xref: /dpdk/drivers/net/qede/qede_rxtx.c (revision 89f0711f9ddfb5822da9d34f384b92f72a61c4dc)
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8 
9 #include <rte_net.h>
10 #include "qede_rxtx.h"
11 
12 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
13 {
14 	struct rte_mbuf *new_mb = NULL;
15 	struct eth_rx_bd *rx_bd;
16 	dma_addr_t mapping;
17 	uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
18 
19 	new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
20 	if (unlikely(!new_mb)) {
21 		PMD_RX_LOG(ERR, rxq,
22 			   "Failed to allocate rx buffer "
23 			   "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
24 			   idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
25 			   rte_mempool_avail_count(rxq->mb_pool),
26 			   rte_mempool_in_use_count(rxq->mb_pool));
27 		return -ENOMEM;
28 	}
29 	rxq->sw_rx_ring[idx].mbuf = new_mb;
30 	rxq->sw_rx_ring[idx].page_offset = 0;
31 	mapping = rte_mbuf_data_iova_default(new_mb);
32 	/* Advance PROD and get BD pointer */
33 	rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
34 	rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
35 	rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
36 	rxq->sw_rx_prod++;
37 	return 0;
38 }
39 
40 int
41 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
42 		    uint16_t nb_desc, unsigned int socket_id,
43 		    __rte_unused const struct rte_eth_rxconf *rx_conf,
44 		    struct rte_mempool *mp)
45 {
46 	struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
47 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
48 	struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
49 	struct qede_rx_queue *rxq;
50 	uint16_t max_rx_pkt_len;
51 	uint16_t bufsz;
52 	size_t size;
53 	int rc;
54 
55 	PMD_INIT_FUNC_TRACE(edev);
56 
57 	/* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
58 	if (!rte_is_power_of_2(nb_desc)) {
59 		DP_ERR(edev, "Ring size %u is not power of 2\n",
60 			  nb_desc);
61 		return -EINVAL;
62 	}
63 
64 	/* Free memory prior to re-allocation if needed... */
65 	if (dev->data->rx_queues[queue_idx] != NULL) {
66 		qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
67 		dev->data->rx_queues[queue_idx] = NULL;
68 	}
69 
70 	/* First allocate the rx queue data structure */
71 	rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
72 				 RTE_CACHE_LINE_SIZE, socket_id);
73 
74 	if (!rxq) {
75 		DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
76 			  socket_id);
77 		return -ENOMEM;
78 	}
79 
80 	rxq->qdev = qdev;
81 	rxq->mb_pool = mp;
82 	rxq->nb_rx_desc = nb_desc;
83 	rxq->queue_id = queue_idx;
84 	rxq->port_id = dev->data->port_id;
85 
86 	max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
87 
88 	/* Fix up RX buffer size */
89 	bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
90 	if ((rxmode->enable_scatter)			||
91 	    (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
92 		if (!dev->data->scattered_rx) {
93 			DP_INFO(edev, "Forcing scatter-gather mode\n");
94 			dev->data->scattered_rx = 1;
95 		}
96 	}
97 
98 	if (dev->data->scattered_rx)
99 		rxq->rx_buf_size = bufsz + ETHER_HDR_LEN +
100 				   ETHER_CRC_LEN + QEDE_ETH_OVERHEAD;
101 	else
102 		rxq->rx_buf_size = max_rx_pkt_len + QEDE_ETH_OVERHEAD;
103 	/* Align to cache-line size if needed */
104 	rxq->rx_buf_size = QEDE_CEIL_TO_CACHE_LINE_SIZE(rxq->rx_buf_size);
105 
106 	DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
107 		qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
108 
109 	/* Allocate the parallel driver ring for Rx buffers */
110 	size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
111 	rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
112 					     RTE_CACHE_LINE_SIZE, socket_id);
113 	if (!rxq->sw_rx_ring) {
114 		DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
115 		       " socket %u\n", socket_id);
116 		rte_free(rxq);
117 		return -ENOMEM;
118 	}
119 
120 	/* Allocate FW Rx ring  */
121 	rc = qdev->ops->common->chain_alloc(edev,
122 					    ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
123 					    ECORE_CHAIN_MODE_NEXT_PTR,
124 					    ECORE_CHAIN_CNT_TYPE_U16,
125 					    rxq->nb_rx_desc,
126 					    sizeof(struct eth_rx_bd),
127 					    &rxq->rx_bd_ring,
128 					    NULL);
129 
130 	if (rc != ECORE_SUCCESS) {
131 		DP_ERR(edev, "Memory allocation fails for RX BD ring"
132 		       " on socket %u\n", socket_id);
133 		rte_free(rxq->sw_rx_ring);
134 		rte_free(rxq);
135 		return -ENOMEM;
136 	}
137 
138 	/* Allocate FW completion ring */
139 	rc = qdev->ops->common->chain_alloc(edev,
140 					    ECORE_CHAIN_USE_TO_CONSUME,
141 					    ECORE_CHAIN_MODE_PBL,
142 					    ECORE_CHAIN_CNT_TYPE_U16,
143 					    rxq->nb_rx_desc,
144 					    sizeof(union eth_rx_cqe),
145 					    &rxq->rx_comp_ring,
146 					    NULL);
147 
148 	if (rc != ECORE_SUCCESS) {
149 		DP_ERR(edev, "Memory allocation fails for RX CQE ring"
150 		       " on socket %u\n", socket_id);
151 		qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
152 		rte_free(rxq->sw_rx_ring);
153 		rte_free(rxq);
154 		return -ENOMEM;
155 	}
156 
157 	dev->data->rx_queues[queue_idx] = rxq;
158 	qdev->fp_array[queue_idx].rxq = rxq;
159 
160 	DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
161 		  queue_idx, nb_desc, qdev->mtu, socket_id);
162 
163 	return 0;
164 }
165 
166 static void
167 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
168 		    struct qede_rx_queue *rxq)
169 {
170 	DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
171 	ecore_chain_reset(&rxq->rx_bd_ring);
172 	ecore_chain_reset(&rxq->rx_comp_ring);
173 	rxq->sw_rx_prod = 0;
174 	rxq->sw_rx_cons = 0;
175 	*rxq->hw_cons_ptr = 0;
176 }
177 
178 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
179 {
180 	uint16_t i;
181 
182 	if (rxq->sw_rx_ring) {
183 		for (i = 0; i < rxq->nb_rx_desc; i++) {
184 			if (rxq->sw_rx_ring[i].mbuf) {
185 				rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
186 				rxq->sw_rx_ring[i].mbuf = NULL;
187 			}
188 		}
189 	}
190 }
191 
192 void qede_rx_queue_release(void *rx_queue)
193 {
194 	struct qede_rx_queue *rxq = rx_queue;
195 
196 	if (rxq) {
197 		qede_rx_queue_release_mbufs(rxq);
198 		rte_free(rxq->sw_rx_ring);
199 		rte_free(rxq);
200 	}
201 }
202 
203 /* Stops a given RX queue in the HW */
204 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
205 {
206 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
207 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
208 	struct ecore_hwfn *p_hwfn;
209 	struct qede_rx_queue *rxq;
210 	int hwfn_index;
211 	int rc;
212 
213 	if (rx_queue_id < eth_dev->data->nb_rx_queues) {
214 		rxq = eth_dev->data->rx_queues[rx_queue_id];
215 		hwfn_index = rx_queue_id % edev->num_hwfns;
216 		p_hwfn = &edev->hwfns[hwfn_index];
217 		rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
218 				true, false);
219 		if (rc != ECORE_SUCCESS) {
220 			DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
221 			return -1;
222 		}
223 		qede_rx_queue_release_mbufs(rxq);
224 		qede_rx_queue_reset(qdev, rxq);
225 		eth_dev->data->rx_queue_state[rx_queue_id] =
226 			RTE_ETH_QUEUE_STATE_STOPPED;
227 		DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
228 	} else {
229 		DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
230 		rc = -EINVAL;
231 	}
232 
233 	return rc;
234 }
235 
236 int
237 qede_tx_queue_setup(struct rte_eth_dev *dev,
238 		    uint16_t queue_idx,
239 		    uint16_t nb_desc,
240 		    unsigned int socket_id,
241 		    const struct rte_eth_txconf *tx_conf)
242 {
243 	struct qede_dev *qdev = dev->data->dev_private;
244 	struct ecore_dev *edev = &qdev->edev;
245 	struct qede_tx_queue *txq;
246 	int rc;
247 
248 	PMD_INIT_FUNC_TRACE(edev);
249 
250 	if (!rte_is_power_of_2(nb_desc)) {
251 		DP_ERR(edev, "Ring size %u is not power of 2\n",
252 		       nb_desc);
253 		return -EINVAL;
254 	}
255 
256 	/* Free memory prior to re-allocation if needed... */
257 	if (dev->data->tx_queues[queue_idx] != NULL) {
