1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 /* 50 * Return value of the callback is likely supposed to be 51 * equal to or greater than 0, nevertheless, if an error 52 * occurs, it will be desirable to pass it to the caller 53 */ 54 if ((fw_version == NULL) || (fw_size == 0)) 55 return -EINVAL; 56 57 rc = efx_nic_get_fw_version(sa->nic, &enfi); 58 if (rc != 0) 59 return -rc; 60 61 ret = snprintf(fw_version, fw_size, 62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 65 if (ret < 0) 66 return ret; 67 68 if (enfi.enfi_dpcpu_fw_ids_valid) { 69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 70 int ret_extra; 71 72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 73 fw_size - dpcpu_fw_ids_offset, 74 " rx%" PRIx16 " tx%" PRIx16, 75 enfi.enfi_rx_dpcpu_fw_id, 76 enfi.enfi_tx_dpcpu_fw_id); 77 if (ret_extra < 0) 78 return ret_extra; 79 80 ret += ret_extra; 81 } 82 83 if (fw_size < (size_t)(++ret)) 84 return ret; 85 else 86 return 0; 87 } 88 89 static int 90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 91 { 92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 95 struct sfc_rss *rss = &sas->rss; 96 uint64_t txq_offloads_def = 0; 97 98 sfc_log_init(sa, "entry"); 99 100 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 101 dev_info->max_mtu = EFX_MAC_SDU_MAX; 102 103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 104 105 /* Autonegotiation may be disabled */ 106 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 108 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 116 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 118 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 119 120 dev_info->max_rx_queues = sa->rxq_max; 121 dev_info->max_tx_queues = sa->txq_max; 122 123 /* By default packets are dropped if no descriptors are available */ 124 dev_info->default_rxconf.rx_drop_en = 1; 125 126 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 127 128 /* 129 * rx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 134 dev_info->rx_queue_offload_capa; 135 136 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 137 138 /* 139 * tx_offload_capa includes both device and queue offloads since 140 * the latter may be requested on a per device basis which makes 141 * sense when some offloads are needed to be set on all queues. 142 */ 143 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 144 dev_info->tx_queue_offload_capa; 145 146 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 147 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 148 149 dev_info->default_txconf.offloads |= txq_offloads_def; 150 151 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 152 uint64_t rte_hf = 0; 153 unsigned int i; 154 155 for (i = 0; i < rss->hf_map_nb_entries; ++i) 156 rte_hf |= rss->hf_map[i].rte; 157 158 dev_info->reta_size = EFX_RSS_TBL_SIZE; 159 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 160 dev_info->flow_type_rss_offloads = rte_hf; 161 } 162 163 /* Initialize to hardware limits */ 164 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 165 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 166 /* The RXQ hardware requires that the descriptor count is a power 167 * of 2, but rx_desc_lim cannot properly describe that constraint. 168 */ 169 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 170 171 /* Initialize to hardware limits */ 172 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 173 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 174 /* 175 * The TXQ hardware requires that the descriptor count is a power 176 * of 2, but tx_desc_lim cannot properly describe that constraint 177 */ 178 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 179 180 if (sap->dp_rx->get_dev_info != NULL) 181 sap->dp_rx->get_dev_info(dev_info); 182 if (sap->dp_tx->get_dev_info != NULL) 183 sap->dp_tx->get_dev_info(dev_info); 184 185 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 186 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 187 188 return 0; 189 } 190 191 static const uint32_t * 192 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 193 { 194 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 195 196 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 197 } 198 199 static int 200 sfc_dev_configure(struct rte_eth_dev *dev) 201 { 202 struct rte_eth_dev_data *dev_data = dev->data; 203 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 204 int rc; 205 206 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 207 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 208 209 sfc_adapter_lock(sa); 210 switch (sa->state) { 211 case SFC_ADAPTER_CONFIGURED: 212 /* FALLTHROUGH */ 213 case SFC_ADAPTER_INITIALIZED: 214 rc = sfc_configure(sa); 215 break; 216 default: 217 sfc_err(sa, "unexpected adapter state %u to configure", 218 sa->state); 219 rc = EINVAL; 220 break; 221 } 222 sfc_adapter_unlock(sa); 223 224 sfc_log_init(sa, "done %d", rc); 225 SFC_ASSERT(rc >= 0); 226 return -rc; 227 } 228 229 static int 230 sfc_dev_start(struct rte_eth_dev *dev) 231 { 232 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 233 int rc; 234 235 sfc_log_init(sa, "entry"); 236 237 sfc_adapter_lock(sa); 238 rc = sfc_start(sa); 239 sfc_adapter_unlock(sa); 240 241 sfc_log_init(sa, "done %d", rc); 242 SFC_ASSERT(rc >= 0); 243 return -rc; 244 } 245 246 static int 247 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 248 { 249 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 250 struct rte_eth_link current_link; 251 int ret; 252 253 sfc_log_init(sa, "entry"); 254 255 if (sa->state != SFC_ADAPTER_STARTED) { 256 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 257 } else if (wait_to_complete) { 258 efx_link_mode_t link_mode; 259 260 if (efx_port_poll(sa->nic, &link_mode) != 0) 261 link_mode = EFX_LINK_UNKNOWN; 262 sfc_port_link_mode_to_info(link_mode, ¤t_link); 263 264 } else { 265 sfc_ev_mgmt_qpoll(sa); 266 rte_eth_linkstatus_get(dev, ¤t_link); 267 } 268 269 ret = rte_eth_linkstatus_set(dev, ¤t_link); 270 if (ret == 0) 271 sfc_notice(sa, "Link status is %s", 272 current_link.link_status ? "UP" : "DOWN"); 273 274 return ret; 275 } 276 277 static void 278 sfc_dev_stop(struct rte_eth_dev *dev) 279 { 280 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 281 282 sfc_log_init(sa, "entry"); 283 284 sfc_adapter_lock(sa); 285 sfc_stop(sa); 286 sfc_adapter_unlock(sa); 287 288 sfc_log_init(sa, "done"); 289 } 290 291 static int 292 sfc_dev_set_link_up(struct rte_eth_dev *dev) 293 { 294 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 295 int rc; 296 297 sfc_log_init(sa, "entry"); 298 299 sfc_adapter_lock(sa); 300 rc = sfc_start(sa); 301 sfc_adapter_unlock(sa); 302 303 SFC_ASSERT(rc >= 0); 304 return -rc; 305 } 306 307 static int 308 sfc_dev_set_link_down(struct rte_eth_dev *dev) 309 { 310 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 311 312 sfc_log_init(sa, "entry"); 313 314 sfc_adapter_lock(sa); 315 sfc_stop(sa); 316 sfc_adapter_unlock(sa); 317 318 return 0; 319 } 320 321 static void 322 sfc_dev_close(struct rte_eth_dev *dev) 323 { 324 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 325 326 sfc_log_init(sa, "entry"); 327 328 sfc_adapter_lock(sa); 329 switch (sa->state) { 330 case SFC_ADAPTER_STARTED: 331 sfc_stop(sa); 332 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 333 /* FALLTHROUGH */ 334 case SFC_ADAPTER_CONFIGURED: 335 sfc_close(sa); 336 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 337 /* FALLTHROUGH */ 338 case SFC_ADAPTER_INITIALIZED: 339 break; 340 default: 341 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 342 break; 343 } 344 345 /* 346 * Cleanup all resources in accordance with RTE_ETH_DEV_CLOSE_REMOVE. 347 * Rollback primary process sfc_eth_dev_init() below. 