xref: /dpdk/drivers/net/sfc/sfc_ef100_rx.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2018-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 /* EF100 native datapath implementation */
11 
12 #include <stdbool.h>
13 
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18 
19 #include "efx_types.h"
20 #include "efx_regs_ef100.h"
21 #include "efx.h"
22 
23 #include "sfc_debug.h"
24 #include "sfc_tweak.h"
25 #include "sfc_dp_rx.h"
26 #include "sfc_kvargs.h"
27 #include "sfc_ef100.h"
28 
29 
30 #define sfc_ef100_rx_err(_rxq, ...) \
31 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, ERR, &(_rxq)->dp.dpq, __VA_ARGS__)
32 
33 #define sfc_ef100_rx_debug(_rxq, ...) \
34 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, DEBUG, &(_rxq)->dp.dpq, \
35 		   __VA_ARGS__)
36 
37 /**
38  * Maximum number of descriptors/buffers in the Rx ring.
39  * It should guarantee that corresponding event queue never overfill.
40  * EF10 native datapath uses event queue of the same size as Rx queue.
41  * Maximum number of events on datapath can be estimated as number of
42  * Rx queue entries (one event per Rx buffer in the worst case) plus
43  * Rx error and flush events.
44  */
45 #define SFC_EF100_RXQ_LIMIT(_ndesc) \
46 	((_ndesc) - 1 /* head must not step on tail */ - \
47 	 1 /* Rx error */ - 1 /* flush */)
48 
49 struct sfc_ef100_rx_sw_desc {
50 	struct rte_mbuf			*mbuf;
51 };
52 
53 struct sfc_ef100_rxq {
54 	/* Used on data path */
55 	unsigned int			flags;
56 #define SFC_EF100_RXQ_STARTED		0x1
57 #define SFC_EF100_RXQ_NOT_RUNNING	0x2
58 #define SFC_EF100_RXQ_EXCEPTION		0x4
59 #define SFC_EF100_RXQ_RSS_HASH		0x10
60 #define SFC_EF100_RXQ_USER_MARK		0x20
61 #define SFC_EF100_RXQ_FLAG_INTR_EN	0x40
62 	unsigned int			ptr_mask;
63 	unsigned int			evq_phase_bit_shift;
64 	unsigned int			ready_pkts;
65 	unsigned int			completed;
66 	unsigned int			evq_read_ptr;
67 	unsigned int			evq_read_ptr_primed;
68 	volatile efx_qword_t		*evq_hw_ring;
69 	struct sfc_ef100_rx_sw_desc	*sw_ring;
70 	uint64_t			rearm_data;
71 	uint16_t			buf_size;
72 	uint16_t			prefix_size;
73 
74 	unsigned int			evq_hw_index;
75 	volatile void			*evq_prime;
76 
77 	/* Used on refill */
78 	unsigned int			added;
79 	unsigned int			max_fill_level;
80 	unsigned int			refill_threshold;
81 	struct rte_mempool		*refill_mb_pool;
82 	efx_qword_t			*rxq_hw_ring;
83 	volatile void			*doorbell;
84 
85 	/* Datapath receive queue anchor */
86 	struct sfc_dp_rxq		dp;
87 };
88 
89 static inline struct sfc_ef100_rxq *
90 sfc_ef100_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
91 {
92 	return container_of(dp_rxq, struct sfc_ef100_rxq, dp);
93 }
94 
95 static void
96 sfc_ef100_rx_qprime(struct sfc_ef100_rxq *rxq)
97 {
98 	sfc_ef100_evq_prime(rxq->evq_prime, rxq->evq_hw_index,
99 			    rxq->evq_read_ptr & rxq->ptr_mask);
100 	rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
101 }
102 
103 static inline void
104 sfc_ef100_rx_qpush(struct sfc_ef100_rxq *rxq, unsigned int added)
105 {
106 	efx_dword_t dword;
107 
108 	EFX_POPULATE_DWORD_1(dword, ERF_GZ_RX_RING_PIDX, added & rxq->ptr_mask);
109 
110 	/* DMA sync to device is not required */
111 
112 	/*
113 	 * rte_write32() has rte_io_wmb() which guarantees that the STORE
114 	 * operations (i.e. Rx and event descriptor updates) that precede
115 	 * the rte_io_wmb() call are visible to NIC before the STORE
116 	 * operations that follow it (i.e. doorbell write).
