xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 0607dadf98c71bdc96ea7b54eda26f1b667be1f6)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 
32 uint32_t sfc_logtype_driver;
33 
34 static struct sfc_dp_list sfc_dp_head =
35 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36 
37 
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
39 
40 
41 static int
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
43 {
44 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 	efx_nic_fw_info_t enfi;
46 	int ret;
47 	int rc;
48 
49 	/*
50 	 * Return value of the callback is likely supposed to be
51 	 * equal to or greater than 0, nevertheless, if an error
52 	 * occurs, it will be desirable to pass it to the caller
53 	 */
54 	if ((fw_version == NULL) || (fw_size == 0))
55 		return -EINVAL;
56 
57 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
58 	if (rc != 0)
59 		return -rc;
60 
61 	ret = snprintf(fw_version, fw_size,
62 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
65 	if (ret < 0)
66 		return ret;
67 
68 	if (enfi.enfi_dpcpu_fw_ids_valid) {
69 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
70 		int ret_extra;
71 
72 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 				     fw_size - dpcpu_fw_ids_offset,
74 				     " rx%" PRIx16 " tx%" PRIx16,
75 				     enfi.enfi_rx_dpcpu_fw_id,
76 				     enfi.enfi_tx_dpcpu_fw_id);
77 		if (ret_extra < 0)
78 			return ret_extra;
79 
80 		ret += ret_extra;
81 	}
82 
83 	if (fw_size < (size_t)(++ret))
84 		return ret;
85 	else
86 		return 0;
87 }
88 
89 static int
90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
91 {
92 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 	struct sfc_rss *rss = &sas->rss;
96 	uint64_t txq_offloads_def = 0;
97 
98 	sfc_log_init(sa, "entry");
99 
100 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
102 
103 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
104 
105 	dev_info->max_vfs = sa->sriov.num_vfs;
106 
107 	/* Autonegotiation may be disabled */
108 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
109 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
110 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
111 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
112 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
113 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
114 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
115 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
116 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
117 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
118 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
119 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
120 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
121 
122 	dev_info->max_rx_queues = sa->rxq_max;
123 	dev_info->max_tx_queues = sa->txq_max;
124 
125 	/* By default packets are dropped if no descriptors are available */
126 	dev_info->default_rxconf.rx_drop_en = 1;
127 
128 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
129 
130 	/*
131 	 * rx_offload_capa includes both device and queue offloads since
132 	 * the latter may be requested on a per device basis which makes
133 	 * sense when some offloads are needed to be set on all queues.
134 	 */
135 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
136 				    dev_info->rx_queue_offload_capa;
137 
138 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
139 
140 	/*
141 	 * tx_offload_capa includes both device and queue offloads since
142 	 * the latter may be requested on a per device basis which makes
143 	 * sense when some offloads are needed to be set on all queues.
144 	 */
145 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
146 				    dev_info->tx_queue_offload_capa;
147 
148 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
149 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
150 
151 	dev_info->default_txconf.offloads |= txq_offloads_def;
152 
153 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
154 		uint64_t rte_hf = 0;
155 		unsigned int i;
156 
157 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
158 			rte_hf |= rss->hf_map[i].rte;
159 
160 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
161 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
162 		dev_info->flow_type_rss_offloads = rte_hf;
163 	}
164 
165 	/* Initialize to hardware limits */
166 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
167 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
168 	/* The RXQ hardware requires that the descriptor count is a power
169 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
170 	 */
171 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
172 
173 	/* Initialize to hardware limits */
174 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
175 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
176 	/*
177 	 * The TXQ hardware requires that the descriptor count is a power
178 	 * of 2, but tx_desc_lim cannot properly describe that constraint
179 	 */
180 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
181 
182 	if (sap->dp_rx->get_dev_info != NULL)
183 		sap->dp_rx->get_dev_info(dev_info);
184 	if (sap->dp_tx->get_dev_info != NULL)
185 		sap->dp_tx->get_dev_info(dev_info);
186 
187 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
188 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
189 
190 	return 0;
191 }
192 
193 static const uint32_t *
194 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
195 {
196 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
197 
198 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
199 }
200 
201 static int
202 sfc_dev_configure(struct rte_eth_dev *dev)
203 {
204 	struct rte_eth_dev_data *dev_data = dev->data;
205 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
206 	int rc;
207 
208 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
209 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
210 
211 	sfc_adapter_lock(sa);
212 	switch (sa->state) {
213 	case SFC_ADAPTER_CONFIGURED:
214 		/* FALLTHROUGH */
215 	case SFC_ADAPTER_INITIALIZED:
216 		rc = sfc_configure(sa);
217 		break;
218 	default:
219 		sfc_err(sa, "unexpected adapter state %u to configure",
220 			sa->state);
221 		rc = EINVAL;
222 		break;
223 	}
224 	sfc_adapter_unlock(sa);
225 
226 	sfc_log_init(sa, "done %d", rc);
227 	SFC_ASSERT(rc >= 0);
228 	return -rc;
229 }
230 
231 static int
232 sfc_dev_start(struct rte_eth_dev *dev)
233 {
234 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
235 	int rc;
236 
237 	sfc_log_init(sa, "entry");
238 
239 	sfc_adapter_lock(sa);
240 	rc = sfc_start(sa);
241 	sfc_adapter_unlock(sa);
242 
243 	sfc_log_init(sa, "done %d", rc);
244 	SFC_ASSERT(rc >= 0);
245 	return -rc;
246 }
247 
248 static int
249 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
250 {
251 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
252 	struct rte_eth_link current_link;
253 	int ret;
254 
255 	sfc_log_init(sa, "entry");
256 
257 	if (sa->state != SFC_ADAPTER_STARTED) {
258 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
259 	} else if (wait_to_complete) {
260 		efx_link_mode_t link_mode;
261 
262 		if (efx_port_poll(sa->nic, &link_mode) != 0)
263 			link_mode = EFX_LINK_UNKNOWN;
264 		sfc_port_link_mode_to_info(link_mode, &current_link);
265 
266 	} else {
267 		sfc_ev_mgmt_qpoll(sa);
268 		rte_eth_linkstatus_get(dev, &current_link);
269 	}
270 
271 	ret = rte_eth_linkstatus_set(dev, &current_link);
272 	if (ret == 0)
273 		sfc_notice(sa, "Link status is %s",
274 			   current_link.link_status ? "UP" : "DOWN");
275 
276 	return ret;
277 }
278 
279 static void
280 sfc_dev_stop(struct rte_eth_dev *dev)
281 {
282 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
283 
284 	sfc_log_init(sa, "entry");
285 
286 	sfc_adapter_lock(sa);
287 	sfc_stop(sa);
288 	sfc_adapter_unlock(sa);
289 
290 	sfc_log_init(sa, "done");
291 }
292 
293 static int
294 sfc_dev_set_link_up(struct rte_eth_dev *dev)
295 {
296 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
297 	int rc;
298 
299 	sfc_log_init(sa, "entry");
300 
301 	sfc_adapter_lock(sa);
302 	rc = sfc_start(sa);
303 	sfc_adapter_unlock(sa);
304 
305 	SFC_ASSERT(rc >= 0);
306 	return -rc;
307 }
308 
309 static int
310 sfc_dev_set_link_down(struct rte_eth_dev *dev)
311 {
312 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
313 
314 	sfc_log_init(sa, "entry");
315 
316 	sfc_adapter_lock(sa);
317 	sfc_stop(sa);
318 	sfc_adapter_unlock(sa);
319 
320 	return 0;
321 }
322 
323 static void
324 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
325 {
326 	free(dev->process_private);
327 	rte_eth_dev_release_port(dev);
328 }
329 
330 static int
331 sfc_dev_close(struct rte_eth_dev *dev)
332 {
333 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
334 
335 	sfc_log_init(sa, "entry");
336 
337 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
338 		sfc_eth_dev_secondary_clear_ops(dev);
339 		return 0;
340 	}
341 
342 	sfc_adapter_lock(sa);
343 	switch (sa->state) {
344 	case SFC_ADAPTER_STARTED:
345 		sfc_stop(sa);
346 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
347 		/* FALLTHROUGH */
348 	case SFC_ADAPTER_CONFIGURED:
349 		sfc_close(sa);
350 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
351 		/* FALLTHROUGH */
352 	case SFC_ADAPTER_INITIALIZED:
353 		break;
354 	default:
355 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
356 		break;
357 	}
358 
359 	/*
360 	 * Cleanup all resources.
