xref: /dpdk/drivers/net/qede/qede_rxtx.c (revision 2a7bb4fdf61e9edfb7adbaecb50e728b82da9e23)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6 
7 #include <rte_net.h>
8 #include "qede_rxtx.h"
9 
10 static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
11 {
12 	struct rte_mbuf *new_mb = NULL;
13 	struct eth_rx_bd *rx_bd;
14 	dma_addr_t mapping;
15 	uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
16 
17 	new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
18 	if (unlikely(!new_mb)) {
19 		PMD_RX_LOG(ERR, rxq,
20 			   "Failed to allocate rx buffer "
21 			   "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
22 			   idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
23 			   rte_mempool_avail_count(rxq->mb_pool),
24 			   rte_mempool_in_use_count(rxq->mb_pool));
25 		return -ENOMEM;
26 	}
27 	rxq->sw_rx_ring[idx].mbuf = new_mb;
28 	rxq->sw_rx_ring[idx].page_offset = 0;
29 	mapping = rte_mbuf_data_iova_default(new_mb);
30 	/* Advance PROD and get BD pointer */
31 	rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
32 	rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
33 	rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
34 	rxq->sw_rx_prod++;
35 	return 0;
36 }
37 
38 #define QEDE_MAX_BULK_ALLOC_COUNT 512
39 
40 static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count)
41 {
42 	void *obj_p[QEDE_MAX_BULK_ALLOC_COUNT] __rte_cache_aligned;
43 	struct rte_mbuf *mbuf = NULL;
44 	struct eth_rx_bd *rx_bd;
45 	dma_addr_t mapping;
46 	int i, ret = 0;
47 	uint16_t idx;
48 
49 	idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
50 
51 	if (count > QEDE_MAX_BULK_ALLOC_COUNT)
52 		count = QEDE_MAX_BULK_ALLOC_COUNT;
53 
54 	ret = rte_mempool_get_bulk(rxq->mb_pool, obj_p, count);
55 	if (unlikely(ret)) {
56 		PMD_RX_LOG(ERR, rxq,
57 			   "Failed to allocate %d rx buffers "
58 			    "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
59 			    count, idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
60 			    rte_mempool_avail_count(rxq->mb_pool),
61 			    rte_mempool_in_use_count(rxq->mb_pool));
62 		return -ENOMEM;
63 	}
64 
65 	for (i = 0; i < count; i++) {
66 		mbuf = obj_p[i];
67 		if (likely(i < count - 1))
68 			rte_prefetch0(obj_p[i + 1]);
69 
70 		idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
71 		rxq->sw_rx_ring[idx].mbuf = mbuf;
72 		rxq->sw_rx_ring[idx].page_offset = 0;
73 		mapping = rte_mbuf_data_iova_default(mbuf);
74 		rx_bd = (struct eth_rx_bd *)
75 			ecore_chain_produce(&rxq->rx_bd_ring);
76 		rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
77 		rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
78 		rxq->sw_rx_prod++;
79 	}
80 
81 	return 0;
82 }
83 
84 /* Criterias for calculating Rx buffer size -
85  * 1) rx_buf_size should not exceed the size of mbuf
86  * 2) In scattered_rx mode - minimum rx_buf_size should be
87  *    (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
88  * 3) In regular mode - minimum rx_buf_size should be
89  *    (MTU + Maximum L2 Header Size + 2)
90  *    In above cases +2 corrosponds to 2 bytes padding in front of L2
91  *    header.
92  * 4) rx_buf_size should be cacheline-size aligned. So considering
93  *    criteria 1, we need to adjust the size to floor instead of ceil,
94  *    so that we don't exceed mbuf size while ceiling rx_buf_size.
95  */
96 int
97 qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
98 		      uint16_t max_frame_size)
99 {
100 	struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
101 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
102 	int rx_buf_size;
103 
104 	if (dev->data->scattered_rx) {
105 		/* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
106 		 * bufferes can be used for single packet. So need to make sure
107 		 * mbuf size is sufficient enough for this.
