xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 093e1afa24f93b4ae619c0534f1b4fe44e30d11b)
1 /*-
2  *   BSD LICENSE
3  *
4  * Copyright (c) 2016-2017 Solarflare Communications Inc.
5  * All rights reserved.
6  *
7  * This software was jointly developed between OKTET Labs (under contract
8  * for Solarflare) and Solarflare Communications, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright notice,
14  *    this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright notice,
16  *    this list of conditions and the following disclaimer in the documentation
17  *    and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <rte_dev.h>
33 #include <rte_ethdev.h>
34 #include <rte_ethdev_pci.h>
35 #include <rte_pci.h>
36 #include <rte_errno.h>
37 
38 #include "efx.h"
39 
40 #include "sfc.h"
41 #include "sfc_debug.h"
42 #include "sfc_log.h"
43 #include "sfc_kvargs.h"
44 #include "sfc_ev.h"
45 #include "sfc_rx.h"
46 #include "sfc_tx.h"
47 #include "sfc_flow.h"
48 #include "sfc_dp.h"
49 #include "sfc_dp_rx.h"
50 
51 static struct sfc_dp_list sfc_dp_head =
52 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
53 
54 static int
55 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
56 {
57 	struct sfc_adapter *sa = dev->data->dev_private;
58 	efx_nic_fw_info_t enfi;
59 	int ret;
60 	int rc;
61 
62 	/*
63 	 * Return value of the callback is likely supposed to be
64 	 * equal to or greater than 0, nevertheless, if an error
65 	 * occurs, it will be desirable to pass it to the caller
66 	 */
67 	if ((fw_version == NULL) || (fw_size == 0))
68 		return -EINVAL;
69 
70 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
71 	if (rc != 0)
72 		return -rc;
73 
74 	ret = snprintf(fw_version, fw_size,
75 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
76 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
77 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
78 	if (ret < 0)
79 		return ret;
80 
81 	if (enfi.enfi_dpcpu_fw_ids_valid) {
82 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
83 		int ret_extra;
84 
85 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
86 				     fw_size - dpcpu_fw_ids_offset,
87 				     " rx%" PRIx16 " tx%" PRIx16,
88 				     enfi.enfi_rx_dpcpu_fw_id,
89 				     enfi.enfi_tx_dpcpu_fw_id);
90 		if (ret_extra < 0)
91 			return ret_extra;
92 
93 		ret += ret_extra;
94 	}
95 
96 	if (fw_size < (size_t)(++ret))
97 		return ret;
98 	else
99 		return 0;
100 }
101 
102 static void
103 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
104 {
105 	struct sfc_adapter *sa = dev->data->dev_private;
106 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
107 
108 	sfc_log_init(sa, "entry");
109 
110 	dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
111 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
112 
113 	/* Autonegotiation may be disabled */
114 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
115 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
116 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
117 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
118 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
119 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
120 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
121 
122 	dev_info->max_rx_queues = sa->rxq_max;
123 	dev_info->max_tx_queues = sa->txq_max;
124 
125 	/* By default packets are dropped if no descriptors are available */
126 	dev_info->default_rxconf.rx_drop_en = 1;
127 
128 	dev_info->rx_offload_capa =
129 		DEV_RX_OFFLOAD_IPV4_CKSUM |
130 		DEV_RX_OFFLOAD_UDP_CKSUM |
131 		DEV_RX_OFFLOAD_TCP_CKSUM;
132 
133 	dev_info->tx_offload_capa =
134 		DEV_TX_OFFLOAD_IPV4_CKSUM |
135 		DEV_TX_OFFLOAD_UDP_CKSUM |
136 		DEV_TX_OFFLOAD_TCP_CKSUM;
137 
138 	dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP;
139 	if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) ||
140 	    !encp->enc_hw_tx_insert_vlan_enabled)
141 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL;
142 	else
143 		dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT;
144 
145 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG)
146 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS;
147 
148 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL)
149 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP;
150 
151 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT)
152 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT;
153 
154 #if EFSYS_OPT_RX_SCALE
155 	if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) {
156 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
157 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
158 		dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS;
159 	}
160 #endif
161 
162 	if (sa->tso)
163 		dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO;
164 
165 	dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
166 	dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
167 	/* The RXQ hardware requires that the descriptor count is a power
168 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
169 	 */
170 	dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
171 
172 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
173 	dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
174 	/*
175 	 * The TXQ hardware requires that the descriptor count is a power
176 	 * of 2, but tx_desc_lim cannot properly describe that constraint
177 	 */
178 	dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
179 }
180 
181 static const uint32_t *
182 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
183 {
184 	struct sfc_adapter *sa = dev->data->dev_private;
185 
186 	return sa->dp_rx->supported_ptypes_get();
187 }
188 
189 static int
190 sfc_dev_configure(struct rte_eth_dev *dev)
191 {
192 	struct rte_eth_dev_data *dev_data = dev->data;
193 	struct sfc_adapter *sa = dev_data->dev_private;
194 	int rc;
195 
196 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
197 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
198 
199 	sfc_adapter_lock(sa);
200 	switch (sa->state) {
201 	case SFC_ADAPTER_CONFIGURED:
202 		/* FALLTHROUGH */
203 	case SFC_ADAPTER_INITIALIZED:
204 		rc = sfc_configure(sa);
205 		break;
206 	default:
207 		sfc_err(sa, "unexpected adapter state %u to configure",
208 			sa->state);
209 		rc = EINVAL;
210 		break;
211 	}
212 	sfc_adapter_unlock(sa);
213 
214 	sfc_log_init(sa, "done %d", rc);
215 	SFC_ASSERT(rc >= 0);
216 	return -rc;
217 }
218 
219 static int
220 sfc_dev_start(struct rte_eth_dev *dev)
221 {
222 	struct sfc_adapter *sa = dev->data->dev_private;
223 	int rc;
224 
225 	sfc_log_init(sa, "entry");
226 
227 	sfc_adapter_lock(sa);
228 	rc = sfc_start(sa);
229 	sfc_adapter_unlock(sa);
230 
231 	sfc_log_init(sa, "done %d", rc);
232 	SFC_ASSERT(rc >= 0);
233 	return -rc;
234 }
235 
236 static int
237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
238 {
239 	struct sfc_adapter *sa = dev->data->dev_private;
240 	struct rte_eth_link *dev_link = &dev->data->dev_link;
241 	struct rte_eth_link old_link;
242 	struct rte_eth_link current_link;
243 
244 	sfc_log_init(sa, "entry");
245 
246 retry:
247 	EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t));
248 	*(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link);
249 
250 	if (sa->state != SFC_ADAPTER_STARTED) {
251 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
252 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
253 					 *(uint64_t *)&old_link,
254 					 *(uint64_t *)&current_link))
255 			goto retry;
256 	} else if (wait_to_complete) {
257 		efx_link_mode_t link_mode;
258 
259 		if (efx_port_poll(sa->nic, &link_mode) != 0)
260 			link_mode = EFX_LINK_UNKNOWN;
261 		sfc_port_link_mode_to_info(link_mode, &current_link);
262 
263 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
264 					 *(uint64_t *)&old_link,
265 					 *(uint64_t *)&current_link))
266 			goto retry;
267 	} else {
268 		sfc_ev_mgmt_qpoll(sa);
269 		*(int64_t *)&current_link =
270 			rte_atomic64_read((rte_atomic64_t *)dev_link);
271 	}
272 
273 	if (old_link.link_status != current_link.link_status)