361 	 * Rollback primary process sfc_eth_dev_init() below.
362 	 */
363 
364 	sfc_eth_dev_clear_ops(dev);
365 
366 	sfc_detach(sa);
367 	sfc_unprobe(sa);
368 
369 	sfc_kvargs_cleanup(sa);
370 
371 	sfc_adapter_unlock(sa);
372 	sfc_adapter_lock_fini(sa);
373 
374 	sfc_log_init(sa, "done");
375 
376 	/* Required for logging, so cleanup last */
377 	sa->eth_dev = NULL;
378 
379 	free(sa);
380 
381 	return 0;
382 }
383 
384 static int
385 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
386 		   boolean_t enabled)
387 {
388 	struct sfc_port *port;
389 	boolean_t *toggle;
390 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
391 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
392 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
393 	int rc = 0;
394 
395 	sfc_adapter_lock(sa);
396 
397 	port = &sa->port;
398 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
399 
400 	if (*toggle != enabled) {
401 		*toggle = enabled;
402 
403 		if (sfc_sa2shared(sa)->isolated) {
404 			sfc_warn(sa, "isolated mode is active on the port");
405 			sfc_warn(sa, "the change is to be applied on the next "
406 				     "start provided that isolated mode is "
407 				     "disabled prior the next start");
408 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
409 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
410 			*toggle = !(enabled);
411 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
412 				 ((enabled) ? "enable" : "disable"), desc, rc);
413 
414 			/*
415 			 * For promiscuous and all-multicast filters a
416 			 * permission failure should be reported as an
417 			 * unsupported filter.
418 			 */
419 			if (rc == EPERM)
420 				rc = ENOTSUP;
421 		}
422 	}
423 
424 	sfc_adapter_unlock(sa);
425 	return rc;
426 }
427 
428 static int
429 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
430 {
431 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
432 
433 	SFC_ASSERT(rc >= 0);
434 	return -rc;
435 }
436 
437 static int
438 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
439 {
440 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
441 
442 	SFC_ASSERT(rc >= 0);
443 	return -rc;
444 }
445 
446 static int
447 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
448 {
449 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
450 
451 	SFC_ASSERT(rc >= 0);
452 	return -rc;
453 }
454 
455 static int
456 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
457 {
458 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
459 
460 	SFC_ASSERT(rc >= 0);
461 	return -rc;
462 }
463 
464 static int
465 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
466 		   uint16_t nb_rx_desc, unsigned int socket_id,
467 		   const struct rte_eth_rxconf *rx_conf,
468 		   struct rte_mempool *mb_pool)
469 {
470 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
471 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
472 	int rc;
473 
474 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
475 		     rx_queue_id, nb_rx_desc, socket_id);
476 
477 	sfc_adapter_lock(sa);
478 
479 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
480 			  rx_conf, mb_pool);
481 	if (rc != 0)
482 		goto fail_rx_qinit;
483 
484 	dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
485 
486 	sfc_adapter_unlock(sa);
487 
488 	return 0;
489 
490 fail_rx_qinit:
491 	sfc_adapter_unlock(sa);
492 	SFC_ASSERT(rc > 0);
493 	return -rc;
494 }
495 
496 static void
497 sfc_rx_queue_release(void *queue)
498 {
499 	struct sfc_dp_rxq *dp_rxq = queue;
500 	struct sfc_rxq *rxq;
501 	struct sfc_adapter *sa;
502 	unsigned int sw_index;
503 
504 	if (dp_rxq == NULL)
505 		return;
506 
507 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
508 	sa = rxq->evq->sa;
509 	sfc_adapter_lock(sa);
510 
511 	sw_index = dp_rxq->dpq.queue_id;
512 
513 	sfc_log_init(sa, "RxQ=%u", sw_index);
514 
515 	sfc_rx_qfini(sa, sw_index);
516 
517 	sfc_adapter_unlock(sa);
518 }
519 
520 static int
521 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
522 		   uint16_t nb_tx_desc, unsigned int socket_id,
523 		   const struct rte_eth_txconf *tx_conf)
524 {
525 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
526 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
527 	int rc;
528 
529 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
530 		     tx_queue_id, nb_tx_desc, socket_id);
531 
532 	sfc_adapter_lock(sa);
533 
534 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
535 	if (rc != 0)
536 		goto fail_tx_qinit;
537 
538 	dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
539 
540 	sfc_adapter_unlock(sa);
541 	return 0;
542 
543 fail_tx_qinit:
544 	sfc_adapter_unlock(sa);
545 	SFC_ASSERT(rc > 0);
546 	return -rc;
547 }
548 
549 static void
550 sfc_tx_queue_release(void *queue)
551 {
552 	struct sfc_dp_txq *dp_txq = queue;
553 	struct sfc_txq *txq;
554 	unsigned int sw_index;
555 	struct sfc_adapter *sa;
556 
557 	if (dp_txq == NULL)
558 		return;
559 
560 	txq = sfc_txq_by_dp_txq(dp_txq);
561 	sw_index = dp_txq->dpq.queue_id;
562 
563 	SFC_ASSERT(txq->evq != NULL);
564 	sa = txq->evq->sa;
565 
566 	sfc_log_init(sa, "TxQ = %u", sw_index);
567 
568 	sfc_adapter_lock(sa);
569 
570 	sfc_tx_qfini(sa, sw_index);
571 
572 	sfc_adapter_unlock(sa);
573 }
574 
575 /*
576  * Some statistics are computed as A - B where A and B each increase
577  * monotonically with some hardware counter(s) and the counters are read
578  * asynchronously.
579  *
580  * If packet X is counted in A, but not counted in B yet, computed value is
581  * greater than real.
582  *
583  * If packet X is not counted in A at the moment of reading the counter,
584  * but counted in B at the moment of reading the counter, computed value
585  * is less than real.
586  *
587  * However, counter which grows backward is worse evil than slightly wrong
588  * value. So, let's try to guarantee that it never happens except may be
589  * the case when the MAC stats are zeroed as a result of a NIC reset.
590  */
591 static void
592 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
593 {
594 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
595 		*stat = newval;
596 }
597 
598 static int
599 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
600 {
601 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
602 	struct sfc_port *port = &sa->port;
603 	uint64_t *mac_stats;
604 	int ret;
605 
606 	rte_spinlock_lock(&port->mac_stats_lock);
607 
608 	ret = sfc_port_update_mac_stats(sa);
609 	if (ret != 0)
610 		goto unlock;
611 
612 	mac_stats = port->mac_stats_buf;
613 
614 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
615 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
616 		stats->ipackets =
617 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
618 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
619 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
620 		stats->opackets =
621 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
622 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
623 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
624 		stats->ibytes =
625 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
626 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
627 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
628 		stats->obytes =
629 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
630 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
631 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
632 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
633 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
634 	} else {
635 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
636 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
637 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
638 		/*
639 		 * Take into account stats which are whenever supported
640 		 * on EF10. If some stat is not supported by current
641 		 * firmware variant or HW revision, it is guaranteed
642 		 * to be zero in mac_stats.