108 		 */
109 		if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
110 		     (max_frame_size + QEDE_ETH_OVERHEAD)) {
111 			DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
112 			       mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
113 			return -EINVAL;
114 		}
115 
116 		rx_buf_size = RTE_MAX(mbufsz,
117 				      (max_frame_size + QEDE_ETH_OVERHEAD) /
118 				       ETH_RX_MAX_BUFF_PER_PKT);
119 	} else {
120 		rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
121 	}
122 
123 	/* Align to cache-line size if needed */
124 	return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
125 }
126 
127 int
128 qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
129 		    uint16_t nb_desc, unsigned int socket_id,
130 		    __rte_unused const struct rte_eth_rxconf *rx_conf,
131 		    struct rte_mempool *mp)
132 {
133 	struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
134 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
135 	struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
136 	struct qede_rx_queue *rxq;
137 	uint16_t max_rx_pkt_len;
138 	uint16_t bufsz;
139 	size_t size;
140 	int rc;
141 
142 	PMD_INIT_FUNC_TRACE(edev);
143 
144 	/* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
145 	if (!rte_is_power_of_2(nb_desc)) {
146 		DP_ERR(edev, "Ring size %u is not power of 2\n",
147 			  nb_desc);
148 		return -EINVAL;
149 	}
150 
151 	/* Free memory prior to re-allocation if needed... */
152 	if (dev->data->rx_queues[queue_idx] != NULL) {
153 		qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
154 		dev->data->rx_queues[queue_idx] = NULL;
155 	}
156 
157 	/* First allocate the rx queue data structure */
158 	rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
159 				 RTE_CACHE_LINE_SIZE, socket_id);
160 
161 	if (!rxq) {
162 		DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
163 			  socket_id);
164 		return -ENOMEM;
165 	}
166 
167 	rxq->qdev = qdev;
168 	rxq->mb_pool = mp;
169 	rxq->nb_rx_desc = nb_desc;
170 	rxq->queue_id = queue_idx;
171 	rxq->port_id = dev->data->port_id;
172 
173 	max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
174 
175 	/* Fix up RX buffer size */
176 	bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
177 	/* cache align the mbuf size to simplfy rx_buf_size calculation */
178 	bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
179 	if ((rxmode->offloads & DEV_RX_OFFLOAD_SCATTER)	||
180 	    (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
181 		if (!dev->data->scattered_rx) {
182 			DP_INFO(edev, "Forcing scatter-gather mode\n");
183 			dev->data->scattered_rx = 1;
184 		}
185 	}
186 
187 	rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len);
188 	if (rc < 0) {
189 		rte_free(rxq);
190 		return rc;
191 	}
192 
193 	rxq->rx_buf_size = rc;
194 
195 	DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
196 		qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
197 
198 	/* Allocate the parallel driver ring for Rx buffers */
199 	size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
200 	rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
201 					     RTE_CACHE_LINE_SIZE, socket_id);
202 	if (!rxq->sw_rx_ring) {
203 		DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
204 		       " socket %u\n", socket_id);
205 		rte_free(rxq);
206 		return -ENOMEM;
207 	}
208 
209 	/* Allocate FW Rx ring  */
210 	rc = qdev->ops->common->chain_alloc(edev,
211 					    ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
212 					    ECORE_CHAIN_MODE_NEXT_PTR,
213 					    ECORE_CHAIN_CNT_TYPE_U16,
214 					    rxq->nb_rx_desc,
215 					    sizeof(struct eth_rx_bd),
216 					    &rxq->rx_bd_ring,
217 					    NULL);
218 
219 	if (rc != ECORE_SUCCESS) {
220 		DP_ERR(edev, "Memory allocation fails for RX BD ring"
221 		       " on socket %u\n", socket_id);
222 		rte_free(rxq->sw_rx_ring);
223 		rte_free(rxq);
