1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2020 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 /* 50 * Return value of the callback is likely supposed to be 51 * equal to or greater than 0, nevertheless, if an error 52 * occurs, it will be desirable to pass it to the caller 53 */ 54 if ((fw_version == NULL) || (fw_size == 0)) 55 return -EINVAL; 56 57 rc = efx_nic_get_fw_version(sa->nic, &enfi); 58 if (rc != 0) 59 return -rc; 60 61 ret = snprintf(fw_version, fw_size, 62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 65 if (ret < 0) 66 return ret; 67 68 if (enfi.enfi_dpcpu_fw_ids_valid) { 69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 70 int ret_extra; 71 72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 73 fw_size - dpcpu_fw_ids_offset, 74 " rx%" PRIx16 " tx%" PRIx16, 75 enfi.enfi_rx_dpcpu_fw_id, 76 enfi.enfi_tx_dpcpu_fw_id); 77 if (ret_extra < 0) 78 return ret_extra; 79 80 ret += ret_extra; 81 } 82 83 if (fw_size < (size_t)(++ret)) 84 return ret; 85 else 86 return 0; 87 } 88 89 static int 90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 91 { 92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 95 struct sfc_rss *rss = &sas->rss; 96 uint64_t txq_offloads_def = 0; 97 98 sfc_log_init(sa, "entry"); 99 100 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 101 dev_info->max_mtu = EFX_MAC_SDU_MAX; 102 103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 104 105 dev_info->max_vfs = sa->sriov.num_vfs; 106 107 /* Autonegotiation may be disabled */ 108 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 116 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 118 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 119 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 120 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 121 122 dev_info->max_rx_queues = sa->rxq_max; 123 dev_info->max_tx_queues = sa->txq_max; 124 125 /* By default packets are dropped if no descriptors are available */ 126 dev_info->default_rxconf.rx_drop_en = 1; 127 128 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 129 130 /* 131 * rx_offload_capa includes both device and queue offloads since 132 * the latter may be requested on a per device basis which makes 133 * sense when some offloads are needed to be set on all queues. 134 */ 135 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 136 dev_info->rx_queue_offload_capa; 137 138 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 139 140 /* 141 * tx_offload_capa includes both device and queue offloads since 142 * the latter may be requested on a per device basis which makes 143 * sense when some offloads are needed to be set on all queues. 144 */ 145 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 146 dev_info->tx_queue_offload_capa; 147 148 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 149 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 150 151 dev_info->default_txconf.offloads |= txq_offloads_def; 152 153 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 154 uint64_t rte_hf = 0; 155 unsigned int i; 156 157 for (i = 0; i < rss->hf_map_nb_entries; ++i) 158 rte_hf |= rss->hf_map[i].rte; 159 160 dev_info->reta_size = EFX_RSS_TBL_SIZE; 161 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 162 dev_info->flow_type_rss_offloads = rte_hf; 163 } 164 165 /* Initialize to hardware limits */ 166 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 167 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 168 /* The RXQ hardware requires that the descriptor count is a power 169 * of 2, but rx_desc_lim cannot properly describe that constraint. 170 */ 171 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 172 173 /* Initialize to hardware limits */ 174 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 175 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 176 /* 177 * The TXQ hardware requires that the descriptor count is a power 178 * of 2, but tx_desc_lim cannot properly describe that constraint 179 */ 180 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 181 182 if (sap->dp_rx->get_dev_info != NULL) 183 sap->dp_rx->get_dev_info(dev_info); 184 if (sap->dp_tx->get_dev_info != NULL) 185 sap->dp_tx->get_dev_info(dev_info); 186 187 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 188 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 189 190 return 0; 191 } 192 193 static const uint32_t * 194 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 195 { 196 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 197 198 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 199 } 200 201 static int 202 sfc_dev_configure(struct rte_eth_dev *dev) 203 { 204 struct rte_eth_dev_data *dev_data = dev->data; 205 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 206 int rc; 207 208 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 209 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 210 211 sfc_adapter_lock(sa); 212 switch (sa->state) { 213 case SFC_ADAPTER_CONFIGURED: 214 /* FALLTHROUGH */ 215 case SFC_ADAPTER_INITIALIZED: 216 rc = sfc_configure(sa); 217 break; 218 default: 219 sfc_err(sa, "unexpected adapter state %u to configure", 220 sa->state); 221 rc = EINVAL; 222 break; 223 } 224 sfc_adapter_unlock(sa); 225 226 sfc_log_init(sa, "done %d", rc); 227 SFC_ASSERT(rc >= 0); 228 return -rc; 229 } 230 231 static int 232 sfc_dev_start(struct rte_eth_dev *dev) 233 { 234 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 235 int rc; 236 237 sfc_log_init(sa, "entry"); 238 239 sfc_adapter_lock(sa); 240 rc = sfc_start(sa); 241 sfc_adapter_unlock(sa); 242 243 sfc_log_init(sa, "done %d", rc); 244 SFC_ASSERT(rc >= 0); 245 return -rc; 246 } 247 248 static int 249 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 250 { 251 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 252 struct rte_eth_link current_link; 253 int ret; 254 255 sfc_log_init(sa, "entry"); 256 257 if (sa->state != SFC_ADAPTER_STARTED) { 258 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 259 } else if (wait_to_complete) { 260 efx_link_mode_t link_mode; 261 262 if (efx_port_poll(sa->nic, &link_mode) != 0) 263 link_mode = EFX_LINK_UNKNOWN; 264 sfc_port_link_mode_to_info(link_mode, ¤t_link); 265 266 } else { 267 sfc_ev_mgmt_qpoll(sa); 268 rte_eth_linkstatus_get(dev, ¤t_link); 269 } 270 271 ret = rte_eth_linkstatus_set(dev, ¤t_link); 272 if (ret == 0) 273 sfc_notice(sa, "Link status is %s", 274 current_link.link_status ? "UP" : "DOWN"); 275 276 return ret; 277 } 278 279 static void 280 sfc_dev_stop(struct rte_eth_dev *dev) 281 { 282 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 283 284 sfc_log_init(sa, "entry"); 285 286 sfc_adapter_lock(sa); 287 sfc_stop(sa); 288 sfc_adapter_unlock(sa); 289 290 sfc_log_init(sa, "done"); 291 } 292 293 static int 294 sfc_dev_set_link_up(struct rte_eth_dev *dev) 295 { 296 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 297 int rc; 298 299 sfc_log_init(sa, "entry"); 300 301 sfc_adapter_lock(sa); 302 rc = sfc_start(sa); 303 sfc_adapter_unlock(sa); 304 305 SFC_ASSERT(rc >= 0); 306 return -rc; 307 } 308 309 static int 310 sfc_dev_set_link_down(struct rte_eth_dev *dev) 311 { 312 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 313 314 sfc_log_init(sa, "entry"); 315 316 sfc_adapter_lock(sa); 317 sfc_stop(sa); 318 sfc_adapter_unlock(sa); 319 320 return 0; 321 } 322 323 static void 324 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 325 { 326 free(dev->process_private); 327 rte_eth_dev_release_port(dev); 328 } 329 330 static int 331 sfc_dev_close(struct rte_eth_dev *dev) 332 { 333 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 334 335 sfc_log_init(sa, "entry"); 336 337 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 338 sfc_eth_dev_secondary_clear_ops(dev); 339 return 0; 340 } 341 342 sfc_adapter_lock(sa); 343 switch (sa->state) { 344 case SFC_ADAPTER_STARTED: 345 sfc_stop(sa); 346 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 347 /* FALLTHROUGH */ 348 case SFC_ADAPTER_CONFIGURED: 349 sfc_close(sa); 350 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 351 /* FALLTHROUGH */ 352 case SFC_ADAPTER_INITIALIZED: 353 break; 354 default: 355 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 356 break; 357 } 358 359 /* 360 * Cleanup all resources. 