274 		sfc_info(sa, "Link status is %s",
275 			 current_link.link_status ? "UP" : "DOWN");
276 
277 	return old_link.link_status == current_link.link_status ? 0 : -1;
278 }
279 
280 static void
281 sfc_dev_stop(struct rte_eth_dev *dev)
282 {
283 	struct sfc_adapter *sa = dev->data->dev_private;
284 
285 	sfc_log_init(sa, "entry");
286 
287 	sfc_adapter_lock(sa);
288 	sfc_stop(sa);
289 	sfc_adapter_unlock(sa);
290 
291 	sfc_log_init(sa, "done");
292 }
293 
294 static int
295 sfc_dev_set_link_up(struct rte_eth_dev *dev)
296 {
297 	struct sfc_adapter *sa = dev->data->dev_private;
298 	int rc;
299 
300 	sfc_log_init(sa, "entry");
301 
302 	sfc_adapter_lock(sa);
303 	rc = sfc_start(sa);
304 	sfc_adapter_unlock(sa);
305 
306 	SFC_ASSERT(rc >= 0);
307 	return -rc;
308 }
309 
310 static int
311 sfc_dev_set_link_down(struct rte_eth_dev *dev)
312 {
313 	struct sfc_adapter *sa = dev->data->dev_private;
314 
315 	sfc_log_init(sa, "entry");
316 
317 	sfc_adapter_lock(sa);
318 	sfc_stop(sa);
319 	sfc_adapter_unlock(sa);
320 
321 	return 0;
322 }
323 
324 static void
325 sfc_dev_close(struct rte_eth_dev *dev)
326 {
327 	struct sfc_adapter *sa = dev->data->dev_private;
328 
329 	sfc_log_init(sa, "entry");
330 
331 	sfc_adapter_lock(sa);
332 	switch (sa->state) {
333 	case SFC_ADAPTER_STARTED:
334 		sfc_stop(sa);
335 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
336 		/* FALLTHROUGH */
337 	case SFC_ADAPTER_CONFIGURED:
338 		sfc_close(sa);
339 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
340 		/* FALLTHROUGH */
341 	case SFC_ADAPTER_INITIALIZED:
342 		break;
343 	default:
344 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
345 		break;
346 	}
347 	sfc_adapter_unlock(sa);
348 
349 	sfc_log_init(sa, "done");
350 }
351 
352 static void
353 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
354 		   boolean_t enabled)
355 {
356 	struct sfc_port *port;
357 	boolean_t *toggle;
358 	struct sfc_adapter *sa = dev->data->dev_private;
359 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
360 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
361 
362 	sfc_adapter_lock(sa);
363 
364 	port = &sa->port;
365 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
366 
367 	if (*toggle != enabled) {
368 		*toggle = enabled;
369 
370 		if (port->isolated) {
371 			sfc_warn(sa, "isolated mode is active on the port");
372 			sfc_warn(sa, "the change is to be applied on the next "
373 				     "start provided that isolated mode is "
374 				     "disabled prior the next start");
375 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
376 			   (sfc_set_rx_mode(sa) != 0)) {
377 			*toggle = !(enabled);
378 			sfc_warn(sa, "Failed to %s %s mode",
379 				 ((enabled) ? "enable" : "disable"), desc);
380 		}
381 	}
382 
383 	sfc_adapter_unlock(sa);
384 }
385 
386 static void
387 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
388 {
389 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
390 }
391 
392 static void
393 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
394 {
395 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
396 }
397 
398 static void
399 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
400 {
401 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
402 }
403 
404 static void
405 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
406 {
407 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
408 }
409 
410 static int
411 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
412 		   uint16_t nb_rx_desc, unsigned int socket_id,
413 		   const struct rte_eth_rxconf *rx_conf,
414 		   struct rte_mempool *mb_pool)
415 {
416 	struct sfc_adapter *sa = dev->data->dev_private;
417 	int rc;
418 
419 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
420 		     rx_queue_id, nb_rx_desc, socket_id);
421 
422 	sfc_adapter_lock(sa);
423 
424 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
425 			  rx_conf, mb_pool);
426 	if (rc != 0)
427 		goto fail_rx_qinit;
428 
429 	dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp;
430 
431 	sfc_adapter_unlock(sa);
432 
433 	return 0;
434 
435 fail_rx_qinit:
436 	sfc_adapter_unlock(sa);
437 	SFC_ASSERT(rc > 0);
438 	return -rc;
439 }
440 
441 static void
442 sfc_rx_queue_release(void *queue)
443 {
444 	struct sfc_dp_rxq *dp_rxq = queue;
445 	struct sfc_rxq *rxq;
446 	struct sfc_adapter *sa;
447 	unsigned int sw_index;
448 
449 	if (dp_rxq == NULL)
450 		return;
451 
452 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
453 	sa = rxq->evq->sa;
454 	sfc_adapter_lock(sa);
455 
456 	sw_index = sfc_rxq_sw_index(rxq);
457 
458 	sfc_log_init(sa, "RxQ=%u", sw_index);
459 
460 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
461 
462 	sfc_rx_qfini(sa, sw_index);
463 
464 	sfc_adapter_unlock(sa);
465 }
466 
467 static int
468 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
469 		   uint16_t nb_tx_desc, unsigned int socket_id,
470 		   const struct rte_eth_txconf *tx_conf)
471 {
472 	struct sfc_adapter *sa = dev->data->dev_private;
473 	int rc;
474 
475 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
476 		     tx_queue_id, nb_tx_desc, socket_id);
477 
478 	sfc_adapter_lock(sa);
479 
480 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
481 	if (rc != 0)
482 		goto fail_tx_qinit;
483 
484 	dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp;
485 
486 	sfc_adapter_unlock(sa);
487 	return 0;
488 
489 fail_tx_qinit:
490 	sfc_adapter_unlock(sa);
491 	SFC_ASSERT(rc > 0);
492 	return -rc;
493 }
494 
495 static void
496 sfc_tx_queue_release(void *queue)
497 {
498 	struct sfc_dp_txq *dp_txq = queue;
499 	struct sfc_txq *txq;
500 	unsigned int sw_index;
501 	struct sfc_adapter *sa;
502 
503 	if (dp_txq == NULL)
504 		return;
505 
506 	txq = sfc_txq_by_dp_txq(dp_txq);
507 	sw_index = sfc_txq_sw_index(txq);
508 
509 	SFC_ASSERT(txq->evq != NULL);
510 	sa = txq->evq->sa;
511 
512 	sfc_log_init(sa, "TxQ = %u", sw_index);
513 
514 	sfc_adapter_lock(sa);
515 
516 	SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues);
517 	sa->eth_dev->data->tx_queues[sw_index] = NULL;
518 
519 	sfc_tx_qfini(sa, sw_index);
520 
521 	sfc_adapter_unlock(sa);
522 }
523 
524 static void
525 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
526 {
527 	struct sfc_adapter *sa = dev->data->dev_private;
528 	struct sfc_port *port = &sa->port;
529 	uint64_t *mac_stats;
530 
531 	rte_spinlock_lock(&port->mac_stats_lock);
532 
533 	if (sfc_port_update_mac_stats(sa) != 0)
534 		goto unlock;
535 
536 	mac_stats = port->mac_stats_buf;
537 
538 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
539 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
540 		stats->ipackets =
541 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
542 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
543 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
544 		stats->opackets =
545 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
546 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
547 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
548 		stats->ibytes =
549 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
550 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
551 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
552 		stats->obytes =
553 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
554 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
555 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
556 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW];
557 		stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
558 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
559 	} else {
560 		stats->ipackets = mac_stats[EFX_MAC_RX_PKTS];
561 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
562 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
563 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
564 		/*
565 		 * Take into account stats which are whenever supported
566 		 * on EF10. If some stat is not supported by current
567 		 * firmware variant or HW revision, it is guaranteed
568 		 * to be zero in mac_stats.
