1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = dev->data->dev_private; 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 88 struct sfc_adapter *sa = dev->data->dev_private; 89 struct sfc_rss *rss = &sa->rss; 90 uint64_t txq_offloads_def = 0; 91 92 sfc_log_init(sa, "entry"); 93 94 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 95 96 /* Autonegotiation may be disabled */ 97 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 98 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 99 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 100 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 101 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 102 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 103 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 104 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 105 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 106 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 107 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 108 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 109 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 110 111 dev_info->max_rx_queues = sa->rxq_max; 112 dev_info->max_tx_queues = sa->txq_max; 113 114 /* By default packets are dropped if no descriptors are available */ 115 dev_info->default_rxconf.rx_drop_en = 1; 116 117 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 118 119 /* 120 * rx_offload_capa includes both device and queue offloads since 121 * the latter may be requested on a per device basis which makes 122 * sense when some offloads are needed to be set on all queues. 123 */ 124 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 125 dev_info->rx_queue_offload_capa; 126 127 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 128 129 /* 130 * tx_offload_capa includes both device and queue offloads since 131 * the latter may be requested on a per device basis which makes 132 * sense when some offloads are needed to be set on all queues. 133 */ 134 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 135 dev_info->tx_queue_offload_capa; 136 137 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 138 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 139 140 dev_info->default_txconf.offloads |= txq_offloads_def; 141 142 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 143 uint64_t rte_hf = 0; 144 unsigned int i; 145 146 for (i = 0; i < rss->hf_map_nb_entries; ++i) 147 rte_hf |= rss->hf_map[i].rte; 148 149 dev_info->reta_size = EFX_RSS_TBL_SIZE; 150 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 151 dev_info->flow_type_rss_offloads = rte_hf; 152 } 153 154 /* Initialize to hardware limits */ 155 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 156 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 157 /* The RXQ hardware requires that the descriptor count is a power 158 * of 2, but rx_desc_lim cannot properly describe that constraint. 159 */ 160 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 161 162 /* Initialize to hardware limits */ 163 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 164 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 165 /* 166 * The TXQ hardware requires that the descriptor count is a power 167 * of 2, but tx_desc_lim cannot properly describe that constraint 168 */ 169 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 170 171 if (sap->dp_rx->get_dev_info != NULL) 172 sap->dp_rx->get_dev_info(dev_info); 173 if (sap->dp_tx->get_dev_info != NULL) 174 sap->dp_tx->get_dev_info(dev_info); 175 176 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 177 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 178 } 179 180 static const uint32_t * 181 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 182 { 183 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 184 struct sfc_adapter *sa = dev->data->dev_private; 185 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 186 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 187 188 return sap->dp_rx->supported_ptypes_get(tunnel_encaps); 189 } 190 191 static int 192 sfc_dev_configure(struct rte_eth_dev *dev) 193 { 194 struct rte_eth_dev_data *dev_data = dev->data; 195 struct sfc_adapter *sa = dev_data->dev_private; 196 int rc; 197 198 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 199 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 200 201 sfc_adapter_lock(sa); 202 switch (sa->state) { 203 case SFC_ADAPTER_CONFIGURED: 204 /* FALLTHROUGH */ 205 case SFC_ADAPTER_INITIALIZED: 206 rc = sfc_configure(sa); 207 break; 208 default: 209 sfc_err(sa, "unexpected adapter state %u to configure", 210 sa->state); 211 rc = EINVAL; 212 break; 213 } 214 sfc_adapter_unlock(sa); 215 216 sfc_log_init(sa, "done %d", rc); 217 SFC_ASSERT(rc >= 0); 218 return -rc; 219 } 220 221 static int 222 sfc_dev_start(struct rte_eth_dev *dev) 223 { 224 struct sfc_adapter *sa = dev->data->dev_private; 225 int rc; 226 227 sfc_log_init(sa, "entry"); 228 229 sfc_adapter_lock(sa); 230 rc = sfc_start(sa); 231 sfc_adapter_unlock(sa); 232 233 sfc_log_init(sa, "done %d", rc); 234 SFC_ASSERT(rc >= 0); 235 return -rc; 236 } 237 238 static int 239 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 240 { 241 struct sfc_adapter *sa = dev->data->dev_private; 242 struct rte_eth_link current_link; 243 int ret; 244 245 sfc_log_init(sa, "entry"); 246 247 if (sa->state != SFC_ADAPTER_STARTED) { 248 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 249 } else if (wait_to_complete) { 250 efx_link_mode_t link_mode; 251 252 if (efx_port_poll(sa->nic, &link_mode) != 0) 253 link_mode = EFX_LINK_UNKNOWN; 254 sfc_port_link_mode_to_info(link_mode, ¤t_link); 255 256 } else { 257 sfc_ev_mgmt_qpoll(sa); 258 rte_eth_linkstatus_get(dev, ¤t_link); 259 } 260 261 ret = rte_eth_linkstatus_set(dev, ¤t_link); 262 if (ret == 0) 263 sfc_notice(sa, "Link status is %s", 264 current_link.link_status ? "UP" : "DOWN"); 265 266 return ret; 267 } 268 269 static void 270 sfc_dev_stop(struct rte_eth_dev *dev) 271 { 272 struct sfc_adapter *sa = dev->data->dev_private; 273 274 sfc_log_init(sa, "entry"); 275 276 sfc_adapter_lock(sa); 277 sfc_stop(sa); 278 sfc_adapter_unlock(sa); 279 280 sfc_log_init(sa, "done"); 281 } 282 283 static int 284 sfc_dev_set_link_up(struct rte_eth_dev *dev) 285 { 286 struct sfc_adapter *sa = dev->data->dev_private; 287 int rc; 288 289 sfc_log_init(sa, "entry"); 290 291 sfc_adapter_lock(sa); 292 rc = sfc_start(sa); 293 sfc_adapter_unlock(sa); 294 295 SFC_ASSERT(rc >= 0); 296 return -rc; 297 } 298 299 static int 300 sfc_dev_set_link_down(struct rte_eth_dev *dev) 301 { 302 struct sfc_adapter *sa = dev->data->dev_private; 303 304 sfc_log_init(sa, "entry"); 305 306 sfc_adapter_lock(sa); 307 sfc_stop(sa); 308 sfc_adapter_unlock(sa); 309 310 return 0; 311 } 312 313 static void 314 sfc_dev_close(struct rte_eth_dev *dev) 315 { 316 struct sfc_adapter *sa = dev->data->dev_private; 317 318 sfc_log_init(sa, "entry"); 319 320 sfc_adapter_lock(sa); 321 switch (sa->state) { 322 case SFC_ADAPTER_STARTED: 323 sfc_stop(sa); 324 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 325 /* FALLTHROUGH */ 326 case SFC_ADAPTER_CONFIGURED: 327 sfc_close(sa); 328 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 329 /* FALLTHROUGH */ 330 case SFC_ADAPTER_INITIALIZED: 331 break; 332 default: 333 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 334 break; 335 } 336 sfc_adapter_unlock(sa); 337 338 sfc_log_init(sa, "done"); 339 } 340 341 static void 342 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 343 boolean_t enabled) 344 { 345 struct sfc_port *port; 346 boolean_t *toggle; 347 struct sfc_adapter *sa = dev->data->dev_private; 348 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 349 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 350 351 sfc_adapter_lock(sa); 352 353 port = &sa->port; 354 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 355 356 if (*toggle != enabled) { 357 *toggle = enabled; 358 359 if (port->isolated) { 360 sfc_warn(sa, "isolated mode is active on the port"); 361 sfc_warn(sa, "the change is to be applied on the next " 362 "start provided that isolated mode is " 363 "disabled prior the next start"); 364 } else if ((sa->state == SFC_ADAPTER_STARTED) && 365 (sfc_set_rx_mode(sa) != 0)) { 366 *toggle = !