258 		qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
259 		dev->data->tx_queues[queue_idx] = NULL;
260 	}
261 
262 	txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
263 				 RTE_CACHE_LINE_SIZE, socket_id);
264 
265 	if (txq == NULL) {
266 		DP_ERR(edev,
267 		       "Unable to allocate memory for txq on socket %u",
268 		       socket_id);
269 		return -ENOMEM;
270 	}
271 
272 	txq->nb_tx_desc = nb_desc;
273 	txq->qdev = qdev;
274 	txq->port_id = dev->data->port_id;
275 
276 	rc = qdev->ops->common->chain_alloc(edev,
277 					    ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
278 					    ECORE_CHAIN_MODE_PBL,
279 					    ECORE_CHAIN_CNT_TYPE_U16,
280 					    txq->nb_tx_desc,
281 					    sizeof(union eth_tx_bd_types),
282 					    &txq->tx_pbl,
283 					    NULL);
284 	if (rc != ECORE_SUCCESS) {
285 		DP_ERR(edev,
286 		       "Unable to allocate memory for txbd ring on socket %u",
287 		       socket_id);
288 		qede_tx_queue_release(txq);
289 		return -ENOMEM;
290 	}
291 
292 	/* Allocate software ring */
293 	txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
294 					     (sizeof(struct qede_tx_entry) *
295 					      txq->nb_tx_desc),
296 					     RTE_CACHE_LINE_SIZE, socket_id);
297 
298 	if (!txq->sw_tx_ring) {
299 		DP_ERR(edev,
300 		       "Unable to allocate memory for txbd ring on socket %u",
301 		       socket_id);
302 		qdev->ops->common->chain_free(edev, &txq->tx_pbl);
303 		qede_tx_queue_release(txq);
304 		return -ENOMEM;
305 	}
306 
307 	txq->queue_id = queue_idx;
308 
309 	txq->nb_tx_avail = txq->nb_tx_desc;
310 
311 	txq->tx_free_thresh =
312 	    tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
313 	    (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
314 
315 	dev->data->tx_queues[queue_idx] = txq;
316 	qdev->fp_array[queue_idx].txq = txq;
317 
318 	DP_INFO(edev,
319 		  "txq %u num_desc %u tx_free_thresh %u socket %u\n",
320 		  queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
321 
322 	return 0;
323 }
324 
325 static void
326 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
327 		    struct qede_tx_queue *txq)
328 {
329 	DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
330 	ecore_chain_reset(&txq->tx_pbl);
331 	txq->sw_tx_cons = 0;
332 	txq->sw_tx_prod = 0;
333 	*txq->hw_cons_ptr = 0;
334 }
335 
336 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
337 {
338 	uint16_t i;
339 
340 	if (txq->sw_tx_ring) {
341 		for (i = 0; i < txq->nb_tx_desc; i++) {
342 			if (txq->sw_tx_ring[i].mbuf) {
343 				rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
344 				txq->sw_tx_ring[i].mbuf = NULL;
345 			}
346 		}
347 	}
348 }
349 
350 void qede_tx_queue_release(void *tx_queue)
351 {
352 	struct qede_tx_queue *txq = tx_queue;
353 
354 	if (txq) {
355 		qede_tx_queue_release_mbufs(txq);
356 		rte_free(txq->sw_tx_ring);
357 		rte_free(txq);
358 	}
359 }
360 
361 /* This function allocates fast-path status block memory */
362 static int
363 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
364 		  uint16_t sb_id)
365 {
366 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
367 	struct status_block_e4 *sb_virt;
368 	dma_addr_t sb_phys;
369 	int rc;
370 
371 	sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
372 					  sizeof(struct status_block_e4));
373 	if (!sb_virt) {
374 		DP_ERR(edev, "Status block allocation failed\n");
375 		return -ENOMEM;
376 	}
377 	rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
378 					sb_phys, sb_id);
379 	if (rc) {
380 		DP_ERR(edev, "Status block initialization failed\n");
381 		OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
382 				       sizeof(struct status_block_e4));
383 		return rc;
384 	}
385 
386 	return 0;
387 }
388 
389 int qede_alloc_fp_resc(struct qede_dev *qdev)
390 {
391 	struct ecore_dev *edev = &qdev->edev;
392 	struct qede_fastpath *fp;
393 	uint32_t num_sbs;
394 	uint16_t sb_idx;
395 
396 	if (IS_VF(edev))
397 		ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
398 	else
399 		num_sbs = ecore_cxt_get_proto_cid_count
400 			  (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
401 
402 	if (num_sbs == 0) {
403 		DP_ERR(edev, "No status blocks available\n");
404 		return -EINVAL;
405 	}
406 
407 	qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
408 				sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
409 
410 	if (!qdev->fp_array) {
411 		DP_ERR(edev, "fp array allocation failed\n");
412 		return -ENOMEM;
413 	}
414 
415 	memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
416 			sizeof(*qdev->fp_array));
417 
418 	for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
419 		fp = &qdev->fp_array[sb_idx];
420 		fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
421 				RTE_CACHE_LINE_SIZE);
422 		if (!fp->sb_info) {
423 			DP_ERR(edev, "FP sb_info allocation fails\n");
424 			return -1;
425 		}
426 		if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
427 			DP_ERR(edev, "FP status block allocation fails\n");
428 			return -1;
429 		}
430 		DP_INFO(edev, "sb_info idx 0x%x initialized\n",
431 				fp->sb_info->igu_sb_id);
432 	}
433 
434 	return 0;
435 }
436 
437 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
438 {
439 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
440 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
441 	struct qede_fastpath *fp;
442 	struct qede_rx_queue *rxq;
443 	struct qede_tx_queue *txq;
444 	uint16_t sb_idx;
445 	uint8_t i;
446 
447 	PMD_INIT_FUNC_TRACE(edev);
448 
449 	for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
450 		fp = &qdev->fp_array[sb_idx];
451 		DP_INFO(edev, "Free sb_info index 0x%x\n",
452 				fp->sb_info->igu_sb_id);
453 		if (fp->sb_info) {
454 			OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
455 				fp->sb_info->sb_phys,
456 				sizeof(struct status_block_e4));
457 			rte_free(fp->sb_info);
458 			fp->sb_info = NULL;
459 		}
460 	}
461 
462 	/* Free packet buffers and ring memories */
463 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
464 		if (eth_dev->data->rx_queues[i]) {
465 			qede_rx_queue_release(eth_dev->data->rx_queues[i]);
466 			rxq = eth_dev->data->rx_queues[i];
467 			qdev->ops->common->chain_free(edev,
468 						      &rxq->rx_bd_ring);
469 			qdev->ops->common->chain_free(edev,
470 						      &rxq->rx_comp_ring);
471 			eth_dev->data->rx_queues[i] = NULL;
472 		}
473 	}
474 
475 	for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
476 		if (eth_dev->data->tx_queues[i]) {
477 			txq = eth_dev->data->tx_queues[i];
478 			qede_tx_queue_release(eth_dev->data->tx_queues[i]);
479 			qdev->ops->common->chain_free(edev,
480 						      &txq->tx_pbl);
481 			eth_dev->data->tx_queues[i] = NULL;
482 		}
483 	}
484 
485 	if (qdev->fp_array)
486 		rte_free(qdev->fp_array);
487 	qdev->fp_array = NULL;
488 }
489 
490 static inline void
491 qede_update_rx_prod(__rte_unused struct qede_dev *edev,
492 		    struct qede_rx_queue *rxq)
493 {
494 	uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
495 	uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
496 	struct eth_rx_prod_data rx_prods = { 0 };
497 
498 	/* Update producers */
499 	rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
500 	rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
501 
502 	/* Make sure that the BD and SGE data is updated before updating the
503 	 * producers since FW might read the BD/SGE right after the producer
504 	 * is updated.
505 	 */
506 	rte_wmb();
507 
508 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
509 			(uint32_t *)&rx_prods);
510 
511 	/* mmiowb is needed to synchronize doorbell writes from more than one
512 	 * processor. It guarantees that the write arrives to the device before
513 	 * the napi lock is released and another qede_poll is called (possibly
514 	 * on another CPU). Without this barrier, the next doorbell can bypass
515 	 * this doorbell. This is applicable to IA64/Altix systems.