569 		 */
570 		stats->imissed =
571 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
572 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
573 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
574 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
575 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
576 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
577 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
578 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
579 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
580 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
581 		stats->ierrors =
582 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
583 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
584 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
585 		/* no oerrors counters supported on EF10 */
586 	}
587 
588 unlock:
589 	rte_spinlock_unlock(&port->mac_stats_lock);
590 }
591 
592 static void
593 sfc_stats_reset(struct rte_eth_dev *dev)
594 {
595 	struct sfc_adapter *sa = dev->data->dev_private;
596 	struct sfc_port *port = &sa->port;
597 	int rc;
598 
599 	if (sa->state != SFC_ADAPTER_STARTED) {
600 		/*
601 		 * The operation cannot be done if port is not started; it
602 		 * will be scheduled to be done during the next port start
603 		 */
604 		port->mac_stats_reset_pending = B_TRUE;
605 		return;
606 	}
607 
608 	rc = sfc_port_reset_mac_stats(sa);
609 	if (rc != 0)
610 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
611 }
612 
613 static int
614 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
615 	       unsigned int xstats_count)
616 {
617 	struct sfc_adapter *sa = dev->data->dev_private;
618 	struct sfc_port *port = &sa->port;
619 	uint64_t *mac_stats;
620 	int rc;
621 	unsigned int i;
622 	int nstats = 0;
623 
624 	rte_spinlock_lock(&port->mac_stats_lock);
625 
626 	rc = sfc_port_update_mac_stats(sa);
627 	if (rc != 0) {
628 		SFC_ASSERT(rc > 0);
629 		nstats = -rc;
630 		goto unlock;
631 	}
632 
633 	mac_stats = port->mac_stats_buf;
634 
635 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
636 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
637 			if (xstats != NULL && nstats < (int)xstats_count) {
638 				xstats[nstats].id = nstats;
639 				xstats[nstats].value = mac_stats[i];
640 			}
641 			nstats++;
642 		}
643 	}
644 
645 unlock:
646 	rte_spinlock_unlock(&port->mac_stats_lock);
647 
648 	return nstats;
649 }
650 
651 static int
652 sfc_xstats_get_names(struct rte_eth_dev *dev,
653 		     struct rte_eth_xstat_name *xstats_names,
654 		     unsigned int xstats_count)
655 {
656 	struct sfc_adapter *sa = dev->data->dev_private;
657 	struct sfc_port *port = &sa->port;
658 	unsigned int i;
659 	unsigned int nstats = 0;
660 
661 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
662 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
663 			if (xstats_names != NULL && nstats < xstats_count)
664 				strncpy(xstats_names[nstats].name,
665 					efx_mac_stat_name(sa->nic, i),
666 					sizeof(xstats_names[0].name));
667 			nstats++;
668 		}
669 	}
670 
671 	return nstats;
672 }
673 
674 static int
675 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
676 		     uint64_t *values, unsigned int n)
677 {
678 	struct sfc_adapter *sa = dev->data->dev_private;
679 	struct sfc_port *port = &sa->port;
680 	uint64_t *mac_stats;
681 	unsigned int nb_supported = 0;
682 	unsigned int nb_written = 0;
683 	unsigned int i;
684 	int ret;
685 	int rc;
686 
687 	if (unlikely(values == NULL) ||
688 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
689 		return port->mac_stats_nb_supported;
690 
691 	rte_spinlock_lock(&port->mac_stats_lock);
692 
693 	rc = sfc_port_update_mac_stats(sa);
694 	if (rc != 0) {
695 		SFC_ASSERT(rc > 0);
696 		ret = -rc;
697 		goto unlock;
698 	}
699 
700 	mac_stats = port->mac_stats_buf;
701 
702 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
703 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
704 			continue;
705 
706 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
707 			values[nb_written++] = mac_stats[i];
708 
709 		++nb_supported;
710 	}
711 
712 	ret = nb_written;
713 
714 unlock:
715 	rte_spinlock_unlock(&port->mac_stats_lock);
716 
717 	return ret;
718 }
719 
720 static int
721 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
722 			   struct rte_eth_xstat_name *xstats_names,
723 			   const uint64_t *ids, unsigned int size)
724 {
725 	struct sfc_adapter *sa = dev->data->dev_private;
726 	struct sfc_port *port = &sa->port;
727 	unsigned int nb_supported = 0;
728 	unsigned int nb_written = 0;
729 	unsigned int i;
730 
731 	if (unlikely(xstats_names == NULL) ||
732 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
733 		return port->mac_stats_nb_supported;
734 
735 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
736 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
737 			continue;
738 
739 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
740 			char *name = xstats_names[nb_written++].name;
741 
742 			strncpy(name, efx_mac_stat_name(sa->nic, i),
743 				sizeof(xstats_names[0].name));
744 			name[sizeof(xstats_names[0].name) - 1] = '\0';
745 		}
746 
747 		++nb_supported;
748 	}
749 
750 	return nb_written;
751 }
752 
753 static int
754 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
755 {
756 	struct sfc_adapter *sa = dev->data->dev_private;
757 	unsigned int wanted_fc, link_fc;
758 
759 	memset(fc_conf, 0, sizeof(*fc_conf));
760 
761 	sfc_adapter_lock(sa);
762 
763 	if (sa->state == SFC_ADAPTER_STARTED)
764 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
765 	else
766 		link_fc = sa->port.flow_ctrl;
767 
768 	switch (link_fc) {
769 	case 0:
770 		fc_conf->mode = RTE_FC_NONE;
771 		break;
772 	case EFX_FCNTL_RESPOND:
773 		fc_conf->mode = RTE_FC_RX_PAUSE;
774 		break;
775 	case EFX_FCNTL_GENERATE:
776 		fc_conf->mode = RTE_FC_TX_PAUSE;
777 		break;
778 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
779 		fc_conf->mode = RTE_FC_FULL;
780 		break;
781 	default:
782 		sfc_err(sa, "%s: unexpected flow control value %#x",
783 			__func__, link_fc);
784 	}
785 
786 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
787 
788 	sfc_adapter_unlock(sa);
789 
790 	return 0;
791 }