(enabled); 367 sfc_warn(sa, "Failed to %s %s mode", 368 ((enabled) ? "enable" : "disable"), desc); 369 } 370 } 371 372 sfc_adapter_unlock(sa); 373 } 374 375 static void 376 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 377 { 378 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 379 } 380 381 static void 382 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 383 { 384 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 385 } 386 387 static void 388 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 389 { 390 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 391 } 392 393 static void 394 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 395 { 396 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 397 } 398 399 static int 400 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 401 uint16_t nb_rx_desc, unsigned int socket_id, 402 const struct rte_eth_rxconf *rx_conf, 403 struct rte_mempool *mb_pool) 404 { 405 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 406 struct sfc_adapter *sa = dev->data->dev_private; 407 int rc; 408 409 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 410 rx_queue_id, nb_rx_desc, socket_id); 411 412 sfc_adapter_lock(sa); 413 414 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 415 rx_conf, mb_pool); 416 if (rc != 0) 417 goto fail_rx_qinit; 418 419 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 420 421 sfc_adapter_unlock(sa); 422 423 return 0; 424 425 fail_rx_qinit: 426 sfc_adapter_unlock(sa); 427 SFC_ASSERT(rc > 0); 428 return -rc; 429 } 430 431 static void 432 sfc_rx_queue_release(void *queue) 433 { 434 struct sfc_dp_rxq *dp_rxq = queue; 435 struct sfc_rxq *rxq; 436 struct sfc_adapter *sa; 437 unsigned int sw_index; 438 439 if (dp_rxq == NULL) 440 return; 441 442 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 443 sa = rxq->evq->sa; 444 sfc_adapter_lock(sa); 445 446 sw_index = dp_rxq->dpq.queue_id; 447 448 sfc_log_init(sa, "RxQ=%u", sw_index); 449 450 sfc_rx_qfini(sa, sw_index); 451 452 sfc_adapter_unlock(sa); 453 } 454 455 static int 456 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 457 uint16_t nb_tx_desc, unsigned int socket_id, 458 const struct rte_eth_txconf *tx_conf) 459 { 460 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 461 struct sfc_adapter *sa = dev->data->dev_private; 462 int rc; 463 464 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 465 tx_queue_id, nb_tx_desc, socket_id); 466 467 sfc_adapter_lock(sa); 468 469 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 470 if (rc != 0) 471 goto fail_tx_qinit; 472 473 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 474 475 sfc_adapter_unlock(sa); 476 return 0; 477 478 fail_tx_qinit: 479 sfc_adapter_unlock(sa); 480 SFC_ASSERT(rc > 0); 481 return -rc; 482 } 483 484 static void 485 sfc_tx_queue_release(void *queue) 486 { 487 struct sfc_dp_txq *dp_txq = queue; 488 struct sfc_txq *txq; 489 unsigned int sw_index; 490 struct sfc_adapter *sa; 491 492 if (dp_txq == NULL) 493 return; 494 495 txq = sfc_txq_by_dp_txq(dp_txq); 496 sw_index = dp_txq->dpq.queue_id; 497 498 SFC_ASSERT(txq->evq != NULL); 499 sa = txq->evq->sa; 500 501 sfc_log_init(sa, "TxQ = %u", sw_index); 502 503 sfc_adapter_lock(sa); 504 505 sfc_tx_qfini(sa, sw_index); 506 507 sfc_adapter_unlock(sa); 508 } 509 510 /* 511 * Some statistics are computed as A - B where A and B each increase 512 * monotonically with some hardware counter(s) and the counters are read 513 * asynchronously. 514 * 515 * If packet X is counted in A, but not counted in B yet, computed value is 516 * greater than real. 517 * 518 * If packet X is not counted in A at the moment of reading the counter, 519 * but counted in B at the moment of reading the counter, computed value 520 * is less than real. 521 * 522 * However, counter which grows backward is worse evil than slightly wrong 523 * value. So, let's try to guarantee that it never happens except may be 524 * the case when the MAC stats are zeroed as a result of a NIC reset. 525 */ 526 static void 527 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 528 { 529 if ((int64_t)(newval - *stat) > 0 || newval == 0) 530 *stat = newval; 531 } 532 533 static int 534 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 535 { 536 struct sfc_adapter *sa = dev->data->dev_private; 537 struct sfc_port *port = &sa->port; 538 uint64_t *mac_stats; 539 int ret; 540 541 rte_spinlock_lock(&port->mac_stats_lock); 542 543 ret = sfc_port_update_mac_stats(sa); 544 if (ret != 0) 545 goto unlock; 546 547 mac_stats = port->mac_stats_buf; 548 549 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 550 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 551 stats->ipackets = 552 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 553 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 554 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 555 stats->opackets = 556 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 557 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 558 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 559 stats->ibytes = 560 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 561 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 562 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 563 stats->obytes = 564 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 565 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 566 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 567 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 568 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 569 } else { 570 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 571 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 572 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 573 /* 574 * Take into account stats which are whenever supported 575 * on EF10. If some stat is not supported by current 576 * firmware variant or HW revision, it is guaranteed 577 * to be zero in mac_stats. 