117 	 */
118 	rte_write32(dword.ed_u32[0], rxq->doorbell);
119 
120 	sfc_ef100_rx_debug(rxq, "RxQ pushed doorbell at pidx %u (added=%u)",
121 			   EFX_DWORD_FIELD(dword, ERF_GZ_RX_RING_PIDX),
122 			   added);
123 }
124 
125 static void
126 sfc_ef100_rx_qrefill(struct sfc_ef100_rxq *rxq)
127 {
128 	const unsigned int ptr_mask = rxq->ptr_mask;
129 	unsigned int free_space;
130 	unsigned int bulks;
131 	void *objs[SFC_RX_REFILL_BULK];
132 	unsigned int added = rxq->added;
133 
134 	free_space = rxq->max_fill_level - (added - rxq->completed);
135 
136 	if (free_space < rxq->refill_threshold)
137 		return;
138 
139 	bulks = free_space / RTE_DIM(objs);
140 	/* refill_threshold guarantees that bulks is positive */
141 	SFC_ASSERT(bulks > 0);
142 
143 	do {
144 		unsigned int id;
145 		unsigned int i;
146 
147 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
148 						  RTE_DIM(objs)) < 0)) {
149 			struct rte_eth_dev_data *dev_data =
150 				rte_eth_devices[rxq->dp.dpq.port_id].data;
151 
152 			/*
153 			 * It is hardly a safe way to increment counter
154 			 * from different contexts, but all PMDs do it.
155 			 */
156 			dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
157 			/* Return if we have posted nothing yet */
158 			if (added == rxq->added)
159 				return;
160 			/* Push posted */
161 			break;
162 		}
163 
164 		for (i = 0, id = added & ptr_mask;
165 		     i < RTE_DIM(objs);
166 		     ++i, ++id) {
167 			struct rte_mbuf *m = objs[i];
168 			struct sfc_ef100_rx_sw_desc *rxd;
169 			rte_iova_t phys_addr;
170 
171 			__rte_mbuf_raw_sanity_check(m);
172 
173 			SFC_ASSERT((id & ~ptr_mask) == 0);
174 			rxd = &rxq->sw_ring[id];
175 			rxd->mbuf = m;
176 
177 			/*
178 			 * Avoid writing to mbuf. It is cheaper to do it
179 			 * when we receive packet and fill in nearby
180 			 * structure members.
181 			 */
182 
183 			phys_addr = rte_mbuf_data_iova_default(m);
184 			EFX_POPULATE_QWORD_1(rxq->rxq_hw_ring[id],
185 			    ESF_GZ_RX_BUF_ADDR, phys_addr);
186 		}
187 
188 		added += RTE_DIM(objs);
189 	} while (--bulks > 0);
190 
191 	SFC_ASSERT(rxq->added != added);
192 	rxq->added = added;
193 	sfc_ef100_rx_qpush(rxq, added);
194 }
195 
196 static inline uint64_t
197 sfc_ef100_rx_nt_or_inner_l4_csum(const efx_word_t class)
198 {
199 	return EFX_WORD_FIELD(class,
200 			      ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CSUM) ==
201 		ESE_GZ_RH_HCLASS_L4_CSUM_GOOD ?
202 		PKT_RX_L4_CKSUM_GOOD : PKT_RX_L4_CKSUM_BAD;
203 }
204 
205 static inline uint64_t
206 sfc_ef100_rx_tun_outer_l4_csum(const efx_word_t class)
207 {
208 	return EFX_WORD_FIELD(class,
209 			      ESF_GZ_RX_PREFIX_HCLASS_TUN_OUTER_L4_CSUM) ==
210 		ESE_GZ_RH_HCLASS_L4_CSUM_GOOD ?
211 		PKT_RX_OUTER_L4_CKSUM_GOOD : PKT_RX_OUTER_L4_CKSUM_GOOD;
212 }
213 
214 static uint32_t
215 sfc_ef100_rx_class_decode(const efx_word_t class, uint64_t *ol_flags)
216 {
217 	uint32_t ptype;
218 	bool no_tunnel = false;
219 
220 	if (unlikely(EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_L2_CLASS) !=
221 		     ESE_GZ_RH_HCLASS_L2_CLASS_E2_0123VLAN))
222 		return 0;
223 
224 	switch (EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_L2_N_VLAN)) {
225 	case 0:
226 		ptype = RTE_PTYPE_L2_ETHER;
227 		break;
228 	case 1:
229 		ptype = RTE_PTYPE_L2_ETHER_VLAN;
230 		break;
231 	default:
232 		ptype = RTE_PTYPE_L2_ETHER_QINQ;
233 		break;
234 	}
235 
236 	switch (EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_TUNNEL_CLASS)) {
237 	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_NONE:
238 		no_tunnel = true;
239 		break;
240 	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_VXLAN:
241 		ptype |= RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP;
242 		*ol_flags |= sfc_ef100_rx_tun_outer_l4_csum(class);
243 		break;
244 	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_NVGRE:
245 		ptype |= RTE_PTYPE_TUNNEL_NVGRE;
246 		break;
247 	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_GENEVE:
248 		ptype |= RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP;
249 		*ol_flags |= sfc_ef100_rx_tun_outer_l4_csum(class);
250 		break;
251 	default:
252 		/*
253 		 * Driver does not know the tunnel, but it is
254 		 * still a tunnel and NT_OR_INNER refer to inner
255 		 * frame.
