1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (c) 2016 - 2018 Cavium Inc. 3 * All rights reserved. 4 * www.cavium.com 5 */ 6 7 #include <rte_net.h> 8 #include "qede_rxtx.h" 9 10 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq) 11 { 12 struct rte_mbuf *new_mb = NULL; 13 struct eth_rx_bd *rx_bd; 14 dma_addr_t mapping; 15 uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq); 16 17 new_mb = rte_mbuf_raw_alloc(rxq->mb_pool); 18 if (unlikely(!new_mb)) { 19 PMD_RX_LOG(ERR, rxq, 20 "Failed to allocate rx buffer " 21 "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u", 22 idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq), 23 rte_mempool_avail_count(rxq->mb_pool), 24 rte_mempool_in_use_count(rxq->mb_pool)); 25 return -ENOMEM; 26 } 27 rxq->sw_rx_ring[idx].mbuf = new_mb; 28 rxq->sw_rx_ring[idx].page_offset = 0; 29 mapping = rte_mbuf_data_iova_default(new_mb); 30 /* Advance PROD and get BD pointer */ 31 rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring); 32 rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping)); 33 rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping)); 34 rxq->sw_rx_prod++; 35 return 0; 36 } 37 38 #define QEDE_MAX_BULK_ALLOC_COUNT 512 39 40 static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count) 41 { 42 void *obj_p[QEDE_MAX_BULK_ALLOC_COUNT] __rte_cache_aligned; 43 struct rte_mbuf *mbuf = NULL; 44 struct eth_rx_bd *rx_bd; 45 dma_addr_t mapping; 46 int i, ret = 0; 47 uint16_t idx; 48 49 if (count > QEDE_MAX_BULK_ALLOC_COUNT) 50 count = QEDE_MAX_BULK_ALLOC_COUNT; 51 52 ret = rte_mempool_get_bulk(rxq->mb_pool, obj_p, count); 53 if (unlikely(ret)) { 54 PMD_RX_LOG(ERR, rxq, 55 "Failed to allocate %d rx buffers " 56 "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u", 57 count, 58 rxq->sw_rx_prod & NUM_RX_BDS(rxq), 59 rxq->sw_rx_cons & NUM_RX_BDS(rxq), 60 rte_mempool_avail_count(rxq->mb_pool), 61 rte_mempool_in_use_count(rxq->mb_pool)); 62 return -ENOMEM; 63 } 64 65 for (i = 0; i < count; i++) { 66 mbuf = obj_p[i]; 67 if (likely(i < count - 1)) 68 rte_prefetch0(obj_p[i + 1]); 69 70 idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq); 71 rxq->sw_rx_ring[idx].mbuf = mbuf; 72 rxq->sw_rx_ring[idx].page_offset = 0; 73 mapping = rte_mbuf_data_iova_default(mbuf); 74 rx_bd = (struct eth_rx_bd *) 75 ecore_chain_produce(&rxq->rx_bd_ring); 76 rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping)); 77 rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping)); 78 rxq->sw_rx_prod++; 79 } 80 81 return 0; 82 } 83 84 /* Criterias for calculating Rx buffer size - 85 * 1) rx_buf_size should not exceed the size of mbuf 86 * 2) In scattered_rx mode - minimum rx_buf_size should be 87 * (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT 88 * 3) In regular mode - minimum rx_buf_size should be 89 * (MTU + Maximum L2 Header Size + 2) 90 * In above cases +2 corrosponds to 2 bytes padding in front of L2 91 * header. 92 * 4) rx_buf_size should be cacheline-size aligned. So considering 93 * criteria 1, we need to adjust the size to floor instead of ceil, 94 * so that we don't exceed mbuf size while ceiling rx_buf_size. 95 */ 96 int 97 qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz, 98 uint16_t max_frame_size) 99 { 100 struct qede_dev *qdev = QEDE_INIT_QDEV(dev); 101 struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); 102 int rx_buf_size; 103 104 if (dev->data->scattered_rx) { 105 /* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of 106 * bufferes can be used for single packet. So need to make sure 107 * mbuf size is sufficient enough for this. 108 */ 109 if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) < 110 (max_frame_size + QEDE_ETH_OVERHEAD)) { 111 DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n", 112 mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size); 113 return -EINVAL; 114 } 115 116 rx_buf_size = RTE_MAX(mbufsz, 117 (max_frame_size + QEDE_ETH_OVERHEAD) / 118 ETH_RX_MAX_BUFF_PER_PKT); 119 } else { 120 rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD; 121 } 122 123 /* Align to cache-line size if needed */ 124 return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size); 125 } 126 127 static struct qede_rx_queue * 128 qede_alloc_rx_queue_mem(struct rte_eth_dev *dev, 129 uint16_t queue_idx, 130 uint16_t nb_desc, 131 unsigned int socket_id, 132 struct rte_mempool *mp, 133 uint16_t bufsz) 134 { 135 struct qede_dev *qdev = QEDE_INIT_QDEV(dev); 136 struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); 137 struct qede_rx_queue *rxq; 138 size_t size; 139 int rc; 140 141 /* First allocate the rx queue data structure */ 142 rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue), 143 RTE_CACHE_LINE_SIZE, socket_id); 144 145 if (!rxq) { 146 DP_ERR(edev, "Unable to allocate memory for rxq on socket %u", 147 socket_id); 148 return NULL; 149 } 150 151 rxq->qdev = qdev; 152 rxq->mb_pool = mp; 153 rxq->nb_rx_desc = nb_desc; 154 rxq->queue_id = queue_idx; 155 rxq->port_id = dev->data->port_id; 156 157 158 rxq->rx_buf_size = bufsz; 159 160 DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n", 161 qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx); 162 163 /* Allocate the parallel driver ring for Rx buffers */ 164 size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc; 165 rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size, 166 RTE_CACHE_LINE_SIZE, socket_id); 167 if (!rxq->sw_rx_ring) { 168 DP_ERR(edev, "Memory allocation fails for sw_rx_ring on" 169 " socket %u\n", socket_id); 170 rte_free(rxq); 171 return NULL; 172 } 173 174 /* Allocate FW Rx ring */ 175 rc = qdev->ops->common->chain_alloc(edev, 176 ECORE_CHAIN_USE_TO_CONSUME_PRODUCE, 177 ECORE_CHAIN_MODE_NEXT_PTR, 178 ECORE_CHAIN_CNT_TYPE_U16, 179 rxq->nb_rx_desc, 180 sizeof(struct eth_rx_bd), 181 &rxq->rx_bd_ring, 182 NULL); 183 184 if (rc != ECORE_SUCCESS) { 185 DP_ERR(edev, "Memory allocation fails for RX BD ring" 186 " on socket %u\n", socket_id); 187 rte_free(rxq->sw_rx_ring); 188 rte_free(rxq); 189 return NULL; 190 } 191 192 /* Allocate FW completion ring */ 193 rc = qdev->ops->common->chain_alloc(edev, 194 ECORE_CHAIN_USE_TO_CONSUME, 195 ECORE_CHAIN_MODE_PBL, 196 ECORE_CHAIN_CNT_TYPE_U16, 197 rxq->nb_rx_desc, 198 sizeof(union eth_rx_cqe), 199 &rxq->rx_comp_ring, 200 NULL); 201 202 if (rc != ECORE_SUCCESS) { 203 DP_ERR(edev, "Memory allocation fails for RX CQE ring" 204 " on socket %u\n", socket_id); 205 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring); 206 rte_free(rxq->sw_rx_ring); 207 rte_free(rxq); 208 return NULL; 209 } 210 211 return rxq; 212 } 213 214 int 215 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qid, 216 uint16_t nb_desc, unsigned int socket_id, 217 __rte_unused const struct rte_eth_rxconf *rx_conf, 218 struct rte_mempool *mp) 219 { 220 struct qede_dev *qdev = QEDE_INIT_QDEV(dev); 221 struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); 222 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 223 struct qede_rx_queue *rxq; 224 uint16_t max_rx_pkt_len; 225 uint16_t bufsz; 226 int rc; 227 228 PMD_INIT_FUNC_TRACE(edev); 229 230 /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */ 231 if (!rte_is_power_of_2(nb_desc)) { 232 DP_ERR(edev, "Ring size %u is not power of 2\n", 233 nb_desc); 234 return -EINVAL; 235 } 236 237 /* Free memory prior to re-allocation if needed... */ 238 if (dev->data->rx_queues[qid] != NULL) { 239 qede_rx_queue_release(dev->data->rx_queues[qid]); 240 dev->data->rx_queues[qid] = NULL; 241 } 242 243 max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len; 244 245 /* Fix up RX buffer size */ 246 bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM; 247 /* cache align the mbuf size to simplfy rx_buf_size calculation */ 248 bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz); 249 if ((rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) || 250 (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) { 251 if (!dev->data->scattered_rx) { 252 DP_INFO(edev, "Forcing scatter-gather mode\n"); 253 dev->data->scattered_rx = 1; 254 } 255 } 256 257 rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len); 258 if (rc < 0) 259 return rc; 260 261 bufsz = rc; 262 263 if (ECORE_IS_CMT(edev)) { 264 rxq = qede_alloc_rx_queue_mem(dev, qid * 2, nb_desc, 265 socket_id, mp, bufsz); 266 if (!rxq) 267 return -ENOMEM; 268 269 qdev->fp_array[qid * 2].rxq = rxq; 270 rxq = qede_alloc_rx_queue_mem(dev, qid * 2 + 1, nb_desc, 271 socket_id, mp, bufsz); 272 if (!rxq) 273 return -ENOMEM; 274 275 qdev->fp_array[qid * 2 + 1].rxq = rxq; 276 /* provide per engine fp struct as rx queue */ 277 dev->data->rx_queues[qid] = &qdev->fp_array_cmt[qid]; 278 } else { 279 rxq = qede_alloc_rx_queue_mem(dev, qid, nb_desc, 280 socket_id, mp, bufsz); 281 if (!rxq) 282 return -ENOMEM; 283 284 dev->data->rx_queues[qid] = rxq; 285 qdev->fp_array[qid].rxq = rxq; 286 } 287 288 DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n", 289 qid, nb_desc, rxq->rx_buf_size, socket_id); 290 291 return 0; 292 } 293 294 static void 295 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev, 296 struct qede_rx_queue *rxq) 297 { 298 DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id); 299 ecore_chain_reset(&rxq->rx_bd_ring); 300 ecore_chain_reset(&rxq->rx_comp_ring); 301 rxq->sw_rx_prod = 0; 302 rxq->sw_rx_cons = 0; 303 *rxq->hw_cons_ptr = 0; 304 } 305 306 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq) 307 { 308 uint16_t i; 309 310 if (rxq->sw_rx_ring) { 311 for (i = 0; i < rxq->nb_rx_desc; i++) { 312 if (rxq->sw_rx_ring[i].mbuf) { 313 rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf); 314 rxq->sw_rx_ring[i].mbuf = NULL; 315 } 316 } 317 } 318 } 319 320 static void _qede_rx_queue_release(struct qede_dev *qdev, 321 struct ecore_dev *edev, 322 struct qede_rx_queue *rxq) 323 { 324 qede_rx_queue_release_mbufs(rxq); 325 qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring); 326 qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring); 327 rte_free(rxq->sw_rx_ring); 328 rte_free(rxq); 329 } 330 331 void qede_rx_queue_release(void *rx_queue) 332 { 333 struct qede_rx_queue *rxq = rx_queue; 334 struct qede_fastpath_cmt *fp_cmt; 335 struct qede_dev *qdev; 336 struct ecore_dev *edev; 337 338 if (rxq) { 339 qdev = rxq->qdev; 340 edev = QEDE_INIT_EDEV(qdev); 341 PMD_INIT_FUNC_TRACE(edev); 342 if (ECORE_IS_CMT(edev)) { 343 fp_cmt = rx_queue; 344 _qede_rx_queue_release(qdev, edev, fp_cmt->fp0->rxq); 345 _qede_rx_queue_release(qdev, edev, fp_cmt->fp1->rxq); 346 } else { 347 _qede_rx_queue_release(qdev, edev, rxq); 348 } 349 } 350 } 351 352 /* Stops a given RX queue in the HW */ 353 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) 354 { 355 struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); 356 struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); 357 struct ecore_hwfn *p_hwfn; 358 struct qede_rx_queue *rxq; 359 int hwfn_index; 360 int rc; 361 362 if (rx_queue_id < qdev->num_rx_queues) { 363 rxq = qdev->fp_array[rx_queue_id].rxq; 364 hwfn_index = rx_queue_id % edev->num_hwfns; 365 p_hwfn = &edev->hwfns[hwfn_index]; 366 rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle, 367 true, false); 368 if (rc != ECORE_SUCCESS) { 369 DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id); 370 