1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2021 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <ethdev_driver.h> 12 #include <ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 #include "sfc_sw_stats.h" 32 33 #define SFC_XSTAT_ID_INVALID_VAL UINT64_MAX 34 #define SFC_XSTAT_ID_INVALID_NAME '\0' 35 36 uint32_t sfc_logtype_driver; 37 38 static struct sfc_dp_list sfc_dp_head = 39 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 40 41 42 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 43 44 45 static int 46 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 47 { 48 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 49 efx_nic_fw_info_t enfi; 50 int ret; 51 int rc; 52 53 rc = efx_nic_get_fw_version(sa->nic, &enfi); 54 if (rc != 0) 55 return -rc; 56 57 ret = snprintf(fw_version, fw_size, 58 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 59 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 60 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 61 if (ret < 0) 62 return ret; 63 64 if (enfi.enfi_dpcpu_fw_ids_valid) { 65 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 66 int ret_extra; 67 68 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 69 fw_size - dpcpu_fw_ids_offset, 70 " rx%" PRIx16 " tx%" PRIx16, 71 enfi.enfi_rx_dpcpu_fw_id, 72 enfi.enfi_tx_dpcpu_fw_id); 73 if (ret_extra < 0) 74 return ret_extra; 75 76 ret += ret_extra; 77 } 78 79 if (fw_size < (size_t)(++ret)) 80 return ret; 81 else 82 return 0; 83 } 84 85 static int 86 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 87 { 88 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 89 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 90 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 91 struct sfc_rss *rss = &sas->rss; 92 struct sfc_mae *mae = &sa->mae; 93 uint64_t txq_offloads_def = 0; 94 95 sfc_log_init(sa, "entry"); 96 97 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 98 dev_info->max_mtu = EFX_MAC_SDU_MAX; 99 100 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 101 102 dev_info->max_vfs = sa->sriov.num_vfs; 103 104 /* Autonegotiation may be disabled */ 105 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 106 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 107 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 108 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 109 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 110 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 111 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 112 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 113 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 114 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 115 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 116 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 117 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 118 119 dev_info->max_rx_queues = sa->rxq_max; 120 dev_info->max_tx_queues = sa->txq_max; 121 122 /* By default packets are dropped if no descriptors are available */ 123 dev_info->default_rxconf.rx_drop_en = 1; 124 125 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 126 127 /* 128 * rx_offload_capa includes both device and queue offloads since 129 * the latter may be requested on a per device basis which makes 130 * sense when some offloads are needed to be set on all queues. 131 */ 132 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 133 dev_info->rx_queue_offload_capa; 134 135 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 136 137 /* 138 * tx_offload_capa includes both device and queue offloads since 139 * the latter may be requested on a per device basis which makes 140 * sense when some offloads are needed to be set on all queues. 141 */ 142 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 143 dev_info->tx_queue_offload_capa; 144 145 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 146 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 147 148 dev_info->default_txconf.offloads |= txq_offloads_def; 149 150 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 151 uint64_t rte_hf = 0; 152 unsigned int i; 153 154 for (i = 0; i < rss->hf_map_nb_entries; ++i) 155 rte_hf |= rss->hf_map[i].rte; 156 157 dev_info->reta_size = EFX_RSS_TBL_SIZE; 158 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 159 dev_info->flow_type_rss_offloads = rte_hf; 160 } 161 162 /* Initialize to hardware limits */ 163 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 164 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 165 /* The RXQ hardware requires that the descriptor count is a power 166 * of 2, but rx_desc_lim cannot properly describe that constraint. 167 */ 168 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 169 170 /* Initialize to hardware limits */ 171 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 172 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 173 /* 174 * The TXQ hardware requires that the descriptor count is a power 175 * of 2, but tx_desc_lim cannot properly describe that constraint 176 */ 177 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 178 179 if (sap->dp_rx->get_dev_info != NULL) 180 sap->dp_rx->get_dev_info(dev_info); 181 if (sap->dp_tx->get_dev_info != NULL) 182 sap->dp_tx->get_dev_info(dev_info); 183 184 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 185 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 186 187 if (mae->status == SFC_MAE_STATUS_SUPPORTED) { 188 dev_info->switch_info.name = dev->device->driver->name; 189 dev_info->switch_info.domain_id = mae->switch_domain_id; 190 dev_info->switch_info.port_id = mae->switch_port_id; 191 } 192 193 return 0; 194 } 195 196 static const uint32_t * 197 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 198 { 199 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 200 201 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 202 } 203 204 static int 205 sfc_dev_configure(struct rte_eth_dev *dev) 206 { 207 struct rte_eth_dev_data *dev_data = dev->data; 208 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 209 int rc; 210 211 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 212 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 213 214 sfc_adapter_lock(sa); 215 switch (sa->state) { 216 case SFC_ADAPTER_CONFIGURED: 217 /* FALLTHROUGH */ 218 case SFC_ADAPTER_INITIALIZED: 219 rc = sfc_configure(sa); 220 break; 221 default: 222 sfc_err(sa, "unexpected adapter state %u to configure", 223 sa->state); 224 rc = EINVAL; 225 break; 226 } 227 sfc_adapter_unlock(sa); 228 229 sfc_log_init(sa, "done %d", rc); 230 SFC_ASSERT(rc >= 0); 231 return -rc; 232 } 233 234 static int 235 sfc_dev_start(struct rte_eth_dev *dev) 236 { 237 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 238 int rc; 239 240 sfc_log_init(sa, "entry"); 241 242 sfc_adapter_lock(sa); 243 rc = sfc_start(sa); 244 sfc_adapter_unlock(sa); 245 246 sfc_log_init(sa, "done %d", rc); 247 SFC_ASSERT(rc >= 0); 248 return -rc; 249 } 250 251 static int 252 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 253 { 254 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 255 struct rte_eth_link current_link; 256 int ret; 257 258 sfc_log_init(sa, "entry"); 259 260 if (sa->state != SFC_ADAPTER_STARTED) { 261 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 262 } else if (wait_to_complete) { 263 efx_link_mode_t link_mode; 264 265 if (efx_port_poll(sa->nic, &link_mode) != 0) 266 link_mode = EFX_LINK_UNKNOWN; 267 sfc_port_link_mode_to_info(link_mode, ¤t_link); 268 269 } else { 270 sfc_ev_mgmt_qpoll(sa); 271 rte_eth_linkstatus_get(dev, ¤t_link); 272 } 273 274 ret = rte_eth_linkstatus_set(dev, ¤t_link); 275 if (ret == 0) 276 sfc_notice(sa, "Link status is %s", 277 current_link.link_status ? "UP" : "DOWN"); 278 279 return ret; 280 } 281 282 static int 283 sfc_dev_stop(struct rte_eth_dev *dev) 284 { 285 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 286 287 sfc_log_init(sa, "entry"); 288 289 sfc_adapter_lock(sa); 290 sfc_stop(sa); 291 sfc_adapter_unlock(sa); 292 293 sfc_log_init(sa, "done"); 294 295 return 0; 296 } 297 298 static int 299 sfc_dev_set_link_up(struct rte_eth_dev *dev) 300 { 301 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 302 int rc; 303 304 sfc_log_init(sa, "entry"); 305 306 sfc_adapter_lock(sa); 307 rc = sfc_start(sa); 308 sfc_adapter_unlock(sa); 309 310 SFC_ASSERT(rc >= 0); 311 return -rc; 312 } 313 314 static int 315 sfc_dev_set_link_down(struct rte_eth_dev *dev) 316 { 317 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 318 319 sfc_log_init(sa, "entry"); 320 321 sfc_adapter_lock(sa); 322 sfc_stop(sa); 323 sfc_adapter_unlock(sa); 324 325 return 0; 326 } 327 328 static void 329 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 330 { 331 free(dev->process_private); 332 rte_eth_dev_release_port(dev); 333 } 334 335 static int 336 sfc_dev_close(struct rte_eth_dev *dev) 337 { 338 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 339 340 sfc_log_init(sa, "entry"); 341 342 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 343 sfc_eth_dev_secondary_clear_ops(dev); 344 return 0; 345 } 346 347 sfc_adapter_lock(sa); 348 switch (sa->state) { 349 case SFC_ADAPTER_STARTED: 350 sfc_stop(sa); 351 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 352 /* FALLTHROUGH */ 353 case SFC_ADAPTER_CONFIGURED: 354 sfc_close(sa); 355 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 356 /* FALLTHROUGH */ 357 case SFC_ADAPTER_INITIALIZED: 358 break; 359 default: 360 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 361 break; 362 } 363 364 /* 365 * Cleanup all resources. 