf; 678 679 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 680 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 681 if (xstats != NULL && nstats < (int)xstats_count) { 682 xstats[nstats].id = nstats; 683 xstats[nstats].value = mac_stats[i]; 684 } 685 nstats++; 686 } 687 } 688 689 unlock: 690 rte_spinlock_unlock(&port->mac_stats_lock); 691 692 return nstats; 693 } 694 695 static int 696 sfc_xstats_get_names(struct rte_eth_dev *dev, 697 struct rte_eth_xstat_name *xstats_names, 698 unsigned int xstats_count) 699 { 700 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 701 struct sfc_port *port = &sa->port; 702 unsigned int i; 703 unsigned int nstats = 0; 704 705 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 706 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 707 if (xstats_names != NULL && nstats < xstats_count) 708 strlcpy(xstats_names[nstats].name, 709 efx_mac_stat_name(sa->nic, i), 710 sizeof(xstats_names[0].name)); 711 nstats++; 712 } 713 } 714 715 return nstats; 716 } 717 718 static int 719 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 720 uint64_t *values, unsigned int n) 721 { 722 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 723 struct sfc_port *port = &sa->port; 724 uint64_t *mac_stats; 725 unsigned int nb_supported = 0; 726 unsigned int nb_written = 0; 727 unsigned int i; 728 int ret; 729 int rc; 730 731 if (unlikely(values == NULL) || 732 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 733 return port->mac_stats_nb_supported; 734 735 rte_spinlock_lock(&port->mac_stats_lock); 736 737 rc = sfc_port_update_mac_stats(sa); 738 if (rc != 0) { 739 SFC_ASSERT(rc > 0); 740 ret = -rc; 741 goto unlock; 742 } 743 744 mac_stats = port->mac_stats_buf; 745 746 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 747 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 748 continue; 749 750 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 751 values[nb_written++] = mac_stats[i]; 752 753 ++nb_supported; 754 } 755 756 ret = nb_written; 757 758 unlock: 759 rte_spinlock_unlock(&port->mac_stats_lock); 760 761 return ret; 762 } 763 764 static int 765 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 766 struct rte_eth_xstat_name *xstats_names, 767 const uint64_t *ids, unsigned int size) 768 { 769 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 770 struct sfc_port *port = &sa->port; 771 unsigned int nb_supported = 0; 772 unsigned int nb_written = 0; 773 unsigned int i; 774 775 if (unlikely(xstats_names == NULL) || 776 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 777 return port->mac_stats_nb_supported; 778 779 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 780 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 781 continue; 782 783 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 784 char *name = xstats_names[nb_written++].name; 785 786 strlcpy(name, efx_mac_stat_name(sa->nic, i), 787 sizeof(xstats_names[0].name)); 788 } 789 790 ++nb_supported; 791 } 792 793 return nb_written; 794 } 795 796 static int 797 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 798 { 799 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 800 unsigned int wanted_fc, link_fc; 801 802 memset(fc_conf, 0, sizeof(*fc_conf)); 803 804 sfc_adapter_lock(sa); 805 806 if (sa->state == SFC_ADAPTER_STARTED) 807 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 808 else 809 link_fc = sa->port.flow_ctrl; 810 811 switch (link_fc) { 812 case 0: 813 fc_conf->mode = RTE_FC_NONE; 814 break; 815 case EFX_FCNTL_RESPOND: 816 fc_conf->mode = RTE_FC_RX_PAUSE; 817 break; 818 case EFX_FCNTL_GENERATE: 819 fc_conf->mode = RTE_FC_TX_PAUSE; 820 break; 821 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 822 fc_conf->mode = RTE_FC_FULL; 823 break; 824 default: 825 sfc_err(sa, "%s: unexpected flow control value %#x", 826 __func__, link_fc); 827 } 828 829 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 830 831 sfc_adapter_unlock(sa); 832 833 return 0; 834 } 835 836 static int 837 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 838 { 839 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 840 struct sfc_port *port = &sa->port; 841 unsigned int fcntl; 842 int rc; 843 844 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 845 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 846 fc_conf->mac_ctrl_frame_fwd != 0) { 847 sfc_err(sa, "unsupported flow control settings specified"); 848 rc = EINVAL; 849 goto fail_inval; 850 } 851 852 switch (fc_conf->mode) { 853 case RTE_FC_NONE: 854 fcntl = 0; 855 break; 856 case RTE_FC_RX_PAUSE: 857 fcntl = EFX_FCNTL_RESPOND; 858 break; 859 case RTE_FC_TX_PAUSE: 860 fcntl = EFX_FCNTL_GENERATE; 861 break; 862 case RTE_FC_FULL: 863 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 864 break; 865 default: 866 rc = EINVAL; 867 goto fail_inval; 868 } 869 870 sfc_adapter_lock(sa); 871 872 if (sa->state == SFC_ADAPTER_STARTED) { 873 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 874 if (rc != 0) 875 goto fail_mac_fcntl_set; 876 } 877 878 port->flow_ctrl = fcntl; 879 port->flow_ctrl_autoneg = fc_conf->autoneg; 880 881 sfc_adapter_unlock(sa); 882 883 return 0; 884 885 fail_mac_fcntl_set: 886 sfc_adapter_unlock(sa); 887 fail_inval: 888 SFC_ASSERT(rc > 0); 889 return -rc; 890 } 891 892 static int 893 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 894 { 895 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 896 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 897 boolean_t scatter_enabled; 898 const char *error; 899 unsigned int i; 900 901 for (i = 0; i < sas->rxq_count; i++) { 