578 */ 579 stats->imissed = 580 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 581 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 582 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 583 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 584 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 585 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 586 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 587 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 588 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 589 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 590 stats->ierrors = 591 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 592 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 593 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 594 /* no oerrors counters supported on EF10 */ 595 596 /* Exclude missed, errors and pauses from Rx packets */ 597 sfc_update_diff_stat(&port->ipackets, 598 mac_stats[EFX_MAC_RX_PKTS] - 599 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 600 stats->imissed - stats->ierrors); 601 stats->ipackets = port->ipackets; 602 } 603 604 unlock: 605 rte_spinlock_unlock(&port->mac_stats_lock); 606 SFC_ASSERT(ret >= 0); 607 return -ret; 608 } 609 610 static void 611 sfc_stats_reset(struct rte_eth_dev *dev) 612 { 613 struct sfc_adapter *sa = dev->data->dev_private; 614 struct sfc_port *port = &sa->port; 615 int rc; 616 617 if (sa->state != SFC_ADAPTER_STARTED) { 618 /* 619 * The operation cannot be done if port is not started; it 620 * will be scheduled to be done during the next port start 621 */ 622 port->mac_stats_reset_pending = B_TRUE; 623 return; 624 } 625 626 rc = sfc_port_reset_mac_stats(sa); 627 if (rc != 0) 628 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 629 } 630 631 static int 632 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 633 unsigned int xstats_count) 634 { 635 struct sfc_adapter *sa = dev->data->dev_private; 636 struct sfc_port *port = &sa->port; 637 uint64_t *mac_stats; 638 int rc; 639 unsigned int i; 640 int nstats = 0; 641 642 rte_spinlock_lock(&port->mac_stats_lock); 643 644 rc = sfc_port_update_mac_stats(sa); 645 if (rc != 0) { 646 SFC_ASSERT(rc > 0); 647 nstats = -rc; 648 goto unlock; 649 } 650 651 mac_stats = port->mac_stats_buf; 652 653 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 654 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 655 if (xstats != NULL && nstats < (int)xstats_count) { 656 xstats[nstats].id = nstats; 657 xstats[nstats].value = mac_stats[i]; 658 } 659 nstats++; 660 } 661 } 662 663 unlock: 664 rte_spinlock_unlock(&port->mac_stats_lock); 665 666 return nstats; 667 } 668 669 static int 670 sfc_xstats_get_names(struct rte_eth_dev *dev, 671 struct rte_eth_xstat_name *xstats_names, 672 unsigned int xstats_count) 673 { 674 struct sfc_adapter *sa = dev->data->dev_private; 675 struct sfc_port *port = &sa->port; 676 unsigned int i; 677 unsigned int nstats = 0; 678 679 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 680 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 681 if (xstats_names != NULL && nstats < xstats_count) 682 strlcpy(xstats_names[nstats].name, 683 efx_mac_stat_name(sa->nic, i), 684 sizeof(xstats_names[0].name)); 685 nstats++; 686 } 687 } 688 689 return nstats; 690 } 691 692 static int 693 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 694 uint64_t *values, unsigned int n) 695 { 696 struct sfc_adapter *sa = dev->data->dev_private; 697 struct sfc_port *port = &sa->port; 698 uint64_t *mac_stats; 699 unsigned int nb_supported = 0; 700 unsigned int nb_written = 0; 701 unsigned int i; 702 int ret; 703 int rc; 704 705 if (unlikely(values == NULL) || 706 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 707 return port->mac_stats_nb_supported; 708 709 rte_spinlock_lock(&port->mac_stats_lock); 710 711 rc = sfc_port_update_mac_stats(sa); 712 if (rc != 0) { 713 SFC_ASSERT(rc > 0); 714 ret = -rc; 715 goto unlock; 716 } 717 718 mac_stats = port->mac_stats_buf; 719 720 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 721 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 722 continue; 723 724 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 725 values[nb_written++] = mac_stats[i]; 726 727 ++nb_supported; 728 } 729 730 ret = nb_written; 731 732 unlock: 733 rte_spinlock_unlock(&port->mac_stats_lock); 734 735 return ret; 736 } 737 738 static int 739 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 740 struct rte_eth_xstat_name *xstats_names, 741 const uint64_t *ids, unsigned int size) 742 { 743 struct sfc_adapter *sa = dev->data->dev_private; 744 struct sfc_port *port = &sa->port; 745 unsigned int nb_supported = 0; 746 unsigned int nb_written = 0; 747 unsigned int i; 748 749 if (unlikely(xstats_names == NULL) || 750 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 751 return port->mac_stats_nb_supported; 752 753 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 754 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 755 continue; 756 757 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 758 char *name = xstats_names[nb_written++].name; 759 760 strlcpy(name, efx_mac_stat_name(sa->nic, i), 761 sizeof(xstats_names[0].name)); 762 } 763 764 ++nb_supported; 765 } 766 767 return nb_written; 768 } 769 770 static int 771 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 772 { 773 struct sfc_adapter *sa = dev->data->dev_private; 774 unsigned int wanted_fc, link_fc; 775 776 memset(fc_conf, 0, sizeof(*fc_conf)); 777 778 sfc_adapter_lock(sa); 779 780 if (sa->state == SFC_ADAPTER_STARTED) 781 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 782 else 783 link_fc = sa->port.flow_ctrl; 784 785 switch (link_fc) { 786 case 0: 787 fc_conf->mode = RTE_FC_NONE; 788 break; 789 case EFX_FCNTL_RESPOND: 790 fc_conf->mode = RTE_FC_RX_PAUSE; 791 break; 792 case EFX_FCNTL_GENERATE: 793 fc_conf->mode = RTE_FC_TX_PAUSE; 794 break; 795 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 796 fc_conf->mode = RTE_FC_FULL; 797 break; 798 default: 799 sfc_err(sa, "%s: unexpected flow control value %#x", 800 __func__, link_fc); 801 } 802 803 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 804 805 sfc_adapter_unlock(sa); 806 807 return 0; 808 } 809 810 static int 811 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 812 { 813 struct sfc_adapter *sa = dev->data->dev_private; 814 struct sfc_port *port = &sa->port; 815 unsigned int fcntl; 816 int rc; 817 818 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 819 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 820 fc_conf->mac_ctrl_frame_fwd != 0) { 821 sfc_err(sa, "unsupported flow control settings specified"); 822 rc = EINVAL; 823 goto fail_inval; 824 } 825 826 switch (fc_conf->mode) { 827 case RTE_FC_NONE: 828 fcntl = 0; 829 break; 830 case RTE_FC_RX_PAUSE: 831 fcntl = EFX_FCNTL_RESPOND; 832 break; 833 case RTE_FC_TX_PAUSE: 834 fcntl = EFX_FCNTL_GENERATE; 835 break; 836 case RTE_FC_FULL: 837 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 838 break; 839 default: 840 rc = EINVAL; 841 goto fail_inval; 842 } 843 844 sfc_adapter_lock(sa); 845 846 if (sa->state == SFC_ADAPTER_STARTED) { 847 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 848 if (rc != 0) 849 goto fail_mac_fcntl_set; 850 } 851 852 port->flow_ctrl = fcntl; 853 port->flow_ctrl_autoneg = fc_conf->autoneg; 854 855 sfc_adapter_unlock(sa); 856 857 return 0; 858 859 fail_mac_fcntl_set: 860 sfc_adapter_unlock(sa); 861 fail_inval: 862 SFC_ASSERT(rc > 0); 863 return -rc; 864 } 865 866 static int 867 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 868 { 869 struct sfc_adapter *sa = dev->data->dev_private; 870 size_t pdu = EFX_MAC_PDU(mtu); 871 size_t old_pdu; 872 int rc; 873 874 sfc_log_init(sa, "mtu=%u", mtu); 875 876 rc = EINVAL; 877 if (pdu < EFX_MAC_PDU_MIN) { 878 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 879 (unsigned int)mtu, (unsigned int)pdu, 880 EFX_MAC_PDU_MIN); 881 goto fail_inval; 882 } 883 if (pdu > EFX_MAC_PDU_MAX) { 884 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 885 (unsigned int)mtu, (unsigned