348 */ 349 350 sfc_eth_dev_clear_ops(dev); 351 352 sfc_detach(sa); 353 sfc_unprobe(sa); 354 355 sfc_kvargs_cleanup(sa); 356 357 sfc_adapter_unlock(sa); 358 sfc_adapter_lock_fini(sa); 359 360 sfc_log_init(sa, "done"); 361 362 /* Required for logging, so cleanup last */ 363 sa->eth_dev = NULL; 364 365 dev->process_private = NULL; 366 free(sa); 367 } 368 369 static int 370 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 371 boolean_t enabled) 372 { 373 struct sfc_port *port; 374 boolean_t *toggle; 375 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 376 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 377 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 378 int rc = 0; 379 380 sfc_adapter_lock(sa); 381 382 port = &sa->port; 383 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 384 385 if (*toggle != enabled) { 386 *toggle = enabled; 387 388 if (sfc_sa2shared(sa)->isolated) { 389 sfc_warn(sa, "isolated mode is active on the port"); 390 sfc_warn(sa, "the change is to be applied on the next " 391 "start provided that isolated mode is " 392 "disabled prior the next start"); 393 } else if ((sa->state == SFC_ADAPTER_STARTED) && 394 ((rc = sfc_set_rx_mode(sa)) != 0)) { 395 *toggle = !(enabled); 396 sfc_warn(sa, "Failed to %s %s mode", 397 ((enabled) ? "enable" : "disable"), desc); 398 } 399 } 400 401 sfc_adapter_unlock(sa); 402 return rc; 403 } 404 405 static int 406 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 407 { 408 return sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 409 } 410 411 static int 412 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 413 { 414 return sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 415 } 416 417 static int 418 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 419 { 420 return sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 421 } 422 423 static int 424 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 425 { 426 return sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 427 } 428 429 static int 430 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 431 uint16_t nb_rx_desc, unsigned int socket_id, 432 const struct rte_eth_rxconf *rx_conf, 433 struct rte_mempool *mb_pool) 434 { 435 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 436 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 437 int rc; 438 439 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 440 rx_queue_id, nb_rx_desc, socket_id); 441 442 sfc_adapter_lock(sa); 443 444 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 445 rx_conf, mb_pool); 446 if (rc != 0) 447 goto fail_rx_qinit; 448 449 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 450 451 sfc_adapter_unlock(sa); 452 453 return 0; 454 455 fail_rx_qinit: 456 sfc_adapter_unlock(sa); 457 SFC_ASSERT(rc > 0); 458 return -rc; 459 } 460 461 static void 462 sfc_rx_queue_release(void *queue) 463 { 464 struct sfc_dp_rxq *dp_rxq = queue; 465 struct sfc_rxq *rxq; 466 struct sfc_adapter *sa; 467 unsigned int sw_index; 468 469 if (dp_rxq == NULL) 470 return; 471 472 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 473 sa = rxq->evq->sa; 474 sfc_adapter_lock(sa); 475 476 sw_index = dp_rxq->dpq.queue_id; 477 478 sfc_log_init(sa, "RxQ=%u", sw_index); 479 480 sfc_rx_qfini(sa, sw_index); 481 482 sfc_adapter_unlock(sa); 483 } 484 485 static int 486 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 487 uint16_t nb_tx_desc, unsigned int socket_id, 488 const struct rte_eth_txconf *tx_conf) 489 { 490 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 491 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 492 int rc; 493 494 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 495 tx_queue_id, nb_tx_desc, socket_id); 496 497 sfc_adapter_lock(sa); 498 499 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 500 if (rc != 0) 501 goto fail_tx_qinit; 502 503 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 504 505 sfc_adapter_unlock(sa); 506 return 0; 507 508 fail_tx_qinit: 509 sfc_adapter_unlock(sa); 510 SFC_ASSERT(rc > 0); 511 return -rc; 512 } 513 514 static void 515 sfc_tx_queue_release(void *queue) 516 { 517 struct sfc_dp_txq *dp_txq = queue; 518 struct sfc_txq *txq; 519 unsigned int sw_index; 520 struct sfc_adapter *sa; 521 522 if (dp_txq == NULL) 523 return; 524 525 txq = sfc_txq_by_dp_txq(dp_txq); 526 sw_index = dp_txq->dpq.queue_id; 527 528 SFC_ASSERT(txq->evq != NULL); 529 sa = txq->evq->sa; 530 531 sfc_log_init(sa, "TxQ = %u", sw_index); 532 533 sfc_adapter_lock(sa); 534 535 sfc_tx_qfini(sa, sw_index); 536 537 sfc_adapter_unlock(sa); 538 } 539 540 /* 541 * Some statistics are computed as A - B where A and B each increase 542 * monotonically with some hardware counter(s) and the counters are read 543 * asynchronously. 544 * 545 * If packet X is counted in A, but not counted in B yet, computed value is 546 * greater than real. 547 * 548 * If packet X is not counted in A at the moment of reading the counter, 549 * but counted in B at the moment of reading the counter, computed value 550 * is less than real. 551 * 552 * However, counter which grows backward is worse evil than slightly wrong 553 * value. So, let's try to guarantee that it never happens except may be 554 * the case when the MAC stats are zeroed as a result of a NIC reset. 555 */ 556 static void 557 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 558 { 559 if ((int64_t)(newval - *stat) > 0 || newval == 0) 560 *stat = newval; 561 } 562 563 static int 564 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 565 { 566 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 567 struct sfc_port *port = &sa->port; 568 uint64_t *mac_stats; 569 int ret; 570 571 rte_spinlock_lock(&port->mac_stats_lock); 572 573 ret = sfc_port_update_mac_stats(sa); 574 if (ret != 0) 575 goto unlock; 576 577 mac_stats = port->mac_stats_buf; 578 579 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 580 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 581 stats->ipackets = 582 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 583 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 584 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 585 stats->opackets = 586 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 587 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 588 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 589 stats->ibytes = 590 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 591 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 592 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 593 stats->obytes = 594 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 595 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 596 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 597 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 598 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 599 } else { 600 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 601 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 602 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 603 /* 604 * Take into account stats which are whenever supported 605 * on EF10. If some stat is not supported by current 606 * firmware variant or HW revision, it is guaranteed 607 * to be zero in mac_stats. 