902 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 903 continue; 904 905 scatter_enabled = (sas->rxq_info[i].type_flags & 906 EFX_RXQ_FLAG_SCATTER); 907 908 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 909 encp->enc_rx_prefix_size, 910 scatter_enabled, &error)) { 911 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 912 error); 913 return EINVAL; 914 } 915 } 916 917 return 0; 918 } 919 920 static int 921 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 922 { 923 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 924 size_t pdu = EFX_MAC_PDU(mtu); 925 size_t old_pdu; 926 int rc; 927 928 sfc_log_init(sa, "mtu=%u", mtu); 929 930 rc = EINVAL; 931 if (pdu < EFX_MAC_PDU_MIN) { 932 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 933 (unsigned int)mtu, (unsigned int)pdu, 934 EFX_MAC_PDU_MIN); 935 goto fail_inval; 936 } 937 if (pdu > EFX_MAC_PDU_MAX) { 938 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 939 (unsigned int)mtu, (unsigned int)pdu, 940 (unsigned int)EFX_MAC_PDU_MAX); 941 goto fail_inval; 942 } 943 944 sfc_adapter_lock(sa); 945 946 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 947 if (rc != 0) 948 goto fail_check_scatter; 949 950 if (pdu != sa->port.pdu) { 951 if (sa->state == SFC_ADAPTER_STARTED) { 952 sfc_stop(sa); 953 954 old_pdu = sa->port.pdu; 955 sa->port.pdu = pdu; 956 rc = sfc_start(sa); 957 if (rc != 0) 958 goto fail_start; 959 } else { 960 sa->port.pdu = pdu; 961 } 962 } 963 964 /* 965 * The driver does not use it, but other PMDs update jumbo frame 966 * flag and max_rx_pkt_len when MTU is set. 967 */ 968 if (mtu > RTE_ETHER_MAX_LEN) { 969 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 970 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 971 } 972 973 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 974 975 sfc_adapter_unlock(sa); 976 977 sfc_log_init(sa, "done"); 978 return 0; 979 980 fail_start: 981 sa->port.pdu = old_pdu; 982 if (sfc_start(sa) != 0) 983 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 984 "PDU max size - port is stopped", 985 (unsigned int)pdu, (unsigned int)old_pdu); 986 987 fail_check_scatter: 988 sfc_adapter_unlock(sa); 989 990 fail_inval: 991 sfc_log_init(sa, "failed %d", rc); 992 SFC_ASSERT(rc > 0); 993 return -rc; 994 } 995 static int 996 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 997 { 998 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 999 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1000 struct sfc_port *port = &sa->port; 1001 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1002 int rc = 0; 1003 1004 sfc_adapter_lock(sa); 1005 1006 /* 1007 * Copy the address to the device private data so that 1008 * it could be recalled in the case of adapter restart. 1009 */ 1010 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1011 1012 /* 1013 * Neither of the two following checks can return 1014 * an error. The new MAC address is preserved in 1015 * the device private data and can be activated 1016 * on the next port start if the user prevents 1017 * isolated mode from being enabled. 1018 */ 1019 if (sfc_sa2shared(sa)->isolated) { 1020 sfc_warn(sa, "isolated mode is active on the port"); 1021 sfc_warn(sa, "will not set MAC address"); 1022 goto unlock; 1023 } 1024 1025 if (sa->state != SFC_ADAPTER_STARTED) { 1026 sfc_notice(sa, "the port is not started"); 1027 sfc_notice(sa, "the new MAC address will be set on port start"); 1028 1029 goto unlock; 1030 } 1031 1032 if (encp->enc_allow_set_mac_with_installed_filters) { 1033 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1034 if (rc != 0) { 1035 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1036 goto unlock; 1037 } 1038 1039 /* 1040 * Changing the MAC address by means of MCDI request 1041 * has no effect on received traffic, therefore 1042 * we also need to update unicast filters 1043 */ 1044 rc = sfc_set_rx_mode(sa); 1045 if (rc != 0) { 1046 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1047 /* Rollback the old address */ 1048 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1049 (void)sfc_set_rx_mode(sa); 1050 } 1051 } else { 1052 sfc_warn(sa, "cannot set MAC address with filters installed"); 1053 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1054 sfc_warn(sa, "(some traffic may be dropped)"); 1055 1056 /* 1057 * Since setting MAC address with filters installed is not 1058 * allowed on the adapter, the new MAC address will be set 1059 * by means of adapter restart. sfc_start() shall retrieve 1060 * the new address from the device private data and set it. 1061 */ 1062 sfc_stop(sa); 1063 rc = sfc_start(sa); 1064 if (rc != 0) 1065 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1066 } 1067 1068 unlock: 1069 if (rc != 0) 1070 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1071 1072 sfc_adapter_unlock(sa); 1073 1074 SFC_ASSERT(rc >= 0); 1075 return -rc; 1076 } 1077 1078 1079 static int 1080 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1081 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1082 { 1083 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1084 struct sfc_port *port = &sa->port; 1085 uint8_t *mc_addrs = port->mcast_addrs; 1086 int rc; 1087 unsigned int i; 1088 1089 if (sfc_sa2shared(sa)->isolated) { 1090 sfc_err(sa, "isolated mode is active on the port"); 1091 sfc_err(sa, "will not set multicast address list"); 1092 return -ENOTSUP; 1093 } 1094 1095 if (mc_addrs == NULL) 1096 return -ENOBUFS; 1097 1098 if (nb_mc_addr > port->max_mcast_addrs) { 1099 sfc_err(sa, "too many multicast addresses: %u > %u", 1100 