int)pdu, 886 EFX_MAC_PDU_MAX); 887 goto fail_inval; 888 } 889 890 sfc_adapter_lock(sa); 891 892 if (pdu != sa->port.pdu) { 893 if (sa->state == SFC_ADAPTER_STARTED) { 894 sfc_stop(sa); 895 896 old_pdu = sa->port.pdu; 897 sa->port.pdu = pdu; 898 rc = sfc_start(sa); 899 if (rc != 0) 900 goto fail_start; 901 } else { 902 sa->port.pdu = pdu; 903 } 904 } 905 906 /* 907 * The driver does not use it, but other PMDs update jumbo frame 908 * flag and max_rx_pkt_len when MTU is set. 909 */ 910 if (mtu > ETHER_MAX_LEN) { 911 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 912 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 913 } 914 915 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 916 917 sfc_adapter_unlock(sa); 918 919 sfc_log_init(sa, "done"); 920 return 0; 921 922 fail_start: 923 sa->port.pdu = old_pdu; 924 if (sfc_start(sa) != 0) 925 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 926 "PDU max size - port is stopped", 927 (unsigned int)pdu, (unsigned int)old_pdu); 928 sfc_adapter_unlock(sa); 929 930 fail_inval: 931 sfc_log_init(sa, "failed %d", rc); 932 SFC_ASSERT(rc > 0); 933 return -rc; 934 } 935 static int 936 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 937 { 938 struct sfc_adapter *sa = dev->data->dev_private; 939 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 940 struct sfc_port *port = &sa->port; 941 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 942 int rc = 0; 943 944 sfc_adapter_lock(sa); 945 946 /* 947 * Copy the address to the device private data so that 948 * it could be recalled in the case of adapter restart. 949 */ 950 ether_addr_copy(mac_addr, &port->default_mac_addr); 951 952 /* 953 * Neither of the two following checks can return 954 * an error. The new MAC address is preserved in 955 * the device private data and can be activated 956 * on the next port start if the user prevents 957 * isolated mode from being enabled. 958 */ 959 if (port->isolated) { 960 sfc_warn(sa, "isolated mode is active on the port"); 961 sfc_warn(sa, "will not set MAC address"); 962 goto unlock; 963 } 964 965 if (sa->state != SFC_ADAPTER_STARTED) { 966 sfc_notice(sa, "the port is not started"); 967 sfc_notice(sa, "the new MAC address will be set on port start"); 968 969 goto unlock; 970 } 971 972 if (encp->enc_allow_set_mac_with_installed_filters) { 973 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 974 if (rc != 0) { 975 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 976 goto unlock; 977 } 978 979 /* 980 * Changing the MAC address by means of MCDI request 981 * has no effect on received traffic, therefore 982 * we also need to update unicast filters 983 */ 984 rc = sfc_set_rx_mode(sa); 985 if (rc != 0) { 986 sfc_err(sa, "cannot set filter (rc = %u)", rc); 987 /* Rollback the old address */ 988 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 989 (void)sfc_set_rx_mode(sa); 990 } 991 } else { 992 sfc_warn(sa, "cannot set MAC address with filters installed"); 993 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 994 sfc_warn(sa, "(some traffic may be dropped)"); 995 996 /* 997 * Since setting MAC address with filters installed is not 998 * allowed on the adapter, the new MAC address will be set 999 * by means of adapter restart. sfc_start() shall retrieve 1000 * the new address from the device private data and set it. 1001 */ 1002 sfc_stop(sa); 1003 rc = sfc_start(sa); 1004 if (rc != 0) 1005 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1006 } 1007 1008 unlock: 1009 if (rc != 0) 1010 ether_addr_copy(old_addr, &port->default_mac_addr); 1011 1012 sfc_adapter_unlock(sa); 1013 1014 SFC_ASSERT(rc >= 0); 1015 return -rc; 1016 } 1017 1018 1019 static int 1020 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1021 uint32_t nb_mc_addr) 1022 { 1023 struct sfc_adapter *sa = dev->data->dev_private; 1024 struct sfc_port *port = &sa->port; 1025 uint8_t *mc_addrs = port->mcast_addrs; 1026 int rc; 1027 unsigned int i; 1028 1029 if (port->isolated) { 1030 sfc_err(sa, "isolated mode is active on the port"); 1031 sfc_err(sa, "will not set multicast address list"); 1032 return -ENOTSUP; 1033 } 1034 1035 if (mc_addrs == NULL) 1036 return -ENOBUFS; 1037 1038 if (nb_mc_addr > port->max_mcast_addrs) { 1039 sfc_err(sa, "too many multicast addresses: %u > %u", 1040 nb_mc_addr, port->max_mcast_addrs); 1041 return -EINVAL; 1042 } 1043 1044 for (i = 0; i < nb_mc_addr; ++i) { 1045 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1046 EFX_MAC_ADDR_LEN); 1047 mc_addrs += EFX_MAC_ADDR_LEN; 1048 } 1049 1050 port->nb_mcast_addrs = nb_mc_addr; 1051 1052 if (sa->state != SFC_ADAPTER_STARTED) 1053 return 0; 1054 1055 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1056 port->nb_mcast_addrs); 1057 if (rc != 0) 1058 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1059 1060 SFC_ASSERT(rc >= 0); 1061 return -rc; 1062 } 1063 1064 /* 1065 * The function is used by the secondary process as well. It must not 1066 * use any process-local pointers from the adapter data. 1067 */ 1068 static void 1069 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1070 struct rte_eth_rxq_info *qinfo) 1071 { 1072 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1073 struct sfc_adapter *sa = dev->data->dev_private; 1074 struct sfc_rxq_info *rxq_info; 1075 1076 sfc_adapter_lock(sa); 1077 1078 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1079 1080 rxq_info = &sas->rxq_info[rx_queue_id]; 1081 1082 qinfo->mp = rxq_info->refill_mb_pool; 1083 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1084 qinfo->conf.rx_drop_en = 1; 1085 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1086 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1087 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1088 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1089 qinfo->scattered_rx = 1; 1090 } 1091 qinfo->nb_desc = rxq_info->entries; 1092 1093 sfc_adapter_unlock(sa); 1094 } 1095 1096 /* 1097 * The function is used by the secondary process as well. It must not 1098 * use any process-local pointers from the adapter data. 1099 */ 1100 static void 1101 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1102 struct rte_eth_txq_info *qinfo) 1103 { 1104 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1105 struct sfc_adapter *sa = dev->data->dev_private; 1106 struct sfc_txq_info *txq_info; 1107 1108 sfc_adapter_lock(sa); 1109 1110 SFC_ASSERT(tx_queue_id < sas->txq_count); 1111 1112 txq_info = &sas->txq_info[tx_queue_id]; 1113 1114 memset(qinfo, 0, sizeof(*qinfo)); 1115 1116 qinfo->conf.offloads = txq_info->offloads; 1117 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1118 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1119 qinfo->nb_desc = txq_info->entries; 1120 1121 sfc_adapter_unlock(sa); 1122 } 1123 1124 /* 1125 * The function is used by the secondary process as well. It must not 1126 * use any process-local pointers from the adapter data. 1127 */ 1128 static uint32_t 1129 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1130 { 1131 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1132 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1133 struct sfc_rxq_info *rxq_info; 1134 1135 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1136 rxq_info = &sas->rxq_info[rx_queue_id]; 1137 1138 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1139 return 0; 1140 1141 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1142 } 1143 1144 /* 1145 * The function