608 */ 609 stats->imissed = 610 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 611 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 612 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 613 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 614 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 615 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 616 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 617 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 618 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 619 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 620 stats->ierrors = 621 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 622 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 623 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 624 /* no oerrors counters supported on EF10 */ 625 626 /* Exclude missed, errors and pauses from Rx packets */ 627 sfc_update_diff_stat(&port->ipackets, 628 mac_stats[EFX_MAC_RX_PKTS] - 629 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 630 stats->imissed - stats->ierrors); 631 stats->ipackets = port->ipackets; 632 } 633 634 unlock: 635 rte_spinlock_unlock(&port->mac_stats_lock); 636 SFC_ASSERT(ret >= 0); 637 return -ret; 638 } 639 640 static int 641 sfc_stats_reset(struct rte_eth_dev *dev) 642 { 643 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 644 struct sfc_port *port = &sa->port; 645 int rc; 646 647 if (sa->state != SFC_ADAPTER_STARTED) { 648 /* 649 * The operation cannot be done if port is not started; it 650 * will be scheduled to be done during the next port start 651 */ 652 port->mac_stats_reset_pending = B_TRUE; 653 return 0; 654 } 655 656 rc = sfc_port_reset_mac_stats(sa); 657 if (rc != 0) 658 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 659 660 SFC_ASSERT(rc >= 0); 661 return -rc; 662 } 663 664 static int 665 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 666 unsigned int xstats_count) 667 { 668 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 669 struct sfc_port *port = &sa->port; 670 uint64_t *mac_stats; 671 int rc; 672 unsigned int i; 673 int nstats = 0; 674 675 rte_spinlock_lock(&port->mac_stats_lock); 676 677 rc = sfc_port_update_mac_stats(sa); 678 if (rc != 0) { 679 SFC_ASSERT(rc > 0); 680 nstats = -rc; 681 goto unlock; 682 } 683 684 mac_stats = port->mac_stats_buf; 685 686 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 687 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 688 if (xstats != NULL && nstats < (int)xstats_count) { 689 xstats[nstats].id = nstats; 690 xstats[nstats].value = mac_stats[i]; 691 } 692 nstats++; 693 } 694 } 695 696 unlock: 697 rte_spinlock_unlock(&port->mac_stats_lock); 698 699 return nstats; 700 } 701 702 static int 703 sfc_xstats_get_names(struct rte_eth_dev *dev, 704 struct rte_eth_xstat_name *xstats_names, 705 unsigned int xstats_count) 706 { 707 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 708 struct sfc_port *port = &sa->port; 709 unsigned int i; 710 unsigned int nstats = 0; 711 712 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 713 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 714 if (xstats_names != NULL && nstats < xstats_count) 715 strlcpy(xstats_names[nstats].name, 716 efx_mac_stat_name(sa->nic, i), 717 sizeof(xstats_names[0].name)); 718 nstats++; 719 } 720 } 721 722 return nstats; 723 } 724 725 static int 726 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 727 uint64_t *values, unsigned int n) 728 { 729 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 730 struct sfc_port *port = &sa->port; 731 uint64_t *mac_stats; 732 unsigned int nb_supported = 0; 733 unsigned int nb_written = 0; 734 unsigned int i; 735 int ret; 736 int rc; 737 738 if (unlikely(values == NULL) || 739 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 740 return port->mac_stats_nb_supported; 741 742 rte_spinlock_lock(&port->mac_stats_lock); 743 744 rc = sfc_port_update_mac_stats(sa); 745 if (rc != 0) { 746 SFC_ASSERT(rc > 0); 747 ret = -rc; 748 goto unlock; 749 } 750 751 mac_stats = port->mac_stats_buf; 752 753 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 754 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 755 continue; 756 757 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 758 values[nb_written++] = mac_stats[i]; 759 760 ++nb_supported; 761 } 762 763 ret = nb_written; 764 765 unlock: 766 rte_spinlock_unlock(&port->mac_stats_lock); 767 768 return ret; 769 } 770 771 static int 772 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 773 struct rte_eth_xstat_name *xstats_names, 774 const uint64_t *ids, unsigned int size) 775 { 776 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 777 struct sfc_port *port = &sa->port; 778 unsigned int nb_supported = 0; 779 unsigned int nb_written = 0; 780 unsigned int i; 781 782 if (unlikely(xstats_names == NULL) || 783 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 784 return port->mac_stats_nb_supported; 785 786 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 787 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 788 continue; 789 790 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 791 char *name = xstats_names[nb_written++].name; 792 793 strlcpy(name, efx_mac_stat_name(sa->nic, i), 794 sizeof(xstats_names[0].name)); 795 } 796 797 ++nb_supported; 798 } 799 800 return nb_written; 801 } 802 803 static int 804 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 805 { 806 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 807 unsigned int wanted_fc, link_fc; 808 809 memset(fc_conf, 0, sizeof(*fc_conf)); 810 811 sfc_adapter_lock(sa); 812 813 if (sa->state == SFC_ADAPTER_STARTED) 814 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 815 else 816 link_fc = sa->port.flow_ctrl; 817 818 switch (link_fc) { 819 case 0: 820 fc_conf->mode = RTE_FC_NONE; 821 break; 822 case EFX_FCNTL_RESPOND: 823 fc_conf->mode = RTE_FC_RX_PAUSE; 824 break; 825 case EFX_FCNTL_GENERATE: 826 fc_conf->mode = RTE_FC_TX_PAUSE; 827 break; 828 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 829 fc_conf->mode = RTE_FC_FULL; 830 break; 831 default: 832 sfc_err(sa, "%s: unexpected flow control value %#x", 833 __func__, link_fc); 834 } 835 836 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 837 838 sfc_adapter_unlock(sa); 839 840 return 0; 841 } 842 843 static int 844 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 845 { 846 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 847 struct sfc_port *port = &sa->port; 848 unsigned int fcntl; 849 int rc; 850 851 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 852 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 853 fc_conf->mac_ctrl_frame_fwd != 0) { 854 sfc_err(sa, "unsupported flow control settings specified"); 855 rc = EINVAL; 856 goto fail_inval; 857 } 858 859 switch (fc_conf->mode) { 860 case RTE_FC_NONE: 861 fcntl = 0; 862 break; 863 case RTE_FC_RX_PAUSE: 864 fcntl = EFX_FCNTL_RESPOND; 865 break; 866 case RTE_FC_TX_PAUSE: 867 fcntl = EFX_FCNTL_GENERATE; 868 break; 869 case RTE_FC_FULL: 870 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 871 break; 872 default: 873 rc = EINVAL; 874 goto fail_inval; 875 } 876 877 sfc_adapter_lock(sa); 878 879 if (sa->state == SFC_ADAPTER_STARTED) { 880 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 881 if (rc != 0) 882 goto fail_mac_fcntl_set; 883 } 884 885 port->flow_ctrl = fcntl; 886 port->flow_ctrl_autoneg = fc_conf->autoneg; 887 888 sfc_adapter_unlock(sa); 889 890 return 0; 891 892 fail_mac_fcntl_set: 893 sfc_adapter_unlock(sa); 894 fail_inval: 895 SFC_ASSERT(rc > 0); 896 return -rc; 897 } 898 899 static int 900 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 901 { 902 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 903 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 904 boolean_t scatter_enabled; 905 const char *error; 906 unsigned int i; 907 908 for (i = 0; i < sas->rxq_count; i++) { 909 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 910 continue; 911 912 scatter_enabled = (sas->rxq_info[i].type_flags & 913 EFX_RXQ_FLAG_SCATTER); 914 915 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 916 encp->enc_rx_prefix_size, 917 scatter_enabled, &error)) { 918 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 