792 
793 static int
794 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
795 {
796 	struct sfc_adapter *sa = dev->data->dev_private;
797 	struct sfc_port *port = &sa->port;
798 	unsigned int fcntl;
799 	int rc;
800 
801 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
802 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
803 	    fc_conf->mac_ctrl_frame_fwd != 0) {
804 		sfc_err(sa, "unsupported flow control settings specified");
805 		rc = EINVAL;
806 		goto fail_inval;
807 	}
808 
809 	switch (fc_conf->mode) {
810 	case RTE_FC_NONE:
811 		fcntl = 0;
812 		break;
813 	case RTE_FC_RX_PAUSE:
814 		fcntl = EFX_FCNTL_RESPOND;
815 		break;
816 	case RTE_FC_TX_PAUSE:
817 		fcntl = EFX_FCNTL_GENERATE;
818 		break;
819 	case RTE_FC_FULL:
820 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
821 		break;
822 	default:
823 		rc = EINVAL;
824 		goto fail_inval;
825 	}
826 
827 	sfc_adapter_lock(sa);
828 
829 	if (sa->state == SFC_ADAPTER_STARTED) {
830 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
831 		if (rc != 0)
832 			goto fail_mac_fcntl_set;
833 	}
834 
835 	port->flow_ctrl = fcntl;
836 	port->flow_ctrl_autoneg = fc_conf->autoneg;
837 
838 	sfc_adapter_unlock(sa);
839 
840 	return 0;
841 
842 fail_mac_fcntl_set:
843 	sfc_adapter_unlock(sa);
844 fail_inval:
845 	SFC_ASSERT(rc > 0);
846 	return -rc;
847 }
848 
849 static int
850 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
851 {
852 	struct sfc_adapter *sa = dev->data->dev_private;
853 	size_t pdu = EFX_MAC_PDU(mtu);
854 	size_t old_pdu;
855 	int rc;
856 
857 	sfc_log_init(sa, "mtu=%u", mtu);
858 
859 	rc = EINVAL;
860 	if (pdu < EFX_MAC_PDU_MIN) {
861 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
862 			(unsigned int)mtu, (unsigned int)pdu,
863 			EFX_MAC_PDU_MIN);
864 		goto fail_inval;
865 	}
866 	if (pdu > EFX_MAC_PDU_MAX) {
867 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
868 			(unsigned int)mtu, (unsigned int)pdu,
869 			EFX_MAC_PDU_MAX);
870 		goto fail_inval;
871 	}
872 
873 	sfc_adapter_lock(sa);
874 
875 	if (pdu != sa->port.pdu) {
876 		if (sa->state == SFC_ADAPTER_STARTED) {
877 			sfc_stop(sa);
878 
879 			old_pdu = sa->port.pdu;
880 			sa->port.pdu = pdu;
881 			rc = sfc_start(sa);
882 			if (rc != 0)
883 				goto fail_start;
884 		} else {
885 			sa->port.pdu = pdu;
886 		}
887 	}
888 
889 	/*
890 	 * The driver does not use it, but other PMDs update jumbo_frame
891 	 * flag and max_rx_pkt_len when MTU is set.
892 	 */
893 	dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN);
894 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
895 
896 	sfc_adapter_unlock(sa);
897 
898 	sfc_log_init(sa, "done");
899 	return 0;
900 
901 fail_start:
902 	sa->port.pdu = old_pdu;
903 	if (sfc_start(sa) != 0)
904 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
905 			"PDU max size - port is stopped",
906 			(unsigned int)pdu, (unsigned int)old_pdu);
907 	sfc_adapter_unlock(sa);
908 
909 fail_inval:
910 	sfc_log_init(sa, "failed %d", rc);
911 	SFC_ASSERT(rc > 0);
912 	return -rc;
913 }
914 static void
915 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
916 {
917 	struct sfc_adapter *sa = dev->data->dev_private;
918 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
919 	struct sfc_port *port = &sa->port;
920 	int rc;
921 
922 	sfc_adapter_lock(sa);
923 
924 	if (port->isolated) {
925 		sfc_err(sa, "isolated mode is active on the port");
926 		sfc_err(sa, "will not set MAC address");
927 		goto unlock;
928 	}
929 
930 	if (sa->state != SFC_ADAPTER_STARTED) {
931 		sfc_info(sa, "the port is not started");
932 		sfc_info(sa, "the new MAC address will be set on port start");
933 
934 		goto unlock;
935 	}
936 
937 	if (encp->enc_allow_set_mac_with_installed_filters) {
938 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
939 		if (rc != 0) {
940 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
941 			goto unlock;
942 		}
943 
944 		/*
945 		 * Changing the MAC address by means of MCDI request
946 		 * has no effect on received traffic, therefore
947 		 * we also need to update unicast filters
948 		 */
949 		rc = sfc_set_rx_mode(sa);
950 		if (rc != 0)
951 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
952 	} else {
953 		sfc_warn(sa, "cannot set MAC address with filters installed");
954 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
955 		sfc_warn(sa, "(some traffic may be dropped)");
956 
957 		/*
958 		 * Since setting MAC address with filters installed is not
959 		 * allowed on the adapter, one needs to simply restart adapter
960 		 * so that the new MAC address will be taken from an outer
961 		 * storage and set flawlessly by means of sfc_start() call
962 		 */
963 		sfc_stop(sa);
964 		rc = sfc_start(sa);
965 		if (rc != 0)
966 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
967 	}
968 
969 unlock:
970 	sfc_adapter_unlock(sa);
971 }
972 
973 
974 static int
975 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
976 		     uint32_t nb_mc_addr)
977 {
978 	struct sfc_adapter *sa = dev->data->dev_private;
979 	struct sfc_port *port = &sa->port;
980 	uint8_t *mc_addrs = port->mcast_addrs;
981 	int rc;
982 	unsigned int i;
983 
984 	if (port->isolated) {
985 		sfc_err(sa, "isolated mode is active on the port");
986 		sfc_err(sa, "will not set multicast address list");
987 		return -ENOTSUP;
988 	}
989 
990 	if (mc_addrs == NULL)
991 		return -ENOBUFS;
992 
993 	if (nb_mc_addr > port->max_mcast_addrs) {
994 		sfc_err(sa, "too many multicast addresses: %u > %u",
995 			 nb_mc_addr, port->max_mcast_addrs);
996 		return -EINVAL;
997 	}
998 
999 	for (i = 0; i < nb_mc_addr; ++i) {
1000 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1001 				 EFX_MAC_ADDR_LEN);
1002 		mc_addrs += EFX_MAC_ADDR_LEN;
1003 	}
1004 
1005 	port->nb_mcast_addrs = nb_mc_addr;
1006 
1007 	if (sa->state != SFC_ADAPTER_STARTED)
1008 		return 0;
1009 
1010 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1011 					port->nb_mcast_addrs);
1012 	if (rc != 0)
1013 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1014 
1015 	SFC_ASSERT(rc > 0);
1016 	return -rc;
1017 }
1018 
1019 /*
1020  * The function is used by the secondary process as well. It must not
1021  * use any process-local pointers from the adapter data.