366 * Rollback primary process sfc_eth_dev_init() below. 367 */ 368 369 sfc_eth_dev_clear_ops(dev); 370 371 sfc_detach(sa); 372 sfc_unprobe(sa); 373 374 sfc_kvargs_cleanup(sa); 375 376 sfc_adapter_unlock(sa); 377 sfc_adapter_lock_fini(sa); 378 379 sfc_log_init(sa, "done"); 380 381 /* Required for logging, so cleanup last */ 382 sa->eth_dev = NULL; 383 384 free(sa); 385 386 return 0; 387 } 388 389 static int 390 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 391 boolean_t enabled) 392 { 393 struct sfc_port *port; 394 boolean_t *toggle; 395 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 396 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 397 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 398 int rc = 0; 399 400 sfc_adapter_lock(sa); 401 402 port = &sa->port; 403 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 404 405 if (*toggle != enabled) { 406 *toggle = enabled; 407 408 if (sfc_sa2shared(sa)->isolated) { 409 sfc_warn(sa, "isolated mode is active on the port"); 410 sfc_warn(sa, "the change is to be applied on the next " 411 "start provided that isolated mode is " 412 "disabled prior the next start"); 413 } else if ((sa->state == SFC_ADAPTER_STARTED) && 414 ((rc = sfc_set_rx_mode(sa)) != 0)) { 415 *toggle = !(enabled); 416 sfc_warn(sa, "Failed to %s %s mode, rc = %d", 417 ((enabled) ? "enable" : "disable"), desc, rc); 418 419 /* 420 * For promiscuous and all-multicast filters a 421 * permission failure should be reported as an 422 * unsupported filter. 423 */ 424 if (rc == EPERM) 425 rc = ENOTSUP; 426 } 427 } 428 429 sfc_adapter_unlock(sa); 430 return rc; 431 } 432 433 static int 434 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 435 { 436 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 437 438 SFC_ASSERT(rc >= 0); 439 return -rc; 440 } 441 442 static int 443 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 444 { 445 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 446 447 SFC_ASSERT(rc >= 0); 448 return -rc; 449 } 450 451 static int 452 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 453 { 454 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 455 456 SFC_ASSERT(rc >= 0); 457 return -rc; 458 } 459 460 static int 461 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 462 { 463 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 464 465 SFC_ASSERT(rc >= 0); 466 return -rc; 467 } 468 469 static int 470 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid, 471 uint16_t nb_rx_desc, unsigned int socket_id, 472 const struct rte_eth_rxconf *rx_conf, 473 struct rte_mempool *mb_pool) 474 { 475 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 476 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 477 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 478 struct sfc_rxq_info *rxq_info; 479 sfc_sw_index_t sw_index; 480 int rc; 481 482 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 483 ethdev_qid, nb_rx_desc, socket_id); 484 485 sfc_adapter_lock(sa); 486 487 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid); 488 rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id, 489 rx_conf, mb_pool); 490 if (rc != 0) 491 goto fail_rx_qinit; 492 493 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 494 dev->data->rx_queues[ethdev_qid] = rxq_info->dp; 495 496 sfc_adapter_unlock(sa); 497 498 return 0; 499 500 fail_rx_qinit: 501 sfc_adapter_unlock(sa); 502 SFC_ASSERT(rc > 0); 503 return -rc; 504 } 505 506 static void 507 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid) 508 { 509 struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid]; 510 struct sfc_rxq *rxq; 511 struct sfc_adapter *sa; 512 sfc_sw_index_t sw_index; 513 514 if (dp_rxq == NULL) 515 return; 516 517 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 518 sa = rxq->evq->sa; 519 sfc_adapter_lock(sa); 520 521 sw_index = dp_rxq->dpq.queue_id; 522 523 sfc_log_init(sa, "RxQ=%u", sw_index); 524 525 sfc_rx_qfini(sa, sw_index); 526 527 sfc_adapter_unlock(sa); 528 } 529 530 static int 531 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid, 532 uint16_t nb_tx_desc, unsigned int socket_id, 533 const struct rte_eth_txconf *tx_conf) 534 { 535 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 536 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 537 struct sfc_txq_info *txq_info; 538 sfc_sw_index_t sw_index; 539 int rc; 540 541 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 542 ethdev_qid, nb_tx_desc, socket_id); 543 544 sfc_adapter_lock(sa); 545 546 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 547 rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf); 548 if (rc != 0) 549 goto fail_tx_qinit; 550 551 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 552 dev->data->tx_queues[ethdev_qid] = txq_info->dp; 553 554 sfc_adapter_unlock(sa); 555 return 0; 556 557 fail_tx_qinit: 558 sfc_adapter_unlock(sa); 559 SFC_ASSERT(rc > 0); 560 return -rc; 561 } 562 563 static void 564 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid) 565 { 566 struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid]; 567 struct sfc_txq *txq; 568 sfc_sw_index_t sw_index; 569 struct sfc_adapter *sa; 570 571 if (dp_txq == NULL) 572 return; 573 574 txq = sfc_txq_by_dp_txq(dp_txq); 575 sw_index = dp_txq->dpq.queue_id; 576 577 SFC_ASSERT(txq->evq != NULL); 578 sa = txq->evq->sa; 579 580 sfc_log_init(sa, "TxQ = %u", sw_index); 581 582 sfc_adapter_lock(sa); 583 584 sfc_tx_qfini(sa, sw_index); 585 586 sfc_adapter_unlock(sa); 587 } 588 589 /* 590 * Some statistics are computed as A - B where A and B each increase 591 * monotonically with some hardware counter(s) and the counters are read 592 * asynchronously. 593 * 594 * If packet X is counted in A, but not counted in B yet, computed value is 595 * greater than real. 596 * 597 * If packet X is not counted in A at the moment of reading the counter, 598 * but counted in B at the moment of reading the counter, computed value 599 * is less than real. 600 * 601 * However, counter which grows backward is worse evil than slightly wrong 602 * value. So, let's try to guarantee that it never happens except may be 603 * the case when the MAC stats are zeroed as a result of a NIC reset. 