643 		 */
644 		stats->imissed =
645 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
646 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
647 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
648 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
649 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
650 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
651 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
652 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
653 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
654 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
655 		stats->ierrors =
656 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
657 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
658 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
659 		/* no oerrors counters supported on EF10 */
660 
661 		/* Exclude missed, errors and pauses from Rx packets */
662 		sfc_update_diff_stat(&port->ipackets,
663 			mac_stats[EFX_MAC_RX_PKTS] -
664 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
665 			stats->imissed - stats->ierrors);
666 		stats->ipackets = port->ipackets;
667 	}
668 
669 unlock:
670 	rte_spinlock_unlock(&port->mac_stats_lock);
671 	SFC_ASSERT(ret >= 0);
672 	return -ret;
673 }
674 
675 static int
676 sfc_stats_reset(struct rte_eth_dev *dev)
677 {
678 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
679 	struct sfc_port *port = &sa->port;
680 	int rc;
681 
682 	if (sa->state != SFC_ADAPTER_STARTED) {
683 		/*
684 		 * The operation cannot be done if port is not started; it
685 		 * will be scheduled to be done during the next port start
686 		 */
687 		port->mac_stats_reset_pending = B_TRUE;
688 		return 0;
689 	}
690 
691 	rc = sfc_port_reset_mac_stats(sa);
692 	if (rc != 0)
693 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
694 
695 	SFC_ASSERT(rc >= 0);
696 	return -rc;
697 }
698 
699 static int
700 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
701 	       unsigned int xstats_count)
702 {
703 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
704 	struct sfc_port *port = &sa->port;
705 	uint64_t *mac_stats;
706 	int rc;
707 	unsigned int i;
708 	int nstats = 0;
709 
710 	rte_spinlock_lock(&port->mac_stats_lock);
711 
712 	rc = sfc_port_update_mac_stats(sa);
713 	if (rc != 0) {
714 		SFC_ASSERT(rc > 0);
715 		nstats = -rc;
716 		goto unlock;
717 	}
718 
719 	mac_stats = port->mac_stats_buf;
720 
721 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
722 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
723 			if (xstats != NULL && nstats < (int)xstats_count) {
724 				xstats[nstats].id = nstats;
725 				xstats[nstats].value = mac_stats[i];
726 			}
727 			nstats++;
728 		}
729 	}
730 
731 unlock:
732 	rte_spinlock_unlock(&port->mac_stats_lock);
733 
734 	return nstats;
735 }
736 
737 static int
738 sfc_xstats_get_names(struct rte_eth_dev *dev,
739 		     struct rte_eth_xstat_name *xstats_names,
740 		     unsigned int xstats_count)
741 {
742 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
743 	struct sfc_port *port = &sa->port;
744 	unsigned int i;
745 	unsigned int nstats = 0;
746 
747 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
748 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
749 			if (xstats_names != NULL && nstats < xstats_count)
750 				strlcpy(xstats_names[nstats].name,
751 					efx_mac_stat_name(sa->nic, i),
752 					sizeof(xstats_names[0].name));
753 			nstats++;
754 		}
755 	}
756 
757 	return nstats;
758 }
759 
760 static int
761 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
762 		     uint64_t *values, unsigned int n)
763 {
764 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
765 	struct sfc_port *port = &sa->port;
766 	uint64_t *mac_stats;
767 	unsigned int nb_supported = 0;
768 	unsigned int nb_written = 0;
769 	unsigned int i;
770 	int ret;
771 	int rc;
772 
773 	if (unlikely(values == NULL) ||
774 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
775 		return port->mac_stats_nb_supported;
776 
777 	rte_spinlock_lock(&port->mac_stats_lock);
778 
779 	rc = sfc_port_update_mac_stats(sa);
780 	if (rc != 0) {
781 		SFC_ASSERT(rc > 0);
782 		ret = -rc;
783 		goto unlock;
784 	}
785 
786 	mac_stats = port->mac_stats_buf;
787 
788 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
789 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
790 			continue;
791 
792 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
793 			values[nb_written++] = mac_stats[i];
794 
795 		++nb_supported;
796 	}
797 
798 	ret = nb_written;
799 
800 unlock:
801 	rte_spinlock_unlock(&port->mac_stats_lock);
802 
803 	return ret;
804 }
805 
806 static int
807 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
808 			   struct rte_eth_xstat_name *xstats_names,
809 			   const uint64_t *ids, unsigned int size)
810 {
811 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
812 	struct sfc_port *port = &sa->port;
813 	unsigned int nb_supported = 0;
814 	unsigned int nb_written = 0;
815 	unsigned int i;
816 
817 	if (unlikely(xstats_names == NULL) ||
818 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
819 		return port->mac_stats_nb_supported;
820 
821 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
822 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
823 			continue;
824 
825 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
826 			char *name = xstats_names[nb_written++].name;
827 
828 			strlcpy(name, efx_mac_stat_name(sa->nic, i),
829 				sizeof(xstats_names[0].name));
830 		}
831 
832 		++nb_supported;
833 	}
834 
835 	return nb_written;
836 }
837 
838 static int
839 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
840 {
841 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
842 	unsigned int wanted_fc, link_fc;
843 
844 	memset(fc_conf, 0, sizeof(*fc_conf));
845 
846 	sfc_adapter_lock(sa);
847 
848 	if (sa->state == SFC_ADAPTER_STARTED)
849 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
850 	else
851 		link_fc = sa->port.flow_ctrl;
852 
853 	switch (link_fc) {
854 	case 0:
855 		fc_conf->mode = RTE_FC_NONE;
856 		break;
857 	case EFX_FCNTL_RESPOND:
858 		fc_conf->mode = RTE_FC_RX_PAUSE;
859 		break;
860 	case EFX_FCNTL_GENERATE:
861 		fc_conf->mode = RTE_FC_TX_PAUSE;
862 		break;
863 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
864 		fc_conf->mode = RTE_FC_FULL;
865 		break;
866 	default:
867 		sfc_err(sa, "%s: unexpected flow control value %#x",
868 			__func__, link_fc);
869 	}
870 
871 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
872 
873 	sfc_adapter_unlock(sa);
874 
875 	return 0;
876 }
877 
878 static int
879 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
880 {
881 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
882 	struct sfc_port *port = &sa->port;
883 	unsigned int fcntl;
884 	int rc;
885 
886 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
887 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
888 	    fc_conf->mac_ctrl_frame_fwd != 0) {
889 		sfc_err(sa, "unsupported flow control settings specified");
890 		rc = EINVAL;
891 		goto fail_inval;
892 	}
893 
894 	switch (fc_conf->mode) {
895 	case RTE_FC_NONE:
896 		fcntl = 0;
897 		break;
898 	case RTE_FC_RX_PAUSE:
899 		fcntl = EFX_FCNTL_RESPOND;
900 		break;
901 	case RTE_FC_TX_PAUSE:
902 		fcntl = EFX_FCNTL_GENERATE;
903 		break;
904 	case RTE_FC_FULL:
905 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
906 		break;
907 	default:
908 		rc = EINVAL;
909 		goto fail_inval;
910 	}
911 
912 	sfc_adapter_lock(sa);
913 
914 	if (sa->state == SFC_ADAPTER_STARTED) {
915 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
916 		if (rc != 0)
917 			goto fail_mac_fcntl_set;
918 	}
919 
920 	port->flow_ctrl = fcntl;
921 	port->flow_ctrl_autoneg = fc_conf->autoneg;
922 
923 	sfc_adapter_unlock(sa);
924 
925 	return 0;
926 
927 fail_mac_fcntl_set:
928 	sfc_adapter_unlock(sa);
929 fail_inval:
930 	SFC_ASSERT(rc > 0);
931 	return -rc;
932 }
933 
934 static int
935 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
936 {
937 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
938 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
939 	boolean_t scatter_enabled;
940 	const char *error;
941 	unsigned int i;
942 
943 	for (i = 0; i < sas->rxq_count; i++) {
944 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
945 			continue;
946 
947 		scatter_enabled = (sas->rxq_info[i].type_flags &
948 				   EFX_RXQ_FLAG_SCATTER);
949 
950 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
951 					  encp->enc_rx_prefix_size,
952 					  scatter_enabled,
953 					  encp->enc_rx_scatter_max, &error)) {
954 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
955 				error);
956 			return EINVAL;
957 		}
958 	}
959 
960 	return 0;
961 }
962 
963 static int
964 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
965 {
966 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
967 	size_t pdu = EFX_MAC_PDU(mtu);
968 	size_t old_pdu;
969 	int rc;
970 
971 	sfc_log_init(sa, "mtu=%u", mtu);
972 
973 	rc = EINVAL;
974 	if (pdu < EFX_MAC_PDU_MIN) {
975 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
976 			(unsigned int)mtu, (unsigned int)pdu,
977 			EFX_MAC_PDU_MIN);
978 		goto fail_inval;
979 	}
980 	if (pdu > EFX_MAC_PDU_MAX) {
981 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
982 			(unsigned int)mtu, (unsigned int)pdu,
983 			(unsigned int)EFX_MAC_PDU_MAX);
984 		goto fail_inval;
985 	}
986 
987 	sfc_adapter_lock(sa);
988 
989 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
990 	if (rc != 0)
991 		goto fail_check_scatter;
992 
993 	if (pdu != sa->port.pdu) {
994 		if (sa->state == SFC_ADAPTER_STARTED) {
995 			sfc_stop(sa);
996 
997 			old_pdu = sa->port.pdu;
998 			sa->port.pdu = pdu;
999 			rc = sfc_start(sa);
1000 			if (rc != 0)
1001 				goto fail_start;
1002 		} else {
1003 			sa->port.pdu = pdu;
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * The driver does not use it, but other PMDs update jumbo frame
1009 	 * flag and max_rx_pkt_len when MTU is set.