256 		 */
257 		no_tunnel = false;
258 	}
259 
260 	if (no_tunnel) {
261 		bool l4_valid = true;
262 
263 		switch (EFX_WORD_FIELD(class,
264 			ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L3_CLASS)) {
265 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
266 			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
267 			*ol_flags |= PKT_RX_IP_CKSUM_GOOD;
268 			break;
269 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
270 			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
271 			*ol_flags |= PKT_RX_IP_CKSUM_BAD;
272 			break;
273 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
274 			ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
275 			break;
276 		default:
277 			l4_valid = false;
278 		}
279 
280 		if (l4_valid) {
281 			switch (EFX_WORD_FIELD(class,
282 				ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CLASS)) {
283 			case ESE_GZ_RH_HCLASS_L4_CLASS_TCP:
284 				ptype |= RTE_PTYPE_L4_TCP;
285 				*ol_flags |=
286 					sfc_ef100_rx_nt_or_inner_l4_csum(class);
287 				break;
288 			case ESE_GZ_RH_HCLASS_L4_CLASS_UDP:
289 				ptype |= RTE_PTYPE_L4_UDP;
290 				*ol_flags |=
291 					sfc_ef100_rx_nt_or_inner_l4_csum(class);
292 				break;
293 			case ESE_GZ_RH_HCLASS_L4_CLASS_FRAG:
294 				ptype |= RTE_PTYPE_L4_FRAG;
295 				break;
296 			}
297 		}
298 	} else {
299 		bool l4_valid = true;
300 
301 		switch (EFX_WORD_FIELD(class,
302 			ESF_GZ_RX_PREFIX_HCLASS_TUN_OUTER_L3_CLASS)) {
303 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
304 			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
305 			break;
306 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
307 			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
308 			*ol_flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
309 			break;
310 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
311 			ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
312 			break;
313 		}
314 
315 		switch (EFX_WORD_FIELD(class,
316 			ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L3_CLASS)) {
317 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
318 			ptype |= RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
319 			*ol_flags |= PKT_RX_IP_CKSUM_GOOD;
320 			break;
321 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
322 			ptype |= RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
323 			*ol_flags |= PKT_RX_IP_CKSUM_BAD;
324 			break;
325 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
326 			ptype |= RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
327 			break;
328 		default:
329 			l4_valid = false;
330 			break;
331 		}
332 
333 		if (l4_valid) {
334 			switch (EFX_WORD_FIELD(class,
335 				ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CLASS)) {
336 			case ESE_GZ_RH_HCLASS_L4_CLASS_TCP:
337 				ptype |= RTE_PTYPE_INNER_L4_TCP;
338 				*ol_flags |=
339 					sfc_ef100_rx_nt_or_inner_l4_csum(class);
340 				break;
341 			case ESE_GZ_RH_HCLASS_L4_CLASS_UDP:
342 				ptype |= RTE_PTYPE_INNER_L4_UDP;
343 				*ol_flags |=
344 					sfc_ef100_rx_nt_or_inner_l4_csum(class);
345 				break;
346 			case ESE_GZ_RH_HCLASS_L4_CLASS_FRAG:
347 				ptype |= RTE_PTYPE_INNER_L4_FRAG;
348 				break;
349 			}
350 		}
351 	}
352 
353 	return ptype;
354 }
355 
356 /*
357  * Below function relies on the following fields in Rx prefix.
358  * Some fields are mandatory, some fields are optional.
359  * See sfc_ef100_rx_qstart() below.