is used by the secondary process as well. It must not 1146 * use any process-local pointers from the adapter data. 1147 */ 1148 static int 1149 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1150 { 1151 struct sfc_dp_rxq *dp_rxq = queue; 1152 const struct sfc_dp_rx *dp_rx; 1153 1154 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1155 1156 return offset < dp_rx->qdesc_npending(dp_rxq); 1157 } 1158 1159 /* 1160 * The function is used by the secondary process as well. It must not 1161 * use any process-local pointers from the adapter data. 1162 */ 1163 static int 1164 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1165 { 1166 struct sfc_dp_rxq *dp_rxq = queue; 1167 const struct sfc_dp_rx *dp_rx; 1168 1169 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1170 1171 return dp_rx->qdesc_status(dp_rxq, offset); 1172 } 1173 1174 /* 1175 * The function is used by the secondary process as well. It must not 1176 * use any process-local pointers from the adapter data. 1177 */ 1178 static int 1179 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1180 { 1181 struct sfc_dp_txq *dp_txq = queue; 1182 const struct sfc_dp_tx *dp_tx; 1183 1184 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1185 1186 return dp_tx->qdesc_status(dp_txq, offset); 1187 } 1188 1189 static int 1190 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1191 { 1192 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1193 struct sfc_adapter *sa = dev->data->dev_private; 1194 int rc; 1195 1196 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1197 1198 sfc_adapter_lock(sa); 1199 1200 rc = EINVAL; 1201 if (sa->state != SFC_ADAPTER_STARTED) 1202 goto fail_not_started; 1203 1204 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1205 goto fail_not_setup; 1206 1207 rc = sfc_rx_qstart(sa, rx_queue_id); 1208 if (rc != 0) 1209 goto fail_rx_qstart; 1210 1211 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1212 1213 sfc_adapter_unlock(sa); 1214 1215 return 0; 1216 1217 fail_rx_qstart: 1218 fail_not_setup: 1219 fail_not_started: 1220 sfc_adapter_unlock(sa); 1221 SFC_ASSERT(rc > 0); 1222 return -rc; 1223 } 1224 1225 static int 1226 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1227 { 1228 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1229 struct sfc_adapter *sa = dev->data->dev_private; 1230 1231 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1232 1233 sfc_adapter_lock(sa); 1234 sfc_rx_qstop(sa, rx_queue_id); 1235 1236 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1237 1238 sfc_adapter_unlock(sa); 1239 1240 return 0; 1241 } 1242 1243 static int 1244 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1245 { 1246 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1247 struct sfc_adapter *sa = dev->data->dev_private; 1248 int rc; 1249 1250 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1251 1252 sfc_adapter_lock(sa); 1253 1254 rc = EINVAL; 1255 if (sa->state != SFC_ADAPTER_STARTED) 1256 goto fail_not_started; 1257 1258 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1259 goto fail_not_setup; 1260 1261 rc = sfc_tx_qstart(sa, tx_queue_id); 1262 if (rc != 0) 1263 goto fail_tx_qstart; 1264 1265 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1266 1267 sfc_adapter_unlock(sa); 1268 return 0; 1269 1270 fail_tx_qstart: 1271 1272 fail_not_setup: 1273 fail_not_started: 1274 sfc_adapter_unlock(sa); 1275 SFC_ASSERT(rc > 0); 1276 return -rc; 1277 } 1278 1279 static int 1280 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1281 { 1282 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1283 struct sfc_adapter *sa = dev->data->dev_private; 1284 1285 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1286 1287 sfc_adapter_lock(sa); 1288 1289 sfc_tx_qstop(sa, tx_queue_id); 1290 1291 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1292 1293 sfc_adapter_unlock(sa); 1294 return 0; 1295 } 1296 1297 static efx_tunnel_protocol_t 1298 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1299 { 1300 switch (rte_type) { 1301 case RTE_TUNNEL_TYPE_VXLAN: 1302 return EFX_TUNNEL_PROTOCOL_VXLAN; 1303 case RTE_TUNNEL_TYPE_GENEVE: 1304 return EFX_TUNNEL_PROTOCOL_GENEVE; 1305 default: 1306 return EFX_TUNNEL_NPROTOS; 1307 } 1308 } 1309 1310 enum sfc_udp_tunnel_op_e { 1311 SFC_UDP_TUNNEL_ADD_PORT, 1312 SFC_UDP_TUNNEL_DEL_PORT, 1313 }; 1314 1315 static int 1316 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1317 struct rte_eth_udp_tunnel *tunnel_udp, 1318 enum sfc_udp_tunnel_op_e op) 1319 { 1320 struct sfc_adapter *sa = dev->data->dev_private; 1321 efx_tunnel_protocol_t tunnel_proto; 1322 int rc; 1323 1324 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1325 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1326 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1327 tunnel_udp->udp_port, tunnel_udp->prot_type); 1328 1329 tunnel_proto = 1330 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1331 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1332 rc = ENOTSUP; 1333 goto fail_bad_proto; 1334 } 1335 1336 sfc_adapter_lock(sa); 1337 1338 switch (op) { 1339 case SFC_UDP_TUNNEL_ADD_PORT: 1340 rc = efx_tunnel_config_udp_add(sa->nic, 1341 tunnel_udp->udp_port, 1342 tunnel_proto); 1343 break; 1344 case SFC_UDP_TUNNEL_DEL_PORT: 1345 rc = efx_tunnel_config_udp_remove(sa->nic, 1346 tunnel_udp->udp_port, 1347 tunnel_proto); 1348 break; 1349 default: 1350 rc = EINVAL; 1351 goto fail_bad_op; 1352 } 1353 1354 if (rc != 0) 1355 goto fail_op; 1356 1357 if (sa->state == SFC_ADAPTER_STARTED) { 1358 rc = efx_tunnel_reconfigure(sa->nic); 1359 if (rc == EAGAIN) { 1360 /* 1361 * Configuration is accepted by FW and MC reboot 1362 * is initiated to apply the changes. MC reboot 1363 * will be handled in a usual way (MC reboot 1364 * event on management event queue and adapter 1365 * restart). 1366 */ 1367 rc = 0; 1368 } else if (rc != 0) { 1369 goto fail_reconfigure; 1370 } 1371 } 1372 1373 sfc_adapter_unlock(sa); 1374 return 0; 1375 1376 fail_reconfigure: 1377 /* Remove/restore entry since the change makes the trouble */ 1378 switch (op) { 1379 case SFC_UDP_TUNNEL_ADD_PORT: 1380 (void)efx_tunnel_config_udp_remove(sa->nic, 1381 tunnel_udp->udp_port, 1382 tunnel_proto); 1383 break; 1384 case SFC_UDP_TUNNEL_DEL_PORT: 1385 (void)efx_tunnel_config_udp_add(sa->nic, 1386 tunnel_udp->udp_port, 1387 tunnel_proto); 1388 break; 1389 } 1390 1391 fail_op: 1392 fail_bad_op: 1393 sfc_adapter_unlock(sa); 1394 1395 fail_bad_proto: 1396 SFC_ASSERT(rc > 0); 1397 return -rc; 1398 } 1399 1400 static int 1401 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1402 struct rte_eth_udp_tunnel *tunnel_udp) 1403 { 1404 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1405 } 1406 1407 static int 1408 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1409 struct rte_eth_udp_tunnel *tunnel_udp) 1410 { 1411 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1412 } 1413 1414 /* 1415 * The function is used by the secondary process as well. It must not 1416 * use any process-local pointers from the adapter data. 1417 */ 1418 static int 1419 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1420 struct rte_eth_rss_conf *rss_conf) 1421 { 1422 struct sfc_adapter *sa = dev->data->dev_private; 1423 struct sfc_rss *rss = &sa->rss; 1424 1425 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1426 return -ENOTSUP; 1427 1428 sfc_adapter_lock(sa); 1429 1430 /* 1431 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1432 * hence, conversion is done here to derive a correct set of ETH_RSS 1433 * flags which corresponds to the active EFX configuration stored 1434 * locally in 'sfc_adapter' and kept up-to-date 1435 */ 1436 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1437 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1438 if (rss_conf->rss_key != NULL) 1439 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1440 1441 sfc_adapter_unlock(sa); 1442 1443 return 0; 1444 } 1445 1446 static int 1447 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1448 struct rte_eth_rss_conf *rss_conf) 1449 { 1450 struct sfc_adapter *sa = dev->data->dev_private; 1451 struct sfc_rss *rss = &sa->rss; 1452 struct sfc_port *port = &sa->port; 1453 unsigned int efx_hash_types; 1454 int rc = 0; 1455 1456 if (port->isolated) 1457 return -ENOTSUP; 1458 1459 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1460 sfc_err(sa, "RSS is not available"); 1461 return -ENOTSUP; 1462 } 1463 1464 if (rss->channels == 0) { 1465 sfc_err(sa, "RSS is not configured"); 1466 return -EINVAL; 1467 } 1468 1469 if ((rss_conf->rss_key != NULL) && 1470 (rss_conf->rss_key_len != sizeof(rss->key))) { 1471 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1472 sizeof(rss->key)); 1473 return -EINVAL; 1474 } 1475 1476 sfc_adapter_lock(sa); 1477 1478 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1479 if (rc != 0) 1480 goto fail_rx_hf_rte_to_efx; 1481 1482 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1483 rss->hash_alg, efx_hash_types, B_TRUE); 1484 if (rc != 0) 1485 goto fail_scale_mode_set; 1486 1487 if (rss_conf->rss_key != NULL) { 1488 if (sa->state == SFC_ADAPTER_STARTED) { 1489 rc = efx_rx_scale_key_set(sa->nic, 1490 EFX_RSS_CONTEXT_DEFAULT, 1491 rss_conf->rss_key, 1492 sizeof(rss->key)); 1493 if (rc != 0) 1494 goto fail_scale_key_set; 1495 } 1496 1497 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1498 } 1499 1500 rss->hash_types = efx_hash_types; 1501 1502 sfc_adapter_unlock(sa); 1503 1504 return 0; 1505 1506 fail_scale_key_set: 1507 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1508 EFX_RX_HASHALG_TOEPLITZ, 1509 rss->hash_types, B_TRUE) != 0) 1510 sfc_err(sa, "failed to restore RSS mode"); 1511 1512 fail_scale_mode_set: 1513 fail_rx_hf_rte_to_efx: 1514 sfc_adapter_unlock(sa); 1515 return -rc; 1516 } 1517 1518 /* 1519 * The function is used by the secondary process as well. It must not 1520 * use any process-local pointers from the adapter data. 1521 */ 1522 static int 1523 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1524 struct rte_eth_rss_reta_entry64 *reta_conf, 1525 uint16_t reta_size) 1526 { 1527 struct sfc_adapter *sa = dev->data->dev_private; 1528 struct sfc_rss *rss = &sa->rss; 1529 struct sfc_port *port = &sa->port; 1530 int entry; 1531 1532 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1533 return -ENOTSUP; 1534 1535 if (rss->channels == 0) 1536 return -EINVAL; 1537 1538 if (reta_size != EFX_RSS_TBL_SIZE) 1539 return -EINVAL; 1540 1541 sfc_adapter_lock(sa); 1542 1543 for (entry = 0; entry < reta_size; entry++) { 1544 int grp = entry / RTE_RETA_GROUP_SIZE; 1545 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1546 1547 if ((reta_conf[grp].mask >> grp_idx) & 1) 1548 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1549 } 1550 1551 sfc_adapter_unlock(sa); 1552 1553 return 0; 1554 } 1555 1556 static int 1557 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1558 struct rte_eth_rss_reta_entry64 *reta_conf, 1559 uint16_t reta_size) 1560 { 1561 struct sfc_adapter *sa = dev->data->dev_private; 1562 struct sfc_rss *rss = &sa->rss; 1563 struct sfc_port *port = &sa->port; 1564 unsigned int *rss_tbl_new; 1565 uint16_t entry; 1566 int rc = 0; 1567 1568 1569 if (port->isolated) 1570 return -ENOTSUP; 1571 1572 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1573 sfc_err(sa, "RSS is not available"); 1574 return -ENOTSUP; 1575 } 1576 1577 if (rss->channels == 0) { 1578 sfc_err(sa, "RSS is not configured"); 1579 return -EINVAL; 1580 } 1581 1582 if (reta_size != EFX_RSS_TBL_SIZE) { 1583 sfc_err(sa, "RETA size is wrong (should be %u)", 1584 EFX_RSS_TBL_SIZE); 1585 return -EINVAL; 1586 } 1587 1588 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1589 if (rss_tbl_new == NULL) 1590 return -ENOMEM; 1591 1592 sfc_adapter_lock(sa); 1593 1594 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1595 1596 for (entry = 0; entry < reta_size; entry++) { 1597 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1598 struct rte_eth_rss_reta_entry64 *grp; 1599 1600 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1601 1602 if (grp->mask & (1ull << grp_idx)) { 1603 if (grp->reta[grp_idx] >= rss->channels) { 1604 rc = EINVAL; 1605 goto bad_reta_entry; 1606 } 1607 rss_tbl_new[entry] = grp->reta[grp_idx]; 1608 } 1609 } 1610 1611 if (sa->state == SFC_ADAPTER_STARTED) { 1612 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1613 rss_tbl_new, EFX_RSS_TBL_SIZE); 1614 if (rc != 0) 1615 goto fail_scale_tbl_set; 1616 } 1617 1618 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1619 1620 fail_scale_tbl_set: 1621 bad_reta_entry: 1622 sfc_adapter_unlock(sa); 1623 1624 rte_free(rss_tbl_new); 1625 1626 SFC_ASSERT(rc >= 0); 1627 return -rc; 1628 } 1629 1630 static int 1631 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1632 enum rte_filter_op filter_op, 1633 void *arg) 1634 { 1635 struct sfc_adapter *sa = dev->data->dev_private; 1636 int rc = ENOTSUP; 1637 1638 sfc_log_init(sa, "entry"); 1639 1640 switch (filter_type) { 1641 case RTE_ETH_FILTER_NONE: 1642 sfc_err(sa, "Global filters configuration not supported"); 1643 break; 1644 case RTE_ETH_FILTER_MACVLAN: 1645 sfc_err(sa, "MACVLAN filters not supported"); 1646 break; 1647 case RTE_ETH_FILTER_ETHERTYPE: 1648 sfc_err(sa, "EtherType filters not supported"); 1649 break; 1650 case RTE_ETH_FILTER_FLEXIBLE: 1651 sfc_err(sa, "Flexible filters not supported"); 1652 break; 1653 case RTE_ETH_FILTER_SYN: 1654 sfc_err(sa, "SYN filters not supported"); 1655 break; 1656 case RTE_ETH_FILTER_NTUPLE: 1657 sfc_err(sa, "NTUPLE filters not supported"); 1658 break; 1659 case RTE_ETH_FILTER_TUNNEL: 1660 sfc_err(sa, "Tunnel filters not supported"); 1661 break; 1662 case RTE_ETH_FILTER_FDIR: 1663 sfc_err(sa, "Flow Director filters not supported"); 1664 break; 1665 case RTE_ETH_FILTER_HASH: 1666 sfc_err(sa, "Hash filters not supported"); 1667 break; 1668 case RTE_ETH_FILTER_GENERIC: 1669 if (filter_op != RTE_ETH_FILTER_GET) { 1670 rc = EINVAL; 1671 } else { 1672 *(const void **)arg = &sfc_flow_ops; 1673 rc = 0; 1674 } 1675 break; 1676 default: 1677 sfc_err(sa, "Unknown filter type %u", filter_type); 1678 break; 1679 } 1680 1681 sfc_log_init(sa, "exit: %d", -rc); 1682 SFC_ASSERT(rc >= 0); 1683 return -rc; 1684 } 1685 1686 static int 1687 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1688 { 1689 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1690 1691 /* 1692 * If Rx datapath does not provide callback to check mempool, 1693 * all pools are supported. 