1022  */
1023 static void
1024 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1025 		      struct rte_eth_rxq_info *qinfo)
1026 {
1027 	struct sfc_adapter *sa = dev->data->dev_private;
1028 	struct sfc_rxq_info *rxq_info;
1029 	struct sfc_rxq *rxq;
1030 
1031 	sfc_adapter_lock(sa);
1032 
1033 	SFC_ASSERT(rx_queue_id < sa->rxq_count);
1034 
1035 	rxq_info = &sa->rxq_info[rx_queue_id];
1036 	rxq = rxq_info->rxq;
1037 	SFC_ASSERT(rxq != NULL);
1038 
1039 	qinfo->mp = rxq->refill_mb_pool;
1040 	qinfo->conf.rx_free_thresh = rxq->refill_threshold;
1041 	qinfo->conf.rx_drop_en = 1;
1042 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1043 	qinfo->scattered_rx = (rxq_info->type == EFX_RXQ_TYPE_SCATTER);
1044 	qinfo->nb_desc = rxq_info->entries;
1045 
1046 	sfc_adapter_unlock(sa);
1047 }
1048 
1049 /*
1050  * The function is used by the secondary process as well. It must not
1051  * use any process-local pointers from the adapter data.
1052  */
1053 static void
1054 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1055 		      struct rte_eth_txq_info *qinfo)
1056 {
1057 	struct sfc_adapter *sa = dev->data->dev_private;
1058 	struct sfc_txq_info *txq_info;
1059 
1060 	sfc_adapter_lock(sa);
1061 
1062 	SFC_ASSERT(tx_queue_id < sa->txq_count);
1063 
1064 	txq_info = &sa->txq_info[tx_queue_id];
1065 	SFC_ASSERT(txq_info->txq != NULL);
1066 
1067 	memset(qinfo, 0, sizeof(*qinfo));
1068 
1069 	qinfo->conf.txq_flags = txq_info->txq->flags;
1070 	qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
1071 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1072 	qinfo->nb_desc = txq_info->entries;
1073 
1074 	sfc_adapter_unlock(sa);
1075 }
1076 
1077 static uint32_t
1078 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1079 {
1080 	struct sfc_adapter *sa = dev->data->dev_private;
1081 
1082 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1083 
1084 	return sfc_rx_qdesc_npending(sa, rx_queue_id);
1085 }
1086 
1087 static int
1088 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1089 {
1090 	struct sfc_dp_rxq *dp_rxq = queue;
1091 
1092 	return sfc_rx_qdesc_done(dp_rxq, offset);
1093 }
1094 
1095 static int
1096 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1097 {
1098 	struct sfc_dp_rxq *dp_rxq = queue;
1099 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
1100 
1101 	return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset);
1102 }
1103 
1104 static int
1105 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1106 {
1107 	struct sfc_dp_txq *dp_txq = queue;
1108 	struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
1109 
1110 	return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset);
1111 }
1112 
1113 static int
1114 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1115 {
1116 	struct sfc_adapter *sa = dev->data->dev_private;
1117 	int rc;
1118 
1119 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1120 
1121 	sfc_adapter_lock(sa);
1122 
1123 	rc = EINVAL;
1124 	if (sa->state != SFC_ADAPTER_STARTED)
1125 		goto fail_not_started;
1126 
1127 	rc = sfc_rx_qstart(sa, rx_queue_id);
1128 	if (rc != 0)
1129 		goto fail_rx_qstart;
1130 
1131 	sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1132 
1133 	sfc_adapter_unlock(sa);
1134 
1135 	return 0;
1136 
1137 fail_rx_qstart:
1138 fail_not_started:
1139 	sfc_adapter_unlock(sa);
1140 	SFC_ASSERT(rc > 0);
1141 	return -rc;
1142 }
1143 
1144 static int
1145 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1146 {
1147 	struct sfc_adapter *sa = dev->data->dev_private;
1148 
1149 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1150 
1151 	sfc_adapter_lock(sa);
1152 	sfc_rx_qstop(sa, rx_queue_id);
1153 
1154 	sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1155 
1156 	sfc_adapter_unlock(sa);
1157 
1158 	return 0;
1159 }
1160 
1161 static int
1162 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1163 {
1164 	struct sfc_adapter *sa = dev->data->dev_private;
1165 	int rc;
1166 
1167 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1168 
1169 	sfc_adapter_lock(sa);
1170 
1171 	rc = EINVAL;
1172 	if (sa->state != SFC_ADAPTER_STARTED)
1173 		goto fail_not_started;
1174 
1175 	rc = sfc_tx_qstart(sa, tx_queue_id);
1176 	if (rc != 0)
1177 		goto fail_tx_qstart;
1178 
1179 	sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
1180 
1181 	sfc_adapter_unlock(sa);
1182 	return 0;
1183 
1184 fail_tx_qstart:
1185 
1186 fail_not_started:
1187 	sfc_adapter_unlock(sa);
1188 	SFC_ASSERT(rc > 0);
1189 	return -rc;
1190 }
1191 
1192 static int
1193 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1194 {
1195 	struct sfc_adapter *sa = dev->data->dev_private;
1196 
1197 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1198 
1199 	sfc_adapter_lock(sa);
1200 
1201 	sfc_tx_qstop(sa, tx_queue_id);
1202 
1203 	sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1204 
1205 	sfc_adapter_unlock(sa);
1206 	return 0;
1207 }
1208 
1209 #if EFSYS_OPT_RX_SCALE
1210 static int
1211 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1212 			  struct rte_eth_rss_conf *rss_conf)
1213 {
1214 	struct sfc_adapter *sa = dev->data->dev_private;
1215 	struct sfc_port *port = &sa->port;
1216 
1217 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1218 		return -ENOTSUP;
1219 
1220 	if (sa->rss_channels == 0)
1221 		return -EINVAL;
1222 
1223 	sfc_adapter_lock(sa);
1224 
1225 	/*
1226 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1227 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1228 	 * flags which corresponds to the active EFX configuration stored
1229 	 * locally in 'sfc_adapter' and kept up-to-date
1230 	 */
1231 	rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types);
1232 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1233 	if (rss_conf->rss_key != NULL)
1234 		rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE);
1235 
1236 	sfc_adapter_unlock(sa);
1237 
1238 	return 0;
1239 }
1240 
1241 static int
1242 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1243 			struct rte_eth_rss_conf *rss_conf)
1244 {
1245 	struct sfc_adapter *sa = dev->data->dev_private;
1246 	struct sfc_port *port = &sa->port;
1247 	unsigned int efx_hash_types;
1248 	int rc = 0;
1249 
1250 	if (port->isolated)
1251 		return -ENOTSUP;
1252 
1253 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1254 		sfc_err(sa, "RSS is not available");
1255 		return -ENOTSUP;
1256 	}
1257 
1258 	if (sa->rss_channels == 0) {
1259 		sfc_err(sa, "RSS is not configured");
1260 		return -EINVAL;
1261 	}
1262 
1263 	if ((rss_conf->rss_key != NULL) &&
1264 	    (rss_conf->rss_key_len != sizeof(sa->rss_key))) {
1265 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1266 			sizeof(sa->rss_key));
1267 		return -EINVAL;
1268 	}
1269 
1270 	if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) {
1271 		sfc_err(sa, "unsupported hash functions requested");
1272 		return -EINVAL;
1273 	}
1274 
1275 	sfc_adapter_lock(sa);
1276 
1277 	efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf);
1278 
1279 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1280 				   EFX_RX_HASHALG_TOEPLITZ,
1281 				   efx_hash_types, B_TRUE);
1282 	if (rc != 0)
1283 		goto fail_scale_mode_set;
1284 
1285 	if (rss_conf->rss_key != NULL) {
1286 		if (sa->state == SFC_ADAPTER_STARTED) {
1287 			rc = efx_rx_scale_key_set(sa->nic,
1288 						  EFX_RSS_CONTEXT_DEFAULT,
1289 						  rss_conf->rss_key,