604 */ 605 static void 606 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 607 { 608 if ((int64_t)(newval - *stat) > 0 || newval == 0) 609 *stat = newval; 610 } 611 612 static int 613 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 614 { 615 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 616 struct sfc_port *port = &sa->port; 617 uint64_t *mac_stats; 618 int ret; 619 620 sfc_adapter_lock(sa); 621 622 ret = sfc_port_update_mac_stats(sa, B_FALSE); 623 if (ret != 0) 624 goto unlock; 625 626 mac_stats = port->mac_stats_buf; 627 628 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 629 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 630 stats->ipackets = 631 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 632 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 633 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 634 stats->opackets = 635 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 636 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 637 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 638 stats->ibytes = 639 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 640 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 641 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 642 stats->obytes = 643 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 644 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 645 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 646 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 647 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 648 649 /* CRC is included in these stats, but shouldn't be */ 650 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN; 651 stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN; 652 } else { 653 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 654 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 655 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 656 657 /* CRC is included in these stats, but shouldn't be */ 658 stats->ibytes -= mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN; 659 stats->obytes -= mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN; 660 661 /* 662 * Take into account stats which are whenever supported 663 * on EF10. If some stat is not supported by current 664 * firmware variant or HW revision, it is guaranteed 665 * to be zero in mac_stats. 666 */ 667 stats->imissed = 668 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 669 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 670 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 671 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 672 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 673 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 674 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 675 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 676 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 677 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 678 stats->ierrors = 679 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 680 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 681 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 682 /* no oerrors counters supported on EF10 */ 683 684 /* Exclude missed, errors and pauses from Rx packets */ 685 sfc_update_diff_stat(&port->ipackets, 686 mac_stats[EFX_MAC_RX_PKTS] - 687 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 688 stats->imissed - stats->ierrors); 689 stats->ipackets = port->ipackets; 690 } 691 692 unlock: 693 sfc_adapter_unlock(sa); 694 SFC_ASSERT(ret >= 0); 695 return -ret; 696 } 697 698 static int 699 sfc_stats_reset(struct rte_eth_dev *dev) 700 { 701 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 702 struct sfc_port *port = &sa->port; 703 int rc; 704 705 sfc_adapter_lock(sa); 706 707 if (sa->state != SFC_ADAPTER_STARTED) { 708 /* 709 * The operation cannot be done if port is not started; it 710 * will be scheduled to be done during the next port start 711 */ 712 port->mac_stats_reset_pending = B_TRUE; 713 sfc_adapter_unlock(sa); 714 return 0; 715 } 716 717 rc = sfc_port_reset_mac_stats(sa); 718 if (rc != 0) 719 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 720 721 sfc_sw_xstats_reset(sa); 722 723 sfc_adapter_unlock(sa); 724 725 SFC_ASSERT(rc >= 0); 726 return -rc; 727 } 728 729 static unsigned int 730 sfc_xstats_get_nb_supported(struct sfc_adapter *sa) 731 { 732 struct sfc_port *port = &sa->port; 733 unsigned int nb_supported; 734 735 sfc_adapter_lock(sa); 736 nb_supported = port->mac_stats_nb_supported + 737 sfc_sw_xstats_get_nb_supported(sa); 738 sfc_adapter_unlock(sa); 739 740 return nb_supported; 741 } 742 743 static int 744 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 745 unsigned int xstats_count) 746 { 747 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 748 unsigned int nb_written = 0; 749 unsigned int nb_supported = 0; 750 int rc; 751 752 if (unlikely(xstats == NULL)) 753 return sfc_xstats_get_nb_supported(sa); 754 755 rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written); 756 if (rc < 0) 757 return rc; 758 759 nb_supported = rc; 760 sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written, 761 &nb_supported); 762 763 return nb_supported; 764 } 765 766 static int 767 sfc_xstats_get_names(struct rte_eth_dev *dev, 768 struct rte_eth_xstat_name *xstats_names, 769 unsigned int xstats_count) 770 { 771 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 772 struct sfc_port *port = &sa->port; 773 unsigned int i; 774 unsigned int nstats = 0; 775 unsigned int nb_written = 0; 776 int ret; 777 778 if (unlikely(xstats_names == NULL)) 779 return sfc_xstats_get_nb_supported(sa); 780 781 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 782 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 783 if (nstats < xstats_count) { 784 strlcpy(xstats_names[nstats].name, 785 efx_mac_stat_name(sa->nic, i), 786 sizeof(xstats_names[0].name)); 787 nb_written++; 788 } 789 nstats++; 790 } 791 } 792 793 ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count, 794 &nb_written, &nstats); 795 if (ret != 0) { 796 SFC_ASSERT(ret < 0); 797 return ret; 798 } 799 800 return nstats; 801 } 802 803 static int 804 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 805 uint64_t *values, unsigned int n) 806 { 807 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 808 struct sfc_port *port = &sa->port; 809 unsigned int nb_supported; 810 unsigned int i; 811 int rc; 812 813 if (unlikely(ids == NULL || values == NULL)) 814 return -EINVAL; 815 816 /* 817 * Values array could be filled in nonsequential order. Fill values with 818 * constant indicating invalid ID first. 819 */ 820 for (i = 0; i < n; i++) 821 values[i] = SFC_XSTAT_ID_INVALID_VAL; 822 823 rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n); 824 if (rc != 0) 825 return rc; 826 827 nb_supported = port->mac_stats_nb_supported; 828 sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported); 829 830 /* Return number of written stats before invalid ID is encountered. */ 831 for (i = 0; i < n; i++) { 832 if (values[i] == SFC_XSTAT_ID_INVALID_VAL) 833 return i; 834 } 835 836 return n; 837 } 838 839 static int 840 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 841 const uint64_t *ids, 842 struct rte_eth_xstat_name *xstats_names, 843 unsigned int size) 844 { 845 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 846 struct sfc_port *port = &sa->port; 847 unsigned int nb_supported; 848 unsigned int i; 849 int ret; 850 851 if (unlikely(xstats_names == NULL && ids != NULL) || 852 unlikely(xstats_names != NULL && ids == NULL)) 853 return -EINVAL; 854 855 if (unlikely(xstats_names == NULL && ids == NULL)) 856 return sfc_xstats_get_nb_supported(sa); 857 858 /* 859 * Names array could be filled in nonsequential order. Fill names with 860 * string indicating invalid ID first. 861 */ 862 for (i = 0; i < size; i++) 863 xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME; 864 865 sfc_adapter_lock(sa); 866 867 SFC_ASSERT(port->mac_stats_nb_supported <= 868 RTE_DIM(port->mac_stats_by_id)); 869 870 for (i = 0; i < size; i++) { 871 if (ids[i] < port->mac_stats_nb_supported) { 872 strlcpy(xstats_names[i].name, 873 efx_mac_stat_name(sa->nic, 874 port->mac_stats_by_id[ids[i]]), 875 sizeof(xstats_names[0].name)); 876 } 877 } 878 879 nb_supported = port->mac_stats_nb_supported; 880 881 sfc_adapter_unlock(sa); 882 883 ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size, 884 &nb_supported); 885 if (ret != 0) { 886 SFC_ASSERT(ret < 0); 887 return ret; 888 } 889 890 /* Return number of written names before invalid ID is encountered. */ 891 for (i = 0; i < size; i++) { 892 if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME) 893 return i; 894 } 895 896 return size; 897 } 898 899 static int 900 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 901 { 902 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 903 unsigned int wanted_fc, link_fc; 904 905 memset(fc_conf, 0, sizeof(*fc_conf)); 906 907 sfc_adapter_lock(sa); 908 909 if (sa->state == SFC_ADAPTER_STARTED) 910 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 911 else 912 link_fc = sa->port.flow_ctrl; 913 914 switch (link_fc) { 915 case 0: 916 fc_conf->mode = RTE_FC_NONE; 917 break; 918 case EFX_FCNTL_RESPOND: 919 fc_conf->mode = RTE_FC_RX_PAUSE; 920 break; 921 case EFX_FCNTL_GENERATE: 922 fc_conf->mode = RTE_FC_TX_PAUSE; 923 break; 924 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 