224 		return -ENOMEM;
225 	}
226 
227 	/* Allocate FW completion ring */
228 	rc = qdev->ops->common->chain_alloc(edev,
229 					    ECORE_CHAIN_USE_TO_CONSUME,
230 					    ECORE_CHAIN_MODE_PBL,
231 					    ECORE_CHAIN_CNT_TYPE_U16,
232 					    rxq->nb_rx_desc,
233 					    sizeof(union eth_rx_cqe),
234 					    &rxq->rx_comp_ring,
235 					    NULL);
236 
237 	if (rc != ECORE_SUCCESS) {
238 		DP_ERR(edev, "Memory allocation fails for RX CQE ring"
239 		       " on socket %u\n", socket_id);
240 		qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
241 		rte_free(rxq->sw_rx_ring);
242 		rte_free(rxq);
243 		return -ENOMEM;
244 	}
245 
246 	dev->data->rx_queues[queue_idx] = rxq;
247 	qdev->fp_array[queue_idx].rxq = rxq;
248 
249 	DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
250 		  queue_idx, nb_desc, rxq->rx_buf_size, socket_id);
251 
252 	return 0;
253 }
254 
255 static void
256 qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
257 		    struct qede_rx_queue *rxq)
258 {
259 	DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
260 	ecore_chain_reset(&rxq->rx_bd_ring);
261 	ecore_chain_reset(&rxq->rx_comp_ring);
262 	rxq->sw_rx_prod = 0;
263 	rxq->sw_rx_cons = 0;
264 	*rxq->hw_cons_ptr = 0;
265 }
266 
267 static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
268 {
269 	uint16_t i;
270 
271 	if (rxq->sw_rx_ring) {
272 		for (i = 0; i < rxq->nb_rx_desc; i++) {
273 			if (rxq->sw_rx_ring[i].mbuf) {
274 				rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
275 				rxq->sw_rx_ring[i].mbuf = NULL;
276 			}
277 		}
278 	}
279 }
280 
281 void qede_rx_queue_release(void *rx_queue)
282 {
283 	struct qede_rx_queue *rxq = rx_queue;
284 	struct qede_dev *qdev;
285 	struct ecore_dev *edev;
286 
287 	if (rxq) {
288 		qdev = rxq->qdev;
289 		edev = QEDE_INIT_EDEV(qdev);
290 		PMD_INIT_FUNC_TRACE(edev);
291 		qede_rx_queue_release_mbufs(rxq);
292 		qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
293 		qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
294 		rte_free(rxq->sw_rx_ring);
295 		rte_free(rxq);
296 	}
297 }
298 
299 /* Stops a given RX queue in the HW */
300 static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
301 {
302 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
303 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
304 	struct ecore_hwfn *p_hwfn;
305 	struct qede_rx_queue *rxq;
306 	int hwfn_index;
307 	int rc;
308 
309 	if (rx_queue_id < eth_dev->data->nb_rx_queues) {
310 		rxq = eth_dev->data->rx_queues[rx_queue_id];
311 		hwfn_index = rx_queue_id % edev->num_hwfns;
312 		p_hwfn = &edev->hwfns[hwfn_index];
313 		rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
314 				true, false);
315 		if (rc != ECORE_SUCCESS) {
316 			DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
317 			return -1;
318 		}
319 		qede_rx_queue_release_mbufs(rxq);
320 		qede_rx_queue_reset(qdev, rxq);
321 		eth_dev->data->rx_queue_state[rx_queue_id] =
322 			RTE_ETH_QUEUE_STATE_STOPPED;
323 		DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
324 	} else {
325 		DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
326 		rc = -EINVAL;
327 	}
328 
329 	return rc;
330 }
331 
332 int
333 qede_tx_queue_setup(struct rte_eth_dev *dev,
334 		    uint16_t queue_idx,
335 		    uint16_t nb_desc,
336 		    unsigned int socket_id,
337 		    const struct rte_eth_txconf *tx_conf)
338 {
339 	struct qede_dev *qdev = dev->data->dev_private;
340 	struct ecore_dev *edev = &qdev->edev;
341 	struct qede_tx_queue *txq;
342 	int rc;
343 
344 	PMD_INIT_FUNC_TRACE(edev);
345 
346 	if (!rte_is_power_of_2(nb_desc)) {
347 		DP_ERR(edev, "Ring size %u is not power of 2\n",
348 		       nb_desc);
349 		return -EINVAL;
350 	}
351 
352 	/* Free memory prior to re-allocation if needed... */
353 	if (dev->data->tx_queues[queue_idx] != NULL) {
354 		qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