1694 */ 1695 if (sap->dp_rx->pool_ops_supported == NULL) 1696 return 1; 1697 1698 return sap->dp_rx->pool_ops_supported(pool); 1699 } 1700 1701 static const struct eth_dev_ops sfc_eth_dev_ops = { 1702 .dev_configure = sfc_dev_configure, 1703 .dev_start = sfc_dev_start, 1704 .dev_stop = sfc_dev_stop, 1705 .dev_set_link_up = sfc_dev_set_link_up, 1706 .dev_set_link_down = sfc_dev_set_link_down, 1707 .dev_close = sfc_dev_close, 1708 .promiscuous_enable = sfc_dev_promisc_enable, 1709 .promiscuous_disable = sfc_dev_promisc_disable, 1710 .allmulticast_enable = sfc_dev_allmulti_enable, 1711 .allmulticast_disable = sfc_dev_allmulti_disable, 1712 .link_update = sfc_dev_link_update, 1713 .stats_get = sfc_stats_get, 1714 .stats_reset = sfc_stats_reset, 1715 .xstats_get = sfc_xstats_get, 1716 .xstats_reset = sfc_stats_reset, 1717 .xstats_get_names = sfc_xstats_get_names, 1718 .dev_infos_get = sfc_dev_infos_get, 1719 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1720 .mtu_set = sfc_dev_set_mtu, 1721 .rx_queue_start = sfc_rx_queue_start, 1722 .rx_queue_stop = sfc_rx_queue_stop, 1723 .tx_queue_start = sfc_tx_queue_start, 1724 .tx_queue_stop = sfc_tx_queue_stop, 1725 .rx_queue_setup = sfc_rx_queue_setup, 1726 .rx_queue_release = sfc_rx_queue_release, 1727 .rx_queue_count = sfc_rx_queue_count, 1728 .rx_descriptor_done = sfc_rx_descriptor_done, 1729 .rx_descriptor_status = sfc_rx_descriptor_status, 1730 .tx_descriptor_status = sfc_tx_descriptor_status, 1731 .tx_queue_setup = sfc_tx_queue_setup, 1732 .tx_queue_release = sfc_tx_queue_release, 1733 .flow_ctrl_get = sfc_flow_ctrl_get, 1734 .flow_ctrl_set = sfc_flow_ctrl_set, 1735 .mac_addr_set = sfc_mac_addr_set, 1736 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1737 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1738 .reta_update = sfc_dev_rss_reta_update, 1739 .reta_query = sfc_dev_rss_reta_query, 1740 .rss_hash_update = sfc_dev_rss_hash_update, 1741 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1742 .filter_ctrl = sfc_dev_filter_ctrl, 1743 .set_mc_addr_list = sfc_set_mc_addr_list, 1744 .rxq_info_get = sfc_rx_queue_info_get, 1745 .txq_info_get = sfc_tx_queue_info_get, 1746 .fw_version_get = sfc_fw_version_get, 1747 .xstats_get_by_id = sfc_xstats_get_by_id, 1748 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1749 .pool_ops_supported = sfc_pool_ops_supported, 1750 }; 1751 1752 /** 1753 * Duplicate a string in potentially shared memory required for 1754 * multi-process support. 1755 * 1756 * strdup() allocates from process-local heap/memory. 1757 */ 1758 static char * 1759 sfc_strdup(const char *str) 1760 { 1761 size_t size; 1762 char *copy; 1763 1764 if (str == NULL) 1765 return NULL; 1766 1767 size = strlen(str) + 1; 1768 copy = rte_malloc(__func__, size, 0); 1769 if (copy != NULL) 1770 rte_memcpy(copy, str, size); 1771 1772 return copy; 1773 } 1774 1775 static int 1776 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1777 { 1778 struct sfc_adapter *sa = dev->data->dev_private; 1779 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1780 const struct sfc_dp_rx *dp_rx; 1781 const struct sfc_dp_tx *dp_tx; 1782 const efx_nic_cfg_t *encp; 1783 unsigned int avail_caps = 0; 1784 const char *rx_name = NULL; 1785 const char *tx_name = NULL; 1786 int rc; 1787 1788 switch (sa->family) { 1789 case EFX_FAMILY_HUNTINGTON: 1790 case EFX_FAMILY_MEDFORD: 1791 case EFX_FAMILY_MEDFORD2: 1792 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1793 break; 1794 default: 1795 break; 1796 } 1797 1798 encp = efx_nic_cfg_get(sa->nic); 1799 if (encp->enc_rx_es_super_buffer_supported) 1800 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1801 1802 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1803 sfc_kvarg_string_handler, &rx_name); 1804 if (rc != 0) 1805 goto fail_kvarg_rx_datapath; 1806 1807 if (rx_name != NULL) { 1808 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1809 if (dp_rx == NULL) { 1810 sfc_err(sa, "Rx datapath %s not found", rx_name); 1811 rc = ENOENT; 1812 goto fail_dp_rx; 1813 } 1814 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1815 sfc_err(sa, 1816 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1817 rx_name); 1818 rc = EINVAL; 1819 goto fail_dp_rx_caps; 1820 } 1821 } else { 1822 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1823 if (dp_rx == NULL) { 1824 sfc_err(sa, "Rx datapath by caps %#x not found", 1825 avail_caps); 1826 rc = ENOENT; 1827 goto fail_dp_rx; 1828 } 1829 } 1830 1831 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1832 if (sas->dp_rx_name == NULL) { 1833 rc = ENOMEM; 1834 goto fail_dp_rx_name; 1835 } 1836 1837 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1838 1839 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1840 sfc_kvarg_string_handler, &tx_name); 1841 if (rc != 0) 1842 goto fail_kvarg_tx_datapath; 1843 1844 if (tx_name != NULL) { 1845 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1846 if (dp_tx == NULL) { 1847 sfc_err(sa, "Tx datapath %s not found", tx_name); 1848 rc = ENOENT; 1849 goto fail_dp_tx; 1850 } 1851 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1852 sfc_err(sa, 1853 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1854 tx_name); 1855 rc = EINVAL; 1856 goto fail_dp_tx_caps; 1857 } 1858 } else { 1859 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1860 if (dp_tx == NULL) { 1861 sfc_err(sa, "Tx datapath by caps %#x not found", 1862 avail_caps); 1863 rc = ENOENT; 1864 goto fail_dp_tx; 1865 } 1866 } 1867 1868 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1869 if (sas->dp_tx_name == NULL) { 1870 rc = ENOMEM; 1871 goto fail_dp_tx_name; 1872 } 1873 1874 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1875 1876 sa->priv.dp_rx = dp_rx; 1877 sa->priv.dp_tx = dp_tx; 1878 1879 dev->rx_pkt_burst = dp_rx->pkt_burst; 1880 dev->tx_pkt_burst = dp_tx->pkt_burst; 1881 1882 dev->dev_ops = &sfc_eth_dev_ops; 1883 1884 return 0; 1885 1886 fail_dp_tx_name: 1887 fail_dp_tx_caps: 1888 fail_dp_tx: 1889 fail_kvarg_tx_datapath: 1890 rte_free(sas->dp_rx_name); 1891 sas->dp_rx_name = NULL; 1892 1893 fail_dp_rx_name: 1894 fail_dp_rx_caps: 1895 fail_dp_rx: 1896 fail_kvarg_rx_datapath: 1897 return rc; 1898 } 1899 1900 static void 1901 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1902 { 1903 struct sfc_adapter *sa = dev->data->dev_private; 1904 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1905 1906 dev->dev_ops = NULL; 1907 dev->rx_pkt_burst = NULL; 1908 dev->tx_pkt_burst = NULL; 1909 1910 rte_free(sas->dp_tx_name); 1911 sas->dp_tx_name = NULL; 1912 sa->priv.dp_tx = NULL; 1913 1914 rte_free(sas->dp_rx_name); 1915 sas->dp_rx_name = NULL; 1916 sa->priv.dp_rx = NULL; 1917 } 1918 1919 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1920 .rx_queue_count = sfc_rx_queue_count, 1921 .rx_descriptor_done = sfc_rx_descriptor_done, 1922 .rx_descriptor_status = sfc_rx_descriptor_status, 1923 .tx_descriptor_status = sfc_tx_descriptor_status, 1924 .reta_query = sfc_dev_rss_reta_query, 1925 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1926 .rxq_info_get = sfc_rx_queue_info_get, 1927 .txq_info_get = sfc_tx_queue_info_get, 1928 }; 1929 1930 static int 1931 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 1932 { 1933 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1934 struct sfc_adapter_priv *sap; 1935 const struct sfc_dp_rx *dp_rx; 1936 const struct sfc_dp_tx *dp_tx; 1937 int rc; 1938 1939 /* 1940 * Allocate process private data from heap, since it should not 1941 * be located in shared memory allocated using rte_malloc() API. 1942 */ 1943 sap = calloc(1, sizeof(*sap)); 1944 if (sap == NULL) { 1945 rc = ENOMEM; 1946 goto fail_alloc_priv; 1947 } 1948 1949 sap->logtype_main = logtype_main; 1950 1951 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 1952 if (dp_rx == NULL) { 1953 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1954 "cannot find %s Rx