516 	 */
517 	rte_wmb();
518 
519 	PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
520 }
521 
522 /* Starts a given RX queue in HW */
523 static int
524 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
525 {
526 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
527 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
528 	struct ecore_queue_start_common_params params;
529 	struct ecore_rxq_start_ret_params ret_params;
530 	struct qede_rx_queue *rxq;
531 	struct qede_fastpath *fp;
532 	struct ecore_hwfn *p_hwfn;
533 	dma_addr_t p_phys_table;
534 	uint16_t page_cnt;
535 	uint16_t j;
536 	int hwfn_index;
537 	int rc;
538 
539 	if (rx_queue_id < eth_dev->data->nb_rx_queues) {
540 		fp = &qdev->fp_array[rx_queue_id];
541 		rxq = eth_dev->data->rx_queues[rx_queue_id];
542 		/* Allocate buffers for the Rx ring */
543 		for (j = 0; j < rxq->nb_rx_desc; j++) {
544 			rc = qede_alloc_rx_buffer(rxq);
545 			if (rc) {
546 				DP_ERR(edev, "RX buffer allocation failed"
547 						" for rxq = %u\n", rx_queue_id);
548 				return -ENOMEM;
549 			}
550 		}
551 		/* disable interrupts */
552 		ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
553 		/* Prepare ramrod */
554 		memset(&params, 0, sizeof(params));
555 		params.queue_id = rx_queue_id / edev->num_hwfns;
556 		params.vport_id = 0;
557 		params.stats_id = params.vport_id;
558 		params.p_sb = fp->sb_info;
559 		DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
560 				fp->rxq->queue_id, fp->sb_info->igu_sb_id);
561 		params.sb_idx = RX_PI;
562 		hwfn_index = rx_queue_id % edev->num_hwfns;
563 		p_hwfn = &edev->hwfns[hwfn_index];
564 		p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
565 		page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
566 		memset(&ret_params, 0, sizeof(ret_params));
567 		rc = ecore_eth_rx_queue_start(p_hwfn,
568 				p_hwfn->hw_info.opaque_fid,
569 				&params, fp->rxq->rx_buf_size,
570 				fp->rxq->rx_bd_ring.p_phys_addr,
571 				p_phys_table, page_cnt,
572 				&ret_params);
573 		if (rc) {
574 			DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
575 					rx_queue_id, rc);
576 			return -1;
577 		}
578 		/* Update with the returned parameters */
579 		fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
580 		fp->rxq->handle = ret_params.p_handle;
581 
582 		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
583 		qede_update_rx_prod(qdev, fp->rxq);
584 		eth_dev->data->rx_queue_state[rx_queue_id] =
585 			RTE_ETH_QUEUE_STATE_STARTED;
586 		DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
587 	} else {
588 		DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
589 		rc = -EINVAL;
590 	}
591 
592 	return rc;
593 }
594 
595 static int
596 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
597 {
598 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
599 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
600 	struct ecore_queue_start_common_params params;
601 	struct ecore_txq_start_ret_params ret_params;
602 	struct ecore_hwfn *p_hwfn;
603 	dma_addr_t p_phys_table;
604 	struct qede_tx_queue *txq;
605 	struct qede_fastpath *fp;
606 	uint16_t page_cnt;
607 	int hwfn_index;
608 	int rc;
609 
610 	if (tx_queue_id < eth_dev->data->nb_tx_queues) {
611 		txq = eth_dev->data->tx_queues[tx_queue_id];
612 		fp = &qdev->fp_array[tx_queue_id];
613 		memset(&params, 0, sizeof(params));
614 		params.queue_id = tx_queue_id / edev->num_hwfns;
615 		params.vport_id = 0;
616 		params.stats_id = params.vport_id;
617 		params.p_sb = fp->sb_info;
618 		DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
619 				fp->txq->queue_id, fp->sb_info->igu_sb_id);
620 		params.sb_idx = TX_PI(0); /* tc = 0 */
621 		p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
622 		page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
623 		hwfn_index = tx_queue_id % edev->num_hwfns;
624 		p_hwfn = &edev->hwfns[hwfn_index];
625 		if (qdev->dev_info.is_legacy)
626 			fp->txq->is_legacy = true;
627 		rc = ecore_eth_tx_queue_start(p_hwfn,
628 				p_hwfn->hw_info.opaque_fid,
629 				&params, 0 /* tc */,
630 				p_phys_table, page_cnt,
631 				&ret_params);
632 		if (rc != ECORE_SUCCESS) {
633 			DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
634 					tx_queue_id, rc);
635 			return -1;
636 		}
637 		txq->doorbell_addr = ret_params.p_doorbell;
638 		txq->handle = ret_params.p_handle;
639 
640 		txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(0)];
641 		SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
642 				DB_DEST_XCM);
643 		SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
644 				DB_AGG_CMD_SET);
645 		SET_FIELD(txq->tx_db.data.params,
646 				ETH_DB_DATA_AGG_VAL_SEL,
647 				DQ_XCM_ETH_TX_BD_PROD_CMD);
648 		txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
649 		eth_dev->data->tx_queue_state[tx_queue_id] =
650 			RTE_ETH_QUEUE_STATE_STARTED;
651 		DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
652 	} else {
653 		DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
654 		rc = -EINVAL;
655 	}
656 
657 	return rc;
658 }
659 
660 static inline void
661 qede_free_tx_pkt(struct qede_tx_queue *txq)
662 {
663 	struct rte_mbuf *mbuf;
664 	uint16_t nb_segs;
665 	uint16_t idx;
666 
667 	idx = TX_CONS(txq);
668 	mbuf = txq->sw_tx_ring[idx].mbuf;
669 	if (mbuf) {
670 		nb_segs = mbuf->nb_segs;
671 		PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
672 		while (nb_segs) {
673 			/* It's like consuming rxbuf in recv() */
674 			ecore_chain_consume(&txq->tx_pbl);
675 			txq->nb_tx_avail++;
676 			nb_segs--;
677 		}
678 		rte_pktmbuf_free(mbuf);
679 		txq->sw_tx_ring[idx].mbuf = NULL;
680 		txq->sw_tx_cons++;
681 		PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
682 	} else {
683 		ecore_chain_consume(&txq->tx_pbl);
684 		txq->nb_tx_avail++;
685 	}
686 }
687 
688 static inline void
689 qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
690 		      struct qede_tx_queue *txq)
691 {
692 	uint16_t hw_bd_cons;
693 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
694 	uint16_t sw_tx_cons;
695 #endif
696 
697 	rte_compiler_barrier();
698 	hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
699 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
700 	sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
701 	PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
702 		   abs(hw_bd_cons - sw_tx_cons));
703 #endif
704 	while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
705 		qede_free_tx_pkt(txq);
706 }
707 
708 static int qede_drain_txq(struct qede_dev *qdev,
709 			  struct qede_tx_queue *txq, bool allow_drain)
710 {
711 	struct ecore_dev *edev = &qdev->edev;
712 	int rc, cnt = 1000;
713 
714 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
715 		qede_process_tx_compl(edev, txq);
716 		if (!cnt) {
717 			if (allow_drain) {
718 				DP_ERR(edev, "Tx queue[%u] is stuck,"
719 					  "requesting MCP to drain\n",
720 					  txq->queue_id);
721 				rc = qdev->ops->common->drain(edev);
722 				if (rc)
723 					return rc;
724 				return qede_drain_txq(qdev, txq, false);
725 			}
726 			DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
727 				  "PROD=%d, CONS=%d\n",
728 				  txq->queue_id, txq->sw_tx_prod,
729 				  txq->sw_tx_cons);
730 			return -1;
731 		}
732 		cnt--;
733 		DELAY(1000);
734 		rte_compiler_barrier();
735 	}
736 
737 	/* FW finished processing, wait for HW to transmit all tx packets */
738 	DELAY(2000);
739 
740 	return 0;
741 }
742 
743 /* Stops a given TX queue in the HW */
744 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
745 {
746 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
747 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
748 	struct ecore_hwfn *p_hwfn;
749 	struct qede_tx_queue *txq;
750 	int hwfn_index;
751 	int rc;
752 
753 	if (tx_queue_id < eth_dev->data->nb_tx_queues) {
754 		txq = eth_dev->data->tx_queues[tx_queue_id];
755 		/* Drain txq */
756 		if (qede_drain_txq(qdev, txq, true))
757 			return -1; /* For the lack of retcodes */
758 		/* Stop txq */
759 		hwfn_index = tx_queue_id % edev->num_hwfns;
760 		p_hwfn = &edev->hwfns[hwfn_index];
761 		rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
762 		if (rc != ECORE_SUCCESS) {
763 			DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
764 			return -1;
765 		}
766 		qede_tx_queue_release_mbufs(txq);
767 		qede_tx_queue_reset(qdev, txq);
768 		eth_dev->data->tx_queue_state[tx_queue_id] =
769 			RTE_ETH_QUEUE_STATE_STOPPED;
770 		DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
771 	} else {
772 		DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
773 		rc = -EINVAL;
774 	}
775 
776 	return rc;
777 }
778 
779 int qede_start_queues(struct rte_eth_dev *eth_dev)
780 {
781 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
782 	uint8_t id;
783 	int rc = -1;
784 
785 	for_each_rss(id) {
786 		rc = qede_rx_queue_start(eth_dev, id);
787 		if (rc != ECORE_SUCCESS)
788 			return -1;
789 	}
790 
791 	for_each_tss(id) {
792 		rc = qede_tx_queue_start(eth_dev, id);
793 		if (rc != ECORE_SUCCESS)
794 			return -1;
795 	}
796 
797 	return rc;
798 }
799 
800 void qede_stop_queues(struct rte_eth_dev *eth_dev)
801 {
802 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
803 	uint8_t id;
804 
805 	/* Stopping RX/TX queues */
806 	for_each_tss(id) {
807 		qede_tx_queue_stop(eth_dev, id);
808 	}
809 
810 	for_each_rss(id) {
811 		qede_rx_queue_stop(eth_dev, id);
812 	}
813 }
814 
815 static inline bool qede_tunn_exist(uint16_t flag)
816 {
817 	return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
818 		    PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
819 }
820 
821 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
822 {
823 	return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
824 		PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
825 }
826 
827 /*
828  * qede_check_tunn_csum_l4:
829  * Returns:
830  * 1 : If L4 csum is enabled AND if the validation has failed.