1010 	 */
1011 	if (mtu > RTE_ETHER_MAX_LEN) {
1012 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1013 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1014 	}
1015 
1016 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1017 
1018 	sfc_adapter_unlock(sa);
1019 
1020 	sfc_log_init(sa, "done");
1021 	return 0;
1022 
1023 fail_start:
1024 	sa->port.pdu = old_pdu;
1025 	if (sfc_start(sa) != 0)
1026 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1027 			"PDU max size - port is stopped",
1028 			(unsigned int)pdu, (unsigned int)old_pdu);
1029 
1030 fail_check_scatter:
1031 	sfc_adapter_unlock(sa);
1032 
1033 fail_inval:
1034 	sfc_log_init(sa, "failed %d", rc);
1035 	SFC_ASSERT(rc > 0);
1036 	return -rc;
1037 }
1038 static int
1039 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1040 {
1041 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1042 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1043 	struct sfc_port *port = &sa->port;
1044 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1045 	int rc = 0;
1046 
1047 	sfc_adapter_lock(sa);
1048 
1049 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1050 		goto unlock;
1051 
1052 	/*
1053 	 * Copy the address to the device private data so that
1054 	 * it could be recalled in the case of adapter restart.
1055 	 */
1056 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1057 
1058 	/*
1059 	 * Neither of the two following checks can return
1060 	 * an error. The new MAC address is preserved in
1061 	 * the device private data and can be activated
1062 	 * on the next port start if the user prevents
1063 	 * isolated mode from being enabled.
1064 	 */
1065 	if (sfc_sa2shared(sa)->isolated) {
1066 		sfc_warn(sa, "isolated mode is active on the port");
1067 		sfc_warn(sa, "will not set MAC address");
1068 		goto unlock;
1069 	}
1070 
1071 	if (sa->state != SFC_ADAPTER_STARTED) {
1072 		sfc_notice(sa, "the port is not started");
1073 		sfc_notice(sa, "the new MAC address will be set on port start");
1074 
1075 		goto unlock;
1076 	}
1077 
1078 	if (encp->enc_allow_set_mac_with_installed_filters) {
1079 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1080 		if (rc != 0) {
1081 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1082 			goto unlock;
1083 		}
1084 
1085 		/*
1086 		 * Changing the MAC address by means of MCDI request
1087 		 * has no effect on received traffic, therefore
1088 		 * we also need to update unicast filters
1089 		 */
1090 		rc = sfc_set_rx_mode_unchecked(sa);
1091 		if (rc != 0) {
1092 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1093 			/* Rollback the old address */
1094 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1095 			(void)sfc_set_rx_mode_unchecked(sa);
1096 		}
1097 	} else {
1098 		sfc_warn(sa, "cannot set MAC address with filters installed");
1099 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1100 		sfc_warn(sa, "(some traffic may be dropped)");
1101 
1102 		/*
1103 		 * Since setting MAC address with filters installed is not
1104 		 * allowed on the adapter, the new MAC address will be set
1105 		 * by means of adapter restart. sfc_start() shall retrieve
1106 		 * the new address from the device private data and set it.
1107 		 */
1108 		sfc_stop(sa);
1109 		rc = sfc_start(sa);
1110 		if (rc != 0)
1111 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1112 	}
1113 
1114 unlock:
1115 	if (rc != 0)
1116 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1117 
1118 	sfc_adapter_unlock(sa);
1119 
1120 	SFC_ASSERT(rc >= 0);
1121 	return -rc;
1122 }
1123 
1124 
1125 static int
1126 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1127 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1128 {
1129 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1130 	struct sfc_port *port = &sa->port;
1131 	uint8_t *mc_addrs = port->mcast_addrs;
1132 	int rc;
1133 	unsigned int i;
1134 
1135 	if (sfc_sa2shared(sa)->isolated) {
1136 		sfc_err(sa, "isolated mode is active on the port");
1137 		sfc_err(sa, "will not set multicast address list");
1138 		return -ENOTSUP;
1139 	}
1140 
1141 	if (mc_addrs == NULL)
1142 		return -ENOBUFS;
1143 
1144 	if (nb_mc_addr > port->max_mcast_addrs) {
1145 		sfc_err(sa, "too many multicast addresses: %u > %u",
1146 			 nb_mc_addr, port->max_mcast_addrs);
1147 		return -EINVAL;
1148 	}
1149 
1150 	for (i = 0; i < nb_mc_addr; ++i) {
1151 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1152 				 EFX_MAC_ADDR_LEN);
1153 		mc_addrs += EFX_MAC_ADDR_LEN;
1154 	}
1155 
1156 	port->nb_mcast_addrs = nb_mc_addr;
1157 
1158 	if (sa->state != SFC_ADAPTER_STARTED)
1159 		return 0;
1160 
1161 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1162 					port->nb_mcast_addrs);
1163 	if (rc != 0)
1164 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1165 
1166 	SFC_ASSERT(rc >= 0);
1167 	return -rc;
1168 }
1169 
1170 /*
1171  * The function is used by the secondary process as well. It must not
1172  * use any process-local pointers from the adapter data.
1173  */
1174 static void
1175 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1176 		      struct rte_eth_rxq_info *qinfo)
1177 {
1178 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1179 	struct sfc_rxq_info *rxq_info;
1180 
1181 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1182 
1183 	rxq_info = &sas->rxq_info[rx_queue_id];
1184 
1185 	qinfo->mp = rxq_info->refill_mb_pool;
1186 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1187 	qinfo->conf.rx_drop_en = 1;
1188 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1189 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1190 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1191 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1192 		qinfo->scattered_rx = 1;
1193 	}
1194 	qinfo->nb_desc = rxq_info->entries;
1195 }
1196 
1197 /*
1198  * The function is used by the secondary process as well. It must not
1199  * use any process-local pointers from the adapter data.
1200  */
1201 static void
1202 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1203 		      struct rte_eth_txq_info *qinfo)
1204 {
1205 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1206 	struct sfc_txq_info *txq_info;
1207 
1208 	SFC_ASSERT(tx_queue_id < sas->txq_count);
1209 
1210 	txq_info = &sas->txq_info[tx_queue_id];
1211 
1212 	memset(qinfo, 0, sizeof(*qinfo));
1213 
1214 	qinfo->conf.offloads = txq_info->offloads;
1215 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1216 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1217 	qinfo->nb_desc = txq_info->entries;
1218 }
1219 
1220 /*
1221  * The function is used by the secondary process as well. It must not
1222  * use any process-local pointers from the adapter data.
1223  */
1224 static uint32_t
1225 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1226 {
1227 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1228 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1229 	struct sfc_rxq_info *rxq_info;
1230 
1231 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1232 	rxq_info = &sas->rxq_info[rx_queue_id];
1233 
1234 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1235 		return 0;
1236 
1237 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1238 }
1239 
1240 /*
1241  * The function is used by the secondary process as well. It must not
1242  * use any process-local pointers from the adapter data.