datapath", sas->dp_rx_name); 1955 rc = ENOENT; 1956 goto fail_dp_rx; 1957 } 1958 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1959 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1960 "%s Rx datapath does not support multi-process", 1961 sas->dp_rx_name); 1962 rc = EINVAL; 1963 goto fail_dp_rx_multi_process; 1964 } 1965 1966 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 1967 if (dp_tx == NULL) { 1968 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1969 "cannot find %s Tx datapath", sas->dp_tx_name); 1970 rc = ENOENT; 1971 goto fail_dp_tx; 1972 } 1973 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1974 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1975 "%s Tx datapath does not support multi-process", 1976 sas->dp_tx_name); 1977 rc = EINVAL; 1978 goto fail_dp_tx_multi_process; 1979 } 1980 1981 sap->dp_rx = dp_rx; 1982 sap->dp_tx = dp_tx; 1983 1984 dev->process_private = sap; 1985 dev->rx_pkt_burst = dp_rx->pkt_burst; 1986 dev->tx_pkt_burst = dp_tx->pkt_burst; 1987 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1988 1989 return 0; 1990 1991 fail_dp_tx_multi_process: 1992 fail_dp_tx: 1993 fail_dp_rx_multi_process: 1994 fail_dp_rx: 1995 free(sap); 1996 1997 fail_alloc_priv: 1998 return rc; 1999 } 2000 2001 static void 2002 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 2003 { 2004 free(dev->process_private); 2005 dev->process_private = NULL; 2006 dev->dev_ops = NULL; 2007 dev->tx_pkt_burst = NULL; 2008 dev->rx_pkt_burst = NULL; 2009 } 2010 2011 static void 2012 sfc_register_dp(void) 2013 { 2014 /* Register once */ 2015 if (TAILQ_EMPTY(&sfc_dp_head)) { 2016 /* Prefer EF10 datapath */ 2017 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2018 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2019 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2020 2021 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2022 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2023 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2024 } 2025 } 2026 2027 static int 2028 sfc_eth_dev_init(struct rte_eth_dev *dev) 2029 { 2030 struct sfc_adapter *sa = dev->data->dev_private; 2031 struct sfc_adapter_shared *sas; 2032 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2033 uint32_t logtype_main; 2034 int rc; 2035 const efx_nic_cfg_t *encp; 2036 const struct ether_addr *from; 2037 2038 sfc_register_dp(); 2039 2040 logtype_main = sfc_register_logtype(&pci_dev->addr, 2041 SFC_LOGTYPE_MAIN_STR, 2042 RTE_LOG_NOTICE); 2043 2044 sa->priv.shared = &sa->_shared; 2045 sas = sa->priv.shared; 2046 2047 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2048 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2049 2050 /* 2051 * sfc_adapter is a mixture of shared and process private data. 2052 * During transition period use it in both kinds. When the 2053 * driver becomes ready to separate it, sfc_adapter will become 2054 * primary process private only. 2055 */ 2056 dev->process_private = sa; 2057 2058 /* Required for logging */ 2059 sas->pci_addr = pci_dev->addr; 2060 sas->port_id = dev->data->port_id; 2061 sa->priv.logtype_main = logtype_main; 2062 2063 sa->eth_dev = dev; 2064 2065 /* Copy PCI device info to the dev->data */ 2066 rte_eth_copy_pci_info(dev, pci_dev); 2067 2068 rc = sfc_kvargs_parse(sa); 2069 if (rc != 0) 2070 goto fail_kvargs_parse; 2071 2072 sfc_log_init(sa, "entry"); 2073 2074 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 2075 if (dev->data->mac_addrs == NULL) { 2076 rc = ENOMEM; 2077 goto fail_mac_addrs; 2078 } 2079 2080 sfc_adapter_lock_init(sa); 2081 sfc_adapter_lock(sa); 2082 2083 sfc_log_init(sa, "probing"); 2084 rc = sfc_probe(sa); 2085 if (rc != 0) 2086 goto fail_probe; 2087 2088 sfc_log_init(sa, "set device ops"); 2089 rc = sfc_eth_dev_set_ops(dev); 2090 if (rc != 0) 2091 goto fail_set_ops; 2092 2093 sfc_log_init(sa, "attaching"); 2094 rc = sfc_attach(sa); 2095 if (rc != 0) 2096 goto fail_attach; 2097 2098 encp = efx_nic_cfg_get(sa->nic); 2099 2100 /* 2101 * The arguments are really reverse order in comparison to 2102 * Linux kernel. Copy from NIC config to Ethernet device data. 2103 */ 2104 from = (const struct ether_addr *)(encp->enc_mac_addr); 2105 ether_addr_copy(from, &dev->data->mac_addrs[0]); 2106 2107 sfc_adapter_unlock(sa); 2108 2109 sfc_log_init(sa, "done"); 2110 return 0; 2111 2112 fail_attach: 2113 sfc_eth_dev_clear_ops(dev); 2114 2115 fail_set_ops: 2116 sfc_unprobe(sa); 2117 2118 fail_probe: 2119 sfc_adapter_unlock(sa); 2120 sfc_adapter_lock_fini(sa); 2121 rte_free(dev->data->mac_addrs); 2122 dev->data->mac_addrs = NULL; 2123 2124 fail_mac_addrs: 2125 sfc_kvargs_cleanup(sa); 2126 2127 fail_kvargs_parse: 2128 sfc_log_init(sa, "failed %d", rc); 2129 dev->process_private = NULL; 2130 SFC_ASSERT(rc > 0); 2131 return -rc; 2132 } 2133 2134 static int 2135 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2136 { 2137 struct sfc_adapter *sa; 2138 2139 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2140 sfc_eth_dev_secondary_clear_ops(dev); 2141 return 0; 2142 } 2143 2144 sa = dev->data->dev_private; 2145 sfc_log_init(sa, "entry"); 2146 2147 sfc_adapter_lock(sa); 2148 2149 sfc_eth_dev_clear_ops(dev); 2150 2151 sfc_detach(sa); 2152 sfc_unprobe(sa); 2153 2154 sfc_kvargs_cleanup(sa); 2155 2156 sfc_adapter_unlock(sa); 2157 sfc_adapter_lock_fini(sa); 2158 2159 sfc_log_init(sa, "done"); 2160 2161 /* Required for logging, so cleanup last */ 2162 sa->eth_dev = NULL; 2163 return 0; 2164 } 2165 2166 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2167 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2168 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2169 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2170 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2171 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2172 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2173 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2174 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2175 { .vendor_id = 0 /* sentinel */ } 2176 }; 2177 2178 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2179 struct rte_pci_device *pci_dev) 2180 { 2181 return rte_eth_dev_pci_generic_probe(pci_dev, 2182 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2183 } 2184 2185 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2186 { 2187 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2188 } 2189 2190 static struct rte_pci_driver sfc_efx_pmd = { 2191 .id_table = pci_id_sfc_efx_map, 2192 .drv_flags = 2193 RTE_PCI_DRV_INTR_LSC | 2194 RTE_PCI_DRV_NEED_MAPPING, 2195 .probe = sfc_eth_dev_pci_probe, 2196 .remove = sfc_eth_dev_pci_remove, 2197 }; 2198 2199 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2200 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2201 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2202 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2203 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2204 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2205 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2206 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2207 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2208 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2209 2210 RTE_INIT(sfc_driver_register_logtype) 2211 { 2212 int ret; 2213 2214 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2215 RTE_LOG_NOTICE); 2216 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2217 } 2218