919 error); 920 return EINVAL; 921 } 922 } 923 924 return 0; 925 } 926 927 static int 928 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 929 { 930 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 931 size_t pdu = EFX_MAC_PDU(mtu); 932 size_t old_pdu; 933 int rc; 934 935 sfc_log_init(sa, "mtu=%u", mtu); 936 937 rc = EINVAL; 938 if (pdu < EFX_MAC_PDU_MIN) { 939 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 940 (unsigned int)mtu, (unsigned int)pdu, 941 EFX_MAC_PDU_MIN); 942 goto fail_inval; 943 } 944 if (pdu > EFX_MAC_PDU_MAX) { 945 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 946 (unsigned int)mtu, (unsigned int)pdu, 947 (unsigned int)EFX_MAC_PDU_MAX); 948 goto fail_inval; 949 } 950 951 sfc_adapter_lock(sa); 952 953 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 954 if (rc != 0) 955 goto fail_check_scatter; 956 957 if (pdu != sa->port.pdu) { 958 if (sa->state == SFC_ADAPTER_STARTED) { 959 sfc_stop(sa); 960 961 old_pdu = sa->port.pdu; 962 sa->port.pdu = pdu; 963 rc = sfc_start(sa); 964 if (rc != 0) 965 goto fail_start; 966 } else { 967 sa->port.pdu = pdu; 968 } 969 } 970 971 /* 972 * The driver does not use it, but other PMDs update jumbo frame 973 * flag and max_rx_pkt_len when MTU is set. 974 */ 975 if (mtu > RTE_ETHER_MAX_LEN) { 976 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 977 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 978 } 979 980 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 981 982 sfc_adapter_unlock(sa); 983 984 sfc_log_init(sa, "done"); 985 return 0; 986 987 fail_start: 988 sa->port.pdu = old_pdu; 989 if (sfc_start(sa) != 0) 990 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 991 "PDU max size - port is stopped", 992 (unsigned int)pdu, (unsigned int)old_pdu); 993 994 fail_check_scatter: 995 sfc_adapter_unlock(sa); 996 997 fail_inval: 998 sfc_log_init(sa, "failed %d", rc); 999 SFC_ASSERT(rc > 0); 1000 return -rc; 1001 } 1002 static int 1003 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1004 { 1005 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1006 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1007 struct sfc_port *port = &sa->port; 1008 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1009 int rc = 0; 1010 1011 sfc_adapter_lock(sa); 1012 1013 /* 1014 * Copy the address to the device private data so that 1015 * it could be recalled in the case of adapter restart. 1016 */ 1017 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1018 1019 /* 1020 * Neither of the two following checks can return 1021 * an error. The new MAC address is preserved in 1022 * the device private data and can be activated 1023 * on the next port start if the user prevents 1024 * isolated mode from being enabled. 1025 */ 1026 if (sfc_sa2shared(sa)->isolated) { 1027 sfc_warn(sa, "isolated mode is active on the port"); 1028 sfc_warn(sa, "will not set MAC address"); 1029 goto unlock; 1030 } 1031 1032 if (sa->state != SFC_ADAPTER_STARTED) { 1033 sfc_notice(sa, "the port is not started"); 1034 sfc_notice(sa, "the new MAC address will be set on port start"); 1035 1036 goto unlock; 1037 } 1038 1039 if (encp->enc_allow_set_mac_with_installed_filters) { 1040 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1041 if (rc != 0) { 1042 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1043 goto unlock; 1044 } 1045 1046 /* 1047 * Changing the MAC address by means of MCDI request 1048 * has no effect on received traffic, therefore 1049 * we also need to update unicast filters 1050 */ 1051 rc = sfc_set_rx_mode(sa); 1052 if (rc != 0) { 1053 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1054 /* Rollback the old address */ 1055 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1056 (void)sfc_set_rx_mode(sa); 1057 } 1058 } else { 1059 sfc_warn(sa, "cannot set MAC address with filters installed"); 1060 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1061 sfc_warn(sa, "(some traffic may be dropped)"); 1062 1063 /* 1064 * Since setting MAC address with filters installed is not 1065 * allowed on the adapter, the new MAC address will be set 1066 * by means of adapter restart. sfc_start() shall retrieve 1067 * the new address from the device private data and set it. 1068 */ 1069 sfc_stop(sa); 1070 rc = sfc_start(sa); 1071 if (rc != 0) 1072 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1073 } 1074 1075 unlock: 1076 if (rc != 0) 1077 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1078 1079 sfc_adapter_unlock(sa); 1080 1081 SFC_ASSERT(rc >= 0); 1082 return -rc; 1083 } 1084 1085 1086 static int 1087 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1088 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1089 { 1090 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1091 struct sfc_port *port = &sa->port; 1092 uint8_t *mc_addrs = port->mcast_addrs; 1093 int rc; 1094 unsigned int i; 1095 1096 if (sfc_sa2shared(sa)->isolated) { 1097 sfc_err(sa, "isolated mode is active on the port"); 1098 sfc_err(sa, "will not set multicast address list"); 1099 return -ENOTSUP; 1100 } 1101 1102 if (mc_addrs == NULL) 1103 return -ENOBUFS; 1104 1105 if (nb_mc_addr > port->max_mcast_addrs) { 1106 sfc_err(sa, "too many multicast addresses: %u > %u", 1107 nb_mc_addr, port->max_mcast_addrs); 1108 return -EINVAL; 1109 } 1110 1111 for (i = 0; i < nb_mc_addr; ++i) { 1112 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1113 EFX_MAC_ADDR_LEN); 1114 mc_addrs += EFX_MAC_ADDR_LEN; 1115 } 1116 1117 port->nb_mcast_addrs = nb_mc_addr; 1118 1119 if (sa->state != SFC_ADAPTER_STARTED) 1120 return 0; 1121 1122 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1123 port->nb_mcast_addrs); 1124 if (rc != 0) 1125 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1126 1127 SFC_ASSERT(rc >= 0); 1128 return -rc; 1129 } 1130 1131 /* 1132 * The function is used by the secondary process as well. It must not 1133 * use any process-local pointers from the adapter data. 1134 */ 1135 static void 1136 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1137 struct rte_eth_rxq_info *qinfo) 1138 { 1139 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1140 struct sfc_rxq_info *rxq_info; 1141 1142 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1143 1144 rxq_info = &sas->rxq_info[rx_queue_id]; 1145 1146 qinfo->mp = rxq_info->refill_mb_pool; 1147 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1148 qinfo->conf.rx_drop_en = 1; 1149 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1150 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1151 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1152 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1153 qinfo->scattered_rx = 1; 1154 } 1155 qinfo->nb_desc = rxq_info->entries; 1156 } 1157 1158 /* 1159 * The function is used by the secondary process as well. It must not 1160 * use any process-local pointers from the adapter data. 1161 */ 1162 static void 1163 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1164 struct rte_eth_txq_info *qinfo) 1165 { 1166 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1167 struct sfc_txq_info *txq_info; 1168 1169 SFC_ASSERT(tx_queue_id < sas->txq_count); 1170 1171 txq_info = &sas->txq_info[tx_queue_id]; 1172 1173 memset(qinfo, 0, sizeof(*qinfo)); 1174 1175 qinfo->conf.offloads = txq_info->offloads; 1176 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1177 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1178 qinfo->nb_desc = txq_info->entries; 1179 } 1180 1181 /* 1182 * The function is used by the secondary process as well. It must not 1183 * use any process-local pointers from the adapter data. 1184 */ 1185 static uint32_t 1186 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1187 { 1188 