925 fc_conf->mode = RTE_FC_FULL; 926 break; 927 default: 928 sfc_err(sa, "%s: unexpected flow control value %#x", 929 __func__, link_fc); 930 } 931 932 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 933 934 sfc_adapter_unlock(sa); 935 936 return 0; 937 } 938 939 static int 940 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 941 { 942 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 943 struct sfc_port *port = &sa->port; 944 unsigned int fcntl; 945 int rc; 946 947 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 948 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 949 fc_conf->mac_ctrl_frame_fwd != 0) { 950 sfc_err(sa, "unsupported flow control settings specified"); 951 rc = EINVAL; 952 goto fail_inval; 953 } 954 955 switch (fc_conf->mode) { 956 case RTE_FC_NONE: 957 fcntl = 0; 958 break; 959 case RTE_FC_RX_PAUSE: 960 fcntl = EFX_FCNTL_RESPOND; 961 break; 962 case RTE_FC_TX_PAUSE: 963 fcntl = EFX_FCNTL_GENERATE; 964 break; 965 case RTE_FC_FULL: 966 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 967 break; 968 default: 969 rc = EINVAL; 970 goto fail_inval; 971 } 972 973 sfc_adapter_lock(sa); 974 975 if (sa->state == SFC_ADAPTER_STARTED) { 976 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 977 if (rc != 0) 978 goto fail_mac_fcntl_set; 979 } 980 981 port->flow_ctrl = fcntl; 982 port->flow_ctrl_autoneg = fc_conf->autoneg; 983 984 sfc_adapter_unlock(sa); 985 986 return 0; 987 988 fail_mac_fcntl_set: 989 sfc_adapter_unlock(sa); 990 fail_inval: 991 SFC_ASSERT(rc > 0); 992 return -rc; 993 } 994 995 static int 996 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 997 { 998 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 999 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1000 boolean_t scatter_enabled; 1001 const char *error; 1002 unsigned int i; 1003 1004 for (i = 0; i < sas->rxq_count; i++) { 1005 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 1006 continue; 1007 1008 scatter_enabled = (sas->rxq_info[i].type_flags & 1009 EFX_RXQ_FLAG_SCATTER); 1010 1011 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 1012 encp->enc_rx_prefix_size, 1013 scatter_enabled, 1014 encp->enc_rx_scatter_max, &error)) { 1015 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 1016 error); 1017 return EINVAL; 1018 } 1019 } 1020 1021 return 0; 1022 } 1023 1024 static int 1025 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 1026 { 1027 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1028 size_t pdu = EFX_MAC_PDU(mtu); 1029 size_t old_pdu; 1030 int rc; 1031 1032 sfc_log_init(sa, "mtu=%u", mtu); 1033 1034 rc = EINVAL; 1035 if (pdu < EFX_MAC_PDU_MIN) { 1036 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 1037 (unsigned int)mtu, (unsigned int)pdu, 1038 EFX_MAC_PDU_MIN); 1039 goto fail_inval; 1040 } 1041 if (pdu > EFX_MAC_PDU_MAX) { 1042 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 1043 (unsigned int)mtu, (unsigned int)pdu, 1044 (unsigned int)EFX_MAC_PDU_MAX); 1045 goto fail_inval; 1046 } 1047 1048 sfc_adapter_lock(sa); 1049 1050 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 1051 if (rc != 0) 1052 goto fail_check_scatter; 1053 1054 if (pdu != sa->port.pdu) { 1055 if (sa->state == SFC_ADAPTER_STARTED) { 1056 sfc_stop(sa); 1057 1058 old_pdu = sa->port.pdu; 1059 sa->port.pdu = pdu; 1060 rc = sfc_start(sa); 1061 if (rc != 0) 1062 goto fail_start; 1063 } else { 1064 sa->port.pdu = pdu; 1065 } 1066 } 1067 1068 /* 1069 * The driver does not use it, but other PMDs update jumbo frame 1070 * flag and max_rx_pkt_len when MTU is set. 1071 */ 1072 if (mtu > RTE_ETHER_MTU) { 1073 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 1074 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1075 } 1076 1077 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 1078 1079 sfc_adapter_unlock(sa); 1080 1081 sfc_log_init(sa, "done"); 1082 return 0; 1083 1084 fail_start: 1085 sa->port.pdu = old_pdu; 1086 if (sfc_start(sa) != 0) 1087 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1088 "PDU max size - port is stopped", 1089 (unsigned int)pdu, (unsigned int)old_pdu); 1090 1091 fail_check_scatter: 1092 sfc_adapter_unlock(sa); 1093 1094 fail_inval: 1095 sfc_log_init(sa, "failed %d", rc); 1096 SFC_ASSERT(rc > 0); 1097 return -rc; 1098 } 1099 static int 1100 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1101 { 1102 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1103 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1104 struct sfc_port *port = &sa->port; 1105 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1106 int rc = 0; 1107 1108 sfc_adapter_lock(sa); 1109 1110 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr)) 1111 goto unlock; 1112 1113 /* 1114 * Copy the address to the device private data so that 1115 * it could be recalled in the case of adapter restart. 1116 */ 1117 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1118 1119 /* 1120 * Neither of the two following checks can return 1121 * an error. The new MAC address is preserved in 1122 * the device private data and can be activated 1123 * on the next port start if the user prevents 1124 * isolated mode from being enabled. 1125 */ 1126 if (sfc_sa2shared(sa)->isolated) { 1127 sfc_warn(sa, "isolated mode is active on the port"); 1128 sfc_warn(sa, "will not set MAC address"); 1129 goto unlock; 1130 } 1131 1132 if (sa->state != SFC_ADAPTER_STARTED) { 1133 sfc_notice(sa, "the port is not started"); 1134 sfc_notice(sa, "the new MAC address will be set on port start"); 1135 1136 goto unlock; 1137 } 1138 1139 if (encp->enc_allow_set_mac_with_installed_filters) { 1140 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1141 if (rc != 0) { 1142 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1143 goto unlock; 1144 } 1145 1146 /* 1147 * Changing the MAC address by means of MCDI request 1148 * has no effect on received traffic, therefore 1149 * we also need to update unicast filters 1150 */ 1151 rc = sfc_set_rx_mode_unchecked(sa); 1152 if (rc != 0) { 1153 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1154 /* Rollback the old address */ 1155 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1156 (void)sfc_set_rx_mode_unchecked(sa); 1157 } 1158 } else { 1159 sfc_warn(sa, "cannot set MAC address with filters installed"); 1160 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1161 sfc_warn(sa, "(some traffic may be dropped)"); 1162 1163 /* 1164 * Since setting MAC address with filters installed is not 1165 * allowed on the adapter, the new MAC address will be set 1166 * by means of adapter restart. sfc_start() shall retrieve 1167 * the new address from the device private data and set it. 1168 */ 1169 sfc_stop(sa); 1170 rc = sfc_start(sa); 1171 if (rc != 0) 1172 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1173 } 1174 1175 unlock: 1176 if (rc != 0) 1177 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1178 1179 sfc_adapter_unlock(sa); 1180 1181 SFC_ASSERT(rc >= 0); 1182 return -rc; 1183 } 1184 1185 1186 static int 1187 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1188 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1189 { 1190 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1191 struct sfc_port *port = &sa->port; 1192 uint8_t *mc_addrs = port->mcast_addrs; 1193 int rc; 1194 unsigned int i; 1195 1196 if (sfc_sa2shared(sa)->isolated) { 1197 sfc_err(sa, "isolated mode is active on the port"); 1198 sfc_err(sa, "will not set multicast address list"); 1199 return -ENOTSUP; 1200 } 1201 1202 if (mc_addrs == NULL) 1203 return -ENOBUFS; 1204 1205 if (nb_mc_addr > port->max_mcast_addrs) { 1206 sfc_err(sa, "too many multicast addresses: %u > %u", 1207 nb_mc_addr, port->max_mcast_addrs); 1208 return -EINVAL; 1209 } 1210 1211 for (i = 0; i < nb_mc_addr; ++i) { 1212 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1213 EFX_MAC_ADDR_LEN); 1214 mc_addrs += EFX_MAC_ADDR_LEN; 1215 } 1216 1217 port->nb_mcast_addrs = nb_mc_addr; 1218 1219 if (sa->state != SFC_ADAPTER_STARTED) 1220 return 0; 1221 1222 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1223 port->nb_mcast_addrs); 1224 if (rc != 0) 1225 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1226 1227 SFC_ASSERT(rc >= 0); 1228 return -rc; 1229 } 1230 1231 /* 1232 * The function is used by the secondary process as well. It must not 1233 * use any process-local pointers from the adapter data. 1234 */ 1235 static void 1236 