361 * Rollback primary process sfc_eth_dev_init() below. 362 */ 363 364 sfc_eth_dev_clear_ops(dev); 365 366 sfc_detach(sa); 367 sfc_unprobe(sa); 368 369 sfc_kvargs_cleanup(sa); 370 371 sfc_adapter_unlock(sa); 372 sfc_adapter_lock_fini(sa); 373 374 sfc_log_init(sa, "done"); 375 376 /* Required for logging, so cleanup last */ 377 sa->eth_dev = NULL; 378 379 free(sa); 380 381 return 0; 382 } 383 384 static int 385 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 386 boolean_t enabled) 387 { 388 struct sfc_port *port; 389 boolean_t *toggle; 390 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 391 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 392 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 393 int rc = 0; 394 395 sfc_adapter_lock(sa); 396 397 port = &sa->port; 398 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 399 400 if (*toggle != enabled) { 401 *toggle = enabled; 402 403 if (sfc_sa2shared(sa)->isolated) { 404 sfc_warn(sa, "isolated mode is active on the port"); 405 sfc_warn(sa, "the change is to be applied on the next " 406 "start provided that isolated mode is " 407 "disabled prior the next start"); 408 } else if ((sa->state == SFC_ADAPTER_STARTED) && 409 ((rc = sfc_set_rx_mode(sa)) != 0)) { 410 *toggle = !(enabled); 411 sfc_warn(sa, "Failed to %s %s mode, rc = %d", 412 ((enabled) ? "enable" : "disable"), desc, rc); 413 414 /* 415 * For promiscuous and all-multicast filters a 416 * permission failure should be reported as an 417 * unsupported filter. 418 */ 419 if (rc == EPERM) 420 rc = ENOTSUP; 421 } 422 } 423 424 sfc_adapter_unlock(sa); 425 return rc; 426 } 427 428 static int 429 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 430 { 431 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 432 433 SFC_ASSERT(rc >= 0); 434 return -rc; 435 } 436 437 static int 438 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 439 { 440 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 441 442 SFC_ASSERT(rc >= 0); 443 return -rc; 444 } 445 446 static int 447 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 448 { 449 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 450 451 SFC_ASSERT(rc >= 0); 452 return -rc; 453 } 454 455 static int 456 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 457 { 458 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 459 460 SFC_ASSERT(rc >= 0); 461 return -rc; 462 } 463 464 static int 465 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 466 uint16_t nb_rx_desc, unsigned int socket_id, 467 const struct rte_eth_rxconf *rx_conf, 468 struct rte_mempool *mb_pool) 469 { 470 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 471 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 472 int rc; 473 474 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 475 rx_queue_id, nb_rx_desc, socket_id); 476 477 sfc_adapter_lock(sa); 478 479 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 480 rx_conf, mb_pool); 481 if (rc != 0) 482 goto fail_rx_qinit; 483 484 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 485 486 sfc_adapter_unlock(sa); 487 488 return 0; 489 490 fail_rx_qinit: 491 sfc_adapter_unlock(sa); 492 SFC_ASSERT(rc > 0); 493 return -rc; 494 } 495 496 static void 497 sfc_rx_queue_release(void *queue) 498 { 499 struct sfc_dp_rxq *dp_rxq = queue; 500 struct sfc_rxq *rxq; 501 struct sfc_adapter *sa; 502 unsigned int sw_index; 503 504 if (dp_rxq == NULL) 505 return; 506 507 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 508 sa = rxq->evq->sa; 509 sfc_adapter_lock(sa); 510 511 sw_index = dp_rxq->dpq.queue_id; 512 513 sfc_log_init(sa, "RxQ=%u", sw_index); 514 515 sfc_rx_qfini(sa, sw_index); 516 517 sfc_adapter_unlock(sa); 518 } 519 520 static int 521 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 522 uint16_t nb_tx_desc, unsigned int socket_id, 523 const struct rte_eth_txconf *tx_conf) 524 { 525 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 526 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 527 int rc; 528 529 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 530 tx_queue_id, nb_tx_desc, socket_id); 531 532 sfc_adapter_lock(sa); 533 534 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 535 if (rc != 0) 536 goto fail_tx_qinit; 537 538 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 539 540 sfc_adapter_unlock(sa); 541 return 0; 542 543 fail_tx_qinit: 544 sfc_adapter_unlock(sa); 545 SFC_ASSERT(rc > 0); 546 return -rc; 547 } 548 549 static void 550 sfc_tx_queue_release(void *queue) 551 { 552 struct sfc_dp_txq *dp_txq = queue; 553 struct sfc_txq *txq; 554 unsigned int sw_index; 555 struct sfc_adapter *sa; 556 557 if (dp_txq == NULL) 558 return; 559 560 txq = sfc_txq_by_dp_txq(dp_txq); 561 sw_index = dp_txq->dpq.queue_id; 562 563 SFC_ASSERT(txq->evq != NULL); 564 sa = txq->evq->sa; 565 566 sfc_log_init(sa, "TxQ = %u", sw_index); 567 568 sfc_adapter_lock(sa); 569 570 sfc_tx_qfini(sa, sw_index); 571 572 sfc_adapter_unlock(sa); 573 } 574 575 /* 576 * Some statistics are computed as A - B where A and B each increase 577 * monotonically with some hardware counter(s) and the counters are read 578 * asynchronously. 579 * 580 * If packet X is counted in A, but not counted in B yet, computed value is 581 * greater than real. 582 * 583 * If packet X is not counted in A at the moment of reading the counter, 584 * but counted in B at the moment of reading the counter, computed value 585 * is less than real. 586 * 587 * However, counter which grows backward is worse evil than slightly wrong 588 * value. So, let's try to guarantee that it never happens except may be 589 * the case when the MAC stats are zeroed as a result of a NIC reset. 590 */ 591 static void 592 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 593 { 594 if ((int64_t)(newval - *stat) > 0 || newval == 0) 595 *stat = newval; 596 } 597 598 static int 599 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 600 { 601 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 602 struct sfc_port *port = &sa->port; 603 uint64_t *mac_stats; 604 int ret; 605 606 rte_spinlock_lock(&port->mac_stats_lock); 607 608 ret = sfc_port_update_mac_stats(sa); 609 if (ret != 0) 610 goto unlock; 611 612 mac_stats = port->mac_stats_buf; 613 614 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 615 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 616 stats->ipackets = 617 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 618 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 619 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 620 stats->opackets = 621 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 622 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 623 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 624 stats->ibytes = 625 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 626 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 627 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 628 stats->obytes = 629 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 630 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 631 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 632 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 633 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 634 } else { 635 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 636 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 637 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 638 /* 639 * Take into account stats which are whenever supported 640 * on EF10. If some stat is not supported by current 641 * firmware variant or HW revision, it is guaranteed 642 * to be zero in mac_stats. 