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1189 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1190 struct sfc_rxq_info *rxq_info; 1191 1192 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1193 rxq_info = &sas->rxq_info[rx_queue_id]; 1194 1195 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1196 return 0; 1197 1198 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1199 } 1200 1201 /* 1202 * The function is used by the secondary process as well. It must not 1203 * use any process-local pointers from the adapter data. 1204 */ 1205 static int 1206 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1207 { 1208 struct sfc_dp_rxq *dp_rxq = queue; 1209 const struct sfc_dp_rx *dp_rx; 1210 1211 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1212 1213 return offset < dp_rx->qdesc_npending(dp_rxq); 1214 } 1215 1216 /* 1217 * The function is used by the secondary process as well. It must not 1218 * use any process-local pointers from the adapter data. 1219 */ 1220 static int 1221 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1222 { 1223 struct sfc_dp_rxq *dp_rxq = queue; 1224 const struct sfc_dp_rx *dp_rx; 1225 1226 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1227 1228 return dp_rx->qdesc_status(dp_rxq, offset); 1229 } 1230 1231 /* 1232 * The function is used by the secondary process as well. It must not 1233 * use any process-local pointers from the adapter data. 1234 */ 1235 static int 1236 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1237 { 1238 struct sfc_dp_txq *dp_txq = queue; 1239 const struct sfc_dp_tx *dp_tx; 1240 1241 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1242 1243 return dp_tx->qdesc_status(dp_txq, offset); 1244 } 1245 1246 static int 1247 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1248 { 1249 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1250 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1251 int rc; 1252 1253 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1254 1255 sfc_adapter_lock(sa); 1256 1257 rc = EINVAL; 1258 if (sa->state != SFC_ADAPTER_STARTED) 1259 goto fail_not_started; 1260 1261 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1262 goto fail_not_setup; 1263 1264 rc = sfc_rx_qstart(sa, rx_queue_id); 1265 if (rc != 0) 1266 goto fail_rx_qstart; 1267 1268 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1269 1270 sfc_adapter_unlock(sa); 1271 1272 return 0; 1273 1274 fail_rx_qstart: 1275 fail_not_setup: 1276 fail_not_started: 1277 sfc_adapter_unlock(sa); 1278 SFC_ASSERT(rc > 0); 1279 return -rc; 1280 } 1281 1282 static int 1283 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1284 { 1285 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1286 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1287 1288 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1289 1290 sfc_adapter_lock(sa); 1291 sfc_rx_qstop(sa, rx_queue_id); 1292 1293 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1294 1295 sfc_adapter_unlock(sa); 1296 1297 return 0; 1298 } 1299 1300 static int 1301 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1302 { 1303 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1304 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1305 int rc; 1306 1307 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1308 1309 sfc_adapter_lock(sa); 1310 1311 rc = EINVAL; 1312 if (sa->state != SFC_ADAPTER_STARTED) 1313 goto fail_not_started; 1314 1315 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1316 goto fail_not_setup; 1317 1318 rc = sfc_tx_qstart(sa, tx_queue_id); 1319 if (rc != 0) 1320 goto fail_tx_qstart; 1321 1322 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1323 1324 sfc_adapter_unlock(sa); 1325 return 0; 1326 1327 fail_tx_qstart: 1328 1329 fail_not_setup: 1330 fail_not_started: 1331 sfc_adapter_unlock(sa); 1332 SFC_ASSERT(rc > 0); 1333 return -rc; 1334 } 1335 1336 static int 1337 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1338 { 1339 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1340 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1341 1342 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1343 1344 sfc_adapter_lock(sa); 1345 1346 sfc_tx_qstop(sa, tx_queue_id); 1347 1348 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1349 1350 sfc_adapter_unlock(sa); 1351 return 0; 1352 } 1353 1354 static efx_tunnel_protocol_t 1355 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1356 { 1357 switch (rte_type) { 1358 case RTE_TUNNEL_TYPE_VXLAN: 1359 return EFX_TUNNEL_PROTOCOL_VXLAN; 1360 case RTE_TUNNEL_TYPE_GENEVE: 1361 return EFX_TUNNEL_PROTOCOL_GENEVE; 1362 default: 1363 return EFX_TUNNEL_NPROTOS; 1364 } 1365 } 1366 1367 enum sfc_udp_tunnel_op_e { 1368 SFC_UDP_TUNNEL_ADD_PORT, 1369 SFC_UDP_TUNNEL_DEL_PORT, 1370 }; 1371 1372 static int 1373 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1374 struct rte_eth_udp_tunnel *tunnel_udp, 1375 enum sfc_udp_tunnel_op_e op) 1376 { 1377 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1378 efx_tunnel_protocol_t tunnel_proto; 1379 int rc; 1380 1381 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1382 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1383 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1384 tunnel_udp->udp_port, tunnel_udp->prot_type); 1385 1386 tunnel_proto = 1387 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1388 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1389 rc = ENOTSUP; 1390 goto fail_bad_proto; 1391 } 1392 1393 sfc_adapter_lock(sa); 1394 1395 switch (op) { 1396 case SFC_UDP_TUNNEL_ADD_PORT: 1397 rc = efx_tunnel_config_udp_add(sa->nic, 1398 tunnel_udp->udp_port, 1399 tunnel_proto); 1400 break; 1401 case SFC_UDP_TUNNEL_DEL_PORT: 1402 rc = efx_tunnel_config_udp_remove(sa->nic, 1403 tunnel_udp->udp_port, 1404 tunnel_proto); 1405 break; 1406 default: 1407 rc = EINVAL; 1408 goto fail_bad_op; 1409 } 1410 1411 if (rc != 0) 1412 goto fail_op; 1413 1414 if (sa->state == SFC_ADAPTER_STARTED) { 1415 rc = efx_tunnel_reconfigure(sa->nic); 1416 if (rc == EAGAIN) { 1417 /* 1418 * Configuration is accepted by FW and MC reboot 1419 * is initiated to apply the changes. MC reboot 1420 * will be handled in a usual way (MC reboot 1421 * event on management event queue and adapter 1422 * restart). 1423 */ 1424 rc = 0; 1425 } else if (rc != 0) { 1426 goto fail_reconfigure; 1427 } 1428 } 1429 1430 sfc_adapter_unlock(sa); 1431 return 0; 1432 1433 fail_reconfigure: 1434 /* Remove/restore entry since the change makes the trouble */ 1435 switch (op) { 1436 case SFC_UDP_TUNNEL_ADD_PORT: 1437 (void)efx_tunnel_config_udp_remove(sa->nic, 1438 tunnel_udp->udp_port, 1439 tunnel_proto); 1440 break; 1441 case SFC_UDP_TUNNEL_DEL_PORT: 1442 (void)efx_tunnel_config_udp_add(sa->nic, 1443 tunnel_udp->udp_port, 1444 tunnel_proto); 1445 break; 1446 } 1447 1448 fail_op: 1449 fail_bad_op: 1450 sfc_adapter_unlock(sa); 1451 1452 fail_bad_proto: 1453 SFC_ASSERT(rc > 0); 1454 return -rc; 1455 } 1456 1457 static int 1458 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1459 struct rte_eth_udp_tunnel *tunnel_udp) 1460 { 1461 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1462 } 1463 1464 static int 1465 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1466 struct rte_eth_udp_tunnel *tunnel_udp) 1467 { 1468 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1469 } 1470 1471 /* 1472 * The function is used by the secondary process as well. It must not 1473 * use any process-local pointers from the adapter data. 1474 */ 1475 static int 1476 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1477 struct rte_eth_rss_conf *rss_conf) 1478 { 1479 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1480 struct sfc_rss *rss = &sas->rss; 1481 1482 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1483 