831  * 0 : Otherwise
832  */
833 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
834 {
835 	if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
836 	     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
837 		return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
838 			PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
839 
840 	return 0;
841 }
842 
843 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
844 {
845 	if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
846 	     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
847 		return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
848 			   PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
849 
850 	return 0;
851 }
852 
853 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */
854 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
855 {
856 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
857 	struct ether_hdr *eth_hdr;
858 	struct ipv4_hdr *ipv4_hdr;
859 	struct ipv6_hdr *ipv6_hdr;
860 	struct vlan_hdr *vlan_hdr;
861 	uint16_t ethertype;
862 	bool vlan_tagged = 0;
863 	uint16_t len;
864 
865 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
866 	len = sizeof(struct ether_hdr);
867 	ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
868 
869 	 /* Note: Valid only if VLAN stripping is disabled */
870 	if (ethertype == ETHER_TYPE_VLAN) {
871 		vlan_tagged = 1;
872 		vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
873 		len += sizeof(struct vlan_hdr);
874 		ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
875 	}
876 
877 	if (ethertype == ETHER_TYPE_IPv4) {
878 		packet_type |= RTE_PTYPE_L3_IPV4;
879 		ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, len);
880 		if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
881 			packet_type |= RTE_PTYPE_L4_TCP;
882 		else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
883 			packet_type |= RTE_PTYPE_L4_UDP;
884 	} else if (ethertype == ETHER_TYPE_IPv6) {
885 		packet_type |= RTE_PTYPE_L3_IPV6;
886 		ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, len);
887 		if (ipv6_hdr->proto == IPPROTO_TCP)
888 			packet_type |= RTE_PTYPE_L4_TCP;
889 		else if (ipv6_hdr->proto == IPPROTO_UDP)
890 			packet_type |= RTE_PTYPE_L4_UDP;
891 	}
892 
893 	if (vlan_tagged)
894 		packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
895 	else
896 		packet_type |= RTE_PTYPE_L2_ETHER;
897 
898 	return packet_type;
899 }
900 
901 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
902 {
903 	uint16_t val;
904 
905 	/* Lookup table */
906 	static const uint32_t
907 	ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
908 		[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4		|
909 				       RTE_PTYPE_INNER_L2_ETHER,
910 		[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6		|
911 				       RTE_PTYPE_INNER_L2_ETHER,
912 		[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4	|
913 					   RTE_PTYPE_INNER_L4_TCP	|
914 					   RTE_PTYPE_INNER_L2_ETHER,
915 		[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6	|
916 					   RTE_PTYPE_INNER_L4_TCP	|
917 					   RTE_PTYPE_INNER_L2_ETHER,
918 		[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4	|
919 					   RTE_PTYPE_INNER_L4_UDP	|
920 					   RTE_PTYPE_INNER_L2_ETHER,
921 		[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6	|
922 					   RTE_PTYPE_INNER_L4_UDP	|
923 					   RTE_PTYPE_INNER_L2_ETHER,
924 		/* Frags with no VLAN */
925 		[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4	|
926 					    RTE_PTYPE_INNER_L4_FRAG	|
927 					    RTE_PTYPE_INNER_L2_ETHER,
928 		[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6	|
929 					    RTE_PTYPE_INNER_L4_FRAG	|
930 					    RTE_PTYPE_INNER_L2_ETHER,
931 		/* VLANs */
932 		[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4	|
933 					    RTE_PTYPE_INNER_L2_ETHER_VLAN,
934 		[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6	|
935 					    RTE_PTYPE_INNER_L2_ETHER_VLAN,
936 		[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4	|
937 						RTE_PTYPE_INNER_L4_TCP	|
938 						RTE_PTYPE_INNER_L2_ETHER_VLAN,
939 		[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6	|
940 						RTE_PTYPE_INNER_L4_TCP	|
941 						RTE_PTYPE_INNER_L2_ETHER_VLAN,
942 		[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4	|
943 						RTE_PTYPE_INNER_L4_UDP	|
944 						RTE_PTYPE_INNER_L2_ETHER_VLAN,
945 		[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6	|
946 						RTE_PTYPE_INNER_L4_UDP	|
947 						RTE_PTYPE_INNER_L2_ETHER_VLAN,
948 		/* Frags with VLAN */
949 		[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
950 						 RTE_PTYPE_INNER_L4_FRAG |
951 						 RTE_PTYPE_INNER_L2_ETHER_VLAN,
952 		[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
953 						 RTE_PTYPE_INNER_L4_FRAG |
954 						 RTE_PTYPE_INNER_L2_ETHER_VLAN,
955 	};
956 
957 	/* Bits (0..3) provides L3/L4 protocol type */
958 	/* Bits (4,5) provides frag and VLAN info */
959 	val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
960 	       PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
961 	       (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
962 		PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
963 	       (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
964 		PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
965 		(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
966 		 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
967 
968 	if (val < QEDE_PKT_TYPE_MAX)
969 		return ptype_lkup_tbl[val];
970 
971 	return RTE_PTYPE_UNKNOWN;
972 }
973 
974 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
975 {
976 	uint16_t val;
977 
978 	/* Lookup table */
979 	static const uint32_t
980 	ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
981 		[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
982 		[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
983 		[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4	|
984 					   RTE_PTYPE_L4_TCP	|
985 					   RTE_PTYPE_L2_ETHER,
986 		[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6	|
987 					   RTE_PTYPE_L4_TCP	|
988 					   RTE_PTYPE_L2_ETHER,
989 		[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4	|
990 					   RTE_PTYPE_L4_UDP	|
991 					   RTE_PTYPE_L2_ETHER,
992 		[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6	|
993 					   RTE_PTYPE_L4_UDP	|
994 					   RTE_PTYPE_L2_ETHER,
995 		/* Frags with no VLAN */
996 		[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4	|
997 					    RTE_PTYPE_L4_FRAG	|
998 					    RTE_PTYPE_L2_ETHER,
999 		[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6	|
1000 					    RTE_PTYPE_L4_FRAG	|
1001 					    RTE_PTYPE_L2_ETHER,
1002 		/* VLANs */
1003 		[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4		|
1004 					    RTE_PTYPE_L2_ETHER_VLAN,
1005 		[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6		|
1006 					    RTE_PTYPE_L2_ETHER_VLAN,
1007 		[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4	|
1008 						RTE_PTYPE_L4_TCP	|
1009 						RTE_PTYPE_L2_ETHER_VLAN,
1010 		[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6	|
1011 						RTE_PTYPE_L4_TCP	|
1012 						RTE_PTYPE_L2_ETHER_VLAN,
1013 		[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4	|
1014 						RTE_PTYPE_L4_UDP	|
1015 						RTE_PTYPE_L2_ETHER_VLAN,
1016 		[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6	|
1017 						RTE_PTYPE_L4_UDP	|
1018 						RTE_PTYPE_L2_ETHER_VLAN,
1019 		/* Frags with VLAN */
1020 		[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4	|
1021 						 RTE_PTYPE_L4_FRAG	|
1022 						 RTE_PTYPE_L2_ETHER_VLAN,
1023 		[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6	|
1024 						 RTE_PTYPE_L4_FRAG	|
1025 						 RTE_PTYPE_L2_ETHER_VLAN,
1026 	};
1027 
1028 	/* Bits (0..3) provides L3/L4 protocol type */
1029 	/* Bits (4,5) provides frag and VLAN info */
1030 	val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1031 	       PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1032 	       (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1033 		PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1034 	       (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1035 		PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1036 		(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1037 		 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1038 
1039 	if (val < QEDE_PKT_TYPE_MAX)
1040 		return ptype_lkup_tbl[val];
1041 
1042 	return RTE_PTYPE_UNKNOWN;
1043 }
1044 
1045 static inline uint8_t
1046 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1047 {
1048 	struct ipv4_hdr *ip;
1049 	uint16_t pkt_csum;
1050 	uint16_t calc_csum;
1051 	uint16_t val;
1052 
1053 	val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1054 		PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1055 
1056 	if (unlikely(val)) {
1057 		m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1058 		if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1059 			ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
1060 					   sizeof(struct ether_hdr));
1061 			pkt_csum = ip->hdr_checksum;
1062 			ip->hdr_checksum = 0;
1063 			calc_csum = rte_ipv4_cksum(ip);
1064 			ip->hdr_checksum = pkt_csum;
1065 			return (calc_csum != pkt_csum);
1066 		} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1067 			return 1;
1068 		}
1069 	}
1070 	return 0;
1071 }
1072 
1073 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1074 {
1075 	ecore_chain_consume(&rxq->rx_bd_ring);
1076 	rxq->sw_rx_cons++;
1077 }
1078 
1079 static inline void
1080 qede_reuse_page(__rte_unused struct qede_dev *qdev,
1081 		struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
1082 {
1083 	struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1084 	uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1085 	struct qede_rx_entry *curr_prod;
1086 	dma_addr_t new_mapping;
1087 
1088 	curr_prod = &rxq->sw_rx_ring[idx];
1089 	*curr_prod = *curr_cons;
1090 
1091 	new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
1092 		      curr_prod->page_offset;
1093 
1094 	rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1095 	rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1096 
1097 	rxq->sw_rx_prod++;
1098 }
1099 
1100 static inline void
1101 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1102 			struct qede_dev *qdev, uint8_t count)
1103 {
1104 	struct qede_rx_entry *curr_cons;
1105 
1106 	for (; count > 0; count--) {
1107 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1108 		qede_reuse_page(qdev, rxq, curr_cons);
1109 		qede_rx_bd_ring_consume(rxq);
1110 	}
1111 }
1112 
1113 static inline void
1114 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1115 				     struct qede_rx_queue *rxq,
1116 				     uint8_t agg_index, uint16_t len)
1117 {
1118 	struct qede_agg_info *tpa_info;
1119 	struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1120 	uint16_t cons_idx;
1121 
1122 	/* Under certain conditions it is possible that FW may not consume
1123 	 * additional or new BD. So decision to consume the BD must be made
1124 	 * based on len_list[0].