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid, 1237 struct rte_eth_rxq_info *qinfo) 1238 { 1239 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1240 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1241 struct sfc_rxq_info *rxq_info; 1242 1243 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1244 1245 qinfo->mp = rxq_info->refill_mb_pool; 1246 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1247 qinfo->conf.rx_drop_en = 1; 1248 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1249 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1250 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1251 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1252 qinfo->scattered_rx = 1; 1253 } 1254 qinfo->nb_desc = rxq_info->entries; 1255 } 1256 1257 /* 1258 * The function is used by the secondary process as well. It must not 1259 * use any process-local pointers from the adapter data. 1260 */ 1261 static void 1262 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid, 1263 struct rte_eth_txq_info *qinfo) 1264 { 1265 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1266 struct sfc_txq_info *txq_info; 1267 1268 SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count); 1269 1270 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 1271 1272 memset(qinfo, 0, sizeof(*qinfo)); 1273 1274 qinfo->conf.offloads = txq_info->offloads; 1275 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1276 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1277 qinfo->nb_desc = txq_info->entries; 1278 } 1279 1280 /* 1281 * The function is used by the secondary process as well. It must not 1282 * use any process-local pointers from the adapter data. 1283 */ 1284 static uint32_t 1285 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1286 { 1287 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1288 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1289 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1290 struct sfc_rxq_info *rxq_info; 1291 1292 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1293 1294 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1295 return 0; 1296 1297 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1298 } 1299 1300 /* 1301 * The function is used by the secondary process as well. It must not 1302 * use any process-local pointers from the adapter data. 1303 */ 1304 static int 1305 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1306 { 1307 struct sfc_dp_rxq *dp_rxq = queue; 1308 const struct sfc_dp_rx *dp_rx; 1309 1310 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1311 1312 return offset < dp_rx->qdesc_npending(dp_rxq); 1313 } 1314 1315 /* 1316 * The function is used by the secondary process as well. It must not 1317 * use any process-local pointers from the adapter data. 1318 */ 1319 static int 1320 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1321 { 1322 struct sfc_dp_rxq *dp_rxq = queue; 1323 const struct sfc_dp_rx *dp_rx; 1324 1325 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1326 1327 return dp_rx->qdesc_status(dp_rxq, offset); 1328 } 1329 1330 /* 1331 * The function is used by the secondary process as well. It must not 1332 * use any process-local pointers from the adapter data. 1333 */ 1334 static int 1335 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1336 { 1337 struct sfc_dp_txq *dp_txq = queue; 1338 const struct sfc_dp_tx *dp_tx; 1339 1340 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1341 1342 return dp_tx->qdesc_status(dp_txq, offset); 1343 } 1344 1345 static int 1346 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1347 { 1348 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1349 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1350 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1351 struct sfc_rxq_info *rxq_info; 1352 sfc_sw_index_t sw_index; 1353 int rc; 1354 1355 sfc_log_init(sa, "RxQ=%u", ethdev_qid); 1356 1357 sfc_adapter_lock(sa); 1358 1359 rc = EINVAL; 1360 if (sa->state != SFC_ADAPTER_STARTED) 1361 goto fail_not_started; 1362 1363 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1364 if (rxq_info->state != SFC_RXQ_INITIALIZED) 1365 goto fail_not_setup; 1366 1367 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid); 1368 rc = sfc_rx_qstart(sa, sw_index); 1369 if (rc != 0) 1370 goto fail_rx_qstart; 1371 1372 rxq_info->deferred_started = B_TRUE; 1373 1374 sfc_adapter_unlock(sa); 1375 1376 return 0; 1377 1378 fail_rx_qstart: 1379 fail_not_setup: 1380 fail_not_started: 1381 sfc_adapter_unlock(sa); 1382 SFC_ASSERT(rc > 0); 1383 return -rc; 1384 } 1385 1386 static int 1387 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1388 { 1389 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1390 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1391 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1392 struct sfc_rxq_info *rxq_info; 1393 sfc_sw_index_t sw_index; 1394 1395 sfc_log_init(sa, "RxQ=%u", ethdev_qid); 1396 1397 sfc_adapter_lock(sa); 1398 1399 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid); 1400 sfc_rx_qstop(sa, sw_index); 1401 1402 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1403 rxq_info->deferred_started = B_FALSE; 1404 1405 sfc_adapter_unlock(sa); 1406 1407 return 0; 1408 } 1409 1410 static int 1411 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1412 { 1413 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1414 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1415 struct sfc_txq_info *txq_info; 1416 sfc_sw_index_t sw_index; 1417 int rc; 1418 1419 sfc_log_init(sa, "TxQ = %u", ethdev_qid); 1420 1421 sfc_adapter_lock(sa); 1422 1423 rc = EINVAL; 1424 if (sa->state != SFC_ADAPTER_STARTED) 1425 goto fail_not_started; 1426 1427 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 1428 if (txq_info->state != SFC_TXQ_INITIALIZED) 1429 goto fail_not_setup; 1430 1431 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 1432 rc = sfc_tx_qstart(sa, sw_index); 1433 if (rc != 0) 1434 goto fail_tx_qstart; 1435 1436 txq_info->deferred_started = B_TRUE; 1437 1438 sfc_adapter_unlock(sa); 1439 return 0; 1440 1441 fail_tx_qstart: 1442 1443 fail_not_setup: 1444 fail_not_started: 1445 sfc_adapter_unlock(sa); 1446 SFC_ASSERT(rc > 0); 1447 return -rc; 1448 } 1449 1450 static int 1451 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1452 { 1453 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1454 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1455 struct sfc_txq_info *txq_info; 1456 sfc_sw_index_t sw_index; 1457 1458 sfc_log_init(sa, "TxQ = %u", ethdev_qid); 1459 1460 sfc_adapter_lock(sa); 1461 1462 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 1463 sfc_tx_qstop(sa, sw_index); 1464 1465 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 1466 txq_info->deferred_started = B_FALSE; 1467 1468 sfc_adapter_unlock(sa); 1469 return 0; 1470 } 1471 1472 static efx_tunnel_protocol_t 1473 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1474 { 1475 switch (rte_type) { 1476 case RTE_TUNNEL_TYPE_VXLAN: 1477 return EFX_TUNNEL_PROTOCOL_VXLAN; 1478 case RTE_TUNNEL_TYPE_GENEVE: 1479 return EFX_TUNNEL_PROTOCOL_GENEVE; 1480 default: 1481 return EFX_TUNNEL_NPROTOS; 1482 } 1483 } 1484 1485 enum sfc_udp_tunnel_op_e { 1486 SFC_UDP_TUNNEL_ADD_PORT, 1487 SFC_UDP_TUNNEL_DEL_PORT, 1488 }; 1489 1490 static int 1491 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1492 struct rte_eth_udp_tunnel *tunnel_udp, 1493 enum sfc_udp_tunnel_op_e op) 1494 { 1495 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1496 efx_tunnel_protocol_t tunnel_proto; 1497 int rc; 1498 1499 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1500 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1501 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1502 tunnel_udp->udp_port, tunnel_udp->prot_type); 1503 1504 tunnel_proto = 1505 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1506 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1507 rc = ENOTSUP; 1508 goto fail_bad_proto; 1509 } 1510 1511 sfc_adapter_lock(sa); 1512 1513 switch (op) { 1514 case SFC_UDP_TUNNEL_ADD_PORT: 1515 rc = efx_tunnel_config_udp_add(sa->nic, 1516 tunnel_udp->udp_port, 1517 tunnel_proto); 1518 break; 1519 case SFC_UDP_TUNNEL_DEL_PORT: 1520 rc = efx_tunnel_config_udp_remove(sa->nic, 1521 tunnel_udp->udp_port, 1522 tunnel_proto); 1523 break; 1524 default: 1525 rc = EINVAL; 1526 goto fail_bad_op; 1527 } 1528 1529 if (rc != 0) 1530 goto fail_op; 1531 1532 if (sa->state == SFC_ADAPTER_STARTED) { 1533 rc = efx_tunnel_reconfigure(sa->nic); 1534 if (rc == EAGAIN) { 1535 /* 1536 * Configuration is accepted by FW and MC reboot 1537 * is initiated to apply the changes. MC reboot 1538 * will be handled in a usual way (MC reboot 1539 * event on management event queue and adapter 1540 * restart). 