1243  */
1244 static int
1245 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1246 {
1247 	struct sfc_dp_rxq *dp_rxq = queue;
1248 	const struct sfc_dp_rx *dp_rx;
1249 
1250 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1251 
1252 	return offset < dp_rx->qdesc_npending(dp_rxq);
1253 }
1254 
1255 /*
1256  * The function is used by the secondary process as well. It must not
1257  * use any process-local pointers from the adapter data.
1258  */
1259 static int
1260 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1261 {
1262 	struct sfc_dp_rxq *dp_rxq = queue;
1263 	const struct sfc_dp_rx *dp_rx;
1264 
1265 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1266 
1267 	return dp_rx->qdesc_status(dp_rxq, offset);
1268 }
1269 
1270 /*
1271  * The function is used by the secondary process as well. It must not
1272  * use any process-local pointers from the adapter data.
1273  */
1274 static int
1275 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1276 {
1277 	struct sfc_dp_txq *dp_txq = queue;
1278 	const struct sfc_dp_tx *dp_tx;
1279 
1280 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1281 
1282 	return dp_tx->qdesc_status(dp_txq, offset);
1283 }
1284 
1285 static int
1286 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1287 {
1288 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1289 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1290 	int rc;
1291 
1292 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1293 
1294 	sfc_adapter_lock(sa);
1295 
1296 	rc = EINVAL;
1297 	if (sa->state != SFC_ADAPTER_STARTED)
1298 		goto fail_not_started;
1299 
1300 	if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1301 		goto fail_not_setup;
1302 
1303 	rc = sfc_rx_qstart(sa, rx_queue_id);
1304 	if (rc != 0)
1305 		goto fail_rx_qstart;
1306 
1307 	sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1308 
1309 	sfc_adapter_unlock(sa);
1310 
1311 	return 0;
1312 
1313 fail_rx_qstart:
1314 fail_not_setup:
1315 fail_not_started:
1316 	sfc_adapter_unlock(sa);
1317 	SFC_ASSERT(rc > 0);
1318 	return -rc;
1319 }
1320 
1321 static int
1322 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1323 {
1324 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1325 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1326 
1327 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1328 
1329 	sfc_adapter_lock(sa);
1330 	sfc_rx_qstop(sa, rx_queue_id);
1331 
1332 	sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1333 
1334 	sfc_adapter_unlock(sa);
1335 
1336 	return 0;
1337 }
1338 
1339 static int
1340 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1341 {
1342 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1343 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1344 	int rc;
1345 
1346 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1347 
1348 	sfc_adapter_lock(sa);
1349 
1350 	rc = EINVAL;
1351 	if (sa->state != SFC_ADAPTER_STARTED)
1352 		goto fail_not_started;
1353 
1354 	if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1355 		goto fail_not_setup;
1356 
1357 	rc = sfc_tx_qstart(sa, tx_queue_id);
1358 	if (rc != 0)
1359 		goto fail_tx_qstart;
1360 
1361 	sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1362 
1363 	sfc_adapter_unlock(sa);
1364 	return 0;
1365 
1366 fail_tx_qstart:
1367 
1368 fail_not_setup:
1369 fail_not_started:
1370 	sfc_adapter_unlock(sa);
1371 	SFC_ASSERT(rc > 0);
1372 	return -rc;
1373 }
1374 
1375 static int
1376 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1377 {
1378 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1379 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1380 
1381 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1382 
1383 	sfc_adapter_lock(sa);
1384 
1385 	sfc_tx_qstop(sa, tx_queue_id);
1386 
1387 	sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1388 
1389 	sfc_adapter_unlock(sa);
1390 	return 0;
1391 }
1392 
1393 static efx_tunnel_protocol_t
1394 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1395 {
1396 	switch (rte_type) {
1397 	case RTE_TUNNEL_TYPE_VXLAN:
1398 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1399 	case RTE_TUNNEL_TYPE_GENEVE:
1400 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1401 	default:
1402 		return EFX_TUNNEL_NPROTOS;
1403 	}
1404 }
1405 
1406 enum sfc_udp_tunnel_op_e {
1407 	SFC_UDP_TUNNEL_ADD_PORT,
1408 	SFC_UDP_TUNNEL_DEL_PORT,
1409 };
1410 
1411 static int
1412 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1413 		      struct rte_eth_udp_tunnel *tunnel_udp,
1414 		      enum sfc_udp_tunnel_op_e op)
1415 {
1416 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1417 	efx_tunnel_protocol_t tunnel_proto;
1418 	int rc;
1419 
1420 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1421 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1422 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1423 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1424 
1425 	tunnel_proto =
1426 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1427 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1428 		rc = ENOTSUP;
1429 		goto fail_bad_proto;
1430 	}
1431 
1432 	sfc_adapter_lock(sa);
1433 
1434 	switch (op) {
1435 	case SFC_UDP_TUNNEL_ADD_PORT:
1436 		rc = efx_tunnel_config_udp_add(sa->nic,
1437 					       tunnel_udp->udp_port,
1438 					       tunnel_proto);
1439 		break;
1440 	case SFC_UDP_TUNNEL_DEL_PORT:
1441 		rc = efx_tunnel_config_udp_remove(sa->nic,
1442 						  tunnel_udp->udp_port,
1443 						  tunnel_proto);
1444 		break;
1445 	default:
1446 		rc = EINVAL;
1447 		goto fail_bad_op;
1448 	}
1449 
1450 	if (rc != 0)
1451 		goto fail_op;
1452 
1453 	if (sa->state == SFC_ADAPTER_STARTED) {
1454 		rc = efx_tunnel_reconfigure(sa->nic);
1455 		if (rc == EAGAIN) {
1456 			/*
1457 			 * Configuration is accepted by FW and MC reboot
1458 			 * is initiated to apply the changes. MC reboot
1459 			 * will be handled in a usual way (MC reboot
1460 			 * event on management event queue and adapter
1461 			 * restart).
1462 			 */
1463 			rc = 0;
1464 		} else if (rc != 0) {
1465 			goto fail_reconfigure;
1466 		}
1467 	}
1468 
1469 	sfc_adapter_unlock(sa);
1470 	return 0;
1471 
1472 fail_reconfigure:
1473 	/* Remove/restore entry since the change makes the trouble */
1474 	switch (op) {
1475 	case SFC_UDP_TUNNEL_ADD_PORT:
1476 		(void)efx_tunnel_config_udp_remove(sa->nic,
1477 						   tunnel_udp->udp_port,
1478 						   tunnel_proto);
1479 		break;
1480 	case SFC_UDP_TUNNEL_DEL_PORT:
1481 		(void)efx_tunnel_config_udp_add(sa->nic,
1482 						tunnel_udp->udp_port,
1483 						tunnel_proto);
1484 		break;
1485 	}
1486 
1487 fail_op:
1488 fail_bad_op:
1489 	sfc_adapter_unlock(sa);
1490 
1491 fail_bad_proto:
1492 	SFC_ASSERT(rc > 0);
1493 	return -rc;
1494 }
1495 
1496 static int
1497 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1498 			    struct rte_eth_udp_tunnel *tunnel_udp)
1499 {
1500 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1501 }
1502 
1503 static int
1504 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1505 			    struct rte_eth_udp_tunnel *tunnel_udp)
1506 {
1507 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1508 }
1509 
1510 /*
1511  * The function is used by the secondary process as well. It must not
1512  * use any process-local pointers from the adapter data.