return -ENOTSUP; 1484 1485 /* 1486 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1487 * hence, conversion is done here to derive a correct set of ETH_RSS 1488 * flags which corresponds to the active EFX configuration stored 1489 * locally in 'sfc_adapter' and kept up-to-date 1490 */ 1491 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1492 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1493 if (rss_conf->rss_key != NULL) 1494 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1495 1496 return 0; 1497 } 1498 1499 static int 1500 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1501 struct rte_eth_rss_conf *rss_conf) 1502 { 1503 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1504 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1505 unsigned int efx_hash_types; 1506 int rc = 0; 1507 1508 if (sfc_sa2shared(sa)->isolated) 1509 return -ENOTSUP; 1510 1511 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1512 sfc_err(sa, "RSS is not available"); 1513 return -ENOTSUP; 1514 } 1515 1516 if (rss->channels == 0) { 1517 sfc_err(sa, "RSS is not configured"); 1518 return -EINVAL; 1519 } 1520 1521 if ((rss_conf->rss_key != NULL) && 1522 (rss_conf->rss_key_len != sizeof(rss->key))) { 1523 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1524 sizeof(rss->key)); 1525 return -EINVAL; 1526 } 1527 1528 sfc_adapter_lock(sa); 1529 1530 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1531 if (rc != 0) 1532 goto fail_rx_hf_rte_to_efx; 1533 1534 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1535 rss->hash_alg, efx_hash_types, B_TRUE); 1536 if (rc != 0) 1537 goto fail_scale_mode_set; 1538 1539 if (rss_conf->rss_key != NULL) { 1540 if (sa->state == SFC_ADAPTER_STARTED) { 1541 rc = efx_rx_scale_key_set(sa->nic, 1542 EFX_RSS_CONTEXT_DEFAULT, 1543 rss_conf->rss_key, 1544 sizeof(rss->key)); 1545 if (rc != 0) 1546 goto fail_scale_key_set; 1547 } 1548 1549 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1550 } 1551 1552 rss->hash_types = efx_hash_types; 1553 1554 sfc_adapter_unlock(sa); 1555 1556 return 0; 1557 1558 fail_scale_key_set: 1559 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1560 EFX_RX_HASHALG_TOEPLITZ, 1561 rss->hash_types, B_TRUE) != 0) 1562 sfc_err(sa, "failed to restore RSS mode"); 1563 1564 fail_scale_mode_set: 1565 fail_rx_hf_rte_to_efx: 1566 sfc_adapter_unlock(sa); 1567 return -rc; 1568 } 1569 1570 /* 1571 * The function is used by the secondary process as well. It must not 1572 * use any process-local pointers from the adapter data. 1573 */ 1574 static int 1575 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1576 struct rte_eth_rss_reta_entry64 *reta_conf, 1577 uint16_t reta_size) 1578 { 1579 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1580 struct sfc_rss *rss = &sas->rss; 1581 int entry; 1582 1583 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1584 return -ENOTSUP; 1585 1586 if (rss->channels == 0) 1587 return -EINVAL; 1588 1589 if (reta_size != EFX_RSS_TBL_SIZE) 1590 return -EINVAL; 1591 1592 for (entry = 0; entry < reta_size; entry++) { 1593 int grp = entry / RTE_RETA_GROUP_SIZE; 1594 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1595 1596 if ((reta_conf[grp].mask >> grp_idx) & 1) 1597 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1598 } 1599 1600 return 0; 1601 } 1602 1603 static int 1604 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1605 struct rte_eth_rss_reta_entry64 *reta_conf, 1606 uint16_t reta_size) 1607 { 1608 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1609 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1610 unsigned int *rss_tbl_new; 1611 uint16_t entry; 1612 int rc = 0; 1613 1614 1615 if (sfc_sa2shared(sa)->isolated) 1616 return -ENOTSUP; 1617 1618 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1619 sfc_err(sa, "RSS is not available"); 1620 return -ENOTSUP; 1621 } 1622 1623 if (rss->channels == 0) { 1624 sfc_err(sa, "RSS is not configured"); 1625 return -EINVAL; 1626 } 1627 1628 if (reta_size != EFX_RSS_TBL_SIZE) { 1629 sfc_err(sa, "RETA size is wrong (should be %u)", 1630 EFX_RSS_TBL_SIZE); 1631 return -EINVAL; 1632 } 1633 1634 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1635 if (rss_tbl_new == NULL) 1636 return -ENOMEM; 1637 1638 sfc_adapter_lock(sa); 1639 1640 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1641 1642 for (entry = 0; entry < reta_size; entry++) { 1643 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1644 struct rte_eth_rss_reta_entry64 *grp; 1645 1646 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1647 1648 if (grp->mask & (1ull << grp_idx)) { 1649 if (grp->reta[grp_idx] >= rss->channels) { 1650 rc = EINVAL; 1651 goto bad_reta_entry; 1652 } 1653 rss_tbl_new[entry] = grp->reta[grp_idx]; 1654 } 1655 } 1656 1657 if (sa->state == SFC_ADAPTER_STARTED) { 1658 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1659 rss_tbl_new, EFX_RSS_TBL_SIZE); 1660 if (rc != 0) 1661 goto fail_scale_tbl_set; 1662 } 1663 1664 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1665 1666 fail_scale_tbl_set: 1667 bad_reta_entry: 1668 sfc_adapter_unlock(sa); 1669 1670 rte_free(rss_tbl_new); 1671 1672 SFC_ASSERT(rc >= 0); 1673 return -rc; 1674 } 1675 1676 static int 1677 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1678 enum rte_filter_op filter_op, 1679 void *arg) 1680 { 1681 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1682 int rc = ENOTSUP; 1683 1684 sfc_log_init(sa, "entry"); 1685 1686 switch (filter_type) { 1687 case RTE_ETH_FILTER_NONE: 1688 sfc_err(sa, "Global filters configuration not supported"); 1689 break; 1690 case RTE_ETH_FILTER_MACVLAN: 1691 sfc_err(sa, "MACVLAN filters not supported"); 1692 break; 1693 case RTE_ETH_FILTER_ETHERTYPE: 1694 sfc_err(sa, "EtherType filters not supported"); 1695 break; 1696 case RTE_ETH_FILTER_FLEXIBLE: 1697 sfc_err(sa, "Flexible filters not supported"); 1698 break; 1699 case RTE_ETH_FILTER_SYN: 1700 sfc_err(sa, "SYN filters not supported"); 1701 break; 1702 case RTE_ETH_FILTER_NTUPLE: 1703 sfc_err(sa, "NTUPLE filters not supported"); 1704 break; 1705 case RTE_ETH_FILTER_TUNNEL: 1706 sfc_err(sa, "Tunnel filters not supported"); 1707 break; 1708 case RTE_ETH_FILTER_FDIR: 1709 sfc_err(sa, "Flow Director filters not supported"); 1710 break; 1711 case RTE_ETH_FILTER_HASH: 1712 sfc_err(sa, "Hash filters not supported"); 1713 break; 1714 case RTE_ETH_FILTER_GENERIC: 1715 if (filter_op != RTE_ETH_FILTER_GET) { 1716 rc = EINVAL; 1717 } else { 1718 *(const void **)arg = &sfc_flow_ops; 1719 rc = 0; 1720 } 1721 break; 1722 default: 1723 sfc_err(sa, "Unknown filter type %u", filter_type); 1724 break; 1725 } 1726 1727 sfc_log_init(sa, "exit: %d", -rc); 1728 SFC_ASSERT(rc >= 0); 1729 return -rc; 1730 } 1731 1732 static int 1733 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1734 { 1735 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1736 1737 /* 1738 * If Rx datapath does not provide callback to check mempool, 1739 * all pools are supported. 