nb_mc_addr, port->max_mcast_addrs); 1101 return -EINVAL; 1102 } 1103 1104 for (i = 0; i < nb_mc_addr; ++i) { 1105 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1106 EFX_MAC_ADDR_LEN); 1107 mc_addrs += EFX_MAC_ADDR_LEN; 1108 } 1109 1110 port->nb_mcast_addrs = nb_mc_addr; 1111 1112 if (sa->state != SFC_ADAPTER_STARTED) 1113 return 0; 1114 1115 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1116 port->nb_mcast_addrs); 1117 if (rc != 0) 1118 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1119 1120 SFC_ASSERT(rc >= 0); 1121 return -rc; 1122 } 1123 1124 /* 1125 * The function is used by the secondary process as well. It must not 1126 * use any process-local pointers from the adapter data. 1127 */ 1128 static void 1129 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1130 struct rte_eth_rxq_info *qinfo) 1131 { 1132 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1133 struct sfc_rxq_info *rxq_info; 1134 1135 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1136 1137 rxq_info = &sas->rxq_info[rx_queue_id]; 1138 1139 qinfo->mp = rxq_info->refill_mb_pool; 1140 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1141 qinfo->conf.rx_drop_en = 1; 1142 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1143 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1144 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1145 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1146 qinfo->scattered_rx = 1; 1147 } 1148 qinfo->nb_desc = rxq_info->entries; 1149 } 1150 1151 /* 1152 * The function is used by the secondary process as well. It must not 1153 * use any process-local pointers from the adapter data. 1154 */ 1155 static void 1156 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1157 struct rte_eth_txq_info *qinfo) 1158 { 1159 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1160 struct sfc_txq_info *txq_info; 1161 1162 SFC_ASSERT(tx_queue_id < sas->txq_count); 1163 1164 txq_info = &sas->txq_info[tx_queue_id]; 1165 1166 memset(qinfo, 0, sizeof(*qinfo)); 1167 1168 qinfo->conf.offloads = txq_info->offloads; 1169 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1170 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1171 qinfo->nb_desc = txq_info->entries; 1172 } 1173 1174 /* 1175 * The function is used by the secondary process as well. It must not 1176 * use any process-local pointers from the adapter data. 1177 */ 1178 static uint32_t 1179 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1180 { 1181 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1182 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1183 struct sfc_rxq_info *rxq_info; 1184 1185 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1186 rxq_info = &sas->rxq_info[rx_queue_id]; 1187 1188 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1189 return 0; 1190 1191 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1192 } 1193 1194 /* 1195 * The function is used by the secondary process as well. It must not 1196 * use any process-local pointers from the adapter data. 1197 */ 1198 static int 1199 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1200 { 1201 struct sfc_dp_rxq *dp_rxq = queue; 1202 const struct sfc_dp_rx *dp_rx; 1203 1204 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1205 1206 return offset < dp_rx->qdesc_npending(dp_rxq); 1207 } 1208 1209 /* 1210 * The function is used by the secondary process as well. It must not 1211 * use any process-local pointers from the adapter data. 1212 */ 1213 static int 1214 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1215 { 1216 struct sfc_dp_rxq *dp_rxq = queue; 1217 const struct sfc_dp_rx *dp_rx; 1218 1219 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1220 1221 return dp_rx->qdesc_status(dp_rxq, offset); 1222 } 1223 1224 /* 1225 * The function is used by the secondary process as well. It must not 1226 * use any process-local pointers from the adapter data. 1227 */ 1228 static int 1229 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1230 { 1231 struct sfc_dp_txq *dp_txq = queue; 1232 const struct sfc_dp_tx *dp_tx; 1233 1234 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1235 1236 return dp_tx->qdesc_status(dp_txq, offset); 1237 } 1238 1239 static int 1240 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1241 { 1242 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1243 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1244 int rc; 1245 1246 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1247 1248 sfc_adapter_lock(sa); 1249 1250 rc = EINVAL; 1251 if (sa->state != SFC_ADAPTER_STARTED) 1252 goto fail_not_started; 1253 1254 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1255 goto fail_not_setup; 1256 1257 rc = sfc_rx_qstart(sa, rx_queue_id); 1258 if (rc != 0) 1259 goto fail_rx_qstart; 1260 1261 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1262 1263 sfc_adapter_unlock(sa); 1264 1265 return 0; 1266 1267 fail_rx_qstart: 1268 fail_not_setup: 1269 fail_not_started: 1270 sfc_adapter_unlock(sa); 1271 SFC_ASSERT(rc > 0); 1272 return -rc; 1273 } 1274 1275 static int 1276 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1277 { 1278 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1279 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1280 1281 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1282 1283 sfc_adapter_lock(sa); 1284 sfc_rx_qstop(sa, rx_queue_id); 1285 1286 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1287 1288 sfc_adapter_unlock(sa); 1289 1290 return 0; 1291 } 1292 1293 static int 1294 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1295 { 1296 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1297 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1298 int rc; 1299 1300 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1301 1302 sfc_adapter_lock(sa); 1303 1304 rc = EINVAL; 1305 if (sa->state != SFC_ADAPTER_STARTED) 1306 goto fail_not_started; 1307 1308 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1309 goto fail_not_setup; 1310 1311 rc = sfc_tx_qstart(sa, tx_queue_id); 1312 if (rc != 0) 1313 goto fail_tx_qstart; 1314 1315 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1316 1317 sfc_adapter_unlock(sa); 1318 return 0; 1319 1320 fail_tx_qstart: 1321 1322 fail_not_setup: 1323 fail_not_started: 1324 sfc_adapter_unlock(sa); 1325 SFC_ASSERT(rc > 0); 1326 return -rc; 1327 } 1328 1329 static int 1330 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1331 { 1332 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1333 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1334 1335 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1336 1337 sfc_adapter_lock(sa); 1338 1339 sfc_tx_qstop(sa, tx_queue_id); 1340 1341 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1342 1343 sfc_adapter_unlock(sa); 1344 return 0; 1345 } 1346 1347 static efx_tunnel_protocol_t 1348 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1349 { 1350 switch (rte_type) { 1351 case RTE_TUNNEL_TYPE_VXLAN: 1352 return EFX_TUNNEL_PROTOCOL_VXLAN; 1353 case RTE_TUNNEL_TYPE_GENEVE: 1354 return EFX_TUNNEL_PROTOCOL_GENEVE; 1355 default: 1356 return EFX_TUNNEL_NPROTOS; 1357 } 1358 } 1359 1360 enum sfc_udp_tunnel_op_e { 1361 SFC_UDP_TUNNEL_ADD_PORT, 1362 SFC_UDP_TUNNEL_DEL_PORT, 1363 }; 1364 1365 static int 1366 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1367 struct rte_eth_udp_tunnel *tunnel_udp, 1368 enum sfc_udp_tunnel_op_e op) 1369 { 1370 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1371 efx_tunnel_protocol_t tunnel_proto; 1372 int rc; 1373 1374 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1375 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1376 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1377 tunnel_udp->udp_port, tunnel_udp->prot_type); 1378 1379 tunnel_proto = 1380 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1381 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1382 rc = ENOTSUP; 1383 goto fail_bad_proto; 1384 } 1385 1386 sfc_adapter_lock(sa); 1387 1388 switch (op) { 1389 case SFC_UDP_TUNNEL_ADD_PORT: 1390 rc = efx_tunnel_config_udp_add(sa->nic, 1391 tunnel_udp->udp_port, 1392 tunnel_proto); 1393 break; 1394 case SFC_UDP_TUNNEL_DEL_PORT: 1395 rc = efx_tunnel_config_udp_remove(sa->nic, 1396 tunnel_udp->udp_port, 1397 tunnel_proto); 1398 break; 1399 default: 1400 rc = EINVAL; 1401 goto fail_bad_op; 1402 } 1403 1404 if (rc != 0) 1405 goto fail_op; 1406 1407 if (sa->state == SFC_ADAPTER_STARTED) { 1408 rc = efx_tunnel_reconfigure(sa->nic); 1409 if (rc == EAGAIN) { 1410 /* 1411 * Configuration is accepted by FW and MC reboot 1412 * is initiated to apply the changes. MC reboot 1413 * will be handled in a usual way (MC reboot 1414 * event on management event queue and adapter 1415 * restart). 1416 */ 1417 rc = 0; 1418 } else if (rc != 0) { 1419 goto fail_reconfigure; 1420 } 1421 } 1422 1423 sfc_adapter_unlock(sa); 1424 return 0; 1425 1426 fail_reconfigure: 1427 /* Remove/restore entry since the change makes the trouble */ 1428 switch (op) { 1429 case SFC_UDP_TUNNEL_ADD_PORT: 1430 (void)efx_tunnel_config_udp_remove(sa->nic, 1431 tunnel_udp->udp_port, 1432 tunnel_proto); 1433 break; 1434 case SFC_UDP_TUNNEL_DEL_PORT: 1435 (void)efx_tunnel_config_udp_add(sa->nic, 1436 tunnel_udp->udp_port, 1437 tunnel_proto); 1438 break; 1439 } 1440 1441 fail_op: 1442 fail_bad_op: 1443 sfc_adapter_unlock(sa); 1444 1445 fail_bad_proto: 1446 SFC_ASSERT(rc > 0); 1447 return -rc; 1448 } 1449 1450 static int 1451 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1452 struct rte_eth_udp_tunnel *tunnel_udp) 1453 { 1454 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1455 } 1456 1457 static int 1458 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1459 struct rte_eth_udp_tunnel *tunnel_udp) 1460 { 1461 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1462 } 1463 1464 /* 1465 * The function is used by the secondary process as well. It must not 1466 * use any process-local pointers from the adapter data. 1467 */ 1468 static int 1469 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1470 struct rte_eth_rss_conf *rss_conf) 1471 { 1472 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1473 struct sfc_rss *rss = &sas->rss; 1474 1475 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1476 return -ENOTSUP; 1477 1478 /* 1479 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1480 * hence, conversion is done here to derive a correct set of ETH_RSS 1481 * flags which corresponds to the active EFX configuration stored 1482 * locally in 'sfc_adapter' and kept up-to-date 1483 */ 1484 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1485 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1486 if (rss_conf->rss_key != NULL) 1487 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1488 1489 return 0; 1490 } 1491 1492 static int 1493 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1494 struct rte_eth_rss_conf *rss_conf) 1495 { 1496 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1497 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1498 unsigned int efx_hash_types; 1499 int rc = 0; 1500 1501 if (sfc_sa2shared(sa)->isolated) 1502 return -ENOTSUP; 1503 