1513  */
1514 static int
1515 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1516 			  struct rte_eth_rss_conf *rss_conf)
1517 {
1518 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1519 	struct sfc_rss *rss = &sas->rss;
1520 
1521 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1522 		return -ENOTSUP;
1523 
1524 	/*
1525 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1526 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1527 	 * flags which corresponds to the active EFX configuration stored
1528 	 * locally in 'sfc_adapter' and kept up-to-date
1529 	 */
1530 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1531 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1532 	if (rss_conf->rss_key != NULL)
1533 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1534 
1535 	return 0;
1536 }
1537 
1538 static int
1539 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1540 			struct rte_eth_rss_conf *rss_conf)
1541 {
1542 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1543 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1544 	unsigned int efx_hash_types;
1545 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1546 	unsigned int n_contexts;
1547 	unsigned int mode_i = 0;
1548 	unsigned int key_i = 0;
1549 	unsigned int i = 0;
1550 	int rc = 0;
1551 
1552 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1553 
1554 	if (sfc_sa2shared(sa)->isolated)
1555 		return -ENOTSUP;
1556 
1557 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1558 		sfc_err(sa, "RSS is not available");
1559 		return -ENOTSUP;
1560 	}
1561 
1562 	if (rss->channels == 0) {
1563 		sfc_err(sa, "RSS is not configured");
1564 		return -EINVAL;
1565 	}
1566 
1567 	if ((rss_conf->rss_key != NULL) &&
1568 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1569 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1570 			sizeof(rss->key));
1571 		return -EINVAL;
1572 	}
1573 
1574 	sfc_adapter_lock(sa);
1575 
1576 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1577 	if (rc != 0)
1578 		goto fail_rx_hf_rte_to_efx;
1579 
1580 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1581 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1582 					   rss->hash_alg, efx_hash_types,
1583 					   B_TRUE);
1584 		if (rc != 0)
1585 			goto fail_scale_mode_set;
1586 	}
1587 
1588 	if (rss_conf->rss_key != NULL) {
1589 		if (sa->state == SFC_ADAPTER_STARTED) {
1590 			for (key_i = 0; key_i < n_contexts; key_i++) {
1591 				rc = efx_rx_scale_key_set(sa->nic,
1592 							  contexts[key_i],
1593 							  rss_conf->rss_key,
1594 							  sizeof(rss->key));
1595 				if (rc != 0)
1596 					goto fail_scale_key_set;
1597 			}
1598 		}
1599 
1600 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1601 	}
1602 
1603 	rss->hash_types = efx_hash_types;
1604 
1605 	sfc_adapter_unlock(sa);
1606 
1607 	return 0;
1608 
1609 fail_scale_key_set:
1610 	for (i = 0; i < key_i; i++) {
1611 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1612 					 sizeof(rss->key)) != 0)
1613 			sfc_err(sa, "failed to restore RSS key");
1614 	}
1615 
1616 fail_scale_mode_set:
1617 	for (i = 0; i < mode_i; i++) {
1618 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1619 					  EFX_RX_HASHALG_TOEPLITZ,
1620 					  rss->hash_types, B_TRUE) != 0)
1621 			sfc_err(sa, "failed to restore RSS mode");
1622 	}
1623 
1624 fail_rx_hf_rte_to_efx:
1625 	sfc_adapter_unlock(sa);
1626 	return -rc;
1627 }
1628 
1629 /*
1630  * The function is used by the secondary process as well. It must not
1631  * use any process-local pointers from the adapter data.
1632  */
1633 static int
1634 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1635 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1636 		       uint16_t reta_size)
1637 {
1638 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1639 	struct sfc_rss *rss = &sas->rss;
1640 	int entry;
1641 
1642 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1643 		return -ENOTSUP;
1644 
1645 	if (rss->channels == 0)
1646 		return -EINVAL;
1647 
1648 	if (reta_size != EFX_RSS_TBL_SIZE)
1649 		return -EINVAL;
1650 
1651 	for (entry = 0; entry < reta_size; entry++) {
1652 		int grp = entry / RTE_RETA_GROUP_SIZE;
1653 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1654 
1655 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1656 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 static int
1663 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1664 			struct rte_eth_rss_reta_entry64 *reta_conf,
1665 			uint16_t reta_size)
1666 {
1667 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1668 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1669 	unsigned int *rss_tbl_new;
1670 	uint16_t entry;
1671 	int rc = 0;
1672 
1673 
1674 	if (sfc_sa2shared(sa)->isolated)
1675 		return -ENOTSUP;
1676 
1677 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1678 		sfc_err(sa, "RSS is not available");
1679 		return -ENOTSUP;
1680 	}
1681 
1682 	if (rss->channels == 0) {
1683 		sfc_err(sa, "RSS is not configured");
1684 		return -EINVAL;
1685 	}
1686 
1687 	if (reta_size != EFX_RSS_TBL_SIZE) {
1688 		sfc_err(sa, "RETA size is wrong (should be %u)",
1689 			EFX_RSS_TBL_SIZE);
1690 		return -EINVAL;
1691 	}
1692 
1693 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1694 	if (rss_tbl_new == NULL)
1695 		return -ENOMEM;
1696 
1697 	sfc_adapter_lock(sa);
1698 
1699 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1700 
1701 	for (entry = 0; entry < reta_size; entry++) {
1702 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1703 		struct rte_eth_rss_reta_entry64 *grp;
1704 
1705 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1706 
1707 		if (grp->mask & (1ull << grp_idx)) {
1708 			if (grp->reta[grp_idx] >= rss->channels) {
1709 				rc = EINVAL;
1710 				goto bad_reta_entry;
1711 			}
1712 			rss_tbl_new[entry] = grp->reta[grp_idx];
1713 		}
1714 	}
1715 
1716 	if (sa->state == SFC_ADAPTER_STARTED) {
1717 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1718 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1719 		if (rc != 0)
1720 			goto fail_scale_tbl_set;
1721 	}
1722 
1723 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1724 
1725 fail_scale_tbl_set:
1726 bad_reta_entry:
1727 	sfc_adapter_unlock(sa);
1728 
1729 	rte_free(rss_tbl_new);
1730 
1731 	SFC_ASSERT(rc >= 0);
1732 	return -rc;
1733 }
1734 
1735 static int
1736 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1737 		    enum rte_filter_op filter_op,
1738 		    void *arg)
1739 {
1740 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1741 	int rc = ENOTSUP;
1742 
1743 	sfc_log_init(sa, "entry");
1744 
1745 	switch (filter_type) {
1746 	case RTE_ETH_FILTER_NONE:
1747 		sfc_err(sa, "Global filters configuration not supported");
1748 		break;
1749 	case RTE_ETH_FILTER_MACVLAN:
1750 		sfc_err(sa, "MACVLAN filters not supported");
1751 		break;
1752 	case RTE_ETH_FILTER_ETHERTYPE:
1753 		sfc_err(sa, "EtherType filters not supported");
1754 		break;
1755 	case RTE_ETH_FILTER_FLEXIBLE:
1756 		sfc_err(sa, "Flexible filters not supported");
1757 		break;
1758 	case RTE_ETH_FILTER_SYN:
1759 		sfc_err(sa, "SYN filters not supported");
1760 		break;
1761 	case RTE_ETH_FILTER_NTUPLE:
1762 		sfc_err(sa, "NTUPLE filters not supported");
1763 		break;
1764 	case RTE_ETH_FILTER_TUNNEL:
1765 		sfc_err(sa, "Tunnel filters not supported");
1766 		break;
1767 	case RTE_ETH_FILTER_FDIR:
1768 		sfc_err(sa, "Flow Director filters not supported");
1769 		break;
1770 	case RTE_ETH_FILTER_HASH:
1771 		sfc_err(sa, "Hash filters not supported");
1772 		break;
1773 	case RTE_ETH_FILTER_GENERIC:
1774 		if (filter_op != RTE_ETH_FILTER_GET) {
1775 			rc = EINVAL;
1776 		} else {
1777 			*(const void **)arg = &sfc_flow_ops;
1778 			rc = 0;
1779 		}
1780 		break;
1781 	default:
1782 		sfc_err(sa, "Unknown filter type %u", filter_type);
1783 		break;
1784 	}
1785 
1786 	sfc_log_init(sa, "exit: %d", -rc);
1787 	SFC_ASSERT(rc >= 0);
1788 	return -rc;
1789 }
1790 
1791 static int
1792 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1793 {
1794 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1795 
1796 	/*
1797 	 * If Rx datapath does not provide callback to check mempool,
1798 	 * all pools are supported.