1125 	 */
1126 	if (rte_le_to_cpu_16(len)) {
1127 		tpa_info = &rxq->tpa_info[agg_index];
1128 		cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1129 		curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
1130 		assert(curr_frag);
1131 		curr_frag->nb_segs = 1;
1132 		curr_frag->pkt_len = rte_le_to_cpu_16(len);
1133 		curr_frag->data_len = curr_frag->pkt_len;
1134 		tpa_info->tpa_tail->next = curr_frag;
1135 		tpa_info->tpa_tail = curr_frag;
1136 		qede_rx_bd_ring_consume(rxq);
1137 		if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1138 			PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1139 			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1140 			rxq->rx_alloc_errors++;
1141 		}
1142 	}
1143 }
1144 
1145 static inline void
1146 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1147 			     struct qede_rx_queue *rxq,
1148 			     struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1149 {
1150 	PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1151 		   cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1152 	/* only len_list[0] will have value */
1153 	qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1154 					     cqe->len_list[0]);
1155 }
1156 
1157 static inline void
1158 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1159 			    struct qede_rx_queue *rxq,
1160 			    struct eth_fast_path_rx_tpa_end_cqe *cqe)
1161 {
1162 	struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1163 
1164 	qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1165 					     cqe->len_list[0]);
1166 	/* Update total length and frags based on end TPA */
1167 	rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1168 	/* TODO:  Add Sanity Checks */
1169 	rx_mb->nb_segs = cqe->num_of_bds;
1170 	rx_mb->pkt_len = cqe->total_packet_len;
1171 
1172 	PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1173 		   " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1174 		   rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1175 		   rx_mb->pkt_len);
1176 }
1177 
1178 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1179 {
1180 	uint32_t val;
1181 
1182 	/* Lookup table */
1183 	static const uint32_t
1184 	ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1185 		[QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1186 		[QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1187 		[QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1188 		[QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1189 		[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1190 				RTE_PTYPE_TUNNEL_GENEVE,
1191 		[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1192 				RTE_PTYPE_TUNNEL_GRE,
1193 		[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1194 				RTE_PTYPE_TUNNEL_VXLAN,
1195 		[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1196 				RTE_PTYPE_TUNNEL_GENEVE,
1197 		[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1198 				RTE_PTYPE_TUNNEL_GRE,
1199 		[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1200 				RTE_PTYPE_TUNNEL_VXLAN,
1201 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1202 				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1203 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1204 				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1205 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1206 				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1207 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1208 				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1209 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1210 				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1211 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1212 				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1213 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1214 				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1215 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1216 				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1217 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1218 				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1219 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1220 				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1221 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1222 				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1223 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1224 				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1225 	};
1226 
1227 	/* Cover bits[4-0] to include tunn_type and next protocol */
1228 	val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1229 		ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1230 		(ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1231 		ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1232 
1233 	if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1234 		return ptype_tunn_lkup_tbl[val];
1235 	else
1236 		return RTE_PTYPE_UNKNOWN;
1237 }
1238 
1239 static inline int
1240 qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1241 		     uint8_t num_segs, uint16_t pkt_len)
1242 {
1243 	struct qede_rx_queue *rxq = p_rxq;
1244 	struct qede_dev *qdev = rxq->qdev;
1245 	register struct rte_mbuf *seg1 = NULL;
1246 	register struct rte_mbuf *seg2 = NULL;
1247 	uint16_t sw_rx_index;
1248 	uint16_t cur_size;
1249 
1250 	seg1 = rx_mb;
1251 	while (num_segs) {
1252 		cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1253 							pkt_len;
1254 		if (unlikely(!cur_size)) {
1255 			PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1256 				   " left for mapping jumbo\n", num_segs);
1257 			qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1258 			return -EINVAL;
1259 		}
1260 		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1261 		seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
1262 		qede_rx_bd_ring_consume(rxq);
1263 		pkt_len -= cur_size;
1264 		seg2->data_len = cur_size;
1265 		seg1->next = seg2;
1266 		seg1 = seg1->next;
1267 		num_segs--;
1268 		rxq->rx_segs++;
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1275 static inline void
1276 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1277 		 uint8_t bitfield)
1278 {
1279 	PMD_RX_LOG(INFO, rxq,
1280 		"len 0x%04x bf 0x%04x hash_val 0x%x"
1281 		" ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1282 		" inner_l2=%s inner_l3=%s inner_l4=%s\n",
1283 		m->data_len, bitfield, m->hash.rss,
1284 		(unsigned long)m->ol_flags,
1285 		rte_get_ptype_l2_name(m->packet_type),
1286 		rte_get_ptype_l3_name(m->packet_type),
1287 		rte_get_ptype_l4_name(m->packet_type),
1288 		rte_get_ptype_tunnel_name(m->packet_type),
1289 		rte_get_ptype_inner_l2_name(m->packet_type),
1290 		rte_get_ptype_inner_l3_name(m->packet_type),
1291 		rte_get_ptype_inner_l4_name(m->packet_type));
1292 }
1293 #endif
1294 
1295 uint16_t
1296 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1297 {
1298 	struct qede_rx_queue *rxq = p_rxq;
1299 	struct qede_dev *qdev = rxq->qdev;
1300 	struct ecore_dev *edev = &qdev->edev;
1301 	uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1302 	uint16_t rx_pkt = 0;
1303 	union eth_rx_cqe *cqe;
1304 	struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1305 	register struct rte_mbuf *rx_mb = NULL;
1306 	register struct rte_mbuf *seg1 = NULL;
1307 	enum eth_rx_cqe_type cqe_type;
1308 	uint16_t pkt_len = 0; /* Sum of all BD segments */
1309 	uint16_t len; /* Length of first BD */
1310 	uint8_t num_segs = 1;
1311 	uint16_t preload_idx;
1312 	uint16_t parse_flag;
1313 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1314 	uint8_t bitfield_val;
1315 #endif
1316 	uint8_t tunn_parse_flag;
1317 	uint8_t j;
1318 	struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1319 	uint64_t ol_flags;