355 		dev->data->tx_queues[queue_idx] = NULL;
356 	}
357 
358 	txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
359 				 RTE_CACHE_LINE_SIZE, socket_id);
360 
361 	if (txq == NULL) {
362 		DP_ERR(edev,
363 		       "Unable to allocate memory for txq on socket %u",
364 		       socket_id);
365 		return -ENOMEM;
366 	}
367 
368 	txq->nb_tx_desc = nb_desc;
369 	txq->qdev = qdev;
370 	txq->port_id = dev->data->port_id;
371 
372 	rc = qdev->ops->common->chain_alloc(edev,
373 					    ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
374 					    ECORE_CHAIN_MODE_PBL,
375 					    ECORE_CHAIN_CNT_TYPE_U16,
376 					    txq->nb_tx_desc,
377 					    sizeof(union eth_tx_bd_types),
378 					    &txq->tx_pbl,
379 					    NULL);
380 	if (rc != ECORE_SUCCESS) {
381 		DP_ERR(edev,
382 		       "Unable to allocate memory for txbd ring on socket %u",
383 		       socket_id);
384 		qede_tx_queue_release(txq);
385 		return -ENOMEM;
386 	}
387 
388 	/* Allocate software ring */
389 	txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
390 					     (sizeof(struct qede_tx_entry) *
391 					      txq->nb_tx_desc),
392 					     RTE_CACHE_LINE_SIZE, socket_id);
393 
394 	if (!txq->sw_tx_ring) {
395 		DP_ERR(edev,
396 		       "Unable to allocate memory for txbd ring on socket %u",
397 		       socket_id);
398 		qdev->ops->common->chain_free(edev, &txq->tx_pbl);
399 		qede_tx_queue_release(txq);
400 		return -ENOMEM;
401 	}
402 
403 	txq->queue_id = queue_idx;
404 
405 	txq->nb_tx_avail = txq->nb_tx_desc;
406 
407 	txq->tx_free_thresh =
408 	    tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
409 	    (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
410 
411 	dev->data->tx_queues[queue_idx] = txq;
412 	qdev->fp_array[queue_idx].txq = txq;
413 
414 	DP_INFO(edev,
415 		  "txq %u num_desc %u tx_free_thresh %u socket %u\n",
416 		  queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
417 
418 	return 0;
419 }
420 
421 static void
422 qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
423 		    struct qede_tx_queue *txq)
424 {
425 	DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
426 	ecore_chain_reset(&txq->tx_pbl);
427 	txq->sw_tx_cons = 0;
428 	txq->sw_tx_prod = 0;
429 	*txq->hw_cons_ptr = 0;
430 }
431 
432 static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
433 {
434 	uint16_t i;
435 
436 	if (txq->sw_tx_ring) {
437 		for (i = 0; i < txq->nb_tx_desc; i++) {
438 			if (txq->sw_tx_ring[i].mbuf) {
439 				rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
440 				txq->sw_tx_ring[i].mbuf = NULL;
441 			}
442 		}
443 	}
444 }
445 
446 void qede_tx_queue_release(void *tx_queue)
447 {
448 	struct qede_tx_queue *txq = tx_queue;
449 	struct qede_dev *qdev;
450 	struct ecore_dev *edev;
451 
452 	if (txq) {
453 		qdev = txq->qdev;
454 		edev = QEDE_INIT_EDEV(qdev);
455 		PMD_INIT_FUNC_TRACE(edev);
456 		qede_tx_queue_release_mbufs(txq);
457 		qdev->ops->common->chain_free(edev, &txq->tx_pbl);
458 		rte_free(txq->sw_tx_ring);
459 		rte_free(txq);
460 	}
461 }
462 
463 /* This function allocates fast-path status block memory */
464 static int
465 qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
466 		  uint16_t sb_id)
467 {
468 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
469 	struct status_block_e4 *sb_virt;
470 	dma_addr_t sb_phys;
471 	int rc;
472 
473 	sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
474 					  sizeof(struct status_block_e4));
475 	if (!sb_virt) {
476 		DP_ERR(edev, "Status block allocation failed\n");
477 		return -ENOMEM;
478 	}
479 	rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
480 					sb_phys, sb_id);
481 	if (rc) {
482 		DP_ERR(edev, "Status block initialization failed\n");
483 		OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
484 				       sizeof(struct status_block_e4));
485 		return rc;
486 	}
487 
488 	return 0;
489 }
490 