1290 						  sizeof(sa->rss_key));
1291 			if (rc != 0)
1292 				goto fail_scale_key_set;
1293 		}
1294 
1295 		rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key));
1296 	}
1297 
1298 	sa->rss_hash_types = efx_hash_types;
1299 
1300 	sfc_adapter_unlock(sa);
1301 
1302 	return 0;
1303 
1304 fail_scale_key_set:
1305 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1306 				  EFX_RX_HASHALG_TOEPLITZ,
1307 				  sa->rss_hash_types, B_TRUE) != 0)
1308 		sfc_err(sa, "failed to restore RSS mode");
1309 
1310 fail_scale_mode_set:
1311 	sfc_adapter_unlock(sa);
1312 	return -rc;
1313 }
1314 
1315 static int
1316 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1317 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1318 		       uint16_t reta_size)
1319 {
1320 	struct sfc_adapter *sa = dev->data->dev_private;
1321 	struct sfc_port *port = &sa->port;
1322 	int entry;
1323 
1324 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1325 		return -ENOTSUP;
1326 
1327 	if (sa->rss_channels == 0)
1328 		return -EINVAL;
1329 
1330 	if (reta_size != EFX_RSS_TBL_SIZE)
1331 		return -EINVAL;
1332 
1333 	sfc_adapter_lock(sa);
1334 
1335 	for (entry = 0; entry < reta_size; entry++) {
1336 		int grp = entry / RTE_RETA_GROUP_SIZE;
1337 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1338 
1339 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1340 			reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry];
1341 	}
1342 
1343 	sfc_adapter_unlock(sa);
1344 
1345 	return 0;
1346 }
1347 
1348 static int
1349 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1350 			struct rte_eth_rss_reta_entry64 *reta_conf,
1351 			uint16_t reta_size)
1352 {
1353 	struct sfc_adapter *sa = dev->data->dev_private;
1354 	struct sfc_port *port = &sa->port;
1355 	unsigned int *rss_tbl_new;
1356 	uint16_t entry;
1357 	int rc;
1358 
1359 
1360 	if (port->isolated)
1361 		return -ENOTSUP;
1362 
1363 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1364 		sfc_err(sa, "RSS is not available");
1365 		return -ENOTSUP;
1366 	}
1367 
1368 	if (sa->rss_channels == 0) {
1369 		sfc_err(sa, "RSS is not configured");
1370 		return -EINVAL;
1371 	}
1372 
1373 	if (reta_size != EFX_RSS_TBL_SIZE) {
1374 		sfc_err(sa, "RETA size is wrong (should be %u)",
1375 			EFX_RSS_TBL_SIZE);
1376 		return -EINVAL;
1377 	}
1378 
1379 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0);
1380 	if (rss_tbl_new == NULL)
1381 		return -ENOMEM;
1382 
1383 	sfc_adapter_lock(sa);
1384 
1385 	rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl));
1386 
1387 	for (entry = 0; entry < reta_size; entry++) {
1388 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1389 		struct rte_eth_rss_reta_entry64 *grp;
1390 
1391 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1392 
1393 		if (grp->mask & (1ull << grp_idx)) {
1394 			if (grp->reta[grp_idx] >= sa->rss_channels) {
1395 				rc = EINVAL;
1396 				goto bad_reta_entry;
1397 			}
1398 			rss_tbl_new[entry] = grp->reta[grp_idx];
1399 		}
1400 	}
1401 
1402 	rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1403 				  rss_tbl_new, EFX_RSS_TBL_SIZE);
1404 	if (rc == 0)
1405 		rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl));
1406 
1407 bad_reta_entry:
1408 	sfc_adapter_unlock(sa);
1409 
1410 	rte_free(rss_tbl_new);
1411 
1412 	SFC_ASSERT(rc >= 0);
1413 	return -rc;
1414 }
1415 #endif
1416 
1417 static int
1418 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1419 		    enum rte_filter_op filter_op,
1420 		    void *arg)
1421 {
1422 	struct sfc_adapter *sa = dev->data->dev_private;
1423 	int rc = ENOTSUP;
1424 
1425 	sfc_log_init(sa, "entry");
1426 
1427 	switch (filter_type) {
1428 	case RTE_ETH_FILTER_NONE:
1429 		sfc_err(sa, "Global filters configuration not supported");
1430 		break;
1431 	case RTE_ETH_FILTER_MACVLAN:
1432 		sfc_err(sa, "MACVLAN filters not supported");
1433 		break;
1434 	case RTE_ETH_FILTER_ETHERTYPE:
1435 		sfc_err(sa, "EtherType filters not supported");
1436 		break;
1437 	case RTE_ETH_FILTER_FLEXIBLE:
1438 		sfc_err(sa, "Flexible filters not supported");
1439 		break;
1440 	case RTE_ETH_FILTER_SYN:
1441 		sfc_err(sa, "SYN filters not supported");
1442 		break;
1443 	case RTE_ETH_FILTER_NTUPLE:
1444 		sfc_err(sa, "NTUPLE filters not supported");
1445 		break;
1446 	case RTE_ETH_FILTER_TUNNEL:
1447 		sfc_err(sa, "Tunnel filters not supported");
1448 		break;
1449 	case RTE_ETH_FILTER_FDIR:
1450 		sfc_err(sa, "Flow Director filters not supported");
1451 		break;
1452 	case RTE_ETH_FILTER_HASH:
1453 		sfc_err(sa, "Hash filters not supported");
1454 		break;
1455 	case RTE_ETH_FILTER_GENERIC:
1456 		if (filter_op != RTE_ETH_FILTER_GET) {
1457 			rc = EINVAL;
1458 		} else {
1459 			*(const void **)arg = &sfc_flow_ops;
1460 			rc = 0;
1461 		}
1462 		break;
1463 	default:
1464 		sfc_err(sa, "Unknown filter type %u", filter_type);
1465 		break;
1466 	}
1467 
1468 	sfc_log_init(sa, "exit: %d", -rc);
1469 	SFC_ASSERT(rc >= 0);
1470 	return -rc;
1471 }
1472 
1473 static const struct eth_dev_ops sfc_eth_dev_ops = {
1474 	.dev_configure			= sfc_dev_configure,
1475 	.dev_start			= sfc_dev_start,
1476 	.dev_stop			= sfc_dev_stop,
1477 	.dev_set_link_up		= sfc_dev_set_link_up,
1478 	.dev_set_link_down		= sfc_dev_set_link_down,
1479 	.dev_close			= sfc_dev_close,
1480 	.promiscuous_enable		= sfc_dev_promisc_enable,
1481 	.promiscuous_disable		= sfc_dev_promisc_disable,
1482 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1483 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1484 	.link_update			= sfc_dev_link_update,
1485 	.stats_get			= sfc_stats_get,
1486 	.stats_reset			= sfc_stats_reset,
1487 	.xstats_get			= sfc_xstats_get,
1488 	.xstats_reset			= sfc_stats_reset,
1489 	.xstats_get_names		= sfc_xstats_get_names,
1490 	.dev_infos_get			= sfc_dev_infos_get,
1491 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1492 	.mtu_set			= sfc_dev_set_mtu,
1493 	.rx_queue_start			= sfc_rx_queue_start,
1494 	.rx_queue_stop			= sfc_rx_queue_stop,
1495 	.tx_queue_start			= sfc_tx_queue_start,
1496 	.tx_queue_stop			= sfc_tx_queue_stop,
1497 	.rx_queue_setup			= sfc_rx_queue_setup,
1498 	.rx_queue_release		= sfc_rx_queue_release,
1499 	.rx_queue_count			= sfc_rx_queue_count,
1500 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1501 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1502 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1503 	.tx_queue_setup			= sfc_tx_queue_setup,
1504 	.tx_queue_release		= sfc_tx_queue_release,
1505 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1506 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1507 	.mac_addr_set			= sfc_mac_addr_set,
1508 #if EFSYS_OPT_RX_SCALE
1509 	.reta_update			= sfc_dev_rss_reta_update,
1510 	.reta_query			= sfc_dev_rss_reta_query,
1511 	.rss_hash_update		= sfc_dev_rss_hash_update,
1512 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1513 #endif
1514 	.filter_ctrl			= sfc_dev_filter_ctrl,
1515 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1516 	.rxq_info_get			= sfc_rx_queue_info_get,
1517 	.txq_info_get			= sfc_tx_queue_info_get,
1518 	.fw_version_get			= sfc_fw_version_get,
1519 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1520 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1521 };
1522 
1523 /**
1524  * Duplicate a string in potentially shared memory required for
1525  * multi-process support.