1504 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1505 sfc_err(sa, "RSS is not available"); 1506 return -ENOTSUP; 1507 } 1508 1509 if (rss->channels == 0) { 1510 sfc_err(sa, "RSS is not configured"); 1511 return -EINVAL; 1512 } 1513 1514 if ((rss_conf->rss_key != NULL) && 1515 (rss_conf->rss_key_len != sizeof(rss->key))) { 1516 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1517 sizeof(rss->key)); 1518 return -EINVAL; 1519 } 1520 1521 sfc_adapter_lock(sa); 1522 1523 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1524 if (rc != 0) 1525 goto fail_rx_hf_rte_to_efx; 1526 1527 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1528 rss->hash_alg, efx_hash_types, B_TRUE); 1529 if (rc != 0) 1530 goto fail_scale_mode_set; 1531 1532 if (rss_conf->rss_key != NULL) { 1533 if (sa->state == SFC_ADAPTER_STARTED) { 1534 rc = efx_rx_scale_key_set(sa->nic, 1535 EFX_RSS_CONTEXT_DEFAULT, 1536 rss_conf->rss_key, 1537 sizeof(rss->key)); 1538 if (rc != 0) 1539 goto fail_scale_key_set; 1540 } 1541 1542 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1543 } 1544 1545 rss->hash_types = efx_hash_types; 1546 1547 sfc_adapter_unlock(sa); 1548 1549 return 0; 1550 1551 fail_scale_key_set: 1552 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1553 EFX_RX_HASHALG_TOEPLITZ, 1554 rss->hash_types, B_TRUE) != 0) 1555 sfc_err(sa, "failed to restore RSS mode"); 1556 1557 fail_scale_mode_set: 1558 fail_rx_hf_rte_to_efx: 1559 sfc_adapter_unlock(sa); 1560 return -rc; 1561 } 1562 1563 /* 1564 * The function is used by the secondary process as well. It must not 1565 * use any process-local pointers from the adapter data. 1566 */ 1567 static int 1568 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1569 struct rte_eth_rss_reta_entry64 *reta_conf, 1570 uint16_t reta_size) 1571 { 1572 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1573 struct sfc_rss *rss = &sas->rss; 1574 int entry; 1575 1576 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1577 return -ENOTSUP; 1578 1579 if (rss->channels == 0) 1580 return -EINVAL; 1581 1582 if (reta_size != EFX_RSS_TBL_SIZE) 1583 return -EINVAL; 1584 1585 for (entry = 0; entry < reta_size; entry++) { 1586 int grp = entry / RTE_RETA_GROUP_SIZE; 1587 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1588 1589 if ((reta_conf[grp].mask >> grp_idx) & 1) 1590 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1591 } 1592 1593 return 0; 1594 } 1595 1596 static int 1597 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1598 struct rte_eth_rss_reta_entry64 *reta_conf, 1599 uint16_t reta_size) 1600 { 1601 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1602 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1603 unsigned int *rss_tbl_new; 1604 uint16_t entry; 1605 int rc = 0; 1606 1607 1608 if (sfc_sa2shared(sa)->isolated) 1609 return -ENOTSUP; 1610 1611 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1612 sfc_err(sa, "RSS is not available"); 1613 return -ENOTSUP; 1614 } 1615 1616 if (rss->channels == 0) { 1617 sfc_err(sa, "RSS is not configured"); 1618 return -EINVAL; 1619 } 1620 1621 if (reta_size != EFX_RSS_TBL_SIZE) { 1622 sfc_err(sa, "RETA size is wrong (should be %u)", 1623 EFX_RSS_TBL_SIZE); 1624 return -EINVAL; 1625 } 1626 1627 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1628 if (rss_tbl_new == NULL) 1629 return -ENOMEM; 1630 1631 sfc_adapter_lock(sa); 1632 1633 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1634 1635 for (entry = 0; entry < reta_size; entry++) { 1636 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1637 struct rte_eth_rss_reta_entry64 *grp; 1638 1639 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1640 1641 if (grp->mask & (1ull << grp_idx)) { 1642 if (grp->reta[grp_idx] >= rss->channels) { 1643 rc = EINVAL; 1644 goto bad_reta_entry; 1645 } 1646 rss_tbl_new[entry] = grp->reta[grp_idx]; 1647 } 1648 } 1649 1650 if (sa->state == SFC_ADAPTER_STARTED) { 1651 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1652 rss_tbl_new, EFX_RSS_TBL_SIZE); 1653 if (rc != 0) 1654 goto fail_scale_tbl_set; 1655 } 1656 1657 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1658 1659 fail_scale_tbl_set: 1660 bad_reta_entry: 1661 sfc_adapter_unlock(sa); 1662 1663 rte_free(rss_tbl_new); 1664 1665 SFC_ASSERT(rc >= 0); 1666 return -rc; 1667 } 1668 1669 static int 1670 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1671 enum rte_filter_op filter_op, 1672 void *arg) 1673 { 1674 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1675 int rc = ENOTSUP; 1676 1677 sfc_log_init(sa, "entry"); 1678 1679 switch (filter_type) { 1680 case RTE_ETH_FILTER_NONE: 1681 sfc_err(sa, "Global filters configuration not supported"); 1682 break; 1683 case RTE_ETH_FILTER_MACVLAN: 1684 sfc_err(sa, "MACVLAN filters not supported"); 1685 break; 1686 case RTE_ETH_FILTER_ETHERTYPE: 1687 sfc_err(sa, "EtherType filters not supported"); 1688 break; 1689 case RTE_ETH_FILTER_FLEXIBLE: 1690 sfc_err(sa, "Flexible filters not supported"); 1691 break; 1692 case RTE_ETH_FILTER_SYN: 1693 sfc_err(sa, "SYN filters not supported"); 1694 break; 1695 case RTE_ETH_FILTER_NTUPLE: 1696 sfc_err(sa, "NTUPLE filters not supported"); 1697 break; 1698 case RTE_ETH_FILTER_TUNNEL: 1699 sfc_err(sa, "Tunnel filters not supported"); 1700 break; 1701 case RTE_ETH_FILTER_FDIR: 1702 sfc_err(sa, "Flow Director filters not supported"); 1703 break; 1704 case RTE_ETH_FILTER_HASH: 1705 sfc_err(sa, "Hash filters not supported"); 1706 break; 1707 case RTE_ETH_FILTER_GENERIC: 1708 if (filter_op != RTE_ETH_FILTER_GET) { 1709 rc = EINVAL; 1710 } else { 1711 *(const void **)arg = &sfc_flow_ops; 1712 rc = 0; 1713 } 1714 break; 1715 default: 1716 sfc_err(sa, "Unknown filter type %u", filter_type); 1717 break; 1718 } 1719 1720 sfc_log_init(sa, "exit: %d", -rc); 1721 SFC_ASSERT(rc >= 0); 1722 return -rc; 1723 } 1724 1725 static int 1726 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1727 { 1728 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1729 1730 /* 1731 * If Rx datapath does not provide callback to check mempool, 1732 * all pools are supported. 