1740 */ 1741 if (sap->dp_rx->pool_ops_supported == NULL) 1742 return 1; 1743 1744 return sap->dp_rx->pool_ops_supported(pool); 1745 } 1746 1747 static int 1748 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1749 { 1750 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1751 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1752 struct sfc_rxq_info *rxq_info; 1753 1754 SFC_ASSERT(queue_id < sas->rxq_count); 1755 rxq_info = &sas->rxq_info[queue_id]; 1756 1757 return sap->dp_rx->intr_enable(rxq_info->dp); 1758 } 1759 1760 static int 1761 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1762 { 1763 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1764 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1765 struct sfc_rxq_info *rxq_info; 1766 1767 SFC_ASSERT(queue_id < sas->rxq_count); 1768 rxq_info = &sas->rxq_info[queue_id]; 1769 1770 return sap->dp_rx->intr_disable(rxq_info->dp); 1771 } 1772 1773 static const struct eth_dev_ops sfc_eth_dev_ops = { 1774 .dev_configure = sfc_dev_configure, 1775 .dev_start = sfc_dev_start, 1776 .dev_stop = sfc_dev_stop, 1777 .dev_set_link_up = sfc_dev_set_link_up, 1778 .dev_set_link_down = sfc_dev_set_link_down, 1779 .dev_close = sfc_dev_close, 1780 .promiscuous_enable = sfc_dev_promisc_enable, 1781 .promiscuous_disable = sfc_dev_promisc_disable, 1782 .allmulticast_enable = sfc_dev_allmulti_enable, 1783 .allmulticast_disable = sfc_dev_allmulti_disable, 1784 .link_update = sfc_dev_link_update, 1785 .stats_get = sfc_stats_get, 1786 .stats_reset = sfc_stats_reset, 1787 .xstats_get = sfc_xstats_get, 1788 .xstats_reset = sfc_stats_reset, 1789 .xstats_get_names = sfc_xstats_get_names, 1790 .dev_infos_get = sfc_dev_infos_get, 1791 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1792 .mtu_set = sfc_dev_set_mtu, 1793 .rx_queue_start = sfc_rx_queue_start, 1794 .rx_queue_stop = sfc_rx_queue_stop, 1795 .tx_queue_start = sfc_tx_queue_start, 1796 .tx_queue_stop = sfc_tx_queue_stop, 1797 .rx_queue_setup = sfc_rx_queue_setup, 1798 .rx_queue_release = sfc_rx_queue_release, 1799 .rx_queue_count = sfc_rx_queue_count, 1800 .rx_descriptor_done = sfc_rx_descriptor_done, 1801 .rx_descriptor_status = sfc_rx_descriptor_status, 1802 .tx_descriptor_status = sfc_tx_descriptor_status, 1803 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1804 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1805 .tx_queue_setup = sfc_tx_queue_setup, 1806 .tx_queue_release = sfc_tx_queue_release, 1807 .flow_ctrl_get = sfc_flow_ctrl_get, 1808 .flow_ctrl_set = sfc_flow_ctrl_set, 1809 .mac_addr_set = sfc_mac_addr_set, 1810 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1811 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1812 .reta_update = sfc_dev_rss_reta_update, 1813 .reta_query = sfc_dev_rss_reta_query, 1814 .rss_hash_update = sfc_dev_rss_hash_update, 1815 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1816 .filter_ctrl = sfc_dev_filter_ctrl, 1817 .set_mc_addr_list = sfc_set_mc_addr_list, 1818 .rxq_info_get = sfc_rx_queue_info_get, 1819 .txq_info_get = sfc_tx_queue_info_get, 1820 .fw_version_get = sfc_fw_version_get, 1821 .xstats_get_by_id = sfc_xstats_get_by_id, 1822 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1823 .pool_ops_supported = sfc_pool_ops_supported, 1824 }; 1825 1826 /** 1827 * Duplicate a string in potentially shared memory required for 1828 * multi-process support. 1829 * 1830 * strdup() allocates from process-local heap/memory. 1831 */ 1832 static char * 1833 sfc_strdup(const char *str) 1834 { 1835 size_t size; 1836 char *copy; 1837 1838 if (str == NULL) 1839 return NULL; 1840 1841 size = strlen(str) + 1; 1842 copy = rte_malloc(__func__, size, 0); 1843 if (copy != NULL) 1844 rte_memcpy(copy, str, size); 1845 1846 return copy; 1847 } 1848 1849 static int 1850 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1851 { 1852 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1853 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1854 const struct sfc_dp_rx *dp_rx; 1855 const struct sfc_dp_tx *dp_tx; 1856 const efx_nic_cfg_t *encp; 1857 unsigned int avail_caps = 0; 1858 const char *rx_name = NULL; 1859 const char *tx_name = NULL; 1860 int rc; 1861 1862 switch (sa->family) { 1863 case EFX_FAMILY_HUNTINGTON: 1864 case EFX_FAMILY_MEDFORD: 1865 case EFX_FAMILY_MEDFORD2: 1866 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1867 break; 1868 default: 1869 break; 1870 } 1871 1872 encp = efx_nic_cfg_get(sa->nic); 1873 if (encp->enc_rx_es_super_buffer_supported) 1874 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1875 1876 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1877 sfc_kvarg_string_handler, &rx_name); 1878 if (rc != 0) 1879 goto fail_kvarg_rx_datapath; 1880 1881 if (rx_name != NULL) { 1882 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1883 if (dp_rx == NULL) { 1884 sfc_err(sa, "Rx datapath %s not found", rx_name); 1885 rc = ENOENT; 1886 goto fail_dp_rx; 1887 } 1888 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1889 sfc_err(sa, 1890 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1891 rx_name); 1892 rc = EINVAL; 1893 goto fail_dp_rx_caps; 1894 } 1895 } else { 1896 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1897 if (dp_rx == NULL) { 1898 sfc_err(sa, "Rx datapath by caps %#x not found", 1899 avail_caps); 1900 rc = ENOENT; 1901 goto fail_dp_rx; 1902 } 1903 } 1904 1905 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1906 if (sas->dp_rx_name == NULL) { 1907 rc = ENOMEM; 1908 goto fail_dp_rx_name; 1909 } 1910 1911 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1912 1913 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1914 sfc_kvarg_string_handler, &tx_name); 1915 if (rc != 0) 1916 goto fail_kvarg_tx_datapath; 1917 1918 if (tx_name != NULL) { 1919 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1920 if (dp_tx == NULL) { 1921 sfc_err(sa, "Tx datapath %s not found", tx_name); 1922 rc = ENOENT; 1923 goto fail_dp_tx; 1924 } 1925 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1926 sfc_err(sa, 1927 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1928 tx_name); 1929 rc = EINVAL; 1930 goto fail_dp_tx_caps; 1931 } 1932 } else { 1933 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1934 if (dp_tx == NULL) { 1935 sfc_err(sa, "Tx datapath by caps %#x not found", 1936 avail_caps); 1937 rc = ENOENT; 1938 goto fail_dp_tx; 1939 } 1940 } 1941 1942 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1943 if (sas->dp_tx_name == NULL) { 1944 rc = ENOMEM; 1945 goto fail_dp_tx_name; 1946 } 1947 1948 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1949 1950 sa->priv.dp_rx = dp_rx; 1951 sa->priv.dp_tx = dp_tx; 1952 1953 dev->rx_pkt_burst = dp_rx->pkt_burst; 1954 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 1955 dev->tx_pkt_burst = dp_tx->pkt_burst; 1956 1957 dev->dev_ops = &sfc_eth_dev_ops; 1958 1959 return 0; 1960 1961 fail_dp_tx_name: 1962 fail_dp_tx_caps: 1963 fail_dp_tx: 1964 fail_kvarg_tx_datapath: 1965 rte_free(sas->dp_rx_name); 1966 sas->dp_rx_name = NULL; 1967 1968 fail_dp_rx_name: 1969 fail_dp_rx_caps: 1970 fail_dp_rx: 1971 fail_kvarg_rx_datapath: 1972 return rc; 1973 } 1974 1975 static void 1976 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1977 { 1978 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1979 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1980 1981 dev->dev_ops = NULL; 1982 dev->tx_pkt_prepare = NULL; 1983 dev->rx_pkt_burst = NULL; 1984 dev->tx_pkt_burst = NULL; 1985 1986 rte_free(sas->dp_tx_name); 1987 sas->dp_tx_name = NULL; 1988 sa->priv.dp_tx = NULL; 1989 1990 rte_free(sas->dp_rx_name); 1991 sas->dp_rx_name = NULL; 1992 sa->priv.dp_rx = NULL; 1993 } 1994 1995 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1996 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1997 .rx_queue_count = sfc_rx_queue_count, 1998 .rx_descriptor_done = sfc_rx_descriptor_done, 1999 .rx_descriptor_status = sfc_rx_descriptor_status, 2000 .tx_descriptor_status = sfc_tx_descriptor_status, 2001 .reta_query = sfc_dev_rss_reta_query, 2002 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2003 .rxq_info_get = sfc_rx_queue_info_get, 2004 .txq_info_get = sfc_tx_queue_info_get, 2005 }; 2006 2007 static int 2008 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2009 { 2010 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2011 struct sfc_adapter_priv *sap; 2012 const struct sfc_dp_rx *dp_rx; 2013 const struct sfc_dp_tx *dp_tx; 2014 int rc; 2015 2016 /* 