return -1; 371 } 372 qede_rx_queue_release_mbufs(rxq); 373 qede_rx_queue_reset(qdev, rxq); 374 eth_dev->data->rx_queue_state[rx_queue_id] = 375 RTE_ETH_QUEUE_STATE_STOPPED; 376 DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id); 377 } else { 378 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id); 379 rc = -EINVAL; 380 } 381 382 return rc; 383 } 384 385 static struct qede_tx_queue * 386 qede_alloc_tx_queue_mem(struct rte_eth_dev *dev, 387 uint16_t queue_idx, 388 uint16_t nb_desc, 389 unsigned int socket_id, 390 const struct rte_eth_txconf *tx_conf) 391 { 392 struct qede_dev *qdev = dev->data->dev_private; 393 struct ecore_dev *edev = &qdev->edev; 394 struct qede_tx_queue *txq; 395 int rc; 396 397 txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue), 398 RTE_CACHE_LINE_SIZE, socket_id); 399 400 if (txq == NULL) { 401 DP_ERR(edev, 402 "Unable to allocate memory for txq on socket %u", 403 socket_id); 404 return NULL; 405 } 406 407 txq->nb_tx_desc = nb_desc; 408 txq->qdev = qdev; 409 txq->port_id = dev->data->port_id; 410 411 rc = qdev->ops->common->chain_alloc(edev, 412 ECORE_CHAIN_USE_TO_CONSUME_PRODUCE, 413 ECORE_CHAIN_MODE_PBL, 414 ECORE_CHAIN_CNT_TYPE_U16, 415 txq->nb_tx_desc, 416 sizeof(union eth_tx_bd_types), 417 &txq->tx_pbl, 418 NULL); 419 if (rc != ECORE_SUCCESS) { 420 DP_ERR(edev, 421 "Unable to allocate memory for txbd ring on socket %u", 422 socket_id); 423 qede_tx_queue_release(txq); 424 return NULL; 425 } 426 427 /* Allocate software ring */ 428 txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring", 429 (sizeof(struct qede_tx_entry) * 430 txq->nb_tx_desc), 431 RTE_CACHE_LINE_SIZE, socket_id); 432 433 if (!txq->sw_tx_ring) { 434 DP_ERR(edev, 435 "Unable to allocate memory for txbd ring on socket %u", 436 socket_id); 437 qdev->ops->common->chain_free(edev, &txq->tx_pbl); 438 qede_tx_queue_release(txq); 439 return NULL; 440 } 441 442 txq->queue_id = queue_idx; 443 444 txq->nb_tx_avail = txq->nb_tx_desc; 445 446 txq->tx_free_thresh = 447 tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh : 448 (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH); 449 450 DP_INFO(edev, 451 "txq %u num_desc %u tx_free_thresh %u socket %u\n", 452 queue_idx, nb_desc, txq->tx_free_thresh, socket_id); 453 return txq; 454 } 455 456 int 457 qede_tx_queue_setup(struct rte_eth_dev *dev, 458 uint16_t queue_idx, 459 uint16_t nb_desc, 460 unsigned int socket_id, 461 const struct rte_eth_txconf *tx_conf) 462 { 463 struct qede_dev *qdev = dev->data->dev_private; 464 struct ecore_dev *edev = &qdev->edev; 465 struct qede_tx_queue *txq; 466 467 PMD_INIT_FUNC_TRACE(edev); 468 469 if (!rte_is_power_of_2(nb_desc)) { 470 DP_ERR(edev, "Ring size %u is not power of 2\n", 471 nb_desc); 472 return -EINVAL; 473 } 474 475 /* Free memory prior to re-allocation if needed... */ 476 if (dev->data->tx_queues[queue_idx] != NULL) { 477 qede_tx_queue_release(dev->data->tx_queues[queue_idx]); 478 dev->data->tx_queues[queue_idx] = NULL; 479 } 480 481 if (ECORE_IS_CMT(edev)) { 482 txq = qede_alloc_tx_queue_mem(dev, queue_idx * 2, nb_desc, 483 socket_id, tx_conf); 484 if (!txq) 485 return -ENOMEM; 486 487 qdev->fp_array[queue_idx * 2].txq = txq; 488 txq = qede_alloc_tx_queue_mem(dev, (queue_idx * 2) + 1, nb_desc, 489 socket_id, tx_conf); 490 if (!txq) 491 return -ENOMEM; 492 493 qdev->fp_array[(queue_idx * 2) + 1].txq = txq; 494 dev->data->tx_queues[queue_idx] = 495 &qdev->fp_array_cmt[queue_idx]; 496 } else { 497 txq = qede_alloc_tx_queue_mem(dev, queue_idx, nb_desc, 498 socket_id, tx_conf); 499 if (!txq) 500 return -ENOMEM; 501 502 dev->data->tx_queues[queue_idx] = txq; 503 qdev->fp_array[queue_idx].txq = txq; 504 } 505 506 return 0; 507 } 508 509 static void 510 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev, 511 struct qede_tx_queue *txq) 512 { 513 DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id); 514 ecore_chain_reset(&txq->tx_pbl); 515 txq->sw_tx_cons = 0; 516 txq->sw_tx_prod = 0; 517 *txq->hw_cons_ptr = 0; 518 } 519 520 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq) 521 { 522 uint16_t i; 523 524 if (txq->sw_tx_ring) { 525 for (i = 0; i < txq->nb_tx_desc; i++) { 526 if (txq->sw_tx_ring[i].mbuf) { 527 rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf); 528 txq->sw_tx_ring[i].mbuf = NULL; 529 } 530 } 531 } 532 } 533 534 static void _qede_tx_queue_release(struct qede_dev *qdev, 535 struct ecore_dev *edev, 536 struct qede_tx_queue *txq) 537 { 538 qede_tx_queue_release_mbufs(txq); 539 qdev->ops->common->chain_free(edev, &txq->tx_pbl); 540 rte_free(txq->sw_tx_ring); 541 rte_free(txq); 542 } 543 544 void qede_tx_queue_release(void *tx_queue) 545 { 546 struct qede_tx_queue *txq = tx_queue; 547 struct qede_fastpath_cmt *fp_cmt; 548 struct qede_dev *qdev; 549 struct ecore_dev *edev; 550 551 if (txq) { 552 qdev = txq->qdev; 553 edev = QEDE_INIT_EDEV(qdev); 554 PMD_INIT_FUNC_TRACE(edev); 555 556 if (ECORE_IS_CMT(edev)) { 557 fp_cmt = tx_queue; 558 _qede_tx_queue_release(qdev, edev, fp_cmt->fp0->txq); 559 _qede_tx_queue_release(qdev, edev, fp_cmt->fp1->txq); 560 } else { 561 _qede_tx_queue_release(qdev, edev, txq); 562 } 563 } 564 } 565 566 /* This function allocates fast-path status block memory */ 567 static int 568 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info, 569 uint16_t sb_id) 570 { 571 struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); 572 struct status_block *sb_virt; 573 dma_addr_t sb_phys; 574 int rc; 575 576 sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys, 577 sizeof(struct status_block)); 578 if (!sb_virt) { 579 DP_ERR(edev, "Status block allocation failed\n"); 580 return -ENOMEM; 581 } 582 rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt, 583 sb_phys, sb_id); 584 if (rc) { 585 DP_ERR(edev, "Status block initialization failed\n"); 586 OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys, 587 sizeof(struct status_block)); 588 return rc; 589 } 590 591 return 0; 592 } 593 594 int qede_alloc_fp_resc(struct qede_dev *qdev) 595 { 596 struct ecore_dev *edev = &qdev->edev; 597 struct qede_fastpath *fp; 598 uint32_t num_sbs; 599 uint16_t sb_idx; 600 int i; 601 602 if (IS_VF(edev)) 603 ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs); 604 else 605 num_sbs = ecore_cxt_get_proto_cid_count 606 (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL); 607 608 if (num_sbs == 0) { 609 DP_ERR(edev, "No status blocks available\n"); 610 return -EINVAL; 611 } 612 613 qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev), 614 sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE); 615 616 if (!qdev->fp_array) { 617 DP_ERR(edev, "fp array allocation failed\n"); 618 return -ENOMEM; 619 } 620 621 memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) * 622 sizeof(*qdev->fp_array)); 623 624 if (ECORE_IS_CMT(edev)) { 625 qdev->fp_array_cmt = rte_calloc("fp_cmt", 626 QEDE_RXTX_MAX(qdev) / 2, 627 sizeof(*qdev->fp_array_cmt), 628 RTE_CACHE_LINE_SIZE); 629 630 if (!qdev->fp_array_cmt) { 631 DP_ERR(edev, "fp array for CMT allocation failed\n"); 632 return -ENOMEM; 633 } 634 635 memset((void *)qdev->fp_array_cmt, 0, 636 (QEDE_RXTX_MAX(qdev) / 2) * sizeof(*qdev->fp_array_cmt)); 637 638 /* Establish the mapping of fp_array with fp_array_cmt */ 639 for (i = 0; i < QEDE_RXTX_MAX(qdev) / 2; i++) { 640 qdev->fp_array_cmt[i].qdev = qdev; 641 qdev->fp_array_cmt[i].fp0 = &qdev->fp_array[i * 2]; 642 qdev->fp_array_cmt[i].fp1 = &qdev->fp_array[i * 2 + 1]; 643 } 644 } 645 646 for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) { 647 fp = &qdev->fp_array[sb_idx]; 648 if (!fp) 649 continue; 650 fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info), 651 RTE_CACHE_LINE_SIZE); 652 if (!fp->sb_info) { 653 DP_ERR(edev, "FP sb_info allocation fails\n"); 654 return -1; 655 } 656 if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) { 657 DP_ERR(edev, "FP status block allocation fails\n"); 658 return -1; 659 } 660 DP_INFO(edev, "sb_info idx 0x%x initialized\n", 661 fp->sb_info->igu_sb_id); 662 } 663 664 return 0; 665 } 666 667 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev) 668 { 669 struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); 670 struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); 671 struct qede_fastpath *fp; 672 uint16_t sb_idx; 673 uint8_t i; 674 675 PMD_INIT_FUNC_TRACE(edev); 676 677 for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) { 678 fp = &qdev->fp_array[sb_idx]; 679 if (!fp) 680 continue; 681 DP_INFO(edev, "Free sb_info index 0x%x\n", 682 fp->sb_info->igu_sb_id); 683 if (fp->sb_info) { 684 OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt, 685 fp->sb_info->sb_phys, 686 sizeof(struct status_block)); 687 rte_free(fp->sb_info); 688 fp->sb_info = NULL; 689 } 690 } 691 692 /* Free packet buffers and ring memories */ 693 for (i = 0; i < eth_dev->data->nb_rx_queues; i++) { 694 if (eth_dev->data->rx_queues[i]) { 695 qede_rx_queue_release(eth_dev->data->rx_queues[i]); 696 eth_dev->data->rx_queues[i] = NULL; 697 } 698 } 699 700 for (i = 0; i < eth_dev->data->nb_tx_queues; i++) { 701 if (eth_dev->data->tx_queues[i]) { 702 qede_tx_queue_release(eth_dev->data->tx_queues[i]); 703 eth_dev->data->tx_queues[i] = NULL; 704 } 705 } 706 707 if (qdev->fp_array) 708 rte_free(qdev->fp_array); 709 qdev->fp_array = NULL; 710 711 if (qdev->fp_array_cmt) 712 rte_free(qdev->fp_array_cmt); 713 qdev->fp_array_cmt = NULL; 714 } 715 716 static inline void 717 qede_update_rx_prod(__rte_unused struct qede_dev *edev, 718 struct qede_rx_queue *rxq) 719 { 720 uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring); 721 uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring); 722 struct eth_rx_prod_data rx_prods = { 0 }; 723 724 /* Update producers */ 725 rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod); 726 rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod); 727 728 /* Make sure that the BD and SGE data is updated before updating the 729 * producers since FW might read the BD/SGE right after the producer 730 * is updated. 731 */ 732 rte_wmb(); 733 734 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), 735 (uint32_t *)&rx_prods); 736 737 /* mmiowb is needed to synchronize doorbell writes from more than one 738 * processor. It guarantees that the write arrives to the device before 739 * the napi lock is released and another qede_poll is called (possibly 740 * on another CPU). Without this barrier, the next doorbell can bypass 741 * this doorbell. This is applicable to IA64/Altix systems. 