1733 */ 1734 if (sap->dp_rx->pool_ops_supported == NULL) 1735 return 1; 1736 1737 return sap->dp_rx->pool_ops_supported(pool); 1738 } 1739 1740 static int 1741 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1742 { 1743 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1744 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1745 struct sfc_rxq_info *rxq_info; 1746 1747 SFC_ASSERT(queue_id < sas->rxq_count); 1748 rxq_info = &sas->rxq_info[queue_id]; 1749 1750 return sap->dp_rx->intr_enable(rxq_info->dp); 1751 } 1752 1753 static int 1754 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1755 { 1756 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1757 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1758 struct sfc_rxq_info *rxq_info; 1759 1760 SFC_ASSERT(queue_id < sas->rxq_count); 1761 rxq_info = &sas->rxq_info[queue_id]; 1762 1763 return sap->dp_rx->intr_disable(rxq_info->dp); 1764 } 1765 1766 static const struct eth_dev_ops sfc_eth_dev_ops = { 1767 .dev_configure = sfc_dev_configure, 1768 .dev_start = sfc_dev_start, 1769 .dev_stop = sfc_dev_stop, 1770 .dev_set_link_up = sfc_dev_set_link_up, 1771 .dev_set_link_down = sfc_dev_set_link_down, 1772 .dev_close = sfc_dev_close, 1773 .promiscuous_enable = sfc_dev_promisc_enable, 1774 .promiscuous_disable = sfc_dev_promisc_disable, 1775 .allmulticast_enable = sfc_dev_allmulti_enable, 1776 .allmulticast_disable = sfc_dev_allmulti_disable, 1777 .link_update = sfc_dev_link_update, 1778 .stats_get = sfc_stats_get, 1779 .stats_reset = sfc_stats_reset, 1780 .xstats_get = sfc_xstats_get, 1781 .xstats_reset = sfc_stats_reset, 1782 .xstats_get_names = sfc_xstats_get_names, 1783 .dev_infos_get = sfc_dev_infos_get, 1784 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1785 .mtu_set = sfc_dev_set_mtu, 1786 .rx_queue_start = sfc_rx_queue_start, 1787 .rx_queue_stop = sfc_rx_queue_stop, 1788 .tx_queue_start = sfc_tx_queue_start, 1789 .tx_queue_stop = sfc_tx_queue_stop, 1790 .rx_queue_setup = sfc_rx_queue_setup, 1791 .rx_queue_release = sfc_rx_queue_release, 1792 .rx_queue_count = sfc_rx_queue_count, 1793 .rx_descriptor_done = sfc_rx_descriptor_done, 1794 .rx_descriptor_status = sfc_rx_descriptor_status, 1795 .tx_descriptor_status = sfc_tx_descriptor_status, 1796 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1797 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1798 .tx_queue_setup = sfc_tx_queue_setup, 1799 .tx_queue_release = sfc_tx_queue_release, 1800 .flow_ctrl_get = sfc_flow_ctrl_get, 1801 .flow_ctrl_set = sfc_flow_ctrl_set, 1802 .mac_addr_set = sfc_mac_addr_set, 1803 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1804 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1805 .reta_update = sfc_dev_rss_reta_update, 1806 .reta_query = sfc_dev_rss_reta_query, 1807 .rss_hash_update = sfc_dev_rss_hash_update, 1808 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1809 .filter_ctrl = sfc_dev_filter_ctrl, 1810 .set_mc_addr_list = sfc_set_mc_addr_list, 1811 .rxq_info_get = sfc_rx_queue_info_get, 1812 .txq_info_get = sfc_tx_queue_info_get, 1813 .fw_version_get = sfc_fw_version_get, 1814 .xstats_get_by_id = sfc_xstats_get_by_id, 1815 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1816 .pool_ops_supported = sfc_pool_ops_supported, 1817 }; 1818 1819 /** 1820 * Duplicate a string in potentially shared memory required for 1821 * multi-process support. 1822 * 1823 * strdup() allocates from process-local heap/memory. 1824 */ 1825 static char * 1826 sfc_strdup(const char *str) 1827 { 1828 size_t size; 1829 char *copy; 1830 1831 if (str == NULL) 1832 return NULL; 1833 1834 size = strlen(str) + 1; 1835 copy = rte_malloc(__func__, size, 0); 1836 if (copy != NULL) 1837 rte_memcpy(copy, str, size); 1838 1839 return copy; 1840 } 1841 1842 static int 1843 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1844 { 1845 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1846 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1847 const struct sfc_dp_rx *dp_rx; 1848 const struct sfc_dp_tx *dp_tx; 1849 const efx_nic_cfg_t *encp; 1850 unsigned int avail_caps = 0; 1851 const char *rx_name = NULL; 1852 const char *tx_name = NULL; 1853 int rc; 1854 1855 switch (sa->family) { 1856 case EFX_FAMILY_HUNTINGTON: 1857 case EFX_FAMILY_MEDFORD: 1858 case EFX_FAMILY_MEDFORD2: 1859 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1860 break; 1861 default: 1862 break; 1863 } 1864 1865 encp = efx_nic_cfg_get(sa->nic); 1866 if (encp->enc_rx_es_super_buffer_supported) 1867 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1868 1869 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1870 sfc_kvarg_string_handler, &rx_name); 1871 if (rc != 0) 1872 goto fail_kvarg_rx_datapath; 1873 1874 if (rx_name != NULL) { 1875 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1876 if (dp_rx == NULL) { 1877 sfc_err(sa, "Rx datapath %s not found", rx_name); 1878 rc = ENOENT; 1879 goto fail_dp_rx; 1880 } 1881 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1882 sfc_err(sa, 1883 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1884 