360  */
361 static const efx_rx_prefix_layout_t sfc_ef100_rx_prefix_layout = {
362 	.erpl_fields	= {
363 #define	SFC_EF100_RX_PREFIX_FIELD(_name, _big_endian) \
364 	EFX_RX_PREFIX_FIELD(_name, ESF_GZ_RX_PREFIX_ ## _name, _big_endian)
365 
366 		SFC_EF100_RX_PREFIX_FIELD(LENGTH, B_FALSE),
367 		SFC_EF100_RX_PREFIX_FIELD(RSS_HASH_VALID, B_FALSE),
368 		SFC_EF100_RX_PREFIX_FIELD(USER_FLAG, B_FALSE),
369 		SFC_EF100_RX_PREFIX_FIELD(CLASS, B_FALSE),
370 		SFC_EF100_RX_PREFIX_FIELD(RSS_HASH, B_FALSE),
371 		SFC_EF100_RX_PREFIX_FIELD(USER_MARK, B_FALSE),
372 
373 #undef	SFC_EF100_RX_PREFIX_FIELD
374 	}
375 };
376 
377 static bool
378 sfc_ef100_rx_prefix_to_offloads(const struct sfc_ef100_rxq *rxq,
379 				const efx_oword_t *rx_prefix,
380 				struct rte_mbuf *m)
381 {
382 	const efx_word_t *class;
383 	uint64_t ol_flags = 0;
384 
385 	RTE_BUILD_BUG_ON(EFX_LOW_BIT(ESF_GZ_RX_PREFIX_CLASS) % CHAR_BIT != 0);
386 	RTE_BUILD_BUG_ON(EFX_WIDTH(ESF_GZ_RX_PREFIX_CLASS) % CHAR_BIT != 0);
387 	RTE_BUILD_BUG_ON(EFX_WIDTH(ESF_GZ_RX_PREFIX_CLASS) / CHAR_BIT !=
388 			 sizeof(*class));
389 	class = (const efx_word_t *)((const uint8_t *)rx_prefix +
390 		EFX_LOW_BIT(ESF_GZ_RX_PREFIX_CLASS) / CHAR_BIT);
391 	if (unlikely(EFX_WORD_FIELD(*class,
392 				    ESF_GZ_RX_PREFIX_HCLASS_L2_STATUS) !=
393 		     ESE_GZ_RH_HCLASS_L2_STATUS_OK))
394 		return false;
395 
396 	m->packet_type = sfc_ef100_rx_class_decode(*class, &ol_flags);
397 
398 	if ((rxq->flags & SFC_EF100_RXQ_RSS_HASH) &&
399 	    EFX_TEST_OWORD_BIT(rx_prefix[0],
400 			       ESF_GZ_RX_PREFIX_RSS_HASH_VALID_LBN)) {
401 		ol_flags |= PKT_RX_RSS_HASH;
402 		/* EFX_OWORD_FIELD converts little-endian to CPU */
403 		m->hash.rss = EFX_OWORD_FIELD(rx_prefix[0],
404 					      ESF_GZ_RX_PREFIX_RSS_HASH);
405 	}
406 
407 	if ((rxq->flags & SFC_EF100_RXQ_USER_MARK) &&
408 	    EFX_TEST_OWORD_BIT(rx_prefix[0], ESF_GZ_RX_PREFIX_USER_FLAG_LBN)) {
409 		ol_flags |= PKT_RX_FDIR_ID;
410 		/* EFX_OWORD_FIELD converts little-endian to CPU */
411 		m->hash.fdir.hi = EFX_OWORD_FIELD(rx_prefix[0],
412 						  ESF_GZ_RX_PREFIX_USER_MARK);
413 	}
414 
415 	m->ol_flags = ol_flags;
416 	return true;
417 }
418 
419 static const uint8_t *
420 sfc_ef100_rx_pkt_prefix(const struct rte_mbuf *m)
421 {
422 	return (const uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
423 }
424 
425 static struct rte_mbuf *
426 sfc_ef100_rx_next_mbuf(struct sfc_ef100_rxq *rxq)
427 {
428 	struct rte_mbuf *m;
429 	unsigned int id;
430 
431 	/* mbuf associated with current Rx descriptor */
432 	m = rxq->sw_ring[rxq->completed++ & rxq->ptr_mask].mbuf;
433 
434 	/* completed is already moved to the next one */
435 	if (unlikely(rxq->completed == rxq->added))
436 		goto done;
437 
438 	/*
439 	 * Prefetch Rx prefix of the next packet.
440 	 * Current packet is scattered and the next mbuf is its fragment
441 	 * it simply prefetches some data - no harm since packet rate
442 	 * should not be high if scatter is used.
443 	 */
444 	id = rxq->completed & rxq->ptr_mask;
445 	rte_prefetch0(sfc_ef100_rx_pkt_prefix(rxq->sw_ring[id].mbuf));
446 
447 	if (unlikely(rxq->completed + 1 == rxq->added))
448 		goto done;
449 
450 	/*
451 	 * Prefetch mbuf control structure of the next after next Rx
452 	 * descriptor.
453 	 */
454 	id = (id == rxq->ptr_mask) ? 0 : (id + 1);
455 	rte_mbuf_prefetch_part1(rxq->sw_ring[id].mbuf);
456 
457 	/*
458 	 * If the next time we'll need SW Rx descriptor from the next
459 	 * cache line, try to make sure that we have it in cache.