742 */ 743 rte_wmb(); 744 745 PMD_RX_LOG(DEBUG, rxq, "bd_prod %u cqe_prod %u", bd_prod, cqe_prod); 746 } 747 748 /* Starts a given RX queue in HW */ 749 static int 750 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id) 751 { 752 struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); 753 struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); 754 struct ecore_queue_start_common_params params; 755 struct ecore_rxq_start_ret_params ret_params; 756 struct qede_rx_queue *rxq; 757 struct qede_fastpath *fp; 758 struct ecore_hwfn *p_hwfn; 759 dma_addr_t p_phys_table; 760 uint16_t page_cnt; 761 uint16_t j; 762 int hwfn_index; 763 int rc; 764 765 if (rx_queue_id < qdev->num_rx_queues) { 766 fp = &qdev->fp_array[rx_queue_id]; 767 rxq = fp->rxq; 768 /* Allocate buffers for the Rx ring */ 769 for (j = 0; j < rxq->nb_rx_desc; j++) { 770 rc = qede_alloc_rx_buffer(rxq); 771 if (rc) { 772 DP_ERR(edev, "RX buffer allocation failed" 773 " for rxq = %u\n", rx_queue_id); 774 return -ENOMEM; 775 } 776 } 777 /* disable interrupts */ 778 ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0); 779 /* Prepare ramrod */ 780 memset(¶ms, 0, sizeof(params)); 781 params.queue_id = rx_queue_id / edev->num_hwfns; 782 params.vport_id = 0; 783 params.stats_id = params.vport_id; 784 params.p_sb = fp->sb_info; 785 DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n", 786 fp->rxq->queue_id, fp->sb_info->igu_sb_id); 787 params.sb_idx = RX_PI; 788 hwfn_index = rx_queue_id % edev->num_hwfns; 789 p_hwfn = &edev->hwfns[hwfn_index]; 790 p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring); 791 page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring); 792 memset(&ret_params, 0, sizeof(ret_params)); 793 rc = ecore_eth_rx_queue_start(p_hwfn, 794 p_hwfn->hw_info.opaque_fid, 795 ¶ms, fp->rxq->rx_buf_size, 796 fp->rxq->rx_bd_ring.p_phys_addr, 797 p_phys_table, page_cnt, 798 &ret_params); 799 if (rc) { 800 DP_ERR(edev, "RX queue %u could not be started, rc = %d\n", 801 rx_queue_id, rc); 802 return -1; 803 } 804 /* Update with the returned parameters */ 805 fp->rxq->hw_rxq_prod_addr = ret_params.p_prod; 806 fp->rxq->handle = ret_params.p_handle; 807 808 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_pi_array[RX_PI]; 809 qede_update_rx_prod(qdev, fp->rxq); 810 eth_dev->data->rx_queue_state[rx_queue_id] = 811 RTE_ETH_QUEUE_STATE_STARTED; 812 DP_INFO(edev, "RX queue %u started\n", rx_queue_id); 813 } else { 814 DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id); 815 rc = -EINVAL; 816 } 817 818 return rc; 819 } 820 821 static int 822 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id) 823 { 824 struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); 825 struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); 826 struct ecore_queue_start_common_params params; 827 struct ecore_txq_start_ret_params ret_params; 828 struct ecore_hwfn *p_hwfn; 829 dma_addr_t p_phys_table; 830 struct qede_tx_queue *txq; 831 struct qede_fastpath *fp; 832 uint16_t page_cnt; 833 int hwfn_index; 834 int rc; 835 836 if (tx_queue_id < qdev->num_tx_queues) { 837 fp = &qdev->fp_array[tx_queue_id]; 838 txq = fp->txq; 839 memset(¶ms, 0, sizeof(params)); 840 params.queue_id = tx_queue_id / edev->num_hwfns; 841 params.vport_id = 0; 842 params.stats_id = params.vport_id; 843 params.p_sb = fp->sb_info; 844 DP_INFO(edev, "txq %u igu_sb_id 0x%x\n", 845 fp->txq->queue_id, fp->sb_info->igu_sb_id); 846 params.sb_idx = TX_PI(0); /* tc = 0 */ 847 p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl); 848 page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl); 849 hwfn_index = tx_queue_id % edev->num_hwfns; 850 p_hwfn = &edev->hwfns[hwfn_index]; 851 if (qdev->dev_info.is_legacy) 852 fp->txq->is_legacy = true; 853 rc = ecore_eth_tx_queue_start(p_hwfn, 854 p_hwfn->hw_info.opaque_fid, 855 ¶ms, 0 /* tc */, 856 p_phys_table, page_cnt, 857 &ret_params); 858 if (rc != ECORE_SUCCESS) { 859 DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n", 860 tx_queue_id, rc); 861 return -1; 862 } 863 txq->doorbell_addr = ret_params.p_doorbell; 864 txq->handle = ret_params.p_handle; 865 866 txq->hw_cons_ptr = &fp->sb_info->sb_pi_array[TX_PI(0)]; 867 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, 868 DB_DEST_XCM); 869 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, 870 DB_AGG_CMD_SET); 871 SET_FIELD(txq->tx_db.data.params, 872 ETH_DB_DATA_AGG_VAL_SEL, 873 DQ_XCM_ETH_TX_BD_PROD_CMD); 874 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 875 eth_dev->data->tx_queue_state[tx_queue_id] = 876 RTE_ETH_QUEUE_STATE_STARTED; 877 DP_INFO(edev, "TX queue %u started\n", tx_queue_id); 878 } else { 879 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id); 880 rc = -EINVAL; 881 } 882 883 return rc; 884 } 885 886 static inline void 887 qede_free_tx_pkt(struct qede_tx_queue *txq) 888 { 889 struct rte_mbuf *mbuf; 890 uint16_t nb_segs; 891 uint16_t idx; 892 893 idx = TX_CONS(txq); 894 mbuf = txq->sw_tx_ring[idx].mbuf; 895 if (mbuf) { 896 nb_segs = mbuf->nb_segs; 897 PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs); 898 while (nb_segs) { 899 /* It's like consuming rxbuf in recv() */ 900 ecore_chain_consume(&txq->tx_pbl); 901 txq->nb_tx_avail++; 902 nb_segs--; 903 } 904 rte_pktmbuf_free(mbuf); 905 txq->sw_tx_ring[idx].mbuf = NULL; 906 txq->sw_tx_cons++; 907 PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n"); 908 } else { 909 ecore_chain_consume(&txq->tx_pbl); 910 txq->nb_tx_avail++; 911 } 912 } 913 914 static inline void 915 qede_process_tx_compl(__rte_unused struct ecore_dev *edev, 916 struct qede_tx_queue *txq) 917 { 918 uint16_t hw_bd_cons; 919 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX 920 uint16_t sw_tx_cons; 921 #endif 922 923 rte_compiler_barrier(); 924 hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr); 925 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX 926 sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl); 927 PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n", 928 abs(hw_bd_cons - sw_tx_cons)); 929 #endif 930 while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl)) 931 qede_free_tx_pkt(txq); 932 } 933 934 static int qede_drain_txq(struct qede_dev *qdev, 935 struct qede_tx_queue *txq, bool allow_drain) 936 { 937 struct ecore_dev *edev = &qdev->edev; 938 int rc, cnt = 1000; 939 940 while (txq->sw_tx_cons != txq->sw_tx_prod) { 941 qede_process_tx_compl(edev, txq); 942 if (!cnt) { 943 if (allow_drain) { 944 DP_ERR(edev, "Tx queue[%u] is stuck," 945 "requesting MCP to drain\n", 946 txq->queue_id); 947 rc = qdev->ops->common->drain(edev); 948 if (rc) 949 return rc; 950 return qede_drain_txq(qdev, txq, false); 951 } 952 DP_ERR(edev, "Timeout waiting for tx queue[%d]:" 953 "PROD=%d, CONS=%d\n", 954 txq->queue_id, txq->sw_tx_prod, 955 txq->sw_tx_cons); 956 return -1; 957 } 958 cnt--; 959 DELAY(1000); 960 rte_compiler_barrier(); 961 } 962 963 /* FW finished processing, wait for HW to transmit all tx packets */ 964 DELAY(2000); 965 966 return 0; 967 } 968 969 /* Stops a given TX queue in the HW */ 970 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id) 971 { 972 struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); 973 struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); 974 struct ecore_hwfn *p_hwfn; 975 struct qede_tx_queue *txq; 976 int hwfn_index; 977 int rc; 978 979 if (tx_queue_id < qdev->num_tx_queues) { 980 txq = qdev->fp_array[tx_queue_id].txq; 981 /* Drain txq */ 982 if (qede_drain_txq(qdev, txq, true)) 983 return -1; /* For the lack of retcodes */ 984 /* Stop txq */ 985 hwfn_index = tx_queue_id % edev->num_hwfns; 986 p_hwfn = &edev->hwfns[hwfn_index]; 987 rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle); 988 if (rc != ECORE_SUCCESS) { 989 DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id); 990 return -1; 991 } 992 qede_tx_queue_release_mbufs(txq); 993 qede_tx_queue_reset(qdev, txq); 994 eth_dev->data->tx_queue_state[tx_queue_id] = 995 RTE_ETH_QUEUE_STATE_STOPPED; 996 DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id); 997 } else { 998 DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id); 999 rc = -EINVAL; 1000 } 1001 1002 return rc; 1003 } 1004 1005 int qede_start_queues(struct rte_eth_dev *eth_dev) 1006 { 1007 struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); 1008 uint8_t id; 1009 int rc = -1; 1010 1011 for (id = 0; id < qdev->num_rx_queues; id++) { 1012 rc = qede_rx_queue_start(eth_dev, id); 1013 if (rc != ECORE_SUCCESS) 1014 return -1; 1015 } 1016 1017 for (id = 0; id < qdev->num_tx_queues; id++) { 1018 rc = qede_tx_queue_start(eth_dev, id); 1019 if (rc != ECORE_SUCCESS) 1020 return -1; 1021 } 1022 1023 return rc; 1024 } 1025 1026 void qede_stop_queues(struct rte_eth_dev *eth_dev) 1027 { 1028 struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); 1029 uint8_t id; 1030 1031 /* Stopping RX/TX queues */ 1032 for (id = 0; id < qdev->num_tx_queues; id++) 1033 qede_tx_queue_stop(eth_dev, id); 1034 1035 for (id = 0; id < qdev->num_rx_queues; id++) 1036 qede_rx_queue_stop(eth_dev, id); 1037 } 1038 1039 static inline bool qede_tunn_exist(uint16_t flag) 1040 { 1041 return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << 1042 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag); 1043 } 1044 1045 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag) 1046 { 1047 return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << 1048 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag); 1049 } 1050 1051 /* 1052 * qede_check_tunn_csum_l4: 1053 * Returns: 1054 * 1 : If L4 csum is enabled AND if the validation has failed. 1055 * 0 : Otherwise 1056 */ 1057 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag) 1058 { 1059 if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << 1060 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag) 1061 return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << 1062 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag); 1063 1064 return 0; 1065 } 1066 1067 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag) 1068 { 1069 if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 1070 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) 1071 return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 1072 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag); 1073 1074 return 0; 1075 } 1076 1077 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */ 1078 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m) 1079 { 1080 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 1081 struct rte_ether_hdr *eth_hdr; 1082 struct rte_ipv4_hdr *ipv4_hdr; 1083 struct rte_ipv6_hdr *ipv6_hdr; 1084 struct rte_vlan_hdr *vlan_hdr; 1085 uint16_t ethertype; 1086 bool vlan_tagged = 0; 1087 uint16_t len; 1088 1089 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 1090 len = sizeof(struct rte_ether_hdr); 1091 ethertype = rte_cpu_to_be_16(eth_hdr->ether_type); 1092 1093 /* Note: Valid only if VLAN stripping is disabled */ 1094 if (ethertype == RTE_ETHER_TYPE_VLAN) { 1095 vlan_tagged = 1; 1096 vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1); 1097 len += sizeof(struct rte_vlan_hdr); 1098 ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto); 1099 } 1100 1101 if (ethertype == RTE_ETHER_TYPE_IPV4) { 1102 packet_type |= RTE_PTYPE_L3_IPV4; 1103 ipv4_hdr = rte_pktmbuf_mtod_offset(m, 1104 struct rte_ipv4_hdr *, len); 1105 if (ipv4_hdr->next_proto_id == IPPROTO_TCP) 1106 packet_type |= RTE_PTYPE_L4_TCP; 1107 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP) 1108 packet_type |= RTE_PTYPE_L4_UDP; 1109 } else if (ethertype == RTE_ETHER_TYPE_IPV6) { 1110 packet_type |= RTE_PTYPE_L3_IPV6; 1111 ipv6_hdr = rte_pktmbuf_mtod_offset(m, 1112 struct rte_ipv6_hdr *, len); 1113 if (ipv6_hdr->proto == IPPROTO_TCP) 1114 packet_type |= RTE_PTYPE_L4_TCP; 1115 else if (ipv6_hdr->proto == IPPROTO_UDP) 1116 packet_type |= RTE_PTYPE_L4_UDP; 1117 } 1118 1119 if (vlan_tagged) 1120 packet_type |= RTE_PTYPE_L2_ETHER_VLAN; 1121 else 1122 packet_type |= RTE_PTYPE_L2_ETHER; 1123 1124 