rx_name); 1885 rc = EINVAL; 1886 goto fail_dp_rx_caps; 1887 } 1888 } else { 1889 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1890 if (dp_rx == NULL) { 1891 sfc_err(sa, "Rx datapath by caps %#x not found", 1892 avail_caps); 1893 rc = ENOENT; 1894 goto fail_dp_rx; 1895 } 1896 } 1897 1898 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1899 if (sas->dp_rx_name == NULL) { 1900 rc = ENOMEM; 1901 goto fail_dp_rx_name; 1902 } 1903 1904 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1905 1906 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1907 sfc_kvarg_string_handler, &tx_name); 1908 if (rc != 0) 1909 goto fail_kvarg_tx_datapath; 1910 1911 if (tx_name != NULL) { 1912 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1913 if (dp_tx == NULL) { 1914 sfc_err(sa, "Tx datapath %s not found", tx_name); 1915 rc = ENOENT; 1916 goto fail_dp_tx; 1917 } 1918 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1919 sfc_err(sa, 1920 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1921 tx_name); 1922 rc = EINVAL; 1923 goto fail_dp_tx_caps; 1924 } 1925 } else { 1926 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1927 if (dp_tx == NULL) { 1928 sfc_err(sa, "Tx datapath by caps %#x not found", 1929 avail_caps); 1930 rc = ENOENT; 1931 goto fail_dp_tx; 1932 } 1933 } 1934 1935 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1936 if (sas->dp_tx_name == NULL) { 1937 rc = ENOMEM; 1938 goto fail_dp_tx_name; 1939 } 1940 1941 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1942 1943 sa->priv.dp_rx = dp_rx; 1944 sa->priv.dp_tx = dp_tx; 1945 1946 dev->rx_pkt_burst = dp_rx->pkt_burst; 1947 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 1948 dev->tx_pkt_burst = dp_tx->pkt_burst; 1949 1950 dev->dev_ops = &sfc_eth_dev_ops; 1951 1952 return 0; 1953 1954 fail_dp_tx_name: 1955 fail_dp_tx_caps: 1956 fail_dp_tx: 1957 fail_kvarg_tx_datapath: 1958 rte_free(sas->dp_rx_name); 1959 sas->dp_rx_name = NULL; 1960 1961 fail_dp_rx_name: 1962 fail_dp_rx_caps: 1963 fail_dp_rx: 1964 fail_kvarg_rx_datapath: 1965 return rc; 1966 } 1967 1968 static void 1969 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1970 { 1971 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1972 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1973 1974 dev->dev_ops = NULL; 1975 dev->tx_pkt_prepare = NULL; 1976 dev->rx_pkt_burst = NULL; 1977 dev->tx_pkt_burst = NULL; 1978 1979 rte_free(sas->dp_tx_name); 1980 sas->dp_tx_name = NULL; 1981 sa->priv.dp_tx = NULL; 1982 1983 rte_free(sas->dp_rx_name); 1984 sas->dp_rx_name = NULL; 1985 sa->priv.dp_rx = NULL; 1986 } 1987 1988 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1989 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1990 .rx_queue_count = sfc_rx_queue_count, 1991 .rx_descriptor_done = sfc_rx_descriptor_done, 1992 .rx_descriptor_status = sfc_rx_descriptor_status, 1993 .tx_descriptor_status = sfc_tx_descriptor_status, 1994 .reta_query = sfc_dev_rss_reta_query, 1995 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1996 .rxq_info_get = sfc_rx_queue_info_get, 1997 .txq_info_get = sfc_tx_queue_info_get, 1998 }; 1999 2000 static int 2001 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2002 { 2003 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2004 struct sfc_adapter_priv *sap; 2005 const struct sfc_dp_rx *dp_rx; 2006 const struct sfc_dp_tx *dp_tx; 2007 int rc; 2008 2009 /* 2010 * Allocate process private data from heap, since it should not 2011 * be located in shared memory allocated using rte_malloc() API. 2012 */ 2013 sap = calloc(1, sizeof(*sap)); 2014 if (sap == NULL) { 2015 rc = ENOMEM; 2016 goto fail_alloc_priv; 2017 } 2018 2019 sap->logtype_main = logtype_main; 2020 2021 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2022 if (dp_rx == NULL) { 2023 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2024 "cannot find %s Rx datapath", sas->dp_rx_name); 2025 rc = ENOENT; 2026 goto fail_dp_rx; 2027 } 2028 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2029 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2030 "%s Rx datapath does not support multi-process", 2031 sas->dp_rx_name); 2032 rc = EINVAL; 2033 goto fail_dp_rx_multi_process; 2034 } 2035 2036 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2037 if (dp_tx == NULL) { 2038 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2039 "cannot find %s Tx datapath", sas->dp_tx_name); 2040 rc = ENOENT; 2041 goto fail_dp_tx; 2042 } 2043 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2044 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2045 "%s Tx datapath does not support multi-process", 2046 sas->dp_tx_name); 2047 rc = EINVAL; 2048 goto fail_dp_tx_multi_process; 2049 } 2050 2051 sap->dp_rx = dp_rx; 2052 sap->dp_tx = dp_tx; 2053 2054 dev->process_private = sap; 2055 dev->rx_pkt_burst = dp_rx->pkt_burst; 2056 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2057 dev->tx_pkt_burst = dp_tx->pkt_burst; 2058 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2059 2060 return 0; 2061 2062 fail_dp_tx_multi_process: 2063 fail_dp_tx: 2064 fail_dp_rx_multi_process: 2065 fail_dp_rx: 2066 free(sap); 2067 2068 fail_alloc_priv: 2069 return rc; 2070 } 2071 2072 static void 2073 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 2074 { 2075 free(dev->process_private); 2076 dev->process_private = NULL; 2077 dev->dev_ops = NULL; 2078 dev->tx_pkt_prepare = NULL; 2079 dev->tx_pkt_burst = NULL; 2080 dev->rx_pkt_burst = NULL; 2081 } 2082 2083 static void 2084 sfc_register_dp(void) 2085 { 2086 /* Register once */ 2087 if (TAILQ_EMPTY(&sfc_dp_head)) { 2088 /* Prefer EF10 datapath */ 2089 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2090 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2091 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2092 2093 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2094 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2095 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2096 } 2097 } 2098 2099 static int 2100 sfc_eth_dev_init(struct rte_eth_dev *dev) 2101 { 2102 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2103 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2104 uint32_t logtype_main; 2105 struct sfc_adapter *sa; 2106 int rc; 2107 const efx_nic_cfg_t *encp; 2108 const struct rte_ether_addr *from; 2109 2110 sfc_register_dp(); 2111 2112 logtype_main = sfc_register_logtype(&pci_dev->addr, 2113 SFC_LOGTYPE_MAIN_STR, 2114 RTE_LOG_NOTICE); 2115 2116 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2117 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2118 2119 /* Required for logging */ 2120 sas->pci_addr = pci_dev->addr; 2121 sas->port_id = dev->data->port_id; 2122 2123 /* 2124 * Allocate process private data from heap, since it should not 2125 * be located in shared memory allocated using rte_malloc() API. 2126 */ 2127 sa = calloc(1, sizeof(*sa)); 2128 if (sa == NULL) { 2129 rc = ENOMEM; 2130 goto fail_alloc_sa; 2131 } 2132 2133 dev->process_private = sa; 2134 2135 /* Required for logging */ 2136 sa->priv.shared = sas; 2137 sa->priv.logtype_main = logtype_main; 2138 2139 sa->eth_dev = dev; 2140 2141 /* Copy PCI device info to the dev->data */ 2142 rte_eth_copy_pci_info(dev, pci_dev); 2143 2144 rc = sfc_kvargs_parse(sa); 2145 if (rc != 0) 2146 goto fail_kvargs_parse; 2147 2148 sfc_log_init(sa, "entry"); 2149 2150 dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE; 2151 2152 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2153 if (dev->data->mac_addrs == NULL) { 2154 rc = ENOMEM; 2155 goto fail_mac_addrs; 2156 } 2157 2158 sfc_adapter_lock_init(sa); 2159 sfc_adapter_lock(sa); 2160 2161 sfc_log_init(sa, "probing"); 2162 rc = sfc_probe(sa); 2163 if (rc != 0) 2164 goto fail_probe; 2165 2166 sfc_log_init(sa, "set device ops"); 2167 rc = sfc_eth_dev_set_ops(dev); 2168 if (rc != 0) 2169 goto fail_set_ops; 2170 2171 sfc_log_init(sa, "attaching"); 2172 rc = sfc_attach(sa); 2173 if (rc != 0) 2174 goto fail_attach; 2175 2176 encp = efx_nic_cfg_get(sa->nic); 2177 2178 /* 2179 * The arguments are really reverse order in comparison to 2180 * Linux kernel. Copy from NIC config to Ethernet device data. 2181 */ 2182 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2183 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2184 2185 sfc_adapter_unlock(sa); 2186 2187 sfc_log_init(sa, "done"); 2188 return 0; 2189 2190 fail_attach: 2191 sfc_eth_dev_clear_ops(dev); 2192 2193 fail_set_ops: 2194 sfc_unprobe(sa); 2195 2196 fail_probe: 2197 sfc_adapter_unlock(sa); 2198 sfc_adapter_lock_fini(sa); 2199 rte_free(dev->data->mac_addrs); 2200 dev->data->mac_addrs = NULL; 2201 2202 fail_mac_addrs: 2203 sfc_kvargs_cleanup(sa); 2204 2205 fail_kvargs_parse: 2206 sfc_log_init(sa, "failed %d", rc); 2207 dev->process_private = NULL; 2208 free(sa); 2209 2210 fail_alloc_sa: 2211 SFC_ASSERT(rc > 0); 2212 return -rc; 2213 } 2214 2215 static int 2216 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2217 { 2218 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2219 sfc_eth_dev_secondary_clear_ops(dev); 2220 return 0; 2221 } 2222 2223 sfc_dev_close(dev); 2224 2225 return 0; 2226 } 2227 2228 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2229 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2230 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2231 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2232 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2233 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2234 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2235 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2236 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2237 { .vendor_id = 0 /* sentinel */ } 2238 }; 2239 2240 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2241 struct rte_pci_device *pci_dev) 2242 { 2243 return rte_eth_dev_pci_generic_probe(pci_dev, 2244 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2245 } 2246 2247 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2248 { 2249 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2250 } 2251 2252 static struct rte_pci_driver sfc_efx_pmd = { 2253 .id_table = pci_id_sfc_efx_map, 2254 .drv_flags = 2255 RTE_PCI_DRV_INTR_LSC | 2256 RTE_PCI_DRV_NEED_MAPPING, 2257 .probe = sfc_eth_dev_pci_probe, 2258 .remove = sfc_eth_dev_pci_remove, 2259 }; 2260 2261 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2262 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2263 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2264 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2265 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2266 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2267 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2268 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2269 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2270 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2271 2272 RTE_INIT(sfc_driver_register_logtype) 2273 { 2274 int ret; 2275 2276 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2277 RTE_LOG_NOTICE); 2278 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2279 } 2280