2017 * Allocate process private data from heap, since it should not 2018 * be located in shared memory allocated using rte_malloc() API. 2019 */ 2020 sap = calloc(1, sizeof(*sap)); 2021 if (sap == NULL) { 2022 rc = ENOMEM; 2023 goto fail_alloc_priv; 2024 } 2025 2026 sap->logtype_main = logtype_main; 2027 2028 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2029 if (dp_rx == NULL) { 2030 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2031 "cannot find %s Rx datapath", sas->dp_rx_name); 2032 rc = ENOENT; 2033 goto fail_dp_rx; 2034 } 2035 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2036 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2037 "%s Rx datapath does not support multi-process", 2038 sas->dp_rx_name); 2039 rc = EINVAL; 2040 goto fail_dp_rx_multi_process; 2041 } 2042 2043 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2044 if (dp_tx == NULL) { 2045 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2046 "cannot find %s Tx datapath", sas->dp_tx_name); 2047 rc = ENOENT; 2048 goto fail_dp_tx; 2049 } 2050 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2051 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2052 "%s Tx datapath does not support multi-process", 2053 sas->dp_tx_name); 2054 rc = EINVAL; 2055 goto fail_dp_tx_multi_process; 2056 } 2057 2058 sap->dp_rx = dp_rx; 2059 sap->dp_tx = dp_tx; 2060 2061 dev->process_private = sap; 2062 dev->rx_pkt_burst = dp_rx->pkt_burst; 2063 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2064 dev->tx_pkt_burst = dp_tx->pkt_burst; 2065 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2066 2067 return 0; 2068 2069 fail_dp_tx_multi_process: 2070 fail_dp_tx: 2071 fail_dp_rx_multi_process: 2072 fail_dp_rx: 2073 free(sap); 2074 2075 fail_alloc_priv: 2076 return rc; 2077 } 2078 2079 static void 2080 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 2081 { 2082 free(dev->process_private); 2083 dev->process_private = NULL; 2084 dev->dev_ops = NULL; 2085 dev->tx_pkt_prepare = NULL; 2086 dev->tx_pkt_burst = NULL; 2087 dev->rx_pkt_burst = NULL; 2088 } 2089 2090 static void 2091 sfc_register_dp(void) 2092 { 2093 /* Register once */ 2094 if (TAILQ_EMPTY(&sfc_dp_head)) { 2095 /* Prefer EF10 datapath */ 2096 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2097 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2098 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2099 2100 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2101 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2102 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2103 } 2104 } 2105 2106 static int 2107 sfc_eth_dev_init(struct rte_eth_dev *dev) 2108 { 2109 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2110 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2111 uint32_t logtype_main; 2112 struct sfc_adapter *sa; 2113 int rc; 2114 const efx_nic_cfg_t *encp; 2115 const struct rte_ether_addr *from; 2116 2117 sfc_register_dp(); 2118 2119 logtype_main = sfc_register_logtype(&pci_dev->addr, 2120 SFC_LOGTYPE_MAIN_STR, 2121 RTE_LOG_NOTICE); 2122 2123 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2124 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2125 2126 /* Required for logging */ 2127 sas->pci_addr = pci_dev->addr; 2128 sas->port_id = dev->data->port_id; 2129 2130 /* 2131 * Allocate process private data from heap, since it should not 2132 * be located in shared memory allocated using rte_malloc() API. 2133 */ 2134 sa = calloc(1, sizeof(*sa)); 2135 if (sa == NULL) { 2136 rc = ENOMEM; 2137 goto fail_alloc_sa; 2138 } 2139 2140 dev->process_private = sa; 2141 2142 /* Required for logging */ 2143 sa->priv.shared = sas; 2144 sa->priv.logtype_main = logtype_main; 2145 2146 sa->eth_dev = dev; 2147 2148 /* Copy PCI device info to the dev->data */ 2149 rte_eth_copy_pci_info(dev, pci_dev); 2150 2151 rc = sfc_kvargs_parse(sa); 2152 if (rc != 0) 2153 goto fail_kvargs_parse; 2154 2155 sfc_log_init(sa, "entry"); 2156 2157 dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE; 2158 2159 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2160 if (dev->data->mac_addrs == NULL) { 2161 rc = ENOMEM; 2162 goto fail_mac_addrs; 2163 } 2164 2165 sfc_adapter_lock_init(sa); 2166 sfc_adapter_lock(sa); 2167 2168 sfc_log_init(sa, "probing"); 2169 rc = sfc_probe(sa); 2170 if (rc != 0) 2171 goto fail_probe; 2172 2173 sfc_log_init(sa, "set device ops"); 2174 rc = sfc_eth_dev_set_ops(dev); 2175 if (rc != 0) 2176 goto fail_set_ops; 2177 2178 sfc_log_init(sa, "attaching"); 2179 rc = sfc_attach(sa); 2180 if (rc != 0) 2181 goto fail_attach; 2182 2183 encp = efx_nic_cfg_get(sa->nic); 2184 2185 /* 2186 * The arguments are really reverse order in comparison to 2187 * Linux kernel. Copy from NIC config to Ethernet device data. 2188 */ 2189 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2190 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2191 2192 sfc_adapter_unlock(sa); 2193 2194 sfc_log_init(sa, "done"); 2195 return 0; 2196 2197 fail_attach: 2198 sfc_eth_dev_clear_ops(dev); 2199 2200 fail_set_ops: 2201 sfc_unprobe(sa); 2202 2203 fail_probe: 2204 sfc_adapter_unlock(sa); 2205 sfc_adapter_lock_fini(sa); 2206 rte_free(dev->data->mac_addrs); 2207 dev->data->mac_addrs = NULL; 2208 2209 fail_mac_addrs: 2210 sfc_kvargs_cleanup(sa); 2211 2212 fail_kvargs_parse: 2213 sfc_log_init(sa, "failed %d", rc); 2214 dev->process_private = NULL; 2215 free(sa); 2216 2217 fail_alloc_sa: 2218 SFC_ASSERT(rc > 0); 2219 return -rc; 2220 } 2221 2222 static int 2223 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2224 { 2225 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2226 sfc_eth_dev_secondary_clear_ops(dev); 2227 return 0; 2228 } 2229 2230 sfc_dev_close(dev); 2231 2232 return 0; 2233 } 2234 2235 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2236 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2237 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2238 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2239 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2240 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2241 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2242 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2243 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2244 { .vendor_id = 0 /* sentinel */ } 2245 }; 2246 2247 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2248 struct rte_pci_device *pci_dev) 2249 { 2250 return rte_eth_dev_pci_generic_probe(pci_dev, 2251 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2252 } 2253 2254 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2255 { 2256 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2257 } 2258 2259 static struct rte_pci_driver sfc_efx_pmd = { 2260 .id_table = pci_id_sfc_efx_map, 2261 .drv_flags = 2262 RTE_PCI_DRV_INTR_LSC | 2263 RTE_PCI_DRV_NEED_MAPPING, 2264 .probe = sfc_eth_dev_pci_probe, 2265 .remove = sfc_eth_dev_pci_remove, 2266 }; 2267 2268 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2269 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2270 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2271 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2272 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2273 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2274 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2275 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2276 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2277 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2278 2279 RTE_INIT(sfc_driver_register_logtype) 2280 { 2281 int ret; 2282 2283 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2284 RTE_LOG_NOTICE); 2285 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2286 } 2287