1799 	 */
1800 	if (sap->dp_rx->pool_ops_supported == NULL)
1801 		return 1;
1802 
1803 	return sap->dp_rx->pool_ops_supported(pool);
1804 }
1805 
1806 static int
1807 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1808 {
1809 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1810 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1811 	struct sfc_rxq_info *rxq_info;
1812 
1813 	SFC_ASSERT(queue_id < sas->rxq_count);
1814 	rxq_info = &sas->rxq_info[queue_id];
1815 
1816 	return sap->dp_rx->intr_enable(rxq_info->dp);
1817 }
1818 
1819 static int
1820 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1821 {
1822 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1823 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1824 	struct sfc_rxq_info *rxq_info;
1825 
1826 	SFC_ASSERT(queue_id < sas->rxq_count);
1827 	rxq_info = &sas->rxq_info[queue_id];
1828 
1829 	return sap->dp_rx->intr_disable(rxq_info->dp);
1830 }
1831 
1832 static const struct eth_dev_ops sfc_eth_dev_ops = {
1833 	.dev_configure			= sfc_dev_configure,
1834 	.dev_start			= sfc_dev_start,
1835 	.dev_stop			= sfc_dev_stop,
1836 	.dev_set_link_up		= sfc_dev_set_link_up,
1837 	.dev_set_link_down		= sfc_dev_set_link_down,
1838 	.dev_close			= sfc_dev_close,
1839 	.promiscuous_enable		= sfc_dev_promisc_enable,
1840 	.promiscuous_disable		= sfc_dev_promisc_disable,
1841 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1842 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1843 	.link_update			= sfc_dev_link_update,
1844 	.stats_get			= sfc_stats_get,
1845 	.stats_reset			= sfc_stats_reset,
1846 	.xstats_get			= sfc_xstats_get,
1847 	.xstats_reset			= sfc_stats_reset,
1848 	.xstats_get_names		= sfc_xstats_get_names,
1849 	.dev_infos_get			= sfc_dev_infos_get,
1850 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1851 	.mtu_set			= sfc_dev_set_mtu,
1852 	.rx_queue_start			= sfc_rx_queue_start,
1853 	.rx_queue_stop			= sfc_rx_queue_stop,
1854 	.tx_queue_start			= sfc_tx_queue_start,
1855 	.tx_queue_stop			= sfc_tx_queue_stop,
1856 	.rx_queue_setup			= sfc_rx_queue_setup,
1857 	.rx_queue_release		= sfc_rx_queue_release,
1858 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1859 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1860 	.tx_queue_setup			= sfc_tx_queue_setup,
1861 	.tx_queue_release		= sfc_tx_queue_release,
1862 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1863 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1864 	.mac_addr_set			= sfc_mac_addr_set,
1865 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1866 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1867 	.reta_update			= sfc_dev_rss_reta_update,
1868 	.reta_query			= sfc_dev_rss_reta_query,
1869 	.rss_hash_update		= sfc_dev_rss_hash_update,
1870 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1871 	.filter_ctrl			= sfc_dev_filter_ctrl,
1872 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1873 	.rxq_info_get			= sfc_rx_queue_info_get,
1874 	.txq_info_get			= sfc_tx_queue_info_get,
1875 	.fw_version_get			= sfc_fw_version_get,
1876 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1877 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1878 	.pool_ops_supported		= sfc_pool_ops_supported,
1879 };
1880 
1881 /**
1882  * Duplicate a string in potentially shared memory required for
1883  * multi-process support.
1884  *
1885  * strdup() allocates from process-local heap/memory.
1886  */
1887 static char *
1888 sfc_strdup(const char *str)
1889 {
1890 	size_t size;
1891 	char *copy;
1892 
1893 	if (str == NULL)
1894 		return NULL;
1895 
1896 	size = strlen(str) + 1;
1897 	copy = rte_malloc(__func__, size, 0);
1898 	if (copy != NULL)
1899 		rte_memcpy(copy, str, size);
1900 
1901 	return copy;
1902 }
1903 
1904 static int
1905 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1906 {
1907 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1908 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1909 	const struct sfc_dp_rx *dp_rx;
1910 	const struct sfc_dp_tx *dp_tx;
1911 	const efx_nic_cfg_t *encp;
1912 	unsigned int avail_caps = 0;
1913 	const char *rx_name = NULL;
1914 	const char *tx_name = NULL;
1915 	int rc;
1916 
1917 	switch (sa->family) {
1918 	case EFX_FAMILY_HUNTINGTON:
1919 	case EFX_FAMILY_MEDFORD:
1920 	case EFX_FAMILY_MEDFORD2:
1921 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1922 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
1923 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
1924 		break;
1925 	case EFX_FAMILY_RIVERHEAD:
1926 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
1927 		break;
1928 	default:
1929 		break;
1930 	}
1931 
1932 	encp = efx_nic_cfg_get(sa->nic);
1933 	if (encp->enc_rx_es_super_buffer_supported)
1934 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1935 
1936 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1937 				sfc_kvarg_string_handler, &rx_name);
1938 	if (rc != 0)
1939 		goto fail_kvarg_rx_datapath;
1940 
1941 	if (rx_name != NULL) {
1942 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1943 		if (dp_rx == NULL) {
1944 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1945 			rc = ENOENT;
1946 			goto fail_dp_rx;
1947 		}
1948 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1949 			sfc_err(sa,
1950 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1951 				rx_name);
1952 			rc = EINVAL;
1953 			goto fail_dp_rx_caps;
1954 		}
1955 	} else {
1956 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1957 		if (dp_rx == NULL) {
1958 			sfc_err(sa, "Rx datapath by caps %#x not found",
1959 				avail_caps);
1960 			rc = ENOENT;
1961 			goto fail_dp_rx;
1962 		}
1963 	}
1964 
1965 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1966 	if (sas->dp_rx_name == NULL) {
1967 		rc = ENOMEM;
1968 		goto fail_dp_rx_name;
1969 	}
1970 
1971 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1972 
1973 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1974 				sfc_kvarg_string_handler, &tx_name);
1975 	if (rc != 0)
1976 		goto fail_kvarg_tx_datapath;
1977 
1978 	if (tx_name != NULL) {
1979 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1980 		if (dp_tx == NULL) {
1981 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1982 			rc = ENOENT;
1983 			goto fail_dp_tx;
1984 		}
1985 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1986 			sfc_err(sa,
1987 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1988 				tx_name);
1989 			rc = EINVAL;
1990 			goto fail_dp_tx_caps;
1991 		}
1992 	} else {
1993 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1994 		if (dp_tx == NULL) {
1995 			sfc_err(sa, "Tx datapath by caps %#x not found",
1996 				avail_caps);
1997 			rc = ENOENT;
1998 			goto fail_dp_tx;
1999 		}
2000 	}
2001 
2002 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2003 	if (sas->dp_tx_name == NULL) {
2004 		rc = ENOMEM;
2005 		goto fail_dp_tx_name;
2006 	}
2007 
2008 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2009 
2010 	sa->priv.dp_rx = dp_rx;
2011 	sa->priv.dp_tx = dp_tx;
2012 
2013 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2014 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2015 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2016 
2017 	dev->rx_queue_count = sfc_rx_queue_count;
2018 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2019 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2020 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2021 	dev->dev_ops = &sfc_eth_dev_ops;
2022 
2023 	return 0;
2024 
2025 fail_dp_tx_name:
2026 fail_dp_tx_caps:
2027 fail_dp_tx:
2028 fail_kvarg_tx_datapath:
2029 	rte_free(sas->dp_rx_name);
2030 	sas->dp_rx_name = NULL;
2031 
2032 fail_dp_rx_name:
2033 fail_dp_rx_caps:
2034 fail_dp_rx:
2035 fail_kvarg_rx_datapath:
2036 	return rc;
2037 }
2038 
2039 static void
2040 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2041 {
2042 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2043 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2044 
2045 	dev->dev_ops = NULL;
2046 	dev->tx_pkt_prepare = NULL;
2047 	dev->rx_pkt_burst = NULL;
2048 	dev->tx_pkt_burst = NULL;
2049 
2050 	rte_free(sas->dp_tx_name);
2051 	sas->dp_tx_name = NULL;
2052 	sa->priv.dp_tx = NULL;
2053 
2054 	rte_free(sas->dp_rx_name);
2055 	sas->dp_rx_name = NULL;
2056 	sa->priv.dp_rx = NULL;
2057 }
2058 
2059 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2060 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2061 	.reta_query			= sfc_dev_rss_reta_query,
2062 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2063 	.rxq_info_get			= sfc_rx_queue_info_get,
2064 	.txq_info_get			= sfc_tx_queue_info_get,
2065 };
2066 
2067 static int
2068 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2069 {
2070 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2071 	struct sfc_adapter_priv *sap;
2072 	const struct sfc_dp_rx *dp_rx;
2073 	const struct sfc_dp_tx *dp_tx;
2074 	int rc;
2075 
2076 	/*
2077 	 * Allocate process private data from heap, since it should not
2078 	 * be located in shared memory allocated using rte_malloc() API.