491 int qede_alloc_fp_resc(struct qede_dev *qdev)
492 {
493 	struct ecore_dev *edev = &qdev->edev;
494 	struct qede_fastpath *fp;
495 	uint32_t num_sbs;
496 	uint16_t sb_idx;
497 
498 	if (IS_VF(edev))
499 		ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
500 	else
501 		num_sbs = ecore_cxt_get_proto_cid_count
502 			  (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
503 
504 	if (num_sbs == 0) {
505 		DP_ERR(edev, "No status blocks available\n");
506 		return -EINVAL;
507 	}
508 
509 	qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
510 				sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
511 
512 	if (!qdev->fp_array) {
513 		DP_ERR(edev, "fp array allocation failed\n");
514 		return -ENOMEM;
515 	}
516 
517 	memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
518 			sizeof(*qdev->fp_array));
519 
520 	for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
521 		fp = &qdev->fp_array[sb_idx];
522 		if (!fp)
523 			continue;
524 		fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
525 				RTE_CACHE_LINE_SIZE);
526 		if (!fp->sb_info) {
527 			DP_ERR(edev, "FP sb_info allocation fails\n");
528 			return -1;
529 		}
530 		if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
531 			DP_ERR(edev, "FP status block allocation fails\n");
532 			return -1;
533 		}
534 		DP_INFO(edev, "sb_info idx 0x%x initialized\n",
535 				fp->sb_info->igu_sb_id);
536 	}
537 
538 	return 0;
539 }
540 
541 void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
542 {
543 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
544 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
545 	struct qede_fastpath *fp;
546 	uint16_t sb_idx;
547 	uint8_t i;
548 
549 	PMD_INIT_FUNC_TRACE(edev);
550 
551 	for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
552 		fp = &qdev->fp_array[sb_idx];
553 		if (!fp)
554 			continue;
555 		DP_INFO(edev, "Free sb_info index 0x%x\n",
556 				fp->sb_info->igu_sb_id);
557 		if (fp->sb_info) {
558 			OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
559 				fp->sb_info->sb_phys,
560 				sizeof(struct status_block_e4));
561 			rte_free(fp->sb_info);
562 			fp->sb_info = NULL;
563 		}
564 	}
565 
566 	/* Free packet buffers and ring memories */
567 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
568 		if (eth_dev->data->rx_queues[i]) {
569 			qede_rx_queue_release(eth_dev->data->rx_queues[i]);
570 			eth_dev->data->rx_queues[i] = NULL;
571 		}
572 	}
573 
574 	for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
575 		if (eth_dev->data->tx_queues[i]) {
576 			qede_tx_queue_release(eth_dev->data->tx_queues[i]);
577 			eth_dev->data->tx_queues[i] = NULL;
578 		}
579 	}
580 
581 	if (qdev->fp_array)
582 		rte_free(qdev->fp_array);
583 	qdev->fp_array = NULL;
584 }
585 
586 static inline void
587 qede_update_rx_prod(__rte_unused struct qede_dev *edev,
588 		    struct qede_rx_queue *rxq)
589 {
590 	uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
591 	uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
592 	struct eth_rx_prod_data rx_prods = { 0 };
593 
594 	/* Update producers */
595 	rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
596 	rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
597 
598 	/* Make sure that the BD and SGE data is updated before updating the
599 	 * producers since FW might read the BD/SGE right after the producer
600 	 * is updated.
601 	 */
602 	rte_wmb();
603 
604 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
605 			(uint32_t *)&rx_prods);
606 
607 	/* mmiowb is needed to synchronize doorbell writes from more than one
608 	 * processor. It guarantees that the write arrives to the device before
609 	 * the napi lock is released and another qede_poll is called (possibly
610 	 * on another CPU). Without this barrier, the next doorbell can bypass
611 	 * this doorbell. This is applicable to IA64/Altix systems.