1526  *
1527  * strdup() allocates from process-local heap/memory.
1528  */
1529 static char *
1530 sfc_strdup(const char *str)
1531 {
1532 	size_t size;
1533 	char *copy;
1534 
1535 	if (str == NULL)
1536 		return NULL;
1537 
1538 	size = strlen(str) + 1;
1539 	copy = rte_malloc(__func__, size, 0);
1540 	if (copy != NULL)
1541 		rte_memcpy(copy, str, size);
1542 
1543 	return copy;
1544 }
1545 
1546 static int
1547 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1548 {
1549 	struct sfc_adapter *sa = dev->data->dev_private;
1550 	unsigned int avail_caps = 0;
1551 	const char *rx_name = NULL;
1552 	const char *tx_name = NULL;
1553 	int rc;
1554 
1555 	switch (sa->family) {
1556 	case EFX_FAMILY_HUNTINGTON:
1557 	case EFX_FAMILY_MEDFORD:
1558 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1559 		break;
1560 	default:
1561 		break;
1562 	}
1563 
1564 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1565 				sfc_kvarg_string_handler, &rx_name);
1566 	if (rc != 0)
1567 		goto fail_kvarg_rx_datapath;
1568 
1569 	if (rx_name != NULL) {
1570 		sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1571 		if (sa->dp_rx == NULL) {
1572 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1573 			rc = ENOENT;
1574 			goto fail_dp_rx;
1575 		}
1576 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) {
1577 			sfc_err(sa,
1578 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1579 				rx_name);
1580 			rc = EINVAL;
1581 			goto fail_dp_rx_caps;
1582 		}
1583 	} else {
1584 		sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1585 		if (sa->dp_rx == NULL) {
1586 			sfc_err(sa, "Rx datapath by caps %#x not found",
1587 				avail_caps);
1588 			rc = ENOENT;
1589 			goto fail_dp_rx;
1590 		}
1591 	}
1592 
1593 	sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name);
1594 	if (sa->dp_rx_name == NULL) {
1595 		rc = ENOMEM;
1596 		goto fail_dp_rx_name;
1597 	}
1598 
1599 	sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name);
1600 
1601 	dev->rx_pkt_burst = sa->dp_rx->pkt_burst;
1602 
1603 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1604 				sfc_kvarg_string_handler, &tx_name);
1605 	if (rc != 0)
1606 		goto fail_kvarg_tx_datapath;
1607 
1608 	if (tx_name != NULL) {
1609 		sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1610 		if (sa->dp_tx == NULL) {
1611 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1612 			rc = ENOENT;
1613 			goto fail_dp_tx;
1614 		}
1615 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) {
1616 			sfc_err(sa,
1617 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1618 				tx_name);
1619 			rc = EINVAL;
1620 			goto fail_dp_tx_caps;
1621 		}
1622 	} else {
1623 		sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1624 		if (sa->dp_tx == NULL) {
1625 			sfc_err(sa, "Tx datapath by caps %#x not found",
1626 				avail_caps);
1627 			rc = ENOENT;
1628 			goto fail_dp_tx;
1629 		}
1630 	}
1631 
1632 	sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name);
1633 	if (sa->dp_tx_name == NULL) {
1634 		rc = ENOMEM;
1635 		goto fail_dp_tx_name;
1636 	}
1637 
1638 	sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name);
1639 
1640 	dev->tx_pkt_burst = sa->dp_tx->pkt_burst;
1641 
1642 	dev->dev_ops = &sfc_eth_dev_ops;
1643 
1644 	return 0;
1645 
1646 fail_dp_tx_name:
1647 fail_dp_tx_caps:
1648 	sa->dp_tx = NULL;
1649 
1650 fail_dp_tx:
1651 fail_kvarg_tx_datapath:
1652 	rte_free(sa->dp_rx_name);
1653 	sa->dp_rx_name = NULL;
1654 
1655 fail_dp_rx_name:
1656 fail_dp_rx_caps:
1657 	sa->dp_rx = NULL;
1658 
1659 fail_dp_rx:
1660 fail_kvarg_rx_datapath:
1661 	return rc;
1662 }
1663 
1664 static void
1665 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1666 {
1667 	struct sfc_adapter *sa = dev->data->dev_private;
1668 
1669 	dev->dev_ops = NULL;
1670 	dev->rx_pkt_burst = NULL;
1671 	dev->tx_pkt_burst = NULL;
1672 
1673 	rte_free(sa->dp_tx_name);
1674 	sa->dp_tx_name = NULL;
1675 	sa->dp_tx = NULL;
1676 
1677 	rte_free(sa->dp_rx_name);
1678 	sa->dp_rx_name = NULL;
1679 	sa->dp_rx = NULL;
1680 }
1681 
1682 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1683 	.rxq_info_get			= sfc_rx_queue_info_get,
1684 	.txq_info_get			= sfc_tx_queue_info_get,
1685 };
1686 
1687 static int
1688 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev)
1689 {
1690 	/*
1691 	 * Device private data has really many process-local pointers.
1692 	 * Below code should be extremely careful to use data located
1693 	 * in shared memory only.