2079 	 */
2080 	sap = calloc(1, sizeof(*sap));
2081 	if (sap == NULL) {
2082 		rc = ENOMEM;
2083 		goto fail_alloc_priv;
2084 	}
2085 
2086 	sap->logtype_main = logtype_main;
2087 
2088 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2089 	if (dp_rx == NULL) {
2090 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2091 			"cannot find %s Rx datapath", sas->dp_rx_name);
2092 		rc = ENOENT;
2093 		goto fail_dp_rx;
2094 	}
2095 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2096 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2097 			"%s Rx datapath does not support multi-process",
2098 			sas->dp_rx_name);
2099 		rc = EINVAL;
2100 		goto fail_dp_rx_multi_process;
2101 	}
2102 
2103 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2104 	if (dp_tx == NULL) {
2105 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2106 			"cannot find %s Tx datapath", sas->dp_tx_name);
2107 		rc = ENOENT;
2108 		goto fail_dp_tx;
2109 	}
2110 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2111 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2112 			"%s Tx datapath does not support multi-process",
2113 			sas->dp_tx_name);
2114 		rc = EINVAL;
2115 		goto fail_dp_tx_multi_process;
2116 	}
2117 
2118 	sap->dp_rx = dp_rx;
2119 	sap->dp_tx = dp_tx;
2120 
2121 	dev->process_private = sap;
2122 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2123 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2124 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2125 	dev->rx_queue_count = sfc_rx_queue_count;
2126 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2127 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2128 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2129 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2130 
2131 	return 0;
2132 
2133 fail_dp_tx_multi_process:
2134 fail_dp_tx:
2135 fail_dp_rx_multi_process:
2136 fail_dp_rx:
2137 	free(sap);
2138 
2139 fail_alloc_priv:
2140 	return rc;
2141 }
2142 
2143 static void
2144 sfc_register_dp(void)
2145 {
2146 	/* Register once */
2147 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2148 		/* Prefer EF10 datapath */
2149 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2150 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2151 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2152 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2153 
2154 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2155 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2156 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2157 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2158 	}
2159 }
2160 
2161 static int
2162 sfc_eth_dev_init(struct rte_eth_dev *dev)
2163 {
2164 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2165 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2166 	uint32_t logtype_main;
2167 	struct sfc_adapter *sa;
2168 	int rc;
2169 	const efx_nic_cfg_t *encp;
2170 	const struct rte_ether_addr *from;
2171 	int ret;
2172 
2173 	sfc_register_dp();
2174 
2175 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2176 					    SFC_LOGTYPE_MAIN_STR,
2177 					    RTE_LOG_NOTICE);
2178 
2179 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2180 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2181 
2182 	/* Required for logging */
2183 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2184 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2185 			pci_dev->addr.domain, pci_dev->addr.bus,
2186 			pci_dev->addr.devid, pci_dev->addr.function,
2187 			dev->data->port_id);
2188 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2189 		SFC_GENERIC_LOG(ERR,
2190 			"reserved log prefix is too short for " PCI_PRI_FMT,
2191 			pci_dev->addr.domain, pci_dev->addr.bus,
2192 			pci_dev->addr.devid, pci_dev->addr.function);
2193 		return -EINVAL;
2194 	}
2195 	sas->pci_addr = pci_dev->addr;
2196 	sas->port_id = dev->data->port_id;
2197 
2198 	/*
2199 	 * Allocate process private data from heap, since it should not
2200 	 * be located in shared memory allocated using rte_malloc() API.
2201 	 */
2202 	sa = calloc(1, sizeof(*sa));
2203 	if (sa == NULL) {
2204 		rc = ENOMEM;
2205 		goto fail_alloc_sa;
2206 	}
2207 
2208 	dev->process_private = sa;
2209 
2210 	/* Required for logging */
2211 	sa->priv.shared = sas;
2212 	sa->priv.logtype_main = logtype_main;
2213 
2214 	sa->eth_dev = dev;
2215 
2216 	/* Copy PCI device info to the dev->data */
2217 	rte_eth_copy_pci_info(dev, pci_dev);
2218 
2219 	rc = sfc_kvargs_parse(sa);
2220 	if (rc != 0)
2221 		goto fail_kvargs_parse;
2222 
2223 	sfc_log_init(sa, "entry");
2224 
2225 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2226 	if (dev->data->mac_addrs == NULL) {
2227 		rc = ENOMEM;
2228 		goto fail_mac_addrs;
2229 	}
2230 
2231 	sfc_adapter_lock_init(sa);
2232 	sfc_adapter_lock(sa);
2233 
2234 	sfc_log_init(sa, "probing");
2235 	rc = sfc_probe(sa);
2236 	if (rc != 0)
2237 		goto fail_probe;
2238 
2239 	sfc_log_init(sa, "set device ops");
2240 	rc = sfc_eth_dev_set_ops(dev);
2241 	if (rc != 0)
2242 		goto fail_set_ops;
2243 
2244 	sfc_log_init(sa, "attaching");
2245 	rc = sfc_attach(sa);
2246 	if (rc != 0)
2247 		goto fail_attach;
2248 
2249 	encp = efx_nic_cfg_get(sa->nic);
2250 
2251 	/*
2252 	 * The arguments are really reverse order in comparison to
2253 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2254 	 */
2255 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2256 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2257 
2258 	sfc_adapter_unlock(sa);
2259 
2260 	sfc_log_init(sa, "done");
2261 	return 0;
2262 
2263 fail_attach:
2264 	sfc_eth_dev_clear_ops(dev);
2265 
2266 fail_set_ops:
2267 	sfc_unprobe(sa);
2268 
2269 fail_probe:
2270 	sfc_adapter_unlock(sa);
2271 	sfc_adapter_lock_fini(sa);
2272 	rte_free(dev->data->mac_addrs);
2273 	dev->data->mac_addrs = NULL;
2274 
2275 fail_mac_addrs:
2276 	sfc_kvargs_cleanup(sa);
2277 
2278 fail_kvargs_parse:
2279 	sfc_log_init(sa, "failed %d", rc);
2280 	dev->process_private = NULL;
2281 	free(sa);
2282 
2283 fail_alloc_sa:
2284 	SFC_ASSERT(rc > 0);
2285 	return -rc;
2286 }
2287 
2288 static int
2289 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2290 {
2291 	sfc_dev_close(dev);
2292 
2293 	return 0;
2294 }
2295 
2296 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2297 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2298 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2299 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2300 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2301 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2302 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2303 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2304 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2305 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2306 	{ .vendor_id = 0 /* sentinel */ }
2307 };
2308 
2309 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2310 	struct rte_pci_device *pci_dev)
2311 {
2312 	return rte_eth_dev_pci_generic_probe(pci_dev,
2313 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2314 }
2315 
2316 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2317 {
2318 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2319 }
2320 
2321 static struct rte_pci_driver sfc_efx_pmd = {
2322 	.id_table = pci_id_sfc_efx_map,
2323 	.drv_flags =
2324 		RTE_PCI_DRV_INTR_LSC |
2325 		RTE_PCI_DRV_NEED_MAPPING,
2326 	.probe = sfc_eth_dev_pci_probe,
2327 	.remove = sfc_eth_dev_pci_remove,
2328 };
2329 
2330 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2331 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2332 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2333 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2334 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2335 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2336 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2337 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2338 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2339 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2340 
2341 RTE_INIT(sfc_driver_register_logtype)
2342 {
2343 	int ret;
2344 
2345 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2346 						   RTE_LOG_NOTICE);
2347 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2348 }
2349