643 */ 644 stats->imissed = 645 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 646 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 647 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 648 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 649 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 650 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 651 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 652 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 653 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 654 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 655 stats->ierrors = 656 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 657 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 658 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 659 /* no oerrors counters supported on EF10 */ 660 661 /* Exclude missed, errors and pauses from Rx packets */ 662 sfc_update_diff_stat(&port->ipackets, 663 mac_stats[EFX_MAC_RX_PKTS] - 664 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 665 stats->imissed - stats->ierrors); 666 stats->ipackets = port->ipackets; 667 } 668 669 unlock: 670 rte_spinlock_unlock(&port->mac_stats_lock); 671 SFC_ASSERT(ret >= 0); 672 return -ret; 673 } 674 675 static int 676 sfc_stats_reset(struct rte_eth_dev *dev) 677 { 678 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 679 struct sfc_port *port = &sa->port; 680 int rc; 681 682 if (sa->state != SFC_ADAPTER_STARTED) { 683 /* 684 * The operation cannot be done if port is not started; it 685 * will be scheduled to be done during the next port start 686 */ 687 port->mac_stats_reset_pending = B_TRUE; 688 return 0; 689 } 690 691 rc = sfc_port_reset_mac_stats(sa); 692 if (rc != 0) 693 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 694 695 SFC_ASSERT(rc >= 0); 696 return -rc; 697 } 698 699 static int 700 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 701 unsigned int xstats_count) 702 { 703 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 704 struct sfc_port *port = &sa->port; 705 uint64_t *mac_stats; 706 int rc; 707 unsigned int i; 708 int nstats = 0; 709 710 rte_spinlock_lock(&port->mac_stats_lock); 711 712 rc = sfc_port_update_mac_stats(sa); 713 if (rc != 0) { 714 SFC_ASSERT(rc > 0); 715 nstats = -rc; 716 goto unlock; 717 } 718 719 mac_stats = port->mac_stats_buf; 720 721 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 722 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 723 if (xstats != NULL && nstats < (int)xstats_count) { 724 xstats[nstats].id = nstats; 725 xstats[nstats].value = mac_stats[i]; 726 } 727 nstats++; 728 } 729 } 730 731 unlock: 732 rte_spinlock_unlock(&port->mac_stats_lock); 733 734 return nstats; 735 } 736 737 static int 738 sfc_xstats_get_names(struct rte_eth_dev *dev, 739 struct rte_eth_xstat_name *xstats_names, 740 unsigned int xstats_count) 741 { 742 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 743 struct sfc_port *port = &sa->port; 744 unsigned int i; 745 unsigned int nstats = 0; 746 747 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 748 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 749 if (xstats_names != NULL && nstats < xstats_count) 750 strlcpy(xstats_names[nstats].name, 751 efx_mac_stat_name(sa->nic, i), 752 sizeof(xstats_names[0].name)); 753 nstats++; 754 } 755 } 756 757 return nstats; 758 } 759 760 static int 761 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 762 uint64_t *values, unsigned int n) 763 { 764 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 765 struct sfc_port *port = &sa->port; 766 uint64_t *mac_stats; 767 unsigned int nb_supported = 0; 768 unsigned int nb_written = 0; 769 unsigned int i; 770 int ret; 771 int rc; 772 773 if (unlikely(values == NULL) || 774 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 775 return port->mac_stats_nb_supported; 776 777 rte_spinlock_lock(&port->mac_stats_lock); 778 779 rc = sfc_port_update_mac_stats(sa); 780 if (rc != 0) { 781 SFC_ASSERT(rc > 0); 782 ret = -rc; 783 goto unlock; 784 } 785 786 mac_stats = port->mac_stats_buf; 787 788 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 789 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 790 continue; 791 792 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 793 values[nb_written++] = mac_stats[i]; 794 795 ++nb_supported; 796 } 797 798 ret = nb_written; 799 800 unlock: 801 rte_spinlock_unlock(&port->mac_stats_lock); 802 803 return ret; 804 } 805 806 static int 807 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 808 struct rte_eth_xstat_name *xstats_names, 809 const uint64_t *ids, unsigned int size) 810 { 811 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 812 struct sfc_port *port = &sa->port; 813 unsigned int nb_supported = 0; 814 unsigned int nb_written = 0; 815 unsigned int i; 816 817 if (unlikely(xstats_names == NULL) || 818 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 819 return port->mac_stats_nb_supported; 820 821 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 822 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 823 continue; 824 825 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 826 char *name = xstats_names[nb_written++].name; 827 828 strlcpy(name, efx_mac_stat_name(sa->nic, i), 829 sizeof(xstats_names[0].name)); 830 } 831 832 ++nb_supported; 833 } 834 835 return nb_written; 836 } 837 838 static int 839 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 840 { 841 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 842 unsigned int wanted_fc, link_fc; 843 844 memset(fc_conf, 0, sizeof(*fc_conf)); 845 846 sfc_adapter_lock(sa); 847 848 if (sa->state == SFC_ADAPTER_STARTED) 849 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 850 else 851 link_fc = sa->port.flow_ctrl; 852 853 switch (link_fc) { 854 case 0: 855 fc_conf->mode = RTE_FC_NONE; 856 break; 857 case EFX_FCNTL_RESPOND: 858 fc_conf->mode = RTE_FC_RX_PAUSE; 859 break; 860 case EFX_FCNTL_GENERATE: 861 fc_conf->mode = RTE_FC_TX_PAUSE; 862 break; 863 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 864 fc_conf->mode = RTE_FC_FULL; 865 break; 866 default: 867 sfc_err(sa, "%s: unexpected flow control value %#x", 868 __func__, link_fc); 869 } 870 871 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 872 873 sfc_adapter_unlock(sa); 874 875 return 0; 876 } 877 878 static int 879 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 880 { 881 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 882 struct sfc_port *port = &sa->port; 883 unsigned int fcntl; 884 int rc; 885 886 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 887 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 888 fc_conf->mac_ctrl_frame_fwd != 0) { 889 sfc_err(sa, "unsupported flow control settings specified"); 890 rc = EINVAL; 891 goto fail_inval; 892 } 893 894 switch (fc_conf->mode) { 895 case RTE_FC_NONE: 896 fcntl = 0; 897 break; 898 case RTE_FC_RX_PAUSE: 899 fcntl = EFX_FCNTL_RESPOND; 900 break; 901 case RTE_FC_TX_PAUSE: 902 fcntl = EFX_FCNTL_GENERATE; 903 break; 904 case RTE_FC_FULL: 905 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 906 break; 907 default: 908 rc = EINVAL; 909 goto fail_inval; 910 } 911 912 sfc_adapter_lock(sa); 913 914 if (sa->state == SFC_ADAPTER_STARTED) { 915 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 916 if (rc != 0) 917 goto fail_mac_fcntl_set; 918 } 919 920 port->flow_ctrl = fcntl; 921 port->flow_ctrl_autoneg = fc_conf->autoneg; 922 923 sfc_adapter_unlock(sa); 924 925 return 0; 926 927 fail_mac_fcntl_set: 928 sfc_adapter_unlock(sa); 929 fail_inval: 930 SFC_ASSERT(rc > 0); 931 return -rc; 932 } 933 934 static int 935 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 936 { 937 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 938 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 939 boolean_t scatter_enabled; 940 const char *error; 941 unsigned int i; 942 943 for (i = 0; i < sas->rxq_count; i++) { 944 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 945 continue; 946 947 scatter_enabled = (sas->rxq_info[i].type_flags & 948 EFX_RXQ_FLAG_SCATTER); 949 950 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 