1541 */ 1542 rc = 0; 1543 } else if (rc != 0) { 1544 goto fail_reconfigure; 1545 } 1546 } 1547 1548 sfc_adapter_unlock(sa); 1549 return 0; 1550 1551 fail_reconfigure: 1552 /* Remove/restore entry since the change makes the trouble */ 1553 switch (op) { 1554 case SFC_UDP_TUNNEL_ADD_PORT: 1555 (void)efx_tunnel_config_udp_remove(sa->nic, 1556 tunnel_udp->udp_port, 1557 tunnel_proto); 1558 break; 1559 case SFC_UDP_TUNNEL_DEL_PORT: 1560 (void)efx_tunnel_config_udp_add(sa->nic, 1561 tunnel_udp->udp_port, 1562 tunnel_proto); 1563 break; 1564 } 1565 1566 fail_op: 1567 fail_bad_op: 1568 sfc_adapter_unlock(sa); 1569 1570 fail_bad_proto: 1571 SFC_ASSERT(rc > 0); 1572 return -rc; 1573 } 1574 1575 static int 1576 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1577 struct rte_eth_udp_tunnel *tunnel_udp) 1578 { 1579 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1580 } 1581 1582 static int 1583 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1584 struct rte_eth_udp_tunnel *tunnel_udp) 1585 { 1586 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1587 } 1588 1589 /* 1590 * The function is used by the secondary process as well. It must not 1591 * use any process-local pointers from the adapter data. 1592 */ 1593 static int 1594 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1595 struct rte_eth_rss_conf *rss_conf) 1596 { 1597 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1598 struct sfc_rss *rss = &sas->rss; 1599 1600 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1601 return -ENOTSUP; 1602 1603 /* 1604 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1605 * hence, conversion is done here to derive a correct set of ETH_RSS 1606 * flags which corresponds to the active EFX configuration stored 1607 * locally in 'sfc_adapter' and kept up-to-date 1608 */ 1609 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1610 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1611 if (rss_conf->rss_key != NULL) 1612 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1613 1614 return 0; 1615 } 1616 1617 static int 1618 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1619 struct rte_eth_rss_conf *rss_conf) 1620 { 1621 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1622 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1623 unsigned int efx_hash_types; 1624 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context}; 1625 unsigned int n_contexts; 1626 unsigned int mode_i = 0; 1627 unsigned int key_i = 0; 1628 unsigned int i = 0; 1629 int rc = 0; 1630 1631 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2; 1632 1633 if (sfc_sa2shared(sa)->isolated) 1634 return -ENOTSUP; 1635 1636 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1637 sfc_err(sa, "RSS is not available"); 1638 return -ENOTSUP; 1639 } 1640 1641 if (rss->channels == 0) { 1642 sfc_err(sa, "RSS is not configured"); 1643 return -EINVAL; 1644 } 1645 1646 if ((rss_conf->rss_key != NULL) && 1647 (rss_conf->rss_key_len != sizeof(rss->key))) { 1648 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1649 sizeof(rss->key)); 1650 return -EINVAL; 1651 } 1652 1653 sfc_adapter_lock(sa); 1654 1655 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1656 if (rc != 0) 1657 goto fail_rx_hf_rte_to_efx; 1658 1659 for (mode_i = 0; mode_i < n_contexts; mode_i++) { 1660 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i], 1661 rss->hash_alg, efx_hash_types, 1662 B_TRUE); 1663 if (rc != 0) 1664 goto fail_scale_mode_set; 1665 } 1666 1667 if (rss_conf->rss_key != NULL) { 1668 if (sa->state == SFC_ADAPTER_STARTED) { 1669 for (key_i = 0; key_i < n_contexts; key_i++) { 1670 rc = efx_rx_scale_key_set(sa->nic, 1671 contexts[key_i], 1672 rss_conf->rss_key, 1673 sizeof(rss->key)); 1674 if (rc != 0) 1675 goto fail_scale_key_set; 1676 } 1677 } 1678 1679 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1680 } 1681 1682 rss->hash_types = efx_hash_types; 1683 1684 sfc_adapter_unlock(sa); 1685 1686 return 0; 1687 1688 fail_scale_key_set: 1689 for (i = 0; i < key_i; i++) { 1690 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key, 1691 sizeof(rss->key)) != 0) 1692 sfc_err(sa, "failed to restore RSS key"); 1693 } 1694 1695 fail_scale_mode_set: 1696 for (i = 0; i < mode_i; i++) { 1697 if (efx_rx_scale_mode_set(sa->nic, contexts[i], 1698 EFX_RX_HASHALG_TOEPLITZ, 1699 rss->hash_types, B_TRUE) != 0) 1700 sfc_err(sa, "failed to restore RSS mode"); 1701 } 1702 1703 fail_rx_hf_rte_to_efx: 1704 sfc_adapter_unlock(sa); 1705 return -rc; 1706 } 1707 1708 /* 1709 * The function is used by the secondary process as well. It must not 1710 * use any process-local pointers from the adapter data. 1711 */ 1712 static int 1713 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1714 struct rte_eth_rss_reta_entry64 *reta_conf, 1715 uint16_t reta_size) 1716 { 1717 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1718 struct sfc_rss *rss = &sas->rss; 1719 int entry; 1720 1721 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1722 return -ENOTSUP; 1723 1724 if (rss->channels == 0) 1725 return -EINVAL; 1726 1727 if (reta_size != EFX_RSS_TBL_SIZE) 1728 return -EINVAL; 1729 1730 for (entry = 0; entry < reta_size; entry++) { 1731 int grp = entry / RTE_RETA_GROUP_SIZE; 1732 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1733 1734 if ((reta_conf[grp].mask >> grp_idx) & 1) 1735 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1736 } 1737 1738 return 0; 1739 } 1740 1741 static int 1742 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1743 struct rte_eth_rss_reta_entry64 *reta_conf, 1744 uint16_t reta_size) 1745 { 1746 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1747 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1748 unsigned int *rss_tbl_new; 1749 uint16_t entry; 1750 int rc = 0; 1751 1752 1753 if (sfc_sa2shared(sa)->isolated) 1754 return -ENOTSUP; 1755 1756 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1757 sfc_err(sa, "RSS is not available"); 1758 return -ENOTSUP; 1759 } 1760 1761 if (rss->channels == 0) { 1762 sfc_err(sa, "RSS is not configured"); 1763 return -EINVAL; 1764 } 1765 1766 if (reta_size != EFX_RSS_TBL_SIZE) { 1767 sfc_err(sa, "RETA size is wrong (should be %u)", 1768 EFX_RSS_TBL_SIZE); 1769 return -EINVAL; 1770 } 1771 1772 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1773 if (rss_tbl_new == NULL) 1774 return -ENOMEM; 1775 1776 sfc_adapter_lock(sa); 1777 1778 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1779 1780 for (entry = 0; entry < reta_size; entry++) { 1781 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1782 struct rte_eth_rss_reta_entry64 *grp; 1783 1784 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1785 1786 if (grp->mask & (1ull << grp_idx)) { 1787 if (grp->reta[grp_idx] >= rss->channels) { 1788 rc = EINVAL; 1789 goto bad_reta_entry; 1790 } 1791 rss_tbl_new[entry] = grp->reta[grp_idx]; 1792 } 1793 } 1794 1795 if (sa->state == SFC_ADAPTER_STARTED) { 1796 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1797 rss_tbl_new, EFX_RSS_TBL_SIZE); 1798 if (rc != 0) 1799 goto fail_scale_tbl_set; 1800 } 1801 1802 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1803 1804 fail_scale_tbl_set: 1805 bad_reta_entry: 1806 sfc_adapter_unlock(sa); 1807 1808 rte_free(rss_tbl_new); 1809 1810 SFC_ASSERT(rc >= 0); 1811 return -rc; 1812 } 1813 1814 static int 1815 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused, 1816 const struct rte_flow_ops **ops) 1817 { 1818 *ops = &sfc_flow_ops; 1819 return 0; 1820 } 1821 1822 static int 1823 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1824 { 1825 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1826 1827 /* 1828 * If Rx datapath does not provide callback to check mempool, 1829 * all pools are supported. 