1320 	uint32_t packet_type;
1321 	uint16_t vlan_tci;
1322 	bool tpa_start_flg;
1323 	uint8_t offset, tpa_agg_idx, flags;
1324 	struct qede_agg_info *tpa_info = NULL;
1325 	uint32_t rss_hash;
1326 
1327 	hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1328 	sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1329 
1330 	rte_rmb();
1331 
1332 	if (hw_comp_cons == sw_comp_cons)
1333 		return 0;
1334 
1335 	while (sw_comp_cons != hw_comp_cons) {
1336 		ol_flags = 0;
1337 		packet_type = RTE_PTYPE_UNKNOWN;
1338 		vlan_tci = 0;
1339 		tpa_start_flg = false;
1340 		rss_hash = 0;
1341 
1342 		/* Get the CQE from the completion ring */
1343 		cqe =
1344 		    (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1345 		cqe_type = cqe->fast_path_regular.type;
1346 		PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1347 
1348 		switch (cqe_type) {
1349 		case ETH_RX_CQE_TYPE_REGULAR:
1350 			fp_cqe = &cqe->fast_path_regular;
1351 		break;
1352 		case ETH_RX_CQE_TYPE_TPA_START:
1353 			cqe_start_tpa = &cqe->fast_path_tpa_start;
1354 			tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1355 			tpa_start_flg = true;
1356 			/* Mark it as LRO packet */
1357 			ol_flags |= PKT_RX_LRO;
1358 			/* In split mode,  seg_len is same as len_on_first_bd
1359 			 * and ext_bd_len_list will be empty since there are
1360 			 * no additional buffers
1361 			 */
1362 			PMD_RX_LOG(INFO, rxq,
1363 			    "TPA start[%d] - len_on_first_bd %d header %d"
1364 			    " [bd_list[0] %d], [seg_len %d]\n",
1365 			    cqe_start_tpa->tpa_agg_index,
1366 			    rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1367 			    cqe_start_tpa->header_len,
1368 			    rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
1369 			    rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1370 
1371 		break;
1372 		case ETH_RX_CQE_TYPE_TPA_CONT:
1373 			qede_rx_process_tpa_cont_cqe(qdev, rxq,
1374 						     &cqe->fast_path_tpa_cont);
1375 			goto next_cqe;
1376 		case ETH_RX_CQE_TYPE_TPA_END:
1377 			qede_rx_process_tpa_end_cqe(qdev, rxq,
1378 						    &cqe->fast_path_tpa_end);
1379 			tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1380 			tpa_info = &rxq->tpa_info[tpa_agg_idx];
1381 			rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1382 			goto tpa_end;
1383 		case ETH_RX_CQE_TYPE_SLOW_PATH:
1384 			PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1385 			ecore_eth_cqe_completion(
1386 				&edev->hwfns[rxq->queue_id % edev->num_hwfns],
1387 				(struct eth_slow_path_rx_cqe *)cqe);
1388 			/* fall-thru */
1389 		default:
1390 			goto next_cqe;
1391 		}
1392 
1393 		/* Get the data from the SW ring */
1394 		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1395 		rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
1396 		assert(rx_mb != NULL);
1397 
1398 		/* Handle regular CQE or TPA start CQE */
1399 		if (!tpa_start_flg) {
1400 			parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1401 			offset = fp_cqe->placement_offset;
1402 			len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1403 			pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1404 			vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1405 			rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1406 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1407 			bitfield_val = fp_cqe->bitfields;
1408 #endif
1409 		} else {
1410 			parse_flag =
1411 			    rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1412 			offset = cqe_start_tpa->placement_offset;
1413 			/* seg_len = len_on_first_bd */
1414 			len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1415 			vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1416 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1417 			bitfield_val = cqe_start_tpa->bitfields;
1418 #endif
1419 			rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1420 		}
1421 		if (qede_tunn_exist(parse_flag)) {
1422 			PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1423 			if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1424 				PMD_RX_LOG(ERR, rxq,
1425 					    "L4 csum failed, flags = 0x%x\n",
1426 					    parse_flag);
1427 				rxq->rx_hw_errors++;
1428 				ol_flags |= PKT_RX_L4_CKSUM_BAD;
1429 			} else {
1430 				ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1431 			}
1432 
1433 			if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1434 				PMD_RX_LOG(ERR, rxq,
1435 					"Outer L3 csum failed, flags = 0x%x\n",
1436 					parse_flag);
1437 				  rxq->rx_hw_errors++;
1438 				  ol_flags |= PKT_RX_EIP_CKSUM_BAD;
1439 			} else {
1440 				  ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1441 			}
1442 
1443 			if (tpa_start_flg)
1444 				flags = cqe_start_tpa->tunnel_pars_flags.flags;
1445 			else
1446 				flags = fp_cqe->tunnel_pars_flags.flags;
1447 			tunn_parse_flag = flags;
1448 
1449 			/* Tunnel_type */
1450 			packet_type =
1451 				qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1452 
1453 			/* Inner header */
1454 			packet_type |=
1455 			      qede_rx_cqe_to_pkt_type_inner(parse_flag);
1456 
1457 			/* Outer L3/L4 types is not available in CQE */
1458 			packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1459 
1460 			/* Outer L3/L4 types is not available in CQE.
1461 			 * Need to add offset to parse correctly,
1462 			 */
1463 			rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1464 			packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1465 		}
1466 
1467 		/* Common handling for non-tunnel packets and for inner
1468 		 * headers in the case of tunnel.
1469 		 */
1470 		if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1471 			PMD_RX_LOG(ERR, rxq,
1472 				    "L4 csum failed, flags = 0x%x\n",
1473 				    parse_flag);
1474 			rxq->rx_hw_errors++;
1475 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
1476 		} else {
1477 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1478 		}
1479 		if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1480 			PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1481 				   parse_flag);
1482 			rxq->rx_hw_errors++;
1483 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
1484 		} else {
1485 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1486 			packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1487 		}
1488 
1489 		if (CQE_HAS_VLAN(parse_flag) ||
1490 		    CQE_HAS_OUTER_VLAN(parse_flag)) {
1491 			/* Note: FW doesn't indicate Q-in-Q packet */
1492 			ol_flags |= PKT_RX_VLAN;
1493 			if (qdev->vlan_strip_flg) {
1494 				ol_flags |= PKT_RX_VLAN_STRIPPED;
1495 				rx_mb->vlan_tci = vlan_tci;
1496 			}
1497 		}
1498 
1499 		/* RSS Hash */
1500 		if (qdev->rss_enable) {
1501 			ol_flags |= PKT_RX_RSS_HASH;
1502 			rx_mb->hash.rss = rss_hash;
1503 		}
1504 
1505 		if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1506 			PMD_RX_LOG(ERR, rxq,
1507 				   "New buffer allocation failed,"
1508 				   "dropping incoming packet\n");
1509 			qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
1510 			rte_eth_devices[rxq->port_id].
1511 			    data->rx_mbuf_alloc_failed++;
1512 			rxq->rx_alloc_errors++;
1513 			break;
1514 		}
1515 		qede_rx_bd_ring_consume(rxq);
1516 
1517 		if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1518 			PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1519 				   " len on first: %04x Total Len: %04x",
1520 				   fp_cqe->bd_num, len, pkt_len);
1521 			num_segs = fp_cqe->bd_num - 1;
1522 			seg1 = rx_mb;
1523 			if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1524 						 pkt_len - len))
1525 				goto next_cqe;
1526 			for (j = 0; j < num_segs; j++) {
1527 				if (qede_alloc_rx_buffer(rxq)) {
1528 					PMD_RX_LOG(ERR, rxq,
1529 						"Buffer allocation failed");
1530 					rte_eth_devices[rxq->port_id].