return packet_type; 1125 } 1126 1127 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags) 1128 { 1129 uint16_t val; 1130 1131 /* Lookup table */ 1132 static const uint32_t 1133 ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = { 1134 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4 | 1135 RTE_PTYPE_INNER_L2_ETHER, 1136 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6 | 1137 RTE_PTYPE_INNER_L2_ETHER, 1138 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4 | 1139 RTE_PTYPE_INNER_L4_TCP | 1140 RTE_PTYPE_INNER_L2_ETHER, 1141 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6 | 1142 RTE_PTYPE_INNER_L4_TCP | 1143 RTE_PTYPE_INNER_L2_ETHER, 1144 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4 | 1145 RTE_PTYPE_INNER_L4_UDP | 1146 RTE_PTYPE_INNER_L2_ETHER, 1147 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6 | 1148 RTE_PTYPE_INNER_L4_UDP | 1149 RTE_PTYPE_INNER_L2_ETHER, 1150 /* Frags with no VLAN */ 1151 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4 | 1152 RTE_PTYPE_INNER_L4_FRAG | 1153 RTE_PTYPE_INNER_L2_ETHER, 1154 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6 | 1155 RTE_PTYPE_INNER_L4_FRAG | 1156 RTE_PTYPE_INNER_L2_ETHER, 1157 /* VLANs */ 1158 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4 | 1159 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1160 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6 | 1161 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1162 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 | 1163 RTE_PTYPE_INNER_L4_TCP | 1164 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1165 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 | 1166 RTE_PTYPE_INNER_L4_TCP | 1167 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1168 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 | 1169 RTE_PTYPE_INNER_L4_UDP | 1170 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1171 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 | 1172 RTE_PTYPE_INNER_L4_UDP | 1173 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1174 /* Frags with VLAN */ 1175 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 | 1176 RTE_PTYPE_INNER_L4_FRAG | 1177 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1178 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 | 1179 RTE_PTYPE_INNER_L4_FRAG | 1180 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1181 }; 1182 1183 /* Bits (0..3) provides L3/L4 protocol type */ 1184 /* Bits (4,5) provides frag and VLAN info */ 1185 val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK << 1186 PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) | 1187 (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK << 1188 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) | 1189 (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << 1190 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) | 1191 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK << 1192 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags; 1193 1194 if (val < QEDE_PKT_TYPE_MAX) 1195 return ptype_lkup_tbl[val]; 1196 1197 return RTE_PTYPE_UNKNOWN; 1198 } 1199 1200 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags) 1201 { 1202 uint16_t val; 1203 1204 /* Lookup table */ 1205 static const uint32_t 1206 ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = { 1207 [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER, 1208 [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER, 1209 [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4 | 1210 RTE_PTYPE_L4_TCP | 1211 RTE_PTYPE_L2_ETHER, 1212 [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6 | 1213 RTE_PTYPE_L4_TCP | 1214 RTE_PTYPE_L2_ETHER, 1215 [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4 | 1216 RTE_PTYPE_L4_UDP | 1217 RTE_PTYPE_L2_ETHER, 1218 [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6 | 1219 RTE_PTYPE_L4_UDP | 1220 RTE_PTYPE_L2_ETHER, 1221 /* Frags with no VLAN */ 1222 [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4 | 1223 RTE_PTYPE_L4_FRAG | 1224 RTE_PTYPE_L2_ETHER, 1225 [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6 | 1226 RTE_PTYPE_L4_FRAG | 1227 RTE_PTYPE_L2_ETHER, 1228 /* VLANs */ 1229 [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4 | 1230 RTE_PTYPE_L2_ETHER_VLAN, 1231 [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6 | 1232 RTE_PTYPE_L2_ETHER_VLAN, 1233 [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4 | 1234 RTE_PTYPE_L4_TCP | 1235 RTE_PTYPE_L2_ETHER_VLAN, 1236 [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6 | 1237 RTE_PTYPE_L4_TCP | 1238 RTE_PTYPE_L2_ETHER_VLAN, 1239 [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4 | 1240 RTE_PTYPE_L4_UDP | 1241 RTE_PTYPE_L2_ETHER_VLAN, 1242 [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6 | 1243 RTE_PTYPE_L4_UDP | 1244 RTE_PTYPE_L2_ETHER_VLAN, 1245 /* Frags with VLAN */ 1246 [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4 | 1247 RTE_PTYPE_L4_FRAG | 1248 RTE_PTYPE_L2_ETHER_VLAN, 1249 [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6 | 1250 RTE_PTYPE_L4_FRAG | 1251 RTE_PTYPE_L2_ETHER_VLAN, 1252 }; 1253 1254 /* Bits (0..3) provides L3/L4 protocol type */ 1255 /* Bits (4,5) provides frag and VLAN info */ 1256 val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK << 1257 PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) | 1258 (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK << 1259 PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) | 1260 (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << 1261 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) | 1262 (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK << 1263 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags; 1264 1265 if (val < QEDE_PKT_TYPE_MAX) 1266 return ptype_lkup_tbl[val]; 1267 1268 return RTE_PTYPE_UNKNOWN; 1269 } 1270 1271 static inline uint8_t 1272 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag) 1273 { 1274 struct rte_ipv4_hdr *ip; 1275 uint16_t pkt_csum; 1276 uint16_t calc_csum; 1277 uint16_t val; 1278 1279 val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 1280 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag); 1281 1282 if (unlikely(val)) { 1283 m->packet_type = qede_rx_cqe_to_pkt_type(flag); 1284 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 1285 ip = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, 1286 sizeof(struct rte_ether_hdr)); 1287 pkt_csum = ip->hdr_checksum; 1288 ip->hdr_checksum = 0; 1289 calc_csum = rte_ipv4_cksum(ip); 1290 ip->hdr_checksum = pkt_csum; 1291 return (calc_csum != pkt_csum); 1292 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 1293 return 1; 1294 } 1295 } 1296 return 0; 1297 } 1298 1299 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) 1300 { 1301 ecore_chain_consume(&rxq->rx_bd_ring); 1302 rxq->sw_rx_cons++; 1303 } 1304 1305 static inline void 1306 qede_reuse_page(__rte_unused struct qede_dev *qdev, 1307 struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons) 1308 { 1309 struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring); 1310 uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq); 1311 struct qede_rx_entry *curr_prod; 1312 dma_addr_t new_mapping; 1313 1314 curr_prod = &rxq->sw_rx_ring[idx]; 1315 *curr_prod = *curr_cons; 1316 1317 new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) + 1318 curr_prod->page_offset; 1319 1320 rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping)); 1321 rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping)); 1322 1323 rxq->sw_rx_prod++; 1324 } 1325 1326 static inline void 1327 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, 1328 struct qede_dev *qdev, uint8_t count) 1329 { 1330 struct qede_rx_entry *curr_cons; 1331 1332 for (; count > 0; count--) { 1333 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)]; 1334 qede_reuse_page(qdev, rxq, curr_cons); 1335 qede_rx_bd_ring_consume(rxq); 1336 } 1337 } 1338 1339 static inline void 1340 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev, 1341 struct qede_rx_queue *rxq, 1342 uint8_t agg_index, uint16_t len) 1343 { 1344 struct qede_agg_info *tpa_info; 1345 struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */ 1346 uint16_t cons_idx; 1347 1348 /* Under certain conditions it is possible that FW may not consume 1349 * additional or new BD. So decision to consume the BD must be made 1350 * based on len_list[0]. 1351 */ 1352 if (rte_le_to_cpu_16(len)) { 1353 tpa_info = &rxq->tpa_info[agg_index]; 1354 cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq); 1355 curr_frag = rxq->sw_rx_ring[cons_idx].mbuf; 1356 assert(curr_frag); 1357 curr_frag->nb_segs = 1; 1358 curr_frag->pkt_len = rte_le_to_cpu_16(len); 1359 curr_frag->data_len = curr_frag->pkt_len; 1360 tpa_info->tpa_tail->next = curr_frag; 1361 tpa_info->tpa_tail = curr_frag; 1362 qede_rx_bd_ring_consume(rxq); 1363 if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) { 1364 PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n"); 1365 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; 1366 rxq->rx_alloc_errors++; 1367 } 1368 } 1369 } 1370 1371 static inline void 1372 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev, 1373 struct qede_rx_queue *rxq, 1374 struct eth_fast_path_rx_tpa_cont_cqe *cqe) 1375 { 1376 PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n", 1377 cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0])); 1378 /* only len_list[0] will have value */ 1379 qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index, 1380 cqe->len_list[0]); 1381 } 1382 1383 static inline void 1384 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev, 1385 struct qede_rx_queue *rxq, 1386 struct eth_fast_path_rx_tpa_end_cqe *cqe) 1387 { 1388 struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */ 1389 1390 qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index, 1391 cqe->len_list[0]); 1392 /* Update total length and frags based on end TPA */ 1393 rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head; 1394 /* TODO: Add Sanity Checks */ 1395 rx_mb->nb_segs = cqe->num_of_bds; 1396 rx_mb->pkt_len = cqe->total_packet_len; 1397 1398 PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d" 1399 " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason, 1400 rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs, 1401 rx_mb->pkt_len); 1402 } 1403 1404 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags) 1405 { 1406 uint32_t val; 1407 1408 /* Lookup table */ 1409 static const uint32_t 1410 ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = { 1411 [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN, 1412 [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE, 1413 [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE, 1414 [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN, 1415 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] = 1416 RTE_PTYPE_TUNNEL_GENEVE, 1417 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] = 1418 RTE_PTYPE_TUNNEL_GRE, 1419 [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] = 1420 RTE_PTYPE_TUNNEL_VXLAN, 1421 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] = 1422 RTE_PTYPE_TUNNEL_GENEVE, 1423 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] = 1424 RTE_PTYPE_TUNNEL_GRE, 1425 [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] = 1426 RTE_PTYPE_TUNNEL_VXLAN, 1427 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] = 1428 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4, 1429 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] = 1430 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4, 1431 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] = 1432 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4, 1433 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] = 1434 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4, 1435 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] = 1436 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4, 1437 [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] = 1438 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4, 1439 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] = 1440 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6, 1441 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] = 1442 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6, 1443 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] = 1444 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6, 1445 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] = 1446 RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6, 1447 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] = 1448 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6, 1449 [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] = 1450 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6, 1451 }; 1452 1453 /* Cover bits[4-0] to include tunn_type and next protocol */ 1454 val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK << 1455 ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) | 1456 (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK << 1457 ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags; 1458 1459 if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE) 1460 return ptype_tunn_lkup_tbl[val]; 1461 else 1462 return RTE_PTYPE_UNKNOWN; 1463 } 1464 1465 static inline int 1466 qede_process_sg_pkts(void *p_rxq, struct rte_mbuf *rx_mb, 1467 uint8_t num_segs, uint16_t pkt_len) 1468 { 1469 struct qede_rx_queue *rxq = p_rxq; 1470 struct qede_dev *qdev = rxq->qdev; 1471 register struct rte_mbuf *seg1 = NULL; 1472 register struct rte_mbuf *seg2 = NULL; 1473 uint16_t sw_rx_index; 1474 uint16_t cur_size; 1475 1476 seg1 = rx_mb; 1477 while (num_segs) { 1478 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size : 1479 pkt_len; 1480 if (unlikely(!cur_size)) { 1481 PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs" 1482 " left for mapping jumbo\n", num_segs); 1483 qede_recycle_rx_bd_ring(rxq, qdev, num_segs); 1484 return -EINVAL; 1485 } 1486 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq); 1487 seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf; 1488 qede_rx_bd_ring_consume(rxq); 1489 pkt_len -= cur_size; 1490 seg2->data_len = cur_size; 1491 seg1->next = seg2; 1492 seg1 = seg1->next; 1493 num_segs--; 1494 rxq->rx_segs++; 1495 } 1496 1497 return 0; 1498 } 1499 1500 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX 1501 static inline void 1502 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq, 1503 uint8_t bitfield) 1504 { 1505 PMD_RX_LOG(INFO, rxq, 1506 "len 0x%04x bf 0x%04x hash_val 0x%x" 1507 " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s" 1508 " inner_l2=%s inner_l3=%s inner_l4=%s\n", 1509 m->data_len, bitfield, m->hash.rss, 1510 (unsigned long)m->ol_flags, 1511 rte_get_ptype_l2_name(m->packet_type), 1512 rte_get_ptype_l3_name(m->packet_type), 1513 rte_get_ptype_l4_name(m->packet_type), 1514 rte_get_ptype_tunnel_name(m->packet_type), 1515 rte_get_ptype_inner_l2_name(m->packet_type), 1516 rte_get_ptype_inner_l3_name(m->packet_type), 1517 rte_get_ptype_inner_l4_name(m->packet_type)); 1518 } 1519 #endif 1520 1521 uint16_t 1522 qede_recv_pkts_regular(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) 1523 { 1524 struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL; 1525 register struct rte_mbuf *rx_mb = NULL; 1526 struct qede_rx_queue *rxq = p_rxq; 1527 struct qede_dev *qdev = rxq->qdev; 1528 struct ecore_dev *edev = &qdev->edev; 1529 union eth_rx_cqe *cqe; 1530 uint64_t ol_flags; 1531 enum eth_rx_cqe_type cqe_type; 1532 int rss_enable = qdev->rss_enable; 1533 int rx_alloc_count = 0; 1534 uint32_t packet_type; 1535 uint32_t rss_hash; 1536 uint16_t vlan_tci, port_id; 1537 uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index, num_rx_bds; 1538 uint16_t rx_pkt = 0; 1539 uint16_t pkt_len = 0; 1540 uint16_t len; /* Length of first BD */ 1541 uint16_t preload_idx; 1542 uint16_t parse_flag; 1543 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX 1544 uint8_t bitfield_val; 1545 #endif 1546 uint8_t offset, flags, bd_num; 1547 1548 1549 /* Allocate buffers that we used in previous loop */ 1550 if (rxq->rx_alloc_count) { 1551 if (unlikely(qede_alloc_rx_bulk_mbufs(rxq, 1552 rxq->rx_alloc_count))) { 1553 struct rte_eth_dev *dev; 1554 1555 PMD_RX_LOG(ERR, rxq, 1556 "New buffer allocation failed," 1557 "dropping incoming packetn"); 1558 dev = &rte_eth_devices[rxq->port_id]; 1559 dev->data->rx_mbuf_alloc_failed += 1560 rxq->rx_alloc_count; 1561 rxq->rx_alloc_errors += rxq->rx_alloc_count; 1562 return 0; 1563 } 1564 qede_update_rx_prod(qdev, rxq); 1565 rxq->rx_alloc_count = 0; 1566 } 1567 1568 hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr); 1569 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); 1570 1571 rte_rmb(); 1572 1573 if (hw_comp_cons == sw_comp_cons) 1574 return 0; 1575 1576 num_rx_bds = NUM_RX_BDS(rxq); 1577 port_id = rxq->port_id; 1578 1579 while (sw_comp_cons != hw_comp_cons) { 1580 ol_flags = 0; 1581 packet_type = RTE_PTYPE_UNKNOWN; 1582 vlan_tci = 0; 1583 rss_hash = 0; 1584 1585 /* Get the CQE from the completion ring */ 1586 cqe = 1587 (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring); 1588 cqe_type = cqe->fast_path_regular.type; 1589 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type); 1590 1591 if (likely(cqe_type == ETH_RX_CQE_TYPE_REGULAR)) { 1592 fp_cqe = &cqe->fast_path_regular; 1593 } else { 1594 if (cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH) { 1595 PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n"); 1596 ecore_eth_cqe_completion 1597 (&edev->hwfns[rxq->queue_id % 1598 edev->num_hwfns], 1599 (struct eth_slow_path_rx_cqe *)cqe); 1600 } 1601 goto next_cqe; 1602 } 1603 1604 /* Get the data from the SW ring */ 1605 sw_rx_index = rxq->sw_rx_cons & num_rx_bds; 1606 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf; 1607 assert(rx_mb != NULL); 1608 1609 parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags); 1610 offset = fp_cqe->placement_offset; 1611 len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd); 1612 pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len); 1613 vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag); 1614 rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash); 1615 bd_num = fp_cqe->bd_num; 1616 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX 1617 bitfield_val = fp_cqe->bitfields; 1618 #endif 1619 1620 if (unlikely(qede_tunn_exist(parse_flag))) { 1621 PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n"); 1622 if (unlikely(qede_check_tunn_csum_l4(parse_flag))) { 1623 PMD_RX_LOG(ERR, rxq, 1624 "L4 csum failed, flags = 0x%x\n", 1625 parse_flag); 1626 rxq->rx_hw_errors++; 1627 ol_flags |= PKT_RX_L4_CKSUM_BAD; 1628 } else { 1629 ol_flags |= PKT_RX_L4_CKSUM_GOOD; 1630 } 1631 1632 if (unlikely(qede_check_tunn_csum_l3(parse_flag))) { 1633 PMD_RX_LOG(ERR, rxq, 1634 "Outer L3 csum failed, flags = 0x%x\n", 1635 parse_flag); 1636 rxq->rx_hw_errors++; 1637 ol_flags |= PKT_RX_EIP_CKSUM_BAD; 1638 } else { 1639 ol_flags |= PKT_RX_IP_CKSUM_GOOD; 1640 } 1641 1642 flags = fp_cqe->tunnel_pars_flags.flags; 1643 1644 /* Tunnel_type */ 1645 packet_type = 1646 qede_rx_cqe_to_tunn_pkt_type(flags); 1647 1648 /* Inner header */ 1649 packet_type |= 1650 qede_rx_cqe_to_pkt_type_inner(parse_flag); 1651 1652 /* Outer L3/L4 types is not available in CQE */ 1653 packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb); 1654 1655 /* Outer L3/L4 types is not available in CQE. 1656 * Need to add offset to parse correctly, 1657 */ 1658 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM; 1659 packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb); 1660 } else { 1661 packet_type |= qede_rx_cqe_to_pkt_type(parse_flag); 1662 } 1663 1664 /* Common handling for non-tunnel packets and for inner 1665 * headers in the case of tunnel. 1666 */ 1667 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) { 1668 PMD_RX_LOG(ERR, rxq, 1669 "L4 csum failed, flags = 0x%x\n", 1670 parse_flag); 1671 rxq->rx_hw_errors++; 1672 ol_flags |= PKT_RX_L4_CKSUM_BAD; 1673 } else { 1674 ol_flags |= PKT_RX_L4_CKSUM_GOOD; 1675 } 1676 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) { 1677 PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n", 1678 parse_flag); 1679 rxq->rx_hw_errors++; 1680 ol_flags |= PKT_RX_IP_CKSUM_BAD; 1681 } else { 1682 ol_flags |= PKT_RX_IP_CKSUM_GOOD; 1683 } 1684 1685 if (unlikely(CQE_HAS_VLAN(parse_flag) || 1686 CQE_HAS_OUTER_VLAN(parse_flag))) { 1687 /* Note: FW doesn't indicate Q-in-Q packet */ 1688 ol_flags |= PKT_RX_VLAN; 1689 if (qdev->vlan_strip_flg) { 1690 ol_flags |= PKT_RX_VLAN_STRIPPED; 1691 rx_mb->vlan_tci = vlan_tci; 1692 } 1693 } 1694 1695 if (rss_enable) { 1696 ol_flags |= PKT_RX_RSS_HASH; 1697 rx_mb->hash.rss = rss_hash; 1698 } 1699 1700 rx_alloc_count++; 1701 qede_rx_bd_ring_consume(rxq); 1702 1703 /* Prefetch next mbuf while processing current one. */ 1704 preload_idx = rxq->sw_rx_cons & num_rx_bds; 1705 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf); 1706 1707 /* Update rest of the MBUF fields */ 1708 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM; 1709 rx_mb->port = port_id; 1710 rx_mb->ol_flags = ol_flags; 1711 rx_mb->data_len = len; 1712 rx_mb->packet_type = packet_type; 1713 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX 1714 print_rx_bd_info(rx_mb, rxq, bitfield_val); 1715 #endif 1716 rx_mb->nb_segs = bd_num; 1717 rx_mb->pkt_len = pkt_len; 1718 1719 rx_pkts[rx_pkt] = rx_mb; 1720 rx_pkt++; 1721 1722 next_cqe: 1723 ecore_chain_recycle_consumed(&rxq->rx_comp_ring); 1724 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); 1725 if (rx_pkt == nb_pkts) { 1726 PMD_RX_LOG(DEBUG, rxq, 1727 "Budget reached nb_pkts=%u received=%u", 1728 rx_pkt, nb_pkts); 1729 break; 1730 } 1731 } 1732 1733 /* Request number of bufferes to be allocated in next loop */ 1734 rxq->rx_alloc_count = rx_alloc_count; 1735 1736 rxq->rcv_pkts += rx_pkt; 1737 rxq->rx_segs += rx_pkt; 1738 PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id()); 1739 1740 return rx_pkt; 1741 } 1742 1743 uint16_t 1744 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) 1745 { 1746 struct qede_rx_queue *rxq = p_rxq; 1747 struct qede_dev *qdev = rxq->qdev; 1748 struct ecore_dev *edev = &qdev->edev; 1749 uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index; 1750 uint16_t rx_pkt = 0; 1751 union eth_rx_cqe *cqe; 1752 struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL; 1753 register struct rte_mbuf *rx_mb = NULL; 1754 register struct rte_mbuf *seg1 = NULL; 1755 enum eth_rx_cqe_type cqe_type; 1756 uint16_t pkt_len = 0; /* Sum of all BD segments */ 1757 uint16_t len; /* Length of first BD */ 1758 uint8_t num_segs = 1; 1759 uint16_t preload_idx; 1760 uint16_t parse_flag; 1761 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX 1762 uint8_t bitfield_val; 1763 #endif 1764 uint8_t tunn_parse_flag; 1765 struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa; 1766 uint64_t ol_flags; 1767 uint32_t packet_type; 1768 uint16_t vlan_tci; 1769 bool tpa_start_flg; 1770 uint8_t offset, tpa_agg_idx, flags; 1771 struct qede_agg_info *tpa_info = NULL; 1772 uint32_t rss_hash; 1773 int rx_alloc_count = 0; 1774 1775 1776 /* Allocate buffers that we used in previous loop */ 1777 if (rxq->rx_alloc_count) { 1778 if (unlikely(qede_alloc_rx_bulk_mbufs(rxq, 1779 rxq->rx_alloc_count))) { 1780 struct rte_eth_dev *dev; 1781 1782 PMD_RX_LOG(ERR, rxq, 1783 "New buffer allocation failed," 1784 "dropping incoming packetn"); 1785 dev = &rte_eth_devices[rxq->port_id]; 1786 dev->data->rx_mbuf_alloc_failed += 1787 rxq->rx_alloc_count; 1788 rxq->rx_alloc_errors += rxq->rx_alloc_count; 1789 return 0; 1790 } 1791 qede_update_rx_prod(qdev, rxq); 1792 rxq->rx_alloc_count = 0; 1793 } 1794 1795 hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr); 1796 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); 1797 1798 rte_rmb(); 1799 1800 if (hw_comp_cons == sw_comp_cons) 1801 return 0; 1802 1803 while (sw_comp_cons != hw_comp_cons) { 1804 ol_flags = 0; 1805 packet_type = RTE_PTYPE_UNKNOWN; 1806 vlan_tci = 0; 1807 tpa_start_flg = false; 1808 rss_hash = 0; 1809 1810 /* Get the CQE from the completion ring */ 1811 cqe = 1812 (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring); 1813 cqe_type = cqe->fast_path_regular.type; 1814 PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type); 1815 1816 switch (cqe_type) { 1817 case ETH_RX_CQE_TYPE_REGULAR: 1818 fp_cqe = &cqe->fast_path_regular; 1819 break; 1820 case ETH_RX_CQE_TYPE_TPA_START: 1821 cqe_start_tpa = &cqe->fast_path_tpa_start; 1822 tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index]; 1823 tpa_start_flg = true; 1824 /* Mark it as LRO packet */ 1825 ol_flags |= PKT_RX_LRO; 1826 /* In split mode, seg_len is same as len_on_first_bd 1827 * and bw_ext_bd_len_list will be empty since there are 1828 * no additional buffers 1829 */ 1830 PMD_RX_LOG(INFO, rxq, 1831 "TPA start[%d] - len_on_first_bd %d header %d" 1832 " [bd_list[0] %d], [seg_len %d]\n", 1833 cqe_start_tpa->tpa_agg_index, 1834 rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd), 1835 cqe_start_tpa->header_len, 1836 rte_le_to_cpu_16(cqe_start_tpa->bw_ext_bd_len_list[0]), 1837 rte_le_to_cpu_16(cqe_start_tpa->seg_len)); 1838 1839 break; 1840 case ETH_RX_CQE_TYPE_TPA_CONT: 1841 qede_rx_process_tpa_cont_cqe(qdev, rxq, 1842 &cqe->fast_path_tpa_cont); 1843 goto next_cqe; 1844 case ETH_RX_CQE_TYPE_TPA_END: 1845 qede_rx_process_tpa_end_cqe(qdev, rxq, 1846 &cqe->fast_path_tpa_end); 1847 tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index; 1848 tpa_info = &rxq->tpa_info[tpa_agg_idx]; 1849 rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head; 1850 goto tpa_end; 1851 case ETH_RX_CQE_TYPE_SLOW_PATH: 1852 PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n"); 1853 ecore_eth_cqe_completion( 1854 &edev->hwfns[rxq->queue_id % edev->num_hwfns], 1855 (struct eth_slow_path_rx_cqe *)cqe); 1856 /* fall-thru */ 1857 default: 1858 goto next_cqe; 1859 } 1860 1861 /* Get the data from the SW ring */ 1862 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq); 1863 rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf; 1864 assert(rx_mb != NULL); 1865 1866 /* Handle regular CQE or TPA start CQE */ 1867 if (!tpa_start_flg) { 1868 parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags); 1869 offset = fp_cqe->placement_offset; 1870 len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd); 1871 pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len); 1872 vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag); 1873 rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash); 1874 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX 1875 bitfield_val = fp_cqe->bitfields; 1876 #endif 1877 } else { 1878 parse_flag = 1879 rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags); 1880 offset = cqe_start_tpa->placement_offset; 1881 /* seg_len = len_on_first_bd */ 1882 len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd); 1883 vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag); 1884 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX 1885 bitfield_val = cqe_start_tpa->bitfields; 1886 #endif 1887 rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash); 1888 } 1889 if (qede_tunn_exist(parse_flag)) { 1890 PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n"); 1891 if (unlikely(qede_check_tunn_csum_l4(parse_flag))) { 1892 PMD_RX_LOG(ERR, rxq, 1893 "L4 csum failed, flags = 0x%x\n", 1894 parse_flag); 1895 rxq->rx_hw_errors++; 1896 ol_flags |= PKT_RX_L4_CKSUM_BAD; 1897 } else { 1898 ol_flags |= PKT_RX_L4_CKSUM_GOOD; 1899 } 1900 1901 if (unlikely(qede_check_tunn_csum_l3(parse_flag))) { 1902 PMD_RX_LOG(ERR, rxq, 1903 "Outer L3 csum failed, flags = 0x%x\n", 1904 parse_flag); 1905 rxq->rx_hw_errors++; 1906 ol_flags |= PKT_RX_EIP_CKSUM_BAD; 1907 } else { 1908 ol_flags |= PKT_RX_IP_CKSUM_GOOD; 1909 } 1910 1911 if (tpa_start_flg) 1912 flags = cqe_start_tpa->tunnel_pars_flags.flags; 1913 else 1914 flags = fp_cqe->tunnel_pars_flags.flags; 1915 tunn_parse_flag = flags; 1916 1917 /* Tunnel_type */ 1918 packet_type = 1919 qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag); 1920 1921 /* Inner header */ 1922 packet_type |= 1923 qede_rx_cqe_to_pkt_type_inner(parse_flag); 1924 1925 /* Outer L3/L4 types is not available in CQE */ 1926 packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb); 1927 1928 /* Outer L3/L4 types is not available in CQE. 1929 * Need to add offset to parse correctly, 1930 */ 1931 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM; 1932 packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb); 1933 } else { 1934 packet_type |= qede_rx_cqe_to_pkt_type(parse_flag); 1935 } 1936 1937 /* Common handling for non-tunnel packets and for inner 1938 * headers in the case of tunnel. 1939 */ 1940 if (unlikely(qede_check_notunn_csum_l4(parse_flag))) { 1941 PMD_RX_LOG(ERR, rxq, 1942 "L4 csum failed, flags = 0x%x\n", 1943 parse_flag); 1944 rxq->rx_hw_errors++; 1945 ol_flags |= PKT_RX_L4_CKSUM_BAD; 1946 } else { 1947 ol_flags |= PKT_RX_L4_CKSUM_GOOD; 1948 } 1949 if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) { 1950 PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n", 1951 parse_flag); 1952 rxq->rx_hw_errors++; 1953 ol_flags |= PKT_RX_IP_CKSUM_BAD; 1954 } else { 1955 ol_flags |= PKT_RX_IP_CKSUM_GOOD; 1956 } 1957 1958 if (CQE_HAS_VLAN(parse_flag) || 1959 CQE_HAS_OUTER_VLAN(parse_flag)) { 1960 /* Note: FW doesn't indicate Q-in-Q packet */ 1961 ol_flags |= PKT_RX_VLAN; 1962 if (qdev->vlan_strip_flg) { 1963 ol_flags |= PKT_RX_VLAN_STRIPPED; 1964 rx_mb->vlan_tci = vlan_tci; 1965 } 1966 } 1967 1968 /* RSS Hash */ 1969 if (qdev->rss_enable) { 1970 ol_flags |= PKT_RX_RSS_HASH; 1971 rx_mb->hash.rss = rss_hash; 1972 } 1973 1974 rx_alloc_count++; 1975 qede_rx_bd_ring_consume(rxq); 1976 1977 if (!tpa_start_flg && fp_cqe->bd_num > 1) { 1978 PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs" 1979 " len on first: %04x Total Len: %04x", 1980 fp_cqe->bd_num, len, pkt_len); 1981 num_segs = fp_cqe->bd_num - 1; 1982 seg1 = rx_mb; 1983 if (qede_process_sg_pkts(p_rxq, seg1, num_segs, 1984 pkt_len - len)) 1985 goto next_cqe; 1986 1987 rx_alloc_count += num_segs; 1988 rxq->rx_segs += num_segs; 1989 } 1990 rxq->rx_segs++; /* for the first segment */ 1991 1992 /* Prefetch next mbuf while processing current one. */ 1993 preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq); 1994 rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf); 1995 1996 /* Update rest of the MBUF fields */ 1997 rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM; 1998 rx_mb->port = rxq->port_id; 1999 rx_mb->ol_flags = ol_flags; 2000 rx_mb->data_len = len; 2001 rx_mb->packet_type = packet_type; 2002 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX 2003 print_rx_bd_info(rx_mb, rxq, bitfield_val); 2004 #endif 2005 if (!tpa_start_flg) { 2006 rx_mb->nb_segs = fp_cqe->bd_num; 2007 rx_mb->pkt_len = pkt_len; 2008 } else { 2009 /* store ref to the updated mbuf */ 2010 tpa_info->tpa_head = rx_mb; 2011 tpa_info->tpa_tail = tpa_info->tpa_head; 2012 } 2013 rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *)); 2014 tpa_end: 2015 if (!tpa_start_flg) { 2016 rx_pkts[rx_pkt] = rx_mb; 2017 rx_pkt++; 2018 } 2019 next_cqe: 2020 ecore_chain_recycle_consumed(&rxq->rx_comp_ring); 2021 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); 2022 if (rx_pkt == nb_pkts) { 2023 PMD_RX_LOG(DEBUG, rxq, 2024 "Budget reached nb_pkts=%u received=%u", 2025 rx_pkt, nb_pkts); 2026 break; 2027 } 2028 } 2029 2030 /* Request number of bufferes to be allocated in next loop */ 2031 rxq->rx_alloc_count = rx_alloc_count; 2032 2033 rxq->rcv_pkts += rx_pkt; 2034 2035 PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id()); 2036 2037 return rx_pkt; 2038 } 2039 2040 uint16_t 2041 qede_recv_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) 2042 { 2043 struct qede_fastpath_cmt *fp_cmt = p_fp_cmt; 2044 uint16_t eng0_pkts, eng1_pkts; 2045 2046 eng0_pkts = nb_pkts / 2; 2047 2048 eng0_pkts = qede_recv_pkts(fp_cmt->fp0->rxq, rx_pkts, eng0_pkts); 2049 2050 eng1_pkts = nb_pkts - eng0_pkts; 2051 2052 eng1_pkts = qede_recv_pkts(fp_cmt->fp1->rxq, rx_pkts + eng0_pkts, 2053 eng1_pkts); 2054 2055 return eng0_pkts + eng1_pkts; 2056 } 2057 2058 /* Populate scatter gather buffer descriptor fields */ 2059 static inline uint16_t 2060 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg, 2061 struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3, 2062 uint16_t start_seg) 2063 { 2064 struct qede_tx_queue *txq = p_txq; 2065 struct eth_tx_bd *tx_bd = NULL; 2066 dma_addr_t mapping; 2067 uint16_t nb_segs = 0; 2068 2069 /* Check for scattered buffers */ 2070 while (m_seg) { 2071 if (start_seg == 0) { 2072 if (!*bd2) { 2073 *bd2 = (struct eth_tx_2nd_bd *) 2074 ecore_chain_produce(&txq->tx_pbl); 2075 memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd)); 2076 nb_segs++; 2077 } 2078 mapping = rte_mbuf_data_iova(m_seg); 2079 QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len); 2080 PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len); 2081 } else if (start_seg == 1) { 2082 if (!