460 	 */
461 	if ((id & 0x7) == 0x7)
462 		rte_prefetch0(&rxq->sw_ring[(id + 1) & rxq->ptr_mask]);
463 
464 done:
465 	return m;
466 }
467 
468 static struct rte_mbuf **
469 sfc_ef100_rx_process_ready_pkts(struct sfc_ef100_rxq *rxq,
470 				struct rte_mbuf **rx_pkts,
471 				struct rte_mbuf ** const rx_pkts_end)
472 {
473 	while (rxq->ready_pkts > 0 && rx_pkts != rx_pkts_end) {
474 		struct rte_mbuf *pkt;
475 		struct rte_mbuf *lastseg;
476 		const efx_oword_t *rx_prefix;
477 		uint16_t pkt_len;
478 		uint16_t seg_len;
479 		bool deliver;
480 
481 		rxq->ready_pkts--;
482 
483 		pkt = sfc_ef100_rx_next_mbuf(rxq);
484 		__rte_mbuf_raw_sanity_check(pkt);
485 
486 		RTE_BUILD_BUG_ON(sizeof(pkt->rearm_data[0]) !=
487 				 sizeof(rxq->rearm_data));
488 		pkt->rearm_data[0] = rxq->rearm_data;
489 
490 		/* data_off already moved past Rx prefix */
491 		rx_prefix = (const efx_oword_t *)sfc_ef100_rx_pkt_prefix(pkt);
492 
493 		pkt_len = EFX_OWORD_FIELD(rx_prefix[0],
494 					  ESF_GZ_RX_PREFIX_LENGTH);
495 		SFC_ASSERT(pkt_len > 0);
496 		rte_pktmbuf_pkt_len(pkt) = pkt_len;
497 
498 		seg_len = RTE_MIN(pkt_len, rxq->buf_size - rxq->prefix_size);
499 		rte_pktmbuf_data_len(pkt) = seg_len;
500 
501 		deliver = sfc_ef100_rx_prefix_to_offloads(rxq, rx_prefix, pkt);
502 
503 		lastseg = pkt;
504 		while ((pkt_len -= seg_len) > 0) {
505 			struct rte_mbuf *seg;
506 
507 			seg = sfc_ef100_rx_next_mbuf(rxq);
508 			__rte_mbuf_raw_sanity_check(seg);
509 
510 			seg->data_off = RTE_PKTMBUF_HEADROOM;
511 
512 			seg_len = RTE_MIN(pkt_len, rxq->buf_size);
513 			rte_pktmbuf_data_len(seg) = seg_len;
514 			rte_pktmbuf_pkt_len(seg) = seg_len;
515 
516 			pkt->nb_segs++;
517 			lastseg->next = seg;
518 			lastseg = seg;
519 		}
520 
521 		if (likely(deliver))
522 			*rx_pkts++ = pkt;
523 		else
524 			rte_pktmbuf_free(pkt);
525 	}
526 
527 	return rx_pkts;
528 }
529 
530 static bool
531 sfc_ef100_rx_get_event(struct sfc_ef100_rxq *rxq, efx_qword_t *ev)
532 {
533 	*ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
534 
535 	if (!sfc_ef100_ev_present(ev,
536 			(rxq->evq_read_ptr >> rxq->evq_phase_bit_shift) & 1))
537 		return false;
538 
539 	if (unlikely(!sfc_ef100_ev_type_is(ev, ESE_GZ_EF100_EV_RX_PKTS))) {
540 		/*
541 		 * Do not move read_ptr to keep the event for exception
542 		 * handling by the control path.