1694 	 */
1695 	struct sfc_adapter *sa = dev->data->dev_private;
1696 	const struct sfc_dp_rx *dp_rx;
1697 	const struct sfc_dp_tx *dp_tx;
1698 	int rc;
1699 
1700 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
1701 	if (dp_rx == NULL) {
1702 		sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name);
1703 		rc = ENOENT;
1704 		goto fail_dp_rx;
1705 	}
1706 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1707 		sfc_err(sa, "%s Rx datapath does not support multi-process",
1708 			sa->dp_tx_name);
1709 		rc = EINVAL;
1710 		goto fail_dp_rx_multi_process;
1711 	}
1712 
1713 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
1714 	if (dp_tx == NULL) {
1715 		sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name);
1716 		rc = ENOENT;
1717 		goto fail_dp_tx;
1718 	}
1719 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1720 		sfc_err(sa, "%s Tx datapath does not support multi-process",
1721 			sa->dp_tx_name);
1722 		rc = EINVAL;
1723 		goto fail_dp_tx_multi_process;
1724 	}
1725 
1726 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1727 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1728 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
1729 
1730 	return 0;
1731 
1732 fail_dp_tx_multi_process:
1733 fail_dp_tx:
1734 fail_dp_rx_multi_process:
1735 fail_dp_rx:
1736 	return rc;
1737 }
1738 
1739 static void
1740 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
1741 {
1742 	dev->dev_ops = NULL;
1743 	dev->tx_pkt_burst = NULL;
1744 	dev->rx_pkt_burst = NULL;
1745 }
1746 
1747 static void
1748 sfc_register_dp(void)
1749 {
1750 	/* Register once */
1751 	if (TAILQ_EMPTY(&sfc_dp_head)) {
1752 		/* Prefer EF10 datapath */
1753 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
1754 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
1755 
1756 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
1757 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
1758 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
1759 	}
1760 }
1761 
1762 static int
1763 sfc_eth_dev_init(struct rte_eth_dev *dev)
1764 {
1765 	struct sfc_adapter *sa = dev->data->dev_private;
1766 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1767 	int rc;
1768 	const efx_nic_cfg_t *encp;
1769 	const struct ether_addr *from;
1770 
1771 	sfc_register_dp();
1772 
1773 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1774 		return -sfc_eth_dev_secondary_set_ops(dev);
1775 
1776 	/* Required for logging */
1777 	sa->pci_addr = pci_dev->addr;
1778 	sa->port_id = dev->data->port_id;
1779 
1780 	sa->eth_dev = dev;
1781 
1782 	/* Copy PCI device info to the dev->data */
1783 	rte_eth_copy_pci_info(dev, pci_dev);
1784 
1785 	dev->data->dev_flags |= RTE_ETH_DEV_DETACHABLE;
1786 
1787 	rc = sfc_kvargs_parse(sa);
1788 	if (rc != 0)
1789 		goto fail_kvargs_parse;
1790 
1791 	rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT,
1792 				sfc_kvarg_bool_handler, &sa->debug_init);
1793 	if (rc != 0)
1794 		goto fail_kvarg_debug_init;
1795 
1796 	sfc_log_init(sa, "entry");
1797 
1798 	dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
1799 	if (dev->data->mac_addrs == NULL) {
1800 		rc = ENOMEM;
1801 		goto fail_mac_addrs;
1802 	}
1803 
1804 	sfc_adapter_lock_init(sa);
1805 	sfc_adapter_lock(sa);
1806 
1807 	sfc_log_init(sa, "probing");
1808 	rc = sfc_probe(sa);
1809 	if (rc != 0)
1810 		goto fail_probe;
1811 
1812 	sfc_log_init(sa, "set device ops");
1813 	rc = sfc_eth_dev_set_ops(dev);
1814 	if (rc != 0)
1815 		goto fail_set_ops;
1816 
1817 	sfc_log_init(sa, "attaching");
1818 	rc = sfc_attach(sa);
1819 	if (rc != 0)
1820 		goto fail_attach;
1821 
1822 	encp = efx_nic_cfg_get(sa->nic);
1823 
1824 	/*
1825 	 * The arguments are really reverse order in comparison to
1826 	 * Linux kernel. Copy from NIC config to Ethernet device data.
1827 	 */
1828 	from = (const struct ether_addr *)(encp->enc_mac_addr);
1829 	ether_addr_copy(from, &dev->data->mac_addrs[0]);
1830 
1831 	sfc_adapter_unlock(sa);
1832 
1833 	sfc_log_init(sa, "done");
1834 	return 0;
1835 
1836 fail_attach:
1837 	sfc_eth_dev_clear_ops(dev);
1838 
1839 fail_set_ops:
1840 	sfc_unprobe(sa);
1841 
1842 fail_probe:
1843 	sfc_adapter_unlock(sa);
1844 	sfc_adapter_lock_fini(sa);
1845 	rte_free(dev->data->mac_addrs);
1846 	dev->data->mac_addrs = NULL;
1847 
1848 fail_mac_addrs:
1849 fail_kvarg_debug_init:
1850 	sfc_kvargs_cleanup(sa);
1851 
1852 fail_kvargs_parse:
1853 	sfc_log_init(sa, "failed %d", rc);
1854 	SFC_ASSERT(rc > 0);
1855 	return -rc;
1856 }
1857 
1858 static int
1859 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
1860 {
1861 	struct sfc_adapter *sa;
1862 
1863 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1864 		sfc_eth_dev_secondary_clear_ops(dev);
1865 		return 0;
1866 	}
1867 
1868 	sa = dev->data->dev_private;
1869 	sfc_log_init(sa, "entry");
1870 
1871 	sfc_adapter_lock(sa);
1872 
1873 	sfc_eth_dev_clear_ops(dev);
1874 
1875 	sfc_detach(sa);
1876 	sfc_unprobe(sa);
1877 
1878 	rte_free(dev->data->mac_addrs);
1879 	dev->data->mac_addrs = NULL;
1880 
1881 	sfc_kvargs_cleanup(sa);
1882 
1883 	sfc_adapter_unlock(sa);
1884 	sfc_adapter_lock_fini(sa);
1885 
1886 	sfc_log_init(sa, "done");
1887 
1888 	/* Required for logging, so cleanup last */
1889 	sa->eth_dev = NULL;
1890 	return 0;
1891 }
1892 
1893 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
1894 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
1895 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
1896 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
1897 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
1898 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
1899 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
1900 	{ .vendor_id = 0 /* sentinel */ }
1901 };
1902 
1903 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1904 	struct rte_pci_device *pci_dev)
1905 {
1906 	return rte_eth_dev_pci_generic_probe(pci_dev,
1907 		sizeof(struct sfc_adapter), sfc_eth_dev_init);
1908 }
1909 
1910 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
1911 {
1912 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
1913 }
1914 
1915 static struct rte_pci_driver sfc_efx_pmd = {
1916 	.id_table = pci_id_sfc_efx_map,
1917 	.drv_flags =
1918 		RTE_PCI_DRV_INTR_LSC |
1919 		RTE_PCI_DRV_NEED_MAPPING,
1920 	.probe = sfc_eth_dev_pci_probe,
1921 	.remove = sfc_eth_dev_pci_remove,
1922 };
1923 
1924 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
1925 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
1926 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
1927 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
1928 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
1929 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
1930 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
1931 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> "
1932 	SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " "
1933 	SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL);
1934