*bd3) { 2083 *bd3 = (struct eth_tx_3rd_bd *) 2084 ecore_chain_produce(&txq->tx_pbl); 2085 memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd)); 2086 nb_segs++; 2087 } 2088 mapping = rte_mbuf_data_iova(m_seg); 2089 QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len); 2090 PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len); 2091 } else { 2092 tx_bd = (struct eth_tx_bd *) 2093 ecore_chain_produce(&txq->tx_pbl); 2094 memset(tx_bd, 0, sizeof(*tx_bd)); 2095 nb_segs++; 2096 mapping = rte_mbuf_data_iova(m_seg); 2097 QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len); 2098 PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len); 2099 } 2100 start_seg++; 2101 m_seg = m_seg->next; 2102 } 2103 2104 /* Return total scattered buffers */ 2105 return nb_segs; 2106 } 2107 2108 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX 2109 static inline void 2110 print_tx_bd_info(struct qede_tx_queue *txq, 2111 struct eth_tx_1st_bd *bd1, 2112 struct eth_tx_2nd_bd *bd2, 2113 struct eth_tx_3rd_bd *bd3, 2114 uint64_t tx_ol_flags) 2115 { 2116 char ol_buf[256] = { 0 }; /* for verbose prints */ 2117 2118 if (bd1) 2119 PMD_TX_LOG(INFO, txq, 2120 "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x", 2121 rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds, 2122 bd1->data.bd_flags.bitfields, 2123 rte_cpu_to_le_16(bd1->data.bitfields)); 2124 if (bd2) 2125 PMD_TX_LOG(INFO, txq, 2126 "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n", 2127 rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1, 2128 bd2->data.bitfields2, bd2->data.tunn_ip_size); 2129 if (bd3) 2130 PMD_TX_LOG(INFO, txq, 2131 "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x " 2132 "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n", 2133 rte_cpu_to_le_16(bd3->nbytes), 2134 rte_cpu_to_le_16(bd3->data.bitfields), 2135 rte_cpu_to_le_16(bd3->data.lso_mss), 2136 bd3->data.tunn_l4_hdr_start_offset_w, 2137 bd3->data.tunn_hdr_size_w); 2138 2139 rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf)); 2140 PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf); 2141 } 2142 #endif 2143 2144 /* TX prepare to check packets meets TX conditions */ 2145 uint16_t 2146 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX 2147 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts, 2148 uint16_t nb_pkts) 2149 { 2150 struct qede_tx_queue *txq = p_txq; 2151 #else 2152 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts, 2153 uint16_t nb_pkts) 2154 { 2155 #endif 2156 uint64_t ol_flags; 2157 struct rte_mbuf *m; 2158 uint16_t i; 2159 #ifdef RTE_LIBRTE_ETHDEV_DEBUG 2160 int ret; 2161 #endif 2162 2163 for (i = 0; i < nb_pkts; i++) { 2164 m = tx_pkts[i]; 2165 ol_flags = m->ol_flags; 2166 if (ol_flags & PKT_TX_TCP_SEG) { 2167 if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) { 2168 rte_errno = EINVAL; 2169 break; 2170 } 2171 /* TBD: confirm its ~9700B for both ? */ 2172 if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) { 2173 rte_errno = EINVAL; 2174 break; 2175 } 2176 } else { 2177 if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) { 2178 rte_errno = EINVAL; 2179 break; 2180 } 2181 } 2182 if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) { 2183 /* We support only limited tunnel protocols */ 2184 if (ol_flags & PKT_TX_TUNNEL_MASK) { 2185 uint64_t temp; 2186 2187 temp = ol_flags & PKT_TX_TUNNEL_MASK; 2188 if (temp == PKT_TX_TUNNEL_VXLAN || 2189 temp == PKT_TX_TUNNEL_GENEVE || 2190 temp == PKT_TX_TUNNEL_MPLSINUDP || 2191 temp == PKT_TX_TUNNEL_GRE) 2192 continue; 2193 } 2194 2195 rte_errno = ENOTSUP; 2196 break; 2197 } 2198 2199 #ifdef RTE_LIBRTE_ETHDEV_DEBUG 2200 ret = rte_validate_tx_offload(m); 2201 if (ret != 0) { 2202 rte_errno = -ret; 2203 break; 2204 } 2205 #endif 2206 } 2207 2208 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX 2209 if (unlikely(i != nb_pkts)) 2210 PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n", 2211 nb_pkts - i); 2212 #endif 2213 return i; 2214 } 2215 2216 #define MPLSINUDP_HDR_SIZE (12) 2217 2218 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX 2219 static inline void 2220 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf, 2221 struct qede_tx_queue *txq) 2222 { 2223 if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff) 2224 PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n"); 2225 if (((mbuf->outer_l2_len + mbuf->outer_l3_len + 2226 MPLSINUDP_HDR_SIZE) / 2) > 0xff) 2227 PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n"); 2228 if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) > 2229 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) 2230 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n"); 2231 if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) > 2232 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) 2233 PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n"); 2234 } 2235 #endif 2236 2237 uint16_t 2238 qede_xmit_pkts_regular(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 2239 { 2240 struct qede_tx_queue *txq = p_txq; 2241 struct qede_dev *qdev = txq->qdev; 2242 struct ecore_dev *edev = &qdev->edev; 2243 struct eth_tx_1st_bd *bd1; 2244 struct eth_tx_2nd_bd *bd2; 2245 struct eth_tx_3rd_bd *bd3; 2246 struct rte_mbuf *m_seg = NULL; 2247 struct rte_mbuf *mbuf; 2248 struct qede_tx_entry *sw_tx_ring; 2249 uint16_t nb_tx_pkts; 2250 uint16_t bd_prod; 2251 uint16_t idx; 2252 uint16_t nb_frags = 0; 2253 uint16_t nb_pkt_sent = 0; 2254 uint8_t nbds; 2255 uint64_t tx_ol_flags; 2256 /* BD1 */ 2257 uint16_t bd1_bf; 2258 uint8_t bd1_bd_flags_bf; 2259 2260 if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) { 2261 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u", 2262 nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh); 2263 qede_process_tx_compl(edev, txq); 2264 } 2265 2266 nb_tx_pkts = nb_pkts; 2267 bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl)); 2268 sw_tx_ring = txq->sw_tx_ring; 2269 2270 while (nb_tx_pkts--) { 2271 /* Init flags/values */ 2272 nbds = 0; 2273 bd1 = NULL; 2274 bd2 = NULL; 2275 bd3 = NULL; 2276 bd1_bf = 0; 2277 bd1_bd_flags_bf = 0; 2278 nb_frags = 0; 2279 2280 mbuf = *tx_pkts++; 2281 assert(mbuf); 2282 2283 2284 /* Check minimum TX BDS availability against available BDs */ 2285 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs)) 2286 break; 2287 2288 tx_ol_flags = mbuf->ol_flags; 2289 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; 2290 2291 if (unlikely(txq->nb_tx_avail < 2292 ETH_TX_MIN_BDS_PER_NON_LSO_PKT)) 2293 break; 2294 bd1_bf |= 2295 (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) 2296 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; 2297 2298 /* Offload the IP checksum in the hardware */ 2299 if (tx_ol_flags & PKT_TX_IP_CKSUM) 2300 bd1_bd_flags_bf |= 2301 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 2302 2303 /* L4 checksum offload (tcp or udp) */ 2304 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) && 2305 (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) 2306 bd1_bd_flags_bf |= 2307 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 2308 2309 /* Fill the entry in the SW ring and the BDs in the FW ring */ 2310 idx = TX_PROD(txq); 2311 sw_tx_ring[idx].mbuf = mbuf; 2312 2313 /* BD1 */ 2314 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl); 2315 memset(bd1, 0, sizeof(struct eth_tx_1st_bd)); 2316 nbds++; 2317 2318 /* Map MBUF linear data for DMA and set in the BD1 */ 2319 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf), 2320 mbuf->data_len); 2321 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf); 2322 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf; 2323 2324 /* Handle fragmented MBUF */ 2325 if (unlikely(mbuf->nb_segs > 1)) { 2326 m_seg = mbuf->next; 2327 2328 /* Encode scatter gather buffer descriptors */ 2329 nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, 2330 nbds - 1); 2331 } 2332 2333 bd1->data.nbds = nbds + nb_frags; 2334 2335 txq->nb_tx_avail -= bd1->data.nbds; 2336 txq->sw_tx_prod++; 2337 bd_prod = 2338 rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl)); 2339 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX 2340 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags); 2341 #endif 2342 nb_pkt_sent++; 2343 txq->xmit_pkts++; 2344 } 2345 2346 /* Write value of prod idx into bd_prod */ 2347 txq->tx_db.data.bd_prod = bd_prod; 2348 rte_wmb(); 2349 rte_compiler_barrier(); 2350 DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw); 2351 rte_wmb(); 2352 2353 /* Check again for Tx completions */ 2354 qede_process_tx_compl(edev, txq); 2355 2356 PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d", 2357 nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id()); 2358 2359 return nb_pkt_sent; 2360 } 2361 2362 uint16_t 2363 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 2364 { 2365 struct qede_tx_queue *txq = p_txq; 2366 struct qede_dev *qdev = txq->qdev; 2367 struct ecore_dev *edev = &qdev->edev; 2368 struct rte_mbuf *mbuf; 2369 struct rte_mbuf *m_seg = NULL; 2370 uint16_t nb_tx_pkts; 2371 uint16_t bd_prod; 2372 uint16_t idx; 2373 uint16_t nb_frags; 2374 uint16_t nb_pkt_sent = 0; 2375 uint8_t nbds; 2376 bool lso_flg; 2377 bool mplsoudp_flg; 2378 __rte_unused bool tunn_flg; 2379 bool tunn_ipv6_ext_flg; 2380 struct eth_tx_1st_bd *bd1; 2381 struct eth_tx_2nd_bd *bd2; 2382 struct eth_tx_3rd_bd *bd3; 2383 uint64_t tx_ol_flags; 2384 uint16_t hdr_size; 2385 /* BD1 */ 2386 uint16_t bd1_bf; 2387 uint8_t bd1_bd_flags_bf; 2388 uint16_t vlan; 2389 /* BD2 */ 2390 uint16_t bd2_bf1; 2391 uint16_t bd2_bf2; 2392 /* BD3 */ 2393 uint16_t mss; 2394 uint16_t bd3_bf; 2395 2396 uint8_t tunn_l4_hdr_start_offset; 2397 uint8_t tunn_hdr_size; 2398 uint8_t inner_l2_hdr_size; 2399 uint16_t inner_l4_hdr_offset; 2400 2401 if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) { 2402 PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u", 2403 nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh); 2404 qede_process_tx_compl(edev, txq); 2405 } 2406 2407 nb_tx_pkts = nb_pkts; 2408 bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl)); 2409 while (nb_tx_pkts--) { 2410 /* Init flags/values */ 2411 tunn_flg = false; 2412 lso_flg = false; 2413 nbds = 0; 2414 vlan = 0; 2415 bd1 = NULL; 2416 bd2 = NULL; 2417 bd3 = NULL; 2418 hdr_size = 0; 2419 bd1_bf = 0; 2420 bd1_bd_flags_bf = 0; 2421 bd2_bf1 = 0; 2422 bd2_bf2 = 0; 2423 mss = 0; 2424 bd3_bf = 0; 2425 mplsoudp_flg = false; 2426 tunn_ipv6_ext_flg = false; 2427 tunn_hdr_size = 0; 2428 tunn_l4_hdr_start_offset = 0; 2429 2430 mbuf = *tx_pkts++; 2431 assert(mbuf); 2432 2433 /* Check minimum TX BDS availability against available BDs */ 2434 if (unlikely(txq->nb_tx_avail < mbuf->nb_segs)) 2435 break; 2436 2437 tx_ol_flags = mbuf->ol_flags; 2438 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; 2439 2440 /* TX prepare would have already checked supported tunnel Tx 2441 * offloads. Don't rely on pkt_type marked by Rx, instead use 2442 * tx_ol_flags to decide. 2443 */ 2444 tunn_flg = !!