951 encp->enc_rx_prefix_size, 952 scatter_enabled, 953 encp->enc_rx_scatter_max, &error)) { 954 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 955 error); 956 return EINVAL; 957 } 958 } 959 960 return 0; 961 } 962 963 static int 964 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 965 { 966 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 967 size_t pdu = EFX_MAC_PDU(mtu); 968 size_t old_pdu; 969 int rc; 970 971 sfc_log_init(sa, "mtu=%u", mtu); 972 973 rc = EINVAL; 974 if (pdu < EFX_MAC_PDU_MIN) { 975 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 976 (unsigned int)mtu, (unsigned int)pdu, 977 EFX_MAC_PDU_MIN); 978 goto fail_inval; 979 } 980 if (pdu > EFX_MAC_PDU_MAX) { 981 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 982 (unsigned int)mtu, (unsigned int)pdu, 983 (unsigned int)EFX_MAC_PDU_MAX); 984 goto fail_inval; 985 } 986 987 sfc_adapter_lock(sa); 988 989 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 990 if (rc != 0) 991 goto fail_check_scatter; 992 993 if (pdu != sa->port.pdu) { 994 if (sa->state == SFC_ADAPTER_STARTED) { 995 sfc_stop(sa); 996 997 old_pdu = sa->port.pdu; 998 sa->port.pdu = pdu; 999 rc = sfc_start(sa); 1000 if (rc != 0) 1001 goto fail_start; 1002 } else { 1003 sa->port.pdu = pdu; 1004 } 1005 } 1006 1007 /* 1008 * The driver does not use it, but other PMDs update jumbo frame 1009 * flag and max_rx_pkt_len when MTU is set. 1010 */ 1011 if (mtu > RTE_ETHER_MAX_LEN) { 1012 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 1013 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1014 } 1015 1016 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 1017 1018 sfc_adapter_unlock(sa); 1019 1020 sfc_log_init(sa, "done"); 1021 return 0; 1022 1023 fail_start: 1024 sa->port.pdu = old_pdu; 1025 if (sfc_start(sa) != 0) 1026 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1027 "PDU max size - port is stopped", 1028 (unsigned int)pdu, (unsigned int)old_pdu); 1029 1030 fail_check_scatter: 1031 sfc_adapter_unlock(sa); 1032 1033 fail_inval: 1034 sfc_log_init(sa, "failed %d", rc); 1035 SFC_ASSERT(rc > 0); 1036 return -rc; 1037 } 1038 static int 1039 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1040 { 1041 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1042 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1043 struct sfc_port *port = &sa->port; 1044 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1045 int rc = 0; 1046 1047 sfc_adapter_lock(sa); 1048 1049 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr)) 1050 goto unlock; 1051 1052 /* 1053 * Copy the address to the device private data so that 1054 * it could be recalled in the case of adapter restart. 1055 */ 1056 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1057 1058 /* 1059 * Neither of the two following checks can return 1060 * an error. The new MAC address is preserved in 1061 * the device private data and can be activated 1062 * on the next port start if the user prevents 1063 * isolated mode from being enabled. 1064 */ 1065 if (sfc_sa2shared(sa)->isolated) { 1066 sfc_warn(sa, "isolated mode is active on the port"); 1067 sfc_warn(sa, "will not set MAC address"); 1068 goto unlock; 1069 } 1070 1071 if (sa->state != SFC_ADAPTER_STARTED) { 1072 sfc_notice(sa, "the port is not started"); 1073 sfc_notice(sa, "the new MAC address will be set on port start"); 1074 1075 goto unlock; 1076 } 1077 1078 if (encp->enc_allow_set_mac_with_installed_filters) { 1079 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1080 if (rc != 0) { 1081 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1082 goto unlock; 1083 } 1084 1085 /* 1086 * Changing the MAC address by means of MCDI request 1087 * has no effect on received traffic, therefore 1088 * we also need to update unicast filters 1089 */ 1090 rc = sfc_set_rx_mode_unchecked(sa); 1091 if (rc != 0) { 1092 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1093 /* Rollback the old address */ 1094 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1095 (void)sfc_set_rx_mode_unchecked(sa); 1096 } 1097 } else { 1098 sfc_warn(sa, "cannot set MAC address with filters installed"); 1099 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1100 sfc_warn(sa, "(some traffic may be dropped)"); 1101 1102 /* 1103 * Since setting MAC address with filters installed is not 1104 * allowed on the adapter, the new MAC address will be set 1105 * by means of adapter restart. sfc_start() shall retrieve 1106 * the new address from the device private data and set it. 1107 */ 1108 sfc_stop(sa); 1109 rc = sfc_start(sa); 1110 if (rc != 0) 1111 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1112 } 1113 1114 unlock: 1115 if (rc != 0) 1116 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1117 1118 sfc_adapter_unlock(sa); 1119 1120 SFC_ASSERT(rc >= 0); 1121 return -rc; 1122 } 1123 1124 1125 static int 1126 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1127 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1128 { 1129 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1130 struct sfc_port *port = &sa->port; 1131 uint8_t *mc_addrs = port->mcast_addrs; 1132 int rc; 1133 unsigned int i; 1134 1135 if (sfc_sa2shared(sa)->isolated) { 1136 sfc_err(sa, "isolated mode is active on the port"); 1137 sfc_err(sa, "will not set multicast address list"); 1138 return -ENOTSUP; 1139 } 1140 1141 if (mc_addrs == NULL) 1142 return -ENOBUFS; 1143 1144 if (nb_mc_addr > port->max_mcast_addrs) { 1145 sfc_err(sa, "too many multicast addresses: %u > %u", 1146 nb_mc_addr, port->max_mcast_addrs); 1147 return -EINVAL; 1148 } 1149 1150 for (i = 0; i < nb_mc_addr; ++i) { 1151 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1152 EFX_MAC_ADDR_LEN); 1153 mc_addrs += EFX_MAC_ADDR_LEN; 1154 } 1155 1156 port->nb_mcast_addrs = nb_mc_addr; 1157 1158 if (sa->state != SFC_ADAPTER_STARTED) 1159 return 0; 1160 1161 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1162 port->nb_mcast_addrs); 1163 if (rc != 0) 1164 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1165 1166 SFC_ASSERT(rc >= 0); 1167 return -rc; 1168 } 1169 1170 /* 1171 * The function is used by the secondary process as well. It must not 1172 * use any process-local pointers from the adapter data. 1173 */ 1174 static void 1175 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1176 struct rte_eth_rxq_info *qinfo) 1177 { 1178 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1179 struct sfc_rxq_info *rxq_info; 1180 1181 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1182 1183 rxq_info = &sas->rxq_info[rx_queue_id]; 1184 1185 qinfo->mp = rxq_info->refill_mb_pool; 1186 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1187 qinfo->conf.rx_drop_en = 1; 1188 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1189 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1190 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1191 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1192 qinfo->scattered_rx = 1; 1193 } 1194 qinfo->nb_desc = rxq_info->entries; 1195 } 1196 1197 /* 1198 * The function is used by the secondary process as well. It must not 1199 * use any process-local pointers from the adapter data. 1200 */ 1201 static void 1202 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1203 struct rte_eth_txq_info *qinfo) 1204 { 1205 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1206 struct sfc_txq_info *txq_info; 1207 1208 SFC_ASSERT(tx_queue_id < sas->txq_count); 1209 1210 txq_info = &sas->txq_info[tx_queue_id]; 1211 1212 memset(qinfo, 0, sizeof(*qinfo)); 1213 1214 qinfo->conf.offloads = txq_info->offloads; 1215 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1216 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1217 qinfo->nb_desc = txq_info->entries; 1218 } 1219 1220 /* 1221 * The function is used by the secondary process as well. It must not 1222 * use any process-local pointers from the adapter data. 1223 */ 1224 static uint32_t 1225 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1226 { 1227 