543 		 */
544 		rxq->flags |= SFC_EF100_RXQ_EXCEPTION;
545 		sfc_ef100_rx_err(rxq,
546 			"RxQ exception at EvQ ptr %u(%#x), event %08x:%08x",
547 			rxq->evq_read_ptr, rxq->evq_read_ptr & rxq->ptr_mask,
548 			EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
549 			EFX_QWORD_FIELD(*ev, EFX_DWORD_0));
550 		return false;
551 	}
552 
553 	sfc_ef100_rx_debug(rxq, "RxQ got event %08x:%08x at %u (%#x)",
554 			   EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
555 			   EFX_QWORD_FIELD(*ev, EFX_DWORD_0),
556 			   rxq->evq_read_ptr,
557 			   rxq->evq_read_ptr & rxq->ptr_mask);
558 
559 	rxq->evq_read_ptr++;
560 	return true;
561 }
562 
563 static uint16_t
564 sfc_ef100_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
565 {
566 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(rx_queue);
567 	struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
568 	efx_qword_t rx_ev;
569 
570 	rx_pkts = sfc_ef100_rx_process_ready_pkts(rxq, rx_pkts, rx_pkts_end);
571 
572 	if (unlikely(rxq->flags &
573 		     (SFC_EF100_RXQ_NOT_RUNNING | SFC_EF100_RXQ_EXCEPTION)))
574 		goto done;
575 
576 	while (rx_pkts != rx_pkts_end && sfc_ef100_rx_get_event(rxq, &rx_ev)) {
577 		rxq->ready_pkts =
578 			EFX_QWORD_FIELD(rx_ev, ESF_GZ_EV_RXPKTS_NUM_PKT);
579 		rx_pkts = sfc_ef100_rx_process_ready_pkts(rxq, rx_pkts,
580 							  rx_pkts_end);
581 	}
582 
583 	/* It is not a problem if we refill in the case of exception */
584 	sfc_ef100_rx_qrefill(rxq);
585 
586 	if ((rxq->flags & SFC_EF100_RXQ_FLAG_INTR_EN) &&
587 	    rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
588 		sfc_ef100_rx_qprime(rxq);
589 
590 done:
591 	return nb_pkts - (rx_pkts_end - rx_pkts);
592 }
593 
594 static const uint32_t *
595 sfc_ef100_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
596 {
597 	static const uint32_t ef100_native_ptypes[] = {
598 		RTE_PTYPE_L2_ETHER,
599 		RTE_PTYPE_L2_ETHER_VLAN,
600 		RTE_PTYPE_L2_ETHER_QINQ,
601 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
602 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
603 		RTE_PTYPE_L4_TCP,
604 		RTE_PTYPE_L4_UDP,
605 		RTE_PTYPE_L4_FRAG,
606 		RTE_PTYPE_TUNNEL_VXLAN,
607 		RTE_PTYPE_TUNNEL_NVGRE,
608 		RTE_PTYPE_TUNNEL_GENEVE,
609 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
610 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
611 		RTE_PTYPE_INNER_L4_TCP,
612 		RTE_PTYPE_INNER_L4_UDP,
613 		RTE_PTYPE_INNER_L4_FRAG,
614 		RTE_PTYPE_UNKNOWN
615 	};
616 
617 	return ef100_native_ptypes;
618 }
619 
620 static sfc_dp_rx_qdesc_npending_t sfc_ef100_rx_qdesc_npending;
621 static unsigned int
622 sfc_ef100_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
623 {
624 	return 0;
625 }
626 
627 static sfc_dp_rx_qdesc_status_t sfc_ef100_rx_qdesc_status;
628 static int
629 sfc_ef100_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
630 			  __rte_unused uint16_t offset)
631 {
632 	return -ENOTSUP;
633 }
634 
635 
636 static sfc_dp_rx_get_dev_info_t sfc_ef100_rx_get_dev_info;
637 static void
638 sfc_ef100_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
639 {
640 	/*
641 	 * Number of descriptors just defines maximum number of pushed
642 	 * descriptors (fill level).
643 	 */
644 	dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
645 	dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
646 }
647 
648 
649 static sfc_dp_rx_qsize_up_rings_t sfc_ef100_rx_qsize_up_rings;
650 static int
651 sfc_ef100_rx_qsize_up_rings(uint16_t nb_rx_desc,
652 			   struct sfc_dp_rx_hw_limits *limits,
653 			   __rte_unused struct rte_mempool *mb_pool,
654 			   unsigned int *rxq_entries,
655 			   unsigned int *evq_entries,
656 			   unsigned int *rxq_max_fill_level)
657 {
658 	/*
659 	 * rte_ethdev API guarantees that the number meets min, max and
660 	 * alignment requirements.