(tx_ol_flags & PKT_TX_TUNNEL_MASK); 2445 2446 if (tunn_flg) { 2447 /* Check against max which is Tunnel IPv6 + ext */ 2448 if (unlikely(txq->nb_tx_avail < 2449 ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT)) 2450 break; 2451 2452 /* First indicate its a tunnel pkt */ 2453 bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK << 2454 ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; 2455 /* Legacy FW had flipped behavior in regard to this bit 2456 * i.e. it needed to set to prevent FW from touching 2457 * encapsulated packets when it didn't need to. 2458 */ 2459 if (unlikely(txq->is_legacy)) { 2460 bd1_bf ^= 1 << 2461 ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; 2462 } 2463 2464 /* Outer IP checksum offload */ 2465 if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM | 2466 PKT_TX_OUTER_IPV4)) { 2467 bd1_bd_flags_bf |= 2468 ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK << 2469 ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; 2470 } 2471 2472 /** 2473 * Currently, only inner checksum offload in MPLS-in-UDP 2474 * tunnel with one MPLS label is supported. Both outer 2475 * and inner layers lengths need to be provided in 2476 * mbuf. 2477 */ 2478 if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) == 2479 PKT_TX_TUNNEL_MPLSINUDP) { 2480 mplsoudp_flg = true; 2481 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX 2482 qede_mpls_tunn_tx_sanity_check(mbuf, txq); 2483 #endif 2484 /* Outer L4 offset in two byte words */ 2485 tunn_l4_hdr_start_offset = 2486 (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2; 2487 /* Tunnel header size in two byte words */ 2488 tunn_hdr_size = (mbuf->outer_l2_len + 2489 mbuf->outer_l3_len + 2490 MPLSINUDP_HDR_SIZE) / 2; 2491 /* Inner L2 header size in two byte words */ 2492 inner_l2_hdr_size = (mbuf->l2_len - 2493 MPLSINUDP_HDR_SIZE) / 2; 2494 /* Inner L4 header offset from the beggining 2495 * of inner packet in two byte words 2496 */ 2497 inner_l4_hdr_offset = (mbuf->l2_len - 2498 MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2; 2499 2500 /* Inner L2 size and address type */ 2501 bd2_bf1 |= (inner_l2_hdr_size & 2502 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) << 2503 ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT; 2504 bd2_bf1 |= (UNICAST_ADDRESS & 2505 ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) << 2506 ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT; 2507 /* Treated as IPv6+Ext */ 2508 bd2_bf1 |= 2509 1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT; 2510 2511 /* Mark inner IPv6 if present */ 2512 if (tx_ol_flags & PKT_TX_IPV6) 2513 bd2_bf1 |= 2514 1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT; 2515 2516 /* Inner L4 offsets */ 2517 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) && 2518 (tx_ol_flags & (PKT_TX_UDP_CKSUM | 2519 PKT_TX_TCP_CKSUM))) { 2520 /* Determines if BD3 is needed */ 2521 tunn_ipv6_ext_flg = true; 2522 if ((tx_ol_flags & PKT_TX_L4_MASK) == 2523 PKT_TX_UDP_CKSUM) { 2524 bd2_bf1 |= 2525 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; 2526 } 2527 2528 /* TODO other pseudo checksum modes are 2529 * not supported 2530 */ 2531 bd2_bf1 |= 2532 ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << 2533 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT; 2534 bd2_bf2 |= (inner_l4_hdr_offset & 2535 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) << 2536 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; 2537 } 2538 } /* End MPLSoUDP */ 2539 } /* End Tunnel handling */ 2540 2541 if (tx_ol_flags & PKT_TX_TCP_SEG) { 2542 lso_flg = true; 2543 if (unlikely(txq->nb_tx_avail < 2544 ETH_TX_MIN_BDS_PER_LSO_PKT)) 2545 break; 2546 /* For LSO, packet header and payload must reside on 2547 * buffers pointed by different BDs. Using BD1 for HDR 2548 * and BD2 onwards for data. 2549 */ 2550 hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len; 2551 if (tunn_flg) 2552 hdr_size += mbuf->outer_l2_len + 2553 mbuf->outer_l3_len; 2554 2555 bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT; 2556 bd1_bd_flags_bf |= 2557 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 2558 /* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */ 2559 bd1_bd_flags_bf |= 2560 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 2561 mss = rte_cpu_to_le_16(mbuf->tso_segsz); 2562 /* Using one header BD */ 2563 bd3_bf |= rte_cpu_to_le_16(1 << 2564 ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT); 2565 } else { 2566 if (unlikely(txq->nb_tx_avail < 2567 ETH_TX_MIN_BDS_PER_NON_LSO_PKT)) 2568 break; 2569 bd1_bf |= 2570 (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) 2571 << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; 2572 } 2573 2574 /* Descriptor based VLAN insertion */ 2575 if (tx_ol_flags & PKT_TX_VLAN_PKT) { 2576 vlan = rte_cpu_to_le_16(mbuf->vlan_tci); 2577 bd1_bd_flags_bf |= 2578 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; 2579 } 2580 2581 /* Offload the IP checksum in the hardware */ 2582 if (tx_ol_flags & PKT_TX_IP_CKSUM) { 2583 bd1_bd_flags_bf |= 2584 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 2585 /* There's no DPDK flag to request outer-L4 csum 2586 * offload. But in the case of tunnel if inner L3 or L4 2587 * csum offload is requested then we need to force 2588 * recalculation of L4 tunnel header csum also. 2589 */ 2590 if (tunn_flg && ((tx_ol_flags & PKT_TX_TUNNEL_MASK) != 2591 PKT_TX_TUNNEL_GRE)) { 2592 bd1_bd_flags_bf |= 2593 ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK << 2594 ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; 2595 } 2596 } 2597 2598 /* L4 checksum offload (tcp or udp) */ 2599 if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) && 2600 (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) { 2601 bd1_bd_flags_bf |= 2602 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 2603 /* There's no DPDK flag to request outer-L4 csum 2604 * offload. But in the case of tunnel if inner L3 or L4 2605 * csum offload is requested then we need to force 2606 * recalculation of L4 tunnel header csum also. 2607 */ 2608 if (tunn_flg) { 2609 bd1_bd_flags_bf |= 2610 ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK << 2611 ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; 2612 } 2613 } 2614 2615 /* Fill the entry in the SW ring and the BDs in the FW ring */ 2616 idx = TX_PROD(txq); 2617 txq->sw_tx_ring[idx].mbuf = mbuf; 2618 2619 /* BD1 */ 2620 bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl); 2621 memset(bd1, 0, sizeof(struct eth_tx_1st_bd)); 2622 nbds++; 2623 2624 /* Map MBUF linear data for DMA and set in the BD1 */ 2625 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf), 2626 mbuf->data_len); 2627 bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf); 2628 bd1->data.bd_flags.bitfields = bd1_bd_flags_bf; 2629 bd1->data.vlan = vlan; 2630 2631 if (lso_flg || mplsoudp_flg) { 2632 bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce 2633 (&txq->tx_pbl); 2634 memset(bd2, 0, sizeof(struct eth_tx_2nd_bd)); 2635 nbds++; 2636 2637 /* BD1 */ 2638 QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf), 2639 hdr_size); 2640 /* BD2 */ 2641 QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size + 2642 rte_mbuf_data_iova(mbuf)), 2643 mbuf->data_len - hdr_size); 2644 bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1); 2645 if (mplsoudp_flg) { 2646 bd2->data.bitfields2 = 2647 rte_cpu_to_le_16(bd2_bf2); 2648 /* Outer L3 size */ 2649 bd2->data.tunn_ip_size = 2650 rte_cpu_to_le_16(mbuf->outer_l3_len); 2651 } 2652 /* BD3 */ 2653 if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) { 2654 bd3 = (struct eth_tx_3rd_bd *) 2655 ecore_chain_produce(&txq->tx_pbl); 2656 memset(bd3, 0, sizeof(struct eth_tx_3rd_bd)); 2657 nbds++; 2658 bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf); 2659 if (lso_flg) 2660 bd3->data.lso_mss = mss; 2661 if (mplsoudp_flg) { 2662 bd3->data.tunn_l4_hdr_start_offset_w = 2663 tunn_l4_hdr_start_offset; 2664 bd3->data.tunn_hdr_size_w = 2665 tunn_hdr_size; 2666 } 2667 } 2668 } 2669 2670 /* Handle fragmented MBUF */ 2671 m_seg = mbuf->next; 2672 2673 /* Encode scatter gather buffer descriptors if required */ 2674 nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1); 2675 bd1->data.nbds = nbds + nb_frags; 2676 2677 txq->nb_tx_avail -= bd1->data.nbds; 2678 txq->sw_tx_prod++; 2679 bd_prod = 2680 rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl)); 2681 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX 2682 print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags); 2683 #endif 2684 nb_pkt_sent++; 2685 txq->xmit_pkts++; 2686 } 2687 2688 /* Write value of prod idx into bd_prod */ 2689 txq->tx_db.data.bd_prod = bd_prod; 2690 rte_wmb(); 2691 rte_compiler_barrier(); 2692 DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw); 2693 rte_wmb(); 2694 2695 /* Check again for Tx completions */ 2696 qede_process_tx_compl(edev, txq); 2697 2698 PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d", 2699 nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id()); 2700 2701 return nb_pkt_sent; 2702 } 2703 2704 uint16_t 2705 qede_xmit_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 2706 { 2707 struct qede_fastpath_cmt *fp_cmt = p_fp_cmt; 2708 uint16_t eng0_pkts, eng1_pkts; 2709 2710 eng0_pkts = nb_pkts / 2; 2711 2712 eng0_pkts = qede_xmit_pkts(fp_cmt->fp0->txq, tx_pkts, eng0_pkts); 2713 2714 eng1_pkts = nb_pkts - eng0_pkts; 2715 2716 eng1_pkts = qede_xmit_pkts(fp_cmt->fp1->txq, tx_pkts + eng0_pkts, 2717 eng1_pkts); 2718 2719 return eng0_pkts + eng1_pkts; 2720 } 2721 2722 uint16_t 2723 qede_rxtx_pkts_dummy(__rte_unused void *p_rxq, 2724 __rte_unused struct rte_mbuf **pkts, 2725 __rte_unused uint16_t nb_pkts) 2726 { 2727 return 0; 2728 } 2729 2730 2731 /* this function does a fake walk through over completion queue 2732 * to calculate number of BDs used by HW. 2733 * At the end, it restores the state of completion queue. 2734 */ 2735 static uint16_t 2736 qede_parse_fp_cqe(struct qede_rx_queue *rxq) 2737 { 2738 uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0; 2739 union eth_rx_cqe *cqe, *orig_cqe = NULL; 2740 2741 hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr); 2742 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); 2743 2744 if (hw_comp_cons == sw_comp_cons) 2745 return 0; 2746 2747 /* Get the CQE from the completion ring */ 2748 cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring); 2749 orig_cqe = cqe; 2750 2751 while (sw_comp_cons != hw_comp_cons) { 2752 switch (cqe->fast_path_regular.type) { 2753 case ETH_RX_CQE_TYPE_REGULAR: 2754 bd_count += cqe->fast_path_regular.bd_num; 2755 break; 2756 case ETH_RX_CQE_TYPE_TPA_END: 2757 bd_count += cqe->fast_path_tpa_end.num_of_bds; 2758 break; 2759 default: 2760 break; 2761 } 2762 2763 cqe = 2764 (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring); 2765 sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); 2766 } 2767 2768 /* revert comp_ring to original state */ 2769 ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe); 2770 2771 return bd_count; 2772 } 2773 2774 int 2775 qede_rx_descriptor_status(void *p_rxq, uint16_t offset) 2776 { 2777 uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod; 2778 uint16_t produced, consumed; 2779 struct qede_rx_queue *rxq = p_rxq; 2780 2781 if (offset > rxq->nb_rx_desc) 2782 return -EINVAL; 2783 2784 sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring); 2785 sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring); 2786 2787 /* find BDs used by HW from completion queue elements */ 2788 hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq); 2789 2790 if (hw_bd_cons < sw_bd_cons) 2791 /* wraparound case */ 2792 consumed = (0xffff - sw_bd_cons) + hw_bd_cons; 2793 else 2794 consumed = hw_bd_cons - sw_bd_cons; 2795 2796 if (offset <= consumed) 2797 return RTE_ETH_RX_DESC_DONE; 2798 2799 if (sw_bd_prod < sw_bd_cons) 2800 /* wraparound case */ 2801 produced = (0xffff - sw_bd_cons) + sw_bd_prod; 2802 else 2803 produced = sw_bd_prod - sw_bd_cons; 2804 2805 if (offset <= produced) 2806 return RTE_ETH_RX_DESC_AVAIL; 2807 2808 return RTE_ETH_RX_DESC_UNAVAIL; 2809 } 2810