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1228 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1229 struct sfc_rxq_info *rxq_info; 1230 1231 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1232 rxq_info = &sas->rxq_info[rx_queue_id]; 1233 1234 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1235 return 0; 1236 1237 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1238 } 1239 1240 /* 1241 * The function is used by the secondary process as well. It must not 1242 * use any process-local pointers from the adapter data. 1243 */ 1244 static int 1245 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1246 { 1247 struct sfc_dp_rxq *dp_rxq = queue; 1248 const struct sfc_dp_rx *dp_rx; 1249 1250 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1251 1252 return offset < dp_rx->qdesc_npending(dp_rxq); 1253 } 1254 1255 /* 1256 * The function is used by the secondary process as well. It must not 1257 * use any process-local pointers from the adapter data. 1258 */ 1259 static int 1260 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1261 { 1262 struct sfc_dp_rxq *dp_rxq = queue; 1263 const struct sfc_dp_rx *dp_rx; 1264 1265 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1266 1267 return dp_rx->qdesc_status(dp_rxq, offset); 1268 } 1269 1270 /* 1271 * The function is used by the secondary process as well. It must not 1272 * use any process-local pointers from the adapter data. 1273 */ 1274 static int 1275 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1276 { 1277 struct sfc_dp_txq *dp_txq = queue; 1278 const struct sfc_dp_tx *dp_tx; 1279 1280 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1281 1282 return dp_tx->qdesc_status(dp_txq, offset); 1283 } 1284 1285 static int 1286 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1287 { 1288 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1289 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1290 int rc; 1291 1292 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1293 1294 sfc_adapter_lock(sa); 1295 1296 rc = EINVAL; 1297 if (sa->state != SFC_ADAPTER_STARTED) 1298 goto fail_not_started; 1299 1300 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1301 goto fail_not_setup; 1302 1303 rc = sfc_rx_qstart(sa, rx_queue_id); 1304 if (rc != 0) 1305 goto fail_rx_qstart; 1306 1307 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1308 1309 sfc_adapter_unlock(sa); 1310 1311 return 0; 1312 1313 fail_rx_qstart: 1314 fail_not_setup: 1315 fail_not_started: 1316 sfc_adapter_unlock(sa); 1317 SFC_ASSERT(rc > 0); 1318 return -rc; 1319 } 1320 1321 static int 1322 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1323 { 1324 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1325 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1326 1327 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1328 1329 sfc_adapter_lock(sa); 1330 sfc_rx_qstop(sa, rx_queue_id); 1331 1332 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1333 1334 sfc_adapter_unlock(sa); 1335 1336 return 0; 1337 } 1338 1339 static int 1340 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1341 { 1342 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1343 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1344 int rc; 1345 1346 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1347 1348 sfc_adapter_lock(sa); 1349 1350 rc = EINVAL; 1351 if (sa->state != SFC_ADAPTER_STARTED) 1352 goto fail_not_started; 1353 1354 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1355 goto fail_not_setup; 1356 1357 rc = sfc_tx_qstart(sa, tx_queue_id); 1358 if (rc != 0) 1359 goto fail_tx_qstart; 1360 1361 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1362 1363 sfc_adapter_unlock(sa); 1364 return 0; 1365 1366 fail_tx_qstart: 1367 1368 fail_not_setup: 1369 fail_not_started: 1370 sfc_adapter_unlock(sa); 1371 SFC_ASSERT(rc > 0); 1372 return -rc; 1373 } 1374 1375 static int 1376 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1377 { 1378 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1379 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1380 1381 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1382 1383 sfc_adapter_lock(sa); 1384 1385 sfc_tx_qstop(sa, tx_queue_id); 1386 1387 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1388 1389 sfc_adapter_unlock(sa); 1390 return 0; 1391 } 1392 1393 static efx_tunnel_protocol_t 1394 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1395 { 1396 switch (rte_type) { 1397 case RTE_TUNNEL_TYPE_VXLAN: 1398 return EFX_TUNNEL_PROTOCOL_VXLAN; 1399 case RTE_TUNNEL_TYPE_GENEVE: 1400 return EFX_TUNNEL_PROTOCOL_GENEVE; 1401 default: 1402 return EFX_TUNNEL_NPROTOS; 1403 } 1404 } 1405 1406 enum sfc_udp_tunnel_op_e { 1407 SFC_UDP_TUNNEL_ADD_PORT, 1408 SFC_UDP_TUNNEL_DEL_PORT, 1409 }; 1410 1411 static int 1412 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1413 struct rte_eth_udp_tunnel *tunnel_udp, 1414 enum sfc_udp_tunnel_op_e op) 1415 { 1416 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1417 efx_tunnel_protocol_t tunnel_proto; 1418 int rc; 1419 1420 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1421 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1422 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1423 tunnel_udp->udp_port, tunnel_udp->prot_type); 1424 1425 tunnel_proto = 1426 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1427 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1428 rc = ENOTSUP; 1429 goto fail_bad_proto; 1430 } 1431 1432 sfc_adapter_lock(sa); 1433 1434 switch (op) { 1435 case SFC_UDP_TUNNEL_ADD_PORT: 1436 rc = efx_tunnel_config_udp_add(sa->nic, 1437 tunnel_udp->udp_port, 1438 tunnel_proto); 1439 break; 1440 case SFC_UDP_TUNNEL_DEL_PORT: 1441 rc = efx_tunnel_config_udp_remove(sa->nic, 1442 tunnel_udp->udp_port, 1443 tunnel_proto); 1444 break; 1445 default: 1446 rc = EINVAL; 1447 goto fail_bad_op; 1448 } 1449 1450 if (rc != 0) 1451 goto fail_op; 1452 1453 if (sa->state == SFC_ADAPTER_STARTED) { 1454 rc = efx_tunnel_reconfigure(sa->nic); 1455 if (rc == EAGAIN) { 1456 /* 1457 * Configuration is accepted by FW and MC reboot 1458 * is initiated to apply the changes. MC reboot 1459 * will be handled in a usual way (MC reboot 1460 * event on management event queue and adapter 1461 * restart). 1462 */ 1463 rc = 0; 1464 } else if (rc != 0) { 1465 goto fail_reconfigure; 1466 } 1467 } 1468 1469 sfc_adapter_unlock(sa); 1470 return 0; 1471 1472 fail_reconfigure: 1473 /* Remove/restore entry since the change makes the trouble */ 1474 switch (op) { 1475 case SFC_UDP_TUNNEL_ADD_PORT: 1476 (void)efx_tunnel_config_udp_remove(sa->nic, 1477 tunnel_udp->udp_port, 1478 tunnel_proto); 1479 break; 1480 case SFC_UDP_TUNNEL_DEL_PORT: 1481 (void)efx_tunnel_config_udp_add(sa->nic, 1482 tunnel_udp->udp_port, 1483 tunnel_proto); 1484 break; 1485 } 1486 1487 fail_op: 1488 fail_bad_op: 1489 sfc_adapter_unlock(sa); 1490 1491 fail_bad_proto: 1492 SFC_ASSERT(rc > 0); 1493 return -rc; 1494 } 1495 1496 static int 1497 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1498 struct rte_eth_udp_tunnel *tunnel_udp) 1499 { 1500 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1501 } 1502 1503 static int 1504 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1505 struct rte_eth_udp_tunnel *tunnel_udp) 1506 { 1507 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1508 } 1509 1510 /* 1511 * The function is used by the secondary process as well. It must not 1512 * use any process-local pointers from the adapter data. 1513 */ 1514 static int 1515 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1516 struct rte_eth_rss_conf *rss_conf) 1517 { 1518 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1519 struct sfc_rss *rss = &sas->rss; 1520 1521 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1522 return -ENOTSUP; 1523 1524 /* 1525 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1526 * hence, conversion is done here to derive a correct set of ETH_RSS 1527 * flags which corresponds to the active EFX configuration stored 1528 * locally in 'sfc_adapter' and kept up-to-date 1529 */ 1530 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1531 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1532 if (rss_conf->rss_key != NULL) 1533 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1534 1535 return 0; 1536 } 1537 1538 static int 1539 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1540 struct rte_eth_rss_conf *rss_conf) 1541 { 1542 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1543 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1544 unsigned int efx_hash_types; 1545 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context}; 1546 unsigned int n_contexts; 1547 unsigned int mode_i = 0; 1548 unsigned int key_i = 0; 1549 unsigned int i = 0; 1550 int rc = 0; 1551 1552 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2; 1553 1554 if (sfc_sa2shared(sa)->isolated) 1555 return -ENOTSUP; 1556 1557 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1558 sfc_err(sa, "RSS is not available"); 1559 return -ENOTSUP; 1560 } 1561 1562 if (rss->channels == 0) { 1563 sfc_err(sa, "RSS is not configured"); 1564 return -EINVAL; 1565 } 1566 1567 if ((rss_conf->rss_key != NULL) && 1568 (rss_conf->rss_key_len != sizeof(rss->key))) { 1569 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1570 sizeof(rss->key)); 1571 return -EINVAL; 1572 } 1573 1574 sfc_adapter_lock(sa); 1575 1576 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1577 if (rc != 0) 1578 goto fail_rx_hf_rte_to_efx; 1579 1580 for (mode_i = 0; mode_i < n_contexts; mode_i++) { 1581 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i], 1582 rss->hash_alg, efx_hash_types, 1583 B_TRUE); 1584 if (rc != 0) 1585 goto fail_scale_mode_set; 1586 } 1587 1588 if (rss_conf->rss_key != NULL) { 1589 if (sa->state == SFC_ADAPTER_STARTED) { 1590 for (key_i = 0; key_i < n_contexts; key_i++) { 1591 rc = efx_rx_scale_key_set(sa->nic, 1592 contexts[key_i], 1593 rss_conf->rss_key, 1594 sizeof(rss->key)); 1595 if (rc != 0) 1596 goto fail_scale_key_set; 1597 } 1598 } 1599 1600 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1601 } 1602 1603 rss->hash_types = efx_hash_types; 1604 1605 sfc_adapter_unlock(sa); 1606 1607 return 0; 1608 1609 fail_scale_key_set: 1610 for (i = 0; i < key_i; i++) { 1611 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key, 1612 sizeof(rss->key)) != 0) 1613 sfc_err(sa, "failed to restore RSS key"); 1614 } 1615 1616 fail_scale_mode_set: 1617 for (i = 0; i < mode_i; i++) { 1618 if (efx_rx_scale_mode_set(sa->nic, contexts[i], 1619 EFX_RX_HASHALG_TOEPLITZ, 1620 rss->hash_types, B_TRUE) != 0) 1621 sfc_err(sa, "failed to restore RSS mode"); 1622 } 1623 1624 fail_rx_hf_rte_to_efx: 1625 sfc_adapter_unlock(sa); 1626 return -rc; 1627 } 1628 1629 /* 1630 * The function is used by the secondary process as well. It must not 1631 * use any process-local pointers from the adapter data. 1632 */ 1633 static int 1634 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1635 struct rte_eth_rss_reta_entry64 *reta_conf, 1636 uint16_t reta_size) 1637 { 1638 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1639 struct sfc_rss *rss = &sas->rss; 1640 int entry; 1641 1642 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1643 return -ENOTSUP; 1644 1645 if (rss->channels == 0) 1646 return -EINVAL; 1647 1648 if (reta_size != EFX_RSS_TBL_SIZE) 1649 return -EINVAL; 1650 1651 for (entry = 0; entry < reta_size; entry++) { 1652 int grp = entry / RTE_RETA_GROUP_SIZE; 1653 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1654 1655 if ((reta_conf[grp].mask >> grp_idx) & 1) 1656 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1657 } 1658 1659 return 0; 1660 } 1661 1662 static int 1663 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1664 struct rte_eth_rss_reta_entry64 *reta_conf, 1665 uint16_t reta_size) 1666 { 1667 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1668 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1669 unsigned int *rss_tbl_new; 1670 uint16_t entry; 1671 int rc = 0; 1672 1673 1674 if (sfc_sa2shared(sa)->isolated) 1675 return -ENOTSUP; 1676 1677 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1678 sfc_err(sa, "RSS is not available"); 1679 return -ENOTSUP; 1680 } 1681 1682 if (rss->channels == 0) { 1683 sfc_err(sa, "RSS is not configured"); 1684 return -EINVAL; 1685 } 1686 1687 if (reta_size != EFX_RSS_TBL_SIZE) { 1688 sfc_err(sa, "RETA size is wrong (should be %u)", 1689 EFX_RSS_TBL_SIZE); 1690 return -EINVAL; 1691 } 1692 1693 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1694 if (rss_tbl_new == NULL) 1695 return -ENOMEM; 1696 1697 sfc_adapter_lock(sa); 1698 1699 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1700 1701 for (entry = 0; entry < reta_size; entry++) { 1702 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1703 struct rte_eth_rss_reta_entry64 *grp; 1704 1705 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1706 1707 if (grp->mask & (1ull << grp_idx)) { 1708 if (grp->reta[grp_idx] >= rss->channels) { 1709 rc = EINVAL; 1710 goto bad_reta_entry; 1711 } 1712 rss_tbl_new[entry] = grp->reta[grp_idx]; 1713 } 1714 } 1715 1716 if (sa->state == SFC_ADAPTER_STARTED) { 1717 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1718 rss_tbl_new, EFX_RSS_TBL_SIZE); 1719 if (rc != 0) 1720 goto fail_scale_tbl_set; 1721 } 1722 1723 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1724 1725 fail_scale_tbl_set: 1726 bad_reta_entry: 1727 sfc_adapter_unlock(sa); 1728 1729 rte_free(rss_tbl_new); 1730 1731 SFC_ASSERT(rc >= 0); 1732 return -rc; 1733 } 1734 1735 static int 1736 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1737 enum rte_filter_op filter_op, 1738 void *arg) 1739 { 1740 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1741 int rc = ENOTSUP; 1742 1743 sfc_log_init(sa, "entry"); 1744 1745 switch (filter_type) { 1746 case RTE_ETH_FILTER_NONE: 1747 sfc_err(sa, "Global filters configuration not supported"); 1748 break; 1749 case RTE_ETH_FILTER_MACVLAN: 1750 sfc_err(sa, "MACVLAN filters not supported"); 1751 break; 1752 case RTE_ETH_FILTER_ETHERTYPE: 1753 sfc_err(sa, "EtherType filters not supported"); 1754 break; 1755 case RTE_ETH_FILTER_FLEXIBLE: 1756 sfc_err(sa, "Flexible filters not supported"); 1757 break; 1758 case RTE_ETH_FILTER_SYN: 1759 sfc_err(sa, "SYN filters not supported"); 1760 break; 1761 case RTE_ETH_FILTER_NTUPLE: 1762 sfc_err(sa, "NTUPLE filters not supported"); 1763 break; 1764 case RTE_ETH_FILTER_TUNNEL: 1765 sfc_err(sa, "Tunnel filters not supported"); 1766 break; 1767 case RTE_ETH_FILTER_FDIR: 1768 sfc_err(sa, "Flow Director filters not supported"); 1769 break; 1770 case RTE_ETH_FILTER_HASH: 1771 sfc_err(sa, "Hash filters not supported"); 1772 break; 1773 case RTE_ETH_FILTER_GENERIC: 1774 if (filter_op != RTE_ETH_FILTER_GET) { 1775 rc = EINVAL; 1776 } else { 1777 *(const void **)arg = &sfc_flow_ops; 1778 rc = 0; 1779 } 1780 break; 1781 default: 1782 sfc_err(sa, "Unknown filter type %u", filter_type); 1783 break; 1784 } 1785 1786 sfc_log_init(sa, "exit: %d", -rc); 1787 SFC_ASSERT(rc >= 0); 1788 return -rc; 1789 } 1790 1791 static int 1792 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1793 { 1794 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1795 1796 /* 1797 * If Rx datapath does not provide callback to check mempool, 1798 * all pools are supported. 