1531 						data->rx_mbuf_alloc_failed++;
1532 					rxq->rx_alloc_errors++;
1533 					break;
1534 				}
1535 				rxq->rx_segs++;
1536 			}
1537 		}
1538 		rxq->rx_segs++; /* for the first segment */
1539 
1540 		/* Prefetch next mbuf while processing current one. */
1541 		preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1542 		rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1543 
1544 		/* Update rest of the MBUF fields */
1545 		rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1546 		rx_mb->port = rxq->port_id;
1547 		rx_mb->ol_flags = ol_flags;
1548 		rx_mb->data_len = len;
1549 		rx_mb->packet_type = packet_type;
1550 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1551 		print_rx_bd_info(rx_mb, rxq, bitfield_val);
1552 #endif
1553 		if (!tpa_start_flg) {
1554 			rx_mb->nb_segs = fp_cqe->bd_num;
1555 			rx_mb->pkt_len = pkt_len;
1556 		} else {
1557 			/* store ref to the updated mbuf */
1558 			tpa_info->tpa_head = rx_mb;
1559 			tpa_info->tpa_tail = tpa_info->tpa_head;
1560 		}
1561 		rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
1562 tpa_end:
1563 		if (!tpa_start_flg) {
1564 			rx_pkts[rx_pkt] = rx_mb;
1565 			rx_pkt++;
1566 		}
1567 next_cqe:
1568 		ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1569 		sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1570 		if (rx_pkt == nb_pkts) {
1571 			PMD_RX_LOG(DEBUG, rxq,
1572 				   "Budget reached nb_pkts=%u received=%u",
1573 				   rx_pkt, nb_pkts);
1574 			break;
1575 		}
1576 	}
1577 
1578 	qede_update_rx_prod(qdev, rxq);
1579 
1580 	rxq->rcv_pkts += rx_pkt;
1581 
1582 	PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1583 
1584 	return rx_pkt;
1585 }
1586 
1587 
1588 /* Populate scatter gather buffer descriptor fields */
1589 static inline uint16_t
1590 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
1591 		  struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
1592 		  uint16_t start_seg)
1593 {
1594 	struct qede_tx_queue *txq = p_txq;
1595 	struct eth_tx_bd *tx_bd = NULL;
1596 	dma_addr_t mapping;
1597 	uint16_t nb_segs = 0;
1598 
1599 	/* Check for scattered buffers */
1600 	while (m_seg) {
1601 		if (start_seg == 0) {
1602 			if (!*bd2) {
1603 				*bd2 = (struct eth_tx_2nd_bd *)
1604 					ecore_chain_produce(&txq->tx_pbl);
1605 				memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
1606 				nb_segs++;
1607 			}
1608 			mapping = rte_mbuf_data_iova(m_seg);
1609 			QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
1610 			PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
1611 		} else if (start_seg == 1) {
1612 			if (!*bd3) {
1613 				*bd3 = (struct eth_tx_3rd_bd *)
1614 					ecore_chain_produce(&txq->tx_pbl);
1615 				memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
1616 				nb_segs++;
1617 			}
1618 			mapping = rte_mbuf_data_iova(m_seg);
1619 			QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
1620 			PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
1621 		} else {
1622 			tx_bd = (struct eth_tx_bd *)
1623 				ecore_chain_produce(&txq->tx_pbl);
1624 			memset(tx_bd, 0, sizeof(*tx_bd));
1625 			nb_segs++;
1626 			mapping = rte_mbuf_data_iova(m_seg);
1627 			QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
1628 			PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
1629 		}
1630 		m_seg = m_seg->next;
1631 	}
1632 
1633 	/* Return total scattered buffers */
1634 	return nb_segs;
1635 }
1636 
1637 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1638 static inline void
1639 print_tx_bd_info(struct qede_tx_queue *txq,
1640 		 struct eth_tx_1st_bd *bd1,
1641 		 struct eth_tx_2nd_bd *bd2,
1642 		 struct eth_tx_3rd_bd *bd3,
1643 		 uint64_t tx_ol_flags)
1644 {
1645 	char ol_buf[256] = { 0 }; /* for verbose prints */
1646 
1647 	if (bd1)
1648 		PMD_TX_LOG(INFO, txq,
1649 		   "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
1650 		   rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
1651 		   bd1->data.bd_flags.bitfields,
1652 		   rte_cpu_to_le_16(bd1->data.bitfields));
1653 	if (bd2)
1654 		PMD_TX_LOG(INFO, txq,
1655 		   "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
1656 		   rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
1657 		   bd2->data.bitfields2, bd2->data.tunn_ip_size);
1658 	if (bd3)
1659 		PMD_TX_LOG(INFO, txq,
1660 		   "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
1661 		   "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
1662 		   rte_cpu_to_le_16(bd3->nbytes),
1663 		   rte_cpu_to_le_16(bd3->data.bitfields),
1664 		   rte_cpu_to_le_16(bd3->data.lso_mss),
1665 		   bd3->data.tunn_l4_hdr_start_offset_w,
1666 		   bd3->data.tunn_hdr_size_w);
1667 
1668 	rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
1669 	PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
1670 }
1671 #endif
1672 
1673 /* TX prepare to check packets meets TX conditions */
1674 uint16_t
1675 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1676 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
1677 		    uint16_t nb_pkts)
1678 {
1679 	struct qede_tx_queue *txq = p_txq;
1680 #else
1681 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
1682 		    uint16_t nb_pkts)
1683 {
1684 #endif
1685 	uint64_t ol_flags;
1686 	struct rte_mbuf *m;
1687 	uint16_t i;
1688 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1689 	int ret;
1690 #endif
1691 
1692 	for (i = 0; i < nb_pkts; i++) {
1693 		m = tx_pkts[i];
1694 		ol_flags = m->ol_flags;
1695 		if (ol_flags & PKT_TX_TCP_SEG) {
1696 			if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
1697 				rte_errno = -EINVAL;
1698 				break;
1699 			}
1700 			/* TBD: confirm its ~9700B for both ? */
1701 			if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
1702 				rte_errno = -EINVAL;
1703 				break;
1704 			}
1705 		} else {
1706 			if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
1707 				rte_errno = -EINVAL;
1708 				break;
1709 			}
1710 		}
1711 		if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
1712 			rte_errno = -ENOTSUP;
1713 			break;
1714 		}
1715 
1716 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1717 		ret = rte_validate_tx_offload(m);
1718 		if (ret != 0) {
1719 			rte_errno = ret;
1720 			break;
1721 		}
1722 #endif
1723 	}
1724 
1725 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1726 	if (unlikely(i != nb_pkts))
1727 		PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
1728 			   nb_pkts - i);
1729 #endif
1730 	return i;
1731 }
1732 
1733 #define MPLSINUDP_HDR_SIZE			(12)
1734 
1735 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1736 static inline void
1737 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
1738 			       struct qede_tx_queue *txq)
1739 {
1740 	if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
1741 		PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
1742 	if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
1743 		MPLSINUDP_HDR_SIZE) / 2) > 0xff)
1744 		PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
1745 	if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
1746 		ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
1747 		PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1748 	if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
1749 		ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
1750 		PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1751 }
1752 #endif
1753 
1754 uint16_t
1755 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1756 {
1757 	struct qede_tx_queue *txq = p_txq;
1758 	struct qede_dev *qdev = txq->qdev;
1759 	struct ecore_dev *edev = &qdev->edev;
1760 	struct rte_mbuf *mbuf;
1761 	struct rte_mbuf *m_seg = NULL;
1762 	uint16_t nb_tx_pkts;
1763 	uint16_t bd_prod;
1764 	uint16_t idx;
1765 	uint16_t nb_frags;
1766 	uint16_t nb_pkt_sent = 0;
1767 	uint8_t nbds;
1768 	bool lso_flg;
1769 	bool mplsoudp_flg;
1770 	__rte_unused bool tunn_flg;
1771 	bool tunn_ipv6_ext_flg;
1772 	struct eth_tx_1st_bd *bd1;
1773 	struct eth_tx_2nd_bd *bd2;
1774 	struct eth_tx_3rd_bd *bd3;
1775 	uint64_t tx_ol_flags;
1776 	uint16_t hdr_size;
1777 	/* BD1 */
1778 	uint16_t bd1_bf;
1779 	uint8_t bd1_bd_flags_bf;
1780 	uint16_t vlan;
1781 	/* BD2 */
1782 	uint16_t bd2_bf1;
1783 	uint16_t bd2_bf2;
1784 	/* BD3 */
1785 	uint16_t mss;
1786 	uint16_t bd3_bf;
1787 
1788 	uint8_t tunn_l4_hdr_start_offset;
1789 	uint8_t tunn_hdr_size;
1790 	uint8_t inner_l2_hdr_size;
1791 	uint16_t inner_l4_hdr_offset;
1792 
1793 	if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
1794 		PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
1795 			   nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
1796 		qede_process_tx_compl(edev, txq);
1797 	}
1798 
1799 	nb_tx_pkts  = nb_pkts;
1800 	bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
1801 	while (nb_tx_pkts--) {
1802 		/* Init flags/values */
1803 		tunn_flg = false;
1804 		lso_flg = false;
1805 		nbds = 0;
1806 		vlan = 0;
1807 		bd1 = NULL;
1808 		bd2 = NULL;
1809 		bd3 = NULL;
1810 		hdr_size = 0;
1811 		bd1_bf = 0;
1812 		bd1_bd_flags_bf = 0;
1813 		bd2_bf1 = 0;
1814 		bd2_bf2 = 0;
1815 		mss = 0;
1816 		bd3_bf = 0;
1817 		mplsoudp_flg = false;
1818 		tunn_ipv6_ext_flg = false;
1819 		tunn_hdr_size = 0;
1820 		tunn_l4_hdr_start_offset = 0;
1821 
1822 		mbuf = *tx_pkts++;
1823 		assert(mbuf);
1824 
1825 		/* Check minimum TX BDS availability against available BDs */
1826 		if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
1827 			break;
1828 
1829 		tx_ol_flags = mbuf->ol_flags;
1830 		bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1831 
1832 		/* TX prepare would have already checked supported tunnel Tx
1833 		 * offloads. Don't rely on pkt_type marked by Rx, instead use
1834 		 * tx_ol_flags to decide.
1835 		 */
1836 		if (((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1837 						PKT_TX_TUNNEL_VXLAN) ||
1838 		    ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1839 						PKT_TX_TUNNEL_MPLSINUDP) ||
1840 		    ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1841 						PKT_TX_TUNNEL_GENEVE)) {
1842 			/* Check against max which is Tunnel IPv6 + ext */
1843 			if (unlikely(txq->nb_tx_avail <
1844 				ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
1845 					break;
1846 			tunn_flg = true;
1847 			/* First indicate its a tunnel pkt */
1848 			bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
1849 				  ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1850 			/* Legacy FW had flipped behavior in regard to this bit
1851 			 * i.e. it needed to set to prevent FW from touching
1852 			 * encapsulated packets when it didn't need to.