612 	 */
613 	rte_wmb();
614 
615 	PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
616 }
617 
618 /* Starts a given RX queue in HW */
619 static int
620 qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
621 {
622 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
623 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
624 	struct ecore_queue_start_common_params params;
625 	struct ecore_rxq_start_ret_params ret_params;
626 	struct qede_rx_queue *rxq;
627 	struct qede_fastpath *fp;
628 	struct ecore_hwfn *p_hwfn;
629 	dma_addr_t p_phys_table;
630 	uint16_t page_cnt;
631 	uint16_t j;
632 	int hwfn_index;
633 	int rc;
634 
635 	if (rx_queue_id < eth_dev->data->nb_rx_queues) {
636 		fp = &qdev->fp_array[rx_queue_id];
637 		rxq = eth_dev->data->rx_queues[rx_queue_id];
638 		/* Allocate buffers for the Rx ring */
639 		for (j = 0; j < rxq->nb_rx_desc; j++) {
640 			rc = qede_alloc_rx_buffer(rxq);
641 			if (rc) {
642 				DP_ERR(edev, "RX buffer allocation failed"
643 						" for rxq = %u\n", rx_queue_id);
644 				return -ENOMEM;
645 			}
646 		}
647 		/* disable interrupts */
648 		ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
649 		/* Prepare ramrod */
650 		memset(&params, 0, sizeof(params));
651 		params.queue_id = rx_queue_id / edev->num_hwfns;
652 		params.vport_id = 0;
653 		params.stats_id = params.vport_id;
654 		params.p_sb = fp->sb_info;
655 		DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
656 				fp->rxq->queue_id, fp->sb_info->igu_sb_id);
657 		params.sb_idx = RX_PI;
658 		hwfn_index = rx_queue_id % edev->num_hwfns;
659 		p_hwfn = &edev->hwfns[hwfn_index];
660 		p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
661 		page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
662 		memset(&ret_params, 0, sizeof(ret_params));
663 		rc = ecore_eth_rx_queue_start(p_hwfn,
664 				p_hwfn->hw_info.opaque_fid,
665 				&params, fp->rxq->rx_buf_size,
666 				fp->rxq->rx_bd_ring.p_phys_addr,
667 				p_phys_table, page_cnt,
668 				&ret_params);
669 		if (rc) {
670 			DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
671 					rx_queue_id, rc);
672 			return -1;
673 		}
674 		/* Update with the returned parameters */
675 		fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
676 		fp->rxq->handle = ret_params.p_handle;
677 
678 		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
679 		qede_update_rx_prod(qdev, fp->rxq);
680 		eth_dev->data->rx_queue_state[rx_queue_id] =
681 			RTE_ETH_QUEUE_STATE_STARTED;
682 		DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
683 	} else {
684 		DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
685 		rc = -EINVAL;
686 	}
687 
688 	return rc;
689 }
690 
691 static int
692 qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
693 {
694 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
695 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
696 	struct ecore_queue_start_common_params params;
697 	struct ecore_txq_start_ret_params ret_params;
698 	struct ecore_hwfn *p_hwfn;
699 	dma_addr_t p_phys_table;
700 	struct qede_tx_queue *txq;
701 	struct qede_fastpath *fp;
702 	uint16_t page_cnt;
703 	int hwfn_index;
704 	int rc;
705 
706 	if (tx_queue_id < eth_dev->data->nb_tx_queues) {
707 		txq = eth_dev->data->tx_queues[tx_queue_id];
708 		fp = &qdev->fp_array[tx_queue_id];
709 		memset(&params, 0, sizeof(params));
710 		params.queue_id = tx_queue_id / edev->num_hwfns;
711 		params.vport_id = 0;
712 		params.stats_id = params.vport_id;
713 		params.p_sb = fp->sb_info;
714 		DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
715 				fp->txq->queue_id, fp->sb_info->igu_sb_id);
716 		params.sb_idx = TX_PI(0); /* tc = 0 */
717 		p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
718 		page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
719 		hwfn_index = tx_queue_id % edev->num_hwfns;
720 		p_hwfn = &edev->hwfns[hwfn_index];
721 		if (qdev->dev_info.is_legacy)
722 			fp->txq->is_legacy = true;
723 		rc = ecore_eth_tx_queue_start(p_hwfn,
724 				p_hwfn->hw_info.opaque_fid,
725 				&params, 0 /* tc */,
726 				p_phys_table, page_cnt,
727 				&ret_params);
728 		if (rc != ECORE_SUCCESS) {
729 			DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
730 					tx_queue_id, rc);
731 			return -1;
732 		}
733 		txq->doorbell_addr = ret_params.p_doorbell;
734 		txq->handle = ret_params.p_handle;
735 
736 		txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(0)];
737 		SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
738 				DB_DEST_XCM);
739 		SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
740 				DB_AGG_CMD_SET);
741 		SET_FIELD(txq->tx_db.data.params,
742 				ETH_DB_DATA_AGG_VAL_SEL,
743 				DQ_XCM_ETH_TX_BD_PROD_CMD);
744 		txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
745 		eth_dev->data->tx_queue_state[tx_queue_id] =
746 			RTE_ETH_QUEUE_STATE_STARTED;
747 		DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
748 	} else {
749 		DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
750 		rc = -EINVAL;
751 	}
752 
753 	return rc;
754 }
755 
756 static inline void
757 qede_free_tx_pkt(struct qede_tx_queue *txq)
758 {
759 	struct rte_mbuf *mbuf;
760 	uint16_t nb_segs;
761 	uint16_t idx;
762 
763 	idx = TX_CONS(txq);
764 	mbuf = txq->sw_tx_ring[idx].mbuf;
765