1799 */ 1800 if (sap->dp_rx->pool_ops_supported == NULL) 1801 return 1; 1802 1803 return sap->dp_rx->pool_ops_supported(pool); 1804 } 1805 1806 static int 1807 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1808 { 1809 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1810 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1811 struct sfc_rxq_info *rxq_info; 1812 1813 SFC_ASSERT(queue_id < sas->rxq_count); 1814 rxq_info = &sas->rxq_info[queue_id]; 1815 1816 return sap->dp_rx->intr_enable(rxq_info->dp); 1817 } 1818 1819 static int 1820 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1821 { 1822 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1823 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1824 struct sfc_rxq_info *rxq_info; 1825 1826 SFC_ASSERT(queue_id < sas->rxq_count); 1827 rxq_info = &sas->rxq_info[queue_id]; 1828 1829 return sap->dp_rx->intr_disable(rxq_info->dp); 1830 } 1831 1832 static const struct eth_dev_ops sfc_eth_dev_ops = { 1833 .dev_configure = sfc_dev_configure, 1834 .dev_start = sfc_dev_start, 1835 .dev_stop = sfc_dev_stop, 1836 .dev_set_link_up = sfc_dev_set_link_up, 1837 .dev_set_link_down = sfc_dev_set_link_down, 1838 .dev_close = sfc_dev_close, 1839 .promiscuous_enable = sfc_dev_promisc_enable, 1840 .promiscuous_disable = sfc_dev_promisc_disable, 1841 .allmulticast_enable = sfc_dev_allmulti_enable, 1842 .allmulticast_disable = sfc_dev_allmulti_disable, 1843 .link_update = sfc_dev_link_update, 1844 .stats_get = sfc_stats_get, 1845 .stats_reset = sfc_stats_reset, 1846 .xstats_get = sfc_xstats_get, 1847 .xstats_reset = sfc_stats_reset, 1848 .xstats_get_names = sfc_xstats_get_names, 1849 .dev_infos_get = sfc_dev_infos_get, 1850 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1851 .mtu_set = sfc_dev_set_mtu, 1852 .rx_queue_start = sfc_rx_queue_start, 1853 .rx_queue_stop = sfc_rx_queue_stop, 1854 .tx_queue_start = sfc_tx_queue_start, 1855 .tx_queue_stop = sfc_tx_queue_stop, 1856 .rx_queue_setup = sfc_rx_queue_setup, 1857 .rx_queue_release = sfc_rx_queue_release, 1858 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1859 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1860 .tx_queue_setup = sfc_tx_queue_setup, 1861 .tx_queue_release = sfc_tx_queue_release, 1862 .flow_ctrl_get = sfc_flow_ctrl_get, 1863 .flow_ctrl_set = sfc_flow_ctrl_set, 1864 .mac_addr_set = sfc_mac_addr_set, 1865 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1866 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1867 .reta_update = sfc_dev_rss_reta_update, 1868 .reta_query = sfc_dev_rss_reta_query, 1869 .rss_hash_update = sfc_dev_rss_hash_update, 1870 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1871 .filter_ctrl = sfc_dev_filter_ctrl, 1872 .set_mc_addr_list = sfc_set_mc_addr_list, 1873 .rxq_info_get = sfc_rx_queue_info_get, 1874 .txq_info_get = sfc_tx_queue_info_get, 1875 .fw_version_get = sfc_fw_version_get, 1876 .xstats_get_by_id = sfc_xstats_get_by_id, 1877 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1878 .pool_ops_supported = sfc_pool_ops_supported, 1879 }; 1880 1881 /** 1882 * Duplicate a string in potentially shared memory required for 1883 * multi-process support. 1884 * 1885 * strdup() allocates from process-local heap/memory. 1886 */ 1887 static char * 1888 sfc_strdup(const char *str) 1889 { 1890 size_t size; 1891 char *copy; 1892 1893 if (str == NULL) 1894 return NULL; 1895 1896 size = strlen(str) + 1; 1897 copy = rte_malloc(__func__, size, 0); 1898 if (copy != NULL) 1899 rte_memcpy(copy, str, size); 1900 1901 return copy; 1902 } 1903 1904 static int 1905 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1906 { 1907 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1908 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1909 const struct sfc_dp_rx *dp_rx; 1910 const struct sfc_dp_tx *dp_tx; 1911 const efx_nic_cfg_t *encp; 1912 unsigned int avail_caps = 0; 1913 const char *rx_name = NULL; 1914 const char *tx_name = NULL; 1915 int rc; 1916 1917 switch (sa->family) { 1918 case EFX_FAMILY_HUNTINGTON: 1919 case EFX_FAMILY_MEDFORD: 1920 case EFX_FAMILY_MEDFORD2: 1921 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1922 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX; 1923 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX; 1924 break; 1925 case EFX_FAMILY_RIVERHEAD: 1926 avail_caps |= SFC_DP_HW_FW_CAP_EF100; 1927 break; 1928 default: 1929 break; 1930 } 1931 1932 encp = efx_nic_cfg_get(sa->nic); 1933 if (encp->enc_rx_es_super_buffer_supported) 1934 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1935 1936 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1937 sfc_kvarg_string_handler, &rx_name); 1938 if (rc != 0) 1939 goto fail_kvarg_rx_datapath; 1940 1941 if (rx_name != NULL) { 1942 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1943 if (dp_rx == NULL) { 1944 sfc_err(sa, "Rx datapath %s not found", rx_name); 1945 rc = ENOENT; 1946 goto fail_dp_rx; 1947 } 1948 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1949 sfc_err(sa, 1950 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1951 rx_name); 1952 rc = EINVAL; 1953 goto fail_dp_rx_caps; 1954 } 1955 } else { 1956 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1957 if (dp_rx == NULL) { 1958 sfc_err(sa, "Rx datapath by caps %#x not found", 1959 avail_caps); 1960 rc = ENOENT; 1961 goto fail_dp_rx; 1962 } 1963 } 1964 1965 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1966 if (sas->dp_rx_name == NULL) { 1967 rc = ENOMEM; 1968 goto fail_dp_rx_name; 1969 } 1970 1971 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1972 1973 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1974 sfc_kvarg_string_handler, &tx_name); 1975 if (rc != 0) 1976 goto fail_kvarg_tx_datapath; 1977 1978 if (tx_name != NULL) { 1979 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1980 if (dp_tx == NULL) { 1981 sfc_err(sa, "Tx datapath %s not found", tx_name); 1982 rc = ENOENT; 1983 goto fail_dp_tx; 1984 } 1985 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1986 sfc_err(sa, 1987 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1988 tx_name); 1989 rc = EINVAL; 1990 goto fail_dp_tx_caps; 1991 } 1992 } else { 1993 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1994 if (dp_tx == NULL) { 1995 sfc_err(sa, "Tx datapath by caps %#x not found", 1996 avail_caps); 1997 rc = ENOENT; 1998 goto fail_dp_tx; 1999 } 2000 } 2001 2002 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 2003 if (sas->dp_tx_name == NULL) { 2004 rc = ENOMEM; 2005 goto fail_dp_tx_name; 2006 } 2007 2008 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 2009 2010 sa->priv.dp_rx = dp_rx; 2011 sa->priv.dp_tx = dp_tx; 2012 2013 dev->rx_pkt_burst = dp_rx->pkt_burst; 2014 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2015 dev->tx_pkt_burst = dp_tx->pkt_burst; 2016 2017 dev->rx_queue_count = sfc_rx_queue_count; 2018 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2019 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2020 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2021 dev->dev_ops = &sfc_eth_dev_ops; 2022 2023 return 0; 2024 2025 fail_dp_tx_name: 2026 fail_dp_tx_caps: 2027 fail_dp_tx: 2028 fail_kvarg_tx_datapath: 2029 rte_free(sas->dp_rx_name); 2030 sas->dp_rx_name = NULL; 2031 2032 fail_dp_rx_name: 2033 fail_dp_rx_caps: 2034 fail_dp_rx: 2035 fail_kvarg_rx_datapath: 2036 return rc; 2037 } 2038 2039 static void 2040 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 2041 { 2042 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2043 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2044 2045 dev->dev_ops = NULL; 2046 dev->tx_pkt_prepare = NULL; 2047 dev->rx_pkt_burst = NULL; 2048 dev->tx_pkt_burst = NULL; 2049 2050 rte_free(sas->dp_tx_name); 2051 sas->dp_tx_name = NULL; 2052 sa->priv.dp_tx = NULL; 2053 2054 rte_free(sas->dp_rx_name); 2055 sas->dp_rx_name = NULL; 2056 sa->priv.dp_rx = NULL; 2057 } 2058 2059 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2060 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2061 .reta_query = sfc_dev_rss_reta_query, 2062 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2063 .rxq_info_get = sfc_rx_queue_info_get, 2064 .txq_info_get = sfc_tx_queue_info_get, 2065 }; 2066 2067 static int 2068 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2069 { 2070 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2071 struct sfc_adapter_priv *sap; 2072 const struct sfc_dp_rx *dp_rx; 2073 const struct sfc_dp_tx *dp_tx; 2074 int rc; 2075 2076 /* 2077 * Allocate process private data from heap, since it should not 2078 * be located in shared memory allocated using rte_malloc() API. 2079 */ 2080 sap = calloc(1, sizeof(*sap)); 2081 if (sap == NULL) { 2082 rc = ENOMEM; 2083 goto fail_alloc_priv; 2084 } 2085 2086 sap->logtype_main = logtype_main; 2087 2088 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2089 if (dp_rx == NULL) { 2090 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2091 "cannot find %s Rx datapath", sas->dp_rx_name); 2092 rc = ENOENT; 2093 goto fail_dp_rx; 2094 } 2095 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2096 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2097 "%s Rx datapath does not support multi-process", 2098 sas->dp_rx_name); 2099 rc = EINVAL; 2100 goto fail_dp_rx_multi_process; 2101 } 2102 2103 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2104 if (dp_tx == NULL) { 2105 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2106 "cannot find %s Tx datapath", sas->dp_tx_name); 2107 rc = ENOENT; 2108 goto fail_dp_tx; 2109 } 2110 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2111 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2112 "%s Tx datapath does not support multi-process", 2113 sas->dp_tx_name); 2114 rc = EINVAL; 2115 goto fail_dp_tx_multi_process; 2116 } 2117 2118 sap->dp_rx = dp_rx; 2119 sap->dp_tx = dp_tx; 2120 2121 dev->process_private = sap; 2122 dev->rx_pkt_burst = dp_rx->pkt_burst; 2123 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2124 dev->tx_pkt_burst = dp_tx->pkt_burst; 2125 dev->rx_queue_count = sfc_rx_queue_count; 2126 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2127 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2128 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2129 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2130 2131 return 0; 2132 2133 fail_dp_tx_multi_process: 2134 fail_dp_tx: 2135 fail_dp_rx_multi_process: 2136 fail_dp_rx: 2137 free(sap); 2138 2139 fail_alloc_priv: 2140 return rc; 2141 } 2142 2143 static void 2144 sfc_register_dp(void) 2145 { 2146 /* Register once */ 2147 if (TAILQ_EMPTY(&sfc_dp_head)) { 2148 /* Prefer EF10 datapath */ 2149 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp); 2150 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2151 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2152 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2153 2154 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp); 2155 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2156 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2157 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2158 } 2159 } 2160 2161 static int 2162 sfc_eth_dev_init(struct rte_eth_dev *dev) 2163 { 2164 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2165 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2166 uint32_t logtype_main; 2167 struct sfc_adapter *sa; 2168 int rc; 2169 const efx_nic_cfg_t *encp; 2170 const struct rte_ether_addr *from; 2171 int ret; 2172 2173 sfc_register_dp(); 2174 2175 logtype_main = sfc_register_logtype(&pci_dev->addr, 2176 SFC_LOGTYPE_MAIN_STR, 2177 RTE_LOG_NOTICE); 2178 2179 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2180 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2181 2182 /* Required for logging */ 2183 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix), 2184 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ", 2185 pci_dev->addr.domain, pci_dev->addr.bus, 2186 pci_dev->addr.devid, pci_dev->addr.function, 2187 dev->data->port_id); 2188 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) { 2189 SFC_GENERIC_LOG(ERR, 2190 "reserved log prefix is too short for " PCI_PRI_FMT, 2191 pci_dev->addr.domain, pci_dev->addr.bus, 2192 pci_dev->addr.devid, pci_dev->addr.function); 2193 return -EINVAL; 2194 } 2195 sas->pci_addr = pci_dev->addr; 2196 sas->port_id = dev->data->port_id; 2197 2198 /* 2199 * Allocate process private data from heap, since it should not 2200 * be located in shared memory allocated using rte_malloc() API. 2201 */ 2202 sa = calloc(1, sizeof(*sa)); 2203 if (sa == NULL) { 2204 rc = ENOMEM; 2205 goto fail_alloc_sa; 2206 } 2207 2208 dev->process_private = sa; 2209 2210 /* Required for logging */ 2211 sa->priv.shared = sas; 2212 sa->priv.logtype_main = logtype_main; 2213 2214 sa->eth_dev = dev; 2215 2216 /* Copy PCI device info to the dev->data */ 2217 rte_eth_copy_pci_info(dev, pci_dev); 2218 2219 rc = sfc_kvargs_parse(sa); 2220 if (rc != 0) 2221 goto fail_kvargs_parse; 2222 2223 sfc_log_init(sa, "entry"); 2224 2225 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2226 if (dev->data->mac_addrs == NULL) { 2227 rc = ENOMEM; 2228 goto fail_mac_addrs; 2229 } 2230 2231 sfc_adapter_lock_init(sa); 2232 sfc_adapter_lock(sa); 2233 2234 sfc_log_init(sa, "probing"); 2235 rc = sfc_probe(sa); 2236 if (rc != 0) 2237 goto fail_probe; 2238 2239 sfc_log_init(sa, "set device ops"); 2240 rc = sfc_eth_dev_set_ops(dev); 2241 if (rc != 0) 2242 goto fail_set_ops; 2243 2244 sfc_log_init(sa, "attaching"); 2245 rc = sfc_attach(sa); 2246 if (rc != 0) 2247 goto fail_attach; 2248 2249 encp = efx_nic_cfg_get(sa->nic); 2250 2251 /* 2252 * The arguments are really reverse order in comparison to 2253 * Linux kernel. Copy from NIC config to Ethernet device data. 2254 */ 2255 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2256 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2257 2258 sfc_adapter_unlock(sa); 2259 2260 sfc_log_init(sa, "done"); 2261 return 0; 2262 2263 fail_attach: 2264 sfc_eth_dev_clear_ops(dev); 2265 2266 fail_set_ops: 2267 sfc_unprobe(sa); 2268 2269 fail_probe: 2270 sfc_adapter_unlock(sa); 2271 sfc_adapter_lock_fini(sa); 2272 rte_free(dev->data->mac_addrs); 2273 dev->data->mac_addrs = NULL; 2274 2275 fail_mac_addrs: 2276 sfc_kvargs_cleanup(sa); 2277 2278 fail_kvargs_parse: 2279 sfc_log_init(sa, "failed %d", rc); 2280 dev->process_private = NULL; 2281 free(sa); 2282 2283 fail_alloc_sa: 2284 SFC_ASSERT(rc > 0); 2285 return -rc; 2286 } 2287 2288 static int 2289 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2290 { 2291 sfc_dev_close(dev); 2292 2293 return 0; 2294 } 2295 2296 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2297 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2298 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2299 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2300 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2301 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2302 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2303 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2304 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2305 { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) }, 2306 { .vendor_id = 0 /* sentinel */ } 2307 }; 2308 2309 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2310 struct rte_pci_device *pci_dev) 2311 { 2312 return rte_eth_dev_pci_generic_probe(pci_dev, 2313 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2314 } 2315 2316 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2317 { 2318 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2319 } 2320 2321 static struct rte_pci_driver sfc_efx_pmd = { 2322 .id_table = pci_id_sfc_efx_map, 2323 .drv_flags = 2324 RTE_PCI_DRV_INTR_LSC | 2325 RTE_PCI_DRV_NEED_MAPPING, 2326 .probe = sfc_eth_dev_pci_probe, 2327 .remove = sfc_eth_dev_pci_remove, 2328 }; 2329 2330 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2331 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2332 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2333 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2334 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2335 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2336 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2337 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2338 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2339 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2340 2341 RTE_INIT(sfc_driver_register_logtype) 2342 { 2343 int ret; 2344 2345 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2346 RTE_LOG_NOTICE); 2347 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2348 } 2349