1830 */ 1831 if (sap->dp_rx->pool_ops_supported == NULL) 1832 return 1; 1833 1834 return sap->dp_rx->pool_ops_supported(pool); 1835 } 1836 1837 static int 1838 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1839 { 1840 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1841 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1842 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1843 struct sfc_rxq_info *rxq_info; 1844 1845 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1846 1847 return sap->dp_rx->intr_enable(rxq_info->dp); 1848 } 1849 1850 static int 1851 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid) 1852 { 1853 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1854 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1855 sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid; 1856 struct sfc_rxq_info *rxq_info; 1857 1858 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid); 1859 1860 return sap->dp_rx->intr_disable(rxq_info->dp); 1861 } 1862 1863 static const struct eth_dev_ops sfc_eth_dev_ops = { 1864 .dev_configure = sfc_dev_configure, 1865 .dev_start = sfc_dev_start, 1866 .dev_stop = sfc_dev_stop, 1867 .dev_set_link_up = sfc_dev_set_link_up, 1868 .dev_set_link_down = sfc_dev_set_link_down, 1869 .dev_close = sfc_dev_close, 1870 .promiscuous_enable = sfc_dev_promisc_enable, 1871 .promiscuous_disable = sfc_dev_promisc_disable, 1872 .allmulticast_enable = sfc_dev_allmulti_enable, 1873 .allmulticast_disable = sfc_dev_allmulti_disable, 1874 .link_update = sfc_dev_link_update, 1875 .stats_get = sfc_stats_get, 1876 .stats_reset = sfc_stats_reset, 1877 .xstats_get = sfc_xstats_get, 1878 .xstats_reset = sfc_stats_reset, 1879 .xstats_get_names = sfc_xstats_get_names, 1880 .dev_infos_get = sfc_dev_infos_get, 1881 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1882 .mtu_set = sfc_dev_set_mtu, 1883 .rx_queue_start = sfc_rx_queue_start, 1884 .rx_queue_stop = sfc_rx_queue_stop, 1885 .tx_queue_start = sfc_tx_queue_start, 1886 .tx_queue_stop = sfc_tx_queue_stop, 1887 .rx_queue_setup = sfc_rx_queue_setup, 1888 .rx_queue_release = sfc_rx_queue_release, 1889 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1890 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1891 .tx_queue_setup = sfc_tx_queue_setup, 1892 .tx_queue_release = sfc_tx_queue_release, 1893 .flow_ctrl_get = sfc_flow_ctrl_get, 1894 .flow_ctrl_set = sfc_flow_ctrl_set, 1895 .mac_addr_set = sfc_mac_addr_set, 1896 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1897 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1898 .reta_update = sfc_dev_rss_reta_update, 1899 .reta_query = sfc_dev_rss_reta_query, 1900 .rss_hash_update = sfc_dev_rss_hash_update, 1901 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1902 .flow_ops_get = sfc_dev_flow_ops_get, 1903 .set_mc_addr_list = sfc_set_mc_addr_list, 1904 .rxq_info_get = sfc_rx_queue_info_get, 1905 .txq_info_get = sfc_tx_queue_info_get, 1906 .fw_version_get = sfc_fw_version_get, 1907 .xstats_get_by_id = sfc_xstats_get_by_id, 1908 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1909 .pool_ops_supported = sfc_pool_ops_supported, 1910 }; 1911 1912 /** 1913 * Duplicate a string in potentially shared memory required for 1914 * multi-process support. 1915 * 1916 * strdup() allocates from process-local heap/memory. 1917 */ 1918 static char * 1919 sfc_strdup(const char *str) 1920 { 1921 size_t size; 1922 char *copy; 1923 1924 if (str == NULL) 1925 return NULL; 1926 1927 size = strlen(str) + 1; 1928 copy = rte_malloc(__func__, size, 0); 1929 if (copy != NULL) 1930 rte_memcpy(copy, str, size); 1931 1932 return copy; 1933 } 1934 1935 static int 1936 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1937 { 1938 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1939 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1940 const struct sfc_dp_rx *dp_rx; 1941 const struct sfc_dp_tx *dp_tx; 1942 const efx_nic_cfg_t *encp; 1943 unsigned int avail_caps = 0; 1944 const char *rx_name = NULL; 1945 const char *tx_name = NULL; 1946 int rc; 1947 1948 switch (sa->family) { 1949 case EFX_FAMILY_HUNTINGTON: 1950 case EFX_FAMILY_MEDFORD: 1951 case EFX_FAMILY_MEDFORD2: 1952 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1953 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX; 1954 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX; 1955 break; 1956 case EFX_FAMILY_RIVERHEAD: 1957 avail_caps |= SFC_DP_HW_FW_CAP_EF100; 1958 break; 1959 default: 1960 break; 1961 } 1962 1963 encp = efx_nic_cfg_get(sa->nic); 1964 if (encp->enc_rx_es_super_buffer_supported) 1965 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1966 1967 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1968 sfc_kvarg_string_handler, &rx_name); 1969 if (rc != 0) 1970 goto fail_kvarg_rx_datapath; 1971 1972 if (rx_name != NULL) { 1973 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1974 if (dp_rx == NULL) { 1975 sfc_err(sa, "Rx datapath %s not found", rx_name); 1976 rc = ENOENT; 1977 goto fail_dp_rx; 1978 } 1979 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1980 sfc_err(sa, 1981 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1982 rx_name); 1983 rc = EINVAL; 1984 goto fail_dp_rx_caps; 1985 } 1986 } else { 1987 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1988 if (dp_rx == NULL) { 1989 sfc_err(sa, "Rx datapath by caps %#x not found", 1990 avail_caps); 1991 rc = ENOENT; 1992 goto fail_dp_rx; 1993 } 1994 } 1995 1996 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1997 if (sas->dp_rx_name == NULL) { 1998 rc = ENOMEM; 1999 goto fail_dp_rx_name; 2000 } 2001 2002 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 2003 2004 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 2005 sfc_kvarg_string_handler, &tx_name); 2006 if (rc != 0) 2007 goto fail_kvarg_tx_datapath; 2008 2009 if (tx_name != NULL) { 2010 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 2011 if (dp_tx == NULL) { 2012 sfc_err(sa, "Tx datapath %s not found", tx_name); 2013 rc = ENOENT; 2014 goto fail_dp_tx; 2015 } 2016 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 2017 sfc_err(sa, 2018 "Insufficient Hw/FW capabilities to use Tx datapath %s", 2019 tx_name); 2020 rc = EINVAL; 2021 goto fail_dp_tx_caps; 2022 } 2023 } else { 2024 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 2025 if (dp_tx == NULL) { 2026 sfc_err(sa, "Tx datapath by caps %#x not found", 2027 avail_caps); 2028 rc = ENOENT; 2029 goto fail_dp_tx; 2030 } 2031 } 2032 2033 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 2034 if (sas->dp_tx_name == NULL) { 2035 rc = ENOMEM; 2036 goto fail_dp_tx_name; 2037 } 2038 2039 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 2040 2041 sa->priv.dp_rx = dp_rx; 2042 sa->priv.dp_tx = dp_tx; 2043 2044 dev->rx_pkt_burst = dp_rx->pkt_burst; 2045 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2046 dev->tx_pkt_burst = dp_tx->pkt_burst; 2047 2048 dev->rx_queue_count = sfc_rx_queue_count; 2049 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2050 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2051 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2052 dev->dev_ops = &sfc_eth_dev_ops; 2053 2054 return 0; 2055 2056 fail_dp_tx_name: 2057 fail_dp_tx_caps: 2058 fail_dp_tx: 2059 fail_kvarg_tx_datapath: 2060 rte_free(sas->dp_rx_name); 2061 sas->dp_rx_name = NULL; 2062 2063 fail_dp_rx_name: 2064 fail_dp_rx_caps: 2065 fail_dp_rx: 2066 fail_kvarg_rx_datapath: 2067 return rc; 2068 } 2069 2070 static void 2071 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 2072 { 2073 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2074 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2075 2076 dev->dev_ops = NULL; 2077 dev->tx_pkt_prepare = NULL; 2078 dev->rx_pkt_burst = NULL; 2079 dev->tx_pkt_burst = NULL; 2080 2081 rte_free(sas->dp_tx_name); 2082 sas->dp_tx_name = NULL; 2083 sa->priv.dp_tx = NULL; 2084 2085 rte_free(sas->dp_rx_name); 2086 sas->dp_rx_name = NULL; 2087 sa->priv.dp_rx = NULL; 2088 } 2089 2090 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2091 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2092 .reta_query = sfc_dev_rss_reta_query, 2093 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2094 .rxq_info_get = sfc_rx_queue_info_get, 2095 .txq_info_get = sfc_tx_queue_info_get, 2096 }; 2097 2098 static int 2099 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2100 { 2101 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2102 struct sfc_adapter_priv *sap; 2103 const struct sfc_dp_rx *dp_rx; 2104 const struct sfc_dp_tx *dp_tx; 2105 int rc; 2106 2107 /* 2108 * Allocate process private data from heap, since it should not 2109 * be located in shared memory allocated using rte_malloc() API. 2110 */ 2111 sap = calloc(1, sizeof(*sap)); 2112 if (sap == NULL) { 2113 rc = ENOMEM; 2114 goto fail_alloc_priv; 2115 } 2116 2117 sap->logtype_main = logtype_main; 2118 2119 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2120 if (dp_rx == NULL) { 2121 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2122 "cannot find %s Rx datapath", sas->dp_rx_name); 2123 rc = ENOENT; 2124 goto fail_dp_rx; 2125 } 2126 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2127 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2128 "%s Rx datapath does not support multi-process", 2129 sas->dp_rx_name); 2130 rc = EINVAL; 2131 goto fail_dp_rx_multi_process; 2132 } 2133 2134 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2135 if (dp_tx == NULL) { 2136 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2137 "cannot find %s Tx datapath", sas->dp_tx_name); 2138 rc = ENOENT; 2139 goto fail_dp_tx; 2140 } 2141 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2142 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2143 "%s Tx datapath does not support multi-process", 2144 sas->dp_tx_name); 2145 rc = EINVAL; 2146 goto fail_dp_tx_multi_process; 2147 } 2148 2149 sap->dp_rx = dp_rx; 2150 sap->dp_tx = dp_tx; 2151 2152 dev->process_private = sap; 2153 dev->rx_pkt_burst = dp_rx->pkt_burst; 2154 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2155 dev->tx_pkt_burst = dp_tx->pkt_burst; 2156 dev->rx_queue_count = sfc_rx_queue_count; 2157 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2158 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2159 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2160 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2161 2162 return 0; 2163 2164 fail_dp_tx_multi_process: 2165 fail_dp_tx: 2166 fail_dp_rx_multi_process: 2167 fail_dp_rx: 2168 free(sap); 2169 2170 fail_alloc_priv: 2171 return rc; 2172 } 2173 2174 static void 2175 sfc_register_dp(void) 2176 { 2177 /* Register once */ 2178 if (TAILQ_EMPTY(&sfc_dp_head)) { 2179 /* Prefer EF10 datapath */ 2180 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp); 2181 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2182 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2183 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2184 2185 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp); 2186 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2187 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2188 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2189 } 2190 } 2191 2192 static int 2193 sfc_eth_dev_init(struct rte_eth_dev *dev) 2194 { 2195 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2196 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2197 uint32_t logtype_main; 2198 struct sfc_adapter *sa; 2199 int rc; 2200 const efx_nic_cfg_t *encp; 2201 const struct rte_ether_addr *from; 2202 int ret; 2203 2204 if (sfc_efx_dev_class_get(pci_dev->device.devargs) != 2205 SFC_EFX_DEV_CLASS_NET) { 2206 SFC_GENERIC_LOG(DEBUG, 2207 "Incompatible device class: skip probing, should be probed by other sfc driver."); 2208 return 1; 2209 } 2210 2211 sfc_register_dp(); 2212 2213 logtype_main = sfc_register_logtype(&pci_dev->addr, 2214 SFC_LOGTYPE_MAIN_STR, 2215 RTE_LOG_NOTICE); 2216 2217 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2218 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2219 2220 /* Required for logging */ 2221 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix), 2222 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ", 2223 pci_dev->addr.domain, pci_dev->addr.bus, 2224 pci_dev->addr.devid, pci_dev->addr.function, 2225 dev->data->port_id); 2226 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) { 2227 SFC_GENERIC_LOG(ERR, 2228 "reserved log prefix is too short for " PCI_PRI_FMT, 2229 pci_dev->addr.domain, pci_dev->addr.bus, 2230 pci_dev->addr.devid, pci_dev->addr.function); 2231 return -EINVAL; 2232 } 2233 sas->pci_addr = pci_dev->addr; 2234 sas->port_id = dev->data->port_id; 2235 2236 /* 2237 * Allocate process private data from heap, since it should not 2238 * be located in shared memory allocated using rte_malloc() API. 2239 */ 2240 sa = calloc(1, sizeof(*sa)); 2241 if (sa == NULL) { 2242 rc = ENOMEM; 2243 goto fail_alloc_sa; 2244 } 2245 2246 dev->process_private = sa; 2247 2248 /* Required for logging */ 2249 sa->priv.shared = sas; 2250 sa->priv.logtype_main = logtype_main; 2251 2252 sa->eth_dev = dev; 2253 2254 /* Copy PCI device info to the dev->data */ 2255 rte_eth_copy_pci_info(dev, pci_dev); 2256 dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 2257 dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE; 2258 2259 rc = sfc_kvargs_parse(sa); 2260 if (rc != 0) 2261 goto fail_kvargs_parse; 2262 2263 sfc_log_init(sa, "entry"); 2264 2265 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2266 if (dev->data->mac_addrs == NULL) { 2267 rc = ENOMEM; 2268 goto fail_mac_addrs; 2269 } 2270 2271 sfc_adapter_lock_init(sa); 2272 sfc_adapter_lock(sa); 2273 2274 sfc_log_init(sa, "probing"); 2275 rc = sfc_probe(sa); 2276 if (rc != 0) 2277 goto fail_probe; 2278 2279 sfc_log_init(sa, "set device ops"); 2280 rc = sfc_eth_dev_set_ops(dev); 2281 if (rc != 0) 2282 goto fail_set_ops; 2283 2284 sfc_log_init(sa, "attaching"); 2285 rc = sfc_attach(sa); 2286 if (rc != 0) 2287 goto fail_attach; 2288 2289 encp = efx_nic_cfg_get(sa->nic); 2290 2291 /* 2292 * The arguments are really reverse order in comparison to 2293 * Linux kernel. Copy from NIC config to Ethernet device data. 2294 */ 2295 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2296 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2297 2298 sfc_adapter_unlock(sa); 2299 2300 sfc_log_init(sa, "done"); 2301 return 0; 2302 2303 fail_attach: 2304 sfc_eth_dev_clear_ops(dev); 2305 2306 fail_set_ops: 2307 sfc_unprobe(sa); 2308 2309 fail_probe: 2310 sfc_adapter_unlock(sa); 2311 sfc_adapter_lock_fini(sa); 2312 rte_free(dev->data->mac_addrs); 2313 dev->data->mac_addrs = NULL; 2314 2315 fail_mac_addrs: 2316 sfc_kvargs_cleanup(sa); 2317 2318 fail_kvargs_parse: 2319 sfc_log_init(sa, "failed %d", rc); 2320 dev->process_private = NULL; 2321 free(sa); 2322 2323 fail_alloc_sa: 2324 SFC_ASSERT(rc > 0); 2325 return -rc; 2326 } 2327 2328 static int 2329 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2330 { 2331 sfc_dev_close(dev); 2332 2333 return 0; 2334 } 2335 2336 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2337 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2338 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2339 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2340 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2341 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2342 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2343 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2344 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2345 { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) }, 2346 { .vendor_id = 0 /* sentinel */ } 2347 }; 2348 2349 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2350 struct rte_pci_device *pci_dev) 2351 { 2352 return rte_eth_dev_pci_generic_probe(pci_dev, 2353 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2354 } 2355 2356 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2357 { 2358 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2359 } 2360 2361 static struct rte_pci_driver sfc_efx_pmd = { 2362 .id_table = pci_id_sfc_efx_map, 2363 .drv_flags = 2364 RTE_PCI_DRV_INTR_LSC | 2365 RTE_PCI_DRV_NEED_MAPPING, 2366 .probe = sfc_eth_dev_pci_probe, 2367 .remove = sfc_eth_dev_pci_remove, 2368 }; 2369 2370 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2371 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2372 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2373 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2374 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2375 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2376 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2377 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2378 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2379 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2380 2381 RTE_INIT(sfc_driver_register_logtype) 2382 { 2383 int ret; 2384 2385 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2386 RTE_LOG_NOTICE); 2387 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2388 } 2389