661 	 */
662 	if (nb_rx_desc <= limits->rxq_min_entries)
663 		*rxq_entries = limits->rxq_min_entries;
664 	else
665 		*rxq_entries = rte_align32pow2(nb_rx_desc);
666 
667 	*evq_entries = *rxq_entries;
668 
669 	*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
670 				      SFC_EF100_RXQ_LIMIT(*evq_entries));
671 	return 0;
672 }
673 
674 
675 static uint64_t
676 sfc_ef100_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
677 {
678 	struct rte_mbuf m;
679 
680 	memset(&m, 0, sizeof(m));
681 
682 	rte_mbuf_refcnt_set(&m, 1);
683 	m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
684 	m.nb_segs = 1;
685 	m.port = port_id;
686 
687 	/* rearm_data covers structure members filled in above */
688 	rte_compiler_barrier();
689 	RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
690 	return m.rearm_data[0];
691 }
692 
693 static sfc_dp_rx_qcreate_t sfc_ef100_rx_qcreate;
694 static int
695 sfc_ef100_rx_qcreate(uint16_t port_id, uint16_t queue_id,
696 		    const struct rte_pci_addr *pci_addr, int socket_id,
697 		    const struct sfc_dp_rx_qcreate_info *info,
698 		    struct sfc_dp_rxq **dp_rxqp)
699 {
700 	struct sfc_ef100_rxq *rxq;
701 	int rc;
702 
703 	rc = EINVAL;
704 	if (info->rxq_entries != info->evq_entries)
705 		goto fail_rxq_args;
706 
707 	rc = ENOMEM;
708 	rxq = rte_zmalloc_socket("sfc-ef100-rxq", sizeof(*rxq),
709 				 RTE_CACHE_LINE_SIZE, socket_id);
710 	if (rxq == NULL)
711 		goto fail_rxq_alloc;
712 
713 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
714 
715 	rc = ENOMEM;
716 	rxq->sw_ring = rte_calloc_socket("sfc-ef100-rxq-sw_ring",
717 					 info->rxq_entries,
718 					 sizeof(*rxq->sw_ring),
719 					 RTE_CACHE_LINE_SIZE, socket_id);
720 	if (rxq->sw_ring == NULL)
721 		goto fail_desc_alloc;
722 
723 	rxq->flags |= SFC_EF100_RXQ_NOT_RUNNING;
724 	rxq->ptr_mask = info->rxq_entries - 1;
725 	rxq->evq_phase_bit_shift = rte_bsf32(info->evq_entries);
726 	rxq->evq_hw_ring = info->evq_hw_ring;
727 	rxq->max_fill_level = info->max_fill_level;
728 	rxq->refill_threshold = info->refill_threshold;
729 	rxq->prefix_size = info->prefix_size;
730 	rxq->buf_size = info->buf_size;
731 	rxq->refill_mb_pool = info->refill_mb_pool;
732 	rxq->rxq_hw_ring = info->rxq_hw_ring;
733 	rxq->doorbell = (volatile uint8_t *)info->mem_bar +
734 			ER_GZ_RX_RING_DOORBELL_OFST +
735 			(info->hw_index << info->vi_window_shift);
736 
737 	rxq->evq_hw_index = info->evq_hw_index;
738 	rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
739 			 info->fcw_offset +
740 			 ER_GZ_EVQ_INT_PRIME_OFST;
741 
742 	sfc_ef100_rx_debug(rxq, "RxQ doorbell is %p", rxq->doorbell);
743 
744 	*dp_rxqp = &rxq->dp;
745 	return 0;
746 
747 fail_desc_alloc:
748 	rte_free(rxq);
749 
750 fail_rxq_alloc:
751 fail_rxq_args:
752 	return rc;
753 }
754 
755 static sfc_dp_rx_qdestroy_t sfc_ef100_rx_qdestroy;
756 static void
757 sfc_ef100_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
758 {
759 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
760 
761 	rte_free(rxq->sw_ring);
762 	rte_free(rxq);
763 }
764 
765 static sfc_dp_rx_qstart_t sfc_ef100_rx_qstart;
766 static int
767 sfc_ef100_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
768 		    const efx_rx_prefix_layout_t *pinfo)
769 {
770 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
771 	uint32_t unsup_rx_prefix_fields;
772 
773 	SFC_ASSERT(rxq->completed == 0);
774 	SFC_ASSERT(rxq->added == 0);
775 
776 	/* Prefix must fit into reserved Rx buffer space */
777 	if (pinfo->erpl_length > rxq->prefix_size)
778 		return ENOTSUP;
779 
780 	unsup_rx_prefix_fields =
781 		efx_rx_prefix_layout_check(pinfo, &sfc_ef100_rx_prefix_layout);
782 
783 	/* LENGTH and CLASS filds must always be present */
784 	if ((unsup_rx_prefix_fields &
785 	     ((1U << EFX_RX_PREFIX_FIELD_LENGTH) |
786 	      (1U << EFX_RX_PREFIX_FIELD_CLASS))) != 0)
787 		return ENOTSUP;
788 
789 	if ((unsup_rx_prefix_fields &
790 	     ((1U << EFX_RX_PREFIX_FIELD_RSS_HASH_VALID) |
791 	      (1U << EFX_RX_PREFIX_FIELD_RSS_HASH))) == 0)