1853 			 */
1854 			if (unlikely(txq->is_legacy)) {
1855 				bd1_bf ^= 1 <<
1856 					ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1857 			}
1858 
1859 			/* Outer IP checksum offload */
1860 			if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
1861 					   PKT_TX_OUTER_IPV4)) {
1862 				bd1_bd_flags_bf |=
1863 					ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
1864 					ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1865 			}
1866 
1867 			/**
1868 			 * Currently, only inner checksum offload in MPLS-in-UDP
1869 			 * tunnel with one MPLS label is supported. Both outer
1870 			 * and inner layers  lengths need to be provided in
1871 			 * mbuf.
1872 			 */
1873 			if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1874 						PKT_TX_TUNNEL_MPLSINUDP) {
1875 				mplsoudp_flg = true;
1876 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1877 				qede_mpls_tunn_tx_sanity_check(mbuf, txq);
1878 #endif
1879 				/* Outer L4 offset in two byte words */
1880 				tunn_l4_hdr_start_offset =
1881 				  (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
1882 				/* Tunnel header size in two byte words */
1883 				tunn_hdr_size = (mbuf->outer_l2_len +
1884 						mbuf->outer_l3_len +
1885 						MPLSINUDP_HDR_SIZE) / 2;
1886 				/* Inner L2 header size in two byte words */
1887 				inner_l2_hdr_size = (mbuf->l2_len -
1888 						MPLSINUDP_HDR_SIZE) / 2;
1889 				/* Inner L4 header offset from the beggining
1890 				 * of inner packet in two byte words
1891 				 */
1892 				inner_l4_hdr_offset = (mbuf->l2_len -
1893 					MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
1894 
1895 				/* Inner L2 size and address type */
1896 				bd2_bf1 |= (inner_l2_hdr_size &
1897 					ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
1898 					ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
1899 				bd2_bf1 |= (UNICAST_ADDRESS &
1900 					ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
1901 					ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
1902 				/* Treated as IPv6+Ext */
1903 				bd2_bf1 |=
1904 				    1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
1905 
1906 				/* Mark inner IPv6 if present */
1907 				if (tx_ol_flags & PKT_TX_IPV6)
1908 					bd2_bf1 |=
1909 						1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
1910 
1911 				/* Inner L4 offsets */
1912 				if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
1913 				     (tx_ol_flags & (PKT_TX_UDP_CKSUM |
1914 							PKT_TX_TCP_CKSUM))) {
1915 					/* Determines if BD3 is needed */
1916 					tunn_ipv6_ext_flg = true;
1917 					if ((tx_ol_flags & PKT_TX_L4_MASK) ==
1918 							PKT_TX_UDP_CKSUM) {
1919 						bd2_bf1 |=
1920 							1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
1921 					}
1922 
1923 					/* TODO other pseudo checksum modes are
1924 					 * not supported
1925 					 */
1926 					bd2_bf1 |=
1927 					ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
1928 					ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
1929 					bd2_bf2 |= (inner_l4_hdr_offset &
1930 						ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
1931 						ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
1932 				}
1933 			} /* End MPLSoUDP */
1934 		} /* End Tunnel handling */
1935 
1936 		if (tx_ol_flags & PKT_TX_TCP_SEG) {
1937 			lso_flg = true;
1938 			if (unlikely(txq->nb_tx_avail <
1939 						ETH_TX_MIN_BDS_PER_LSO_PKT))
1940 				break;
1941 			/* For LSO, packet header and payload must reside on
1942 			 * buffers pointed by different BDs. Using BD1 for HDR
1943 			 * and BD2 onwards for data.
1944 			 */
1945 			hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
1946 			if (tunn_flg)
1947 				hdr_size += mbuf->outer_l2_len +
1948 					    mbuf->outer_l3_len;
1949 
1950 			bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
1951 			bd1_bd_flags_bf |=
1952 					1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1953 			/* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
1954 			bd1_bd_flags_bf |=
1955 					1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1956 			mss = rte_cpu_to_le_16(mbuf->tso_segsz);
1957 			/* Using one header BD */
1958 			bd3_bf |= rte_cpu_to_le_16(1 <<
1959 					ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1960 		} else {
1961 			if (unlikely(txq->nb_tx_avail <
1962 					ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
1963 				break;
1964 			bd1_bf |=
1965 			       (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
1966 				<< ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
1967 		}
1968 
1969 		/* Descriptor based VLAN insertion */
1970 		if (tx_ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1971 			vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
1972 			bd1_bd_flags_bf |=
1973 			    1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1974 		}
1975 
1976 		/* Offload the IP checksum in the hardware */
1977 		if (tx_ol_flags & PKT_TX_IP_CKSUM) {
1978 			bd1_bd_flags_bf |=
1979 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1980 			/* There's no DPDK flag to request outer-L4 csum
1981 			 * offload. But in the case of tunnel if inner L3 or L4
1982 			 * csum offload is requested then we need to force
1983 			 * recalculation of L4 tunnel header csum also.
1984 			 */
1985 			if (tunn_flg) {
1986 				bd1_bd_flags_bf |=
1987 					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
1988 					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1989 			}
1990 		}
1991 
1992 		/* L4 checksum offload (tcp or udp) */
1993 		if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
1994 		    (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
1995 			bd1_bd_flags_bf |=
1996 				1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1997 			/* There's no DPDK flag to request outer-L4 csum
1998 			 * offload. But in the case of tunnel if inner L3 or L4
1999 			 * csum offload is requested then we need to force
2000 			 * recalculation of L4 tunnel header csum also.
2001 			 */
2002 			if (tunn_flg) {
2003 				bd1_bd_flags_bf |=
2004 					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2005 					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2006 			}
2007 		}
2008 
2009 		/* Fill the entry in the SW ring and the BDs in the FW ring */
2010 		idx = TX_PROD(txq);
2011 		txq->sw_tx_ring[idx].mbuf = mbuf;
2012 
2013 		/* BD1 */
2014 		bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2015 		memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2016 		nbds++;
2017 
2018 		/* Map MBUF linear data for DMA and set in the BD1 */
2019 		QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2020 				     mbuf->data_len);
2021 		bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2022 		bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2023 		bd1->data.vlan = vlan;
2024 
2025 		if (lso_flg || mplsoudp_flg) {
2026 			bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2027 							(&txq->tx_pbl);
2028 			memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2029 			nbds++;
2030 
2031 			/* BD1 */
2032 			QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2033 					     hdr_size);
2034 			/* BD2 */
2035 			QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2036 					     rte_mbuf_data_iova(mbuf)),
2037 					     mbuf->data_len - hdr_size);
2038 			bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2039 			if (mplsoudp_flg) {
2040 				bd2->data.bitfields2 =
2041 					rte_cpu_to_le_16(bd2_bf2);
2042 				/* Outer L3 size */
2043 				bd2->data.tunn_ip_size =
2044 					rte_cpu_to_le_16(mbuf->outer_l3_len);
2045 			}
2046 			/* BD3 */
2047 			if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2048 				bd3 = (struct eth_tx_3rd_bd *)
2049 					ecore_chain_produce(&txq->tx_pbl);
2050 				memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2051 				nbds++;
2052 				bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2053 				if (lso_flg)
2054 					bd3->data.lso_mss = mss;
2055 				if (mplsoudp_flg) {
2056 					bd3->data.tunn_l4_hdr_start_offset_w =
2057 						tunn_l4_hdr_start_offset;
2058 					bd3->data.tunn_hdr_size_w =
2059 						tunn_hdr_size;
2060 				}
2061 			}
2062 		}
2063 
2064 		/* Handle fragmented MBUF */
2065 		m_seg = mbuf->next;
2066 
2067 		/* Encode scatter gather buffer descriptors if required */
2068 		nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2069 		bd1->data.nbds = nbds + nb_frags;
2070 
2071 		txq->nb_tx_avail -= bd1->data.nbds;
2072 		txq->sw_tx_prod++;
2073 		rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
2074 		bd_prod =
2075 		    rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2076 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2077 		print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2078 #endif
2079 		nb_pkt_sent++;
2080 		txq->xmit_pkts++;
2081 	}
2082 
2083 	/* Write value of prod idx into bd_prod */
2084 	txq->tx_db.data.bd_prod = bd_prod;
2085 	rte_wmb();
2086 	rte_compiler_barrier();
2087 	DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2088 	rte_wmb();
2089 
2090 	/* Check again for Tx completions */
2091 	qede_process_tx_compl(edev, txq);
2092 
2093 	PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2094 		   nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2095 
2096 	return nb_pkt_sent;
2097 }
2098 
2099 uint16_t
2100 qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
2101 		     __rte_unused struct rte_mbuf **pkts,
2102 		     __rte_unused uint16_t nb_pkts)
2103 {
2104 	return 0;
2105 }
2106