792 		rxq->flags |= SFC_EF100_RXQ_RSS_HASH;
793 	else
794 		rxq->flags &= ~SFC_EF100_RXQ_RSS_HASH;
795 
796 	if ((unsup_rx_prefix_fields &
797 	     ((1U << EFX_RX_PREFIX_FIELD_USER_FLAG) |
798 	      (1U << EFX_RX_PREFIX_FIELD_USER_MARK))) == 0)
799 		rxq->flags |= SFC_EF100_RXQ_USER_MARK;
800 	else
801 		rxq->flags &= ~SFC_EF100_RXQ_USER_MARK;
802 
803 	rxq->prefix_size = pinfo->erpl_length;
804 	rxq->rearm_data = sfc_ef100_mk_mbuf_rearm_data(rxq->dp.dpq.port_id,
805 						       rxq->prefix_size);
806 
807 	sfc_ef100_rx_qrefill(rxq);
808 
809 	rxq->evq_read_ptr = evq_read_ptr;
810 
811 	rxq->flags |= SFC_EF100_RXQ_STARTED;
812 	rxq->flags &= ~(SFC_EF100_RXQ_NOT_RUNNING | SFC_EF100_RXQ_EXCEPTION);
813 
814 	if (rxq->flags & SFC_EF100_RXQ_FLAG_INTR_EN)
815 		sfc_ef100_rx_qprime(rxq);
816 
817 	return 0;
818 }
819 
820 static sfc_dp_rx_qstop_t sfc_ef100_rx_qstop;
821 static void
822 sfc_ef100_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
823 {
824 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
825 
826 	rxq->flags |= SFC_EF100_RXQ_NOT_RUNNING;
827 
828 	*evq_read_ptr = rxq->evq_read_ptr;
829 }
830 
831 static sfc_dp_rx_qrx_ev_t sfc_ef100_rx_qrx_ev;
832 static bool
833 sfc_ef100_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
834 {
835 	__rte_unused struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
836 
837 	SFC_ASSERT(rxq->flags & SFC_EF100_RXQ_NOT_RUNNING);
838 
839 	/*
840 	 * It is safe to ignore Rx event since we free all mbufs on
841 	 * queue purge anyway.
842 	 */
843 
844 	return false;
845 }
846 
847 static sfc_dp_rx_qpurge_t sfc_ef100_rx_qpurge;
848 static void
849 sfc_ef100_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
850 {
851 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
852 	unsigned int i;
853 	struct sfc_ef100_rx_sw_desc *rxd;
854 
855 	for (i = rxq->completed; i != rxq->added; ++i) {
856 		rxd = &rxq->sw_ring[i & rxq->ptr_mask];
857 		rte_mbuf_raw_free(rxd->mbuf);
858 		rxd->mbuf = NULL;
859 	}
860 
861 	rxq->completed = rxq->added = 0;
862 	rxq->ready_pkts = 0;
863 
864 	rxq->flags &= ~SFC_EF100_RXQ_STARTED;
865 }
866 
867 static sfc_dp_rx_intr_enable_t sfc_ef100_rx_intr_enable;
868 static int
869 sfc_ef100_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
870 {
871 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
872 
873 	rxq->flags |= SFC_EF100_RXQ_FLAG_INTR_EN;
874 	if (rxq->flags & SFC_EF100_RXQ_STARTED)
875 		sfc_ef100_rx_qprime(rxq);
876 	return 0;
877 }
878 
879 static sfc_dp_rx_intr_disable_t sfc_ef100_rx_intr_disable;
880 static int
881 sfc_ef100_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
882 {
883 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
884 
885 	/* Cannot disarm, just disable rearm */
886 	rxq->flags &= ~SFC_EF100_RXQ_FLAG_INTR_EN;
887 	return 0;
888 }
889 
890 struct sfc_dp_rx sfc_ef100_rx = {
891 	.dp = {
892 		.name		= SFC_KVARG_DATAPATH_EF100,
893 		.type		= SFC_DP_RX,
894 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF100,
895 	},
896 	.features		= SFC_DP_RX_FEAT_MULTI_PROCESS |
897 				  SFC_DP_RX_FEAT_INTR,
898 	.dev_offload_capa	= 0,
899 	.queue_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
900 				  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
901 				  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
902 				  DEV_RX_OFFLOAD_SCATTER |
903 				  DEV_RX_OFFLOAD_RSS_HASH,
904 	.get_dev_info		= sfc_ef100_rx_get_dev_info,
905 	.qsize_up_rings		= sfc_ef100_rx_qsize_up_rings,
906 	.qcreate		= sfc_ef100_rx_qcreate,
907 	.qdestroy		= sfc_ef100_rx_qdestroy,
908 	.qstart			= sfc_ef100_rx_qstart,
909 	.qstop			= sfc_ef100_rx_qstop,
910 	.qrx_ev			= sfc_ef100_rx_qrx_ev,
911 	.qpurge			= sfc_ef100_rx_qpurge,
912 	.supported_ptypes_get	= sfc_ef100_supported_ptypes_get,
913 	.qdesc_npending		= sfc_ef100_rx_qdesc_npending,
914 	.qdesc_status		= sfc_ef100_rx_qdesc_status,
915 	.intr_enable		= sfc_ef100_rx_intr_enable,
916 	.intr_disable		= sfc_ef100_rx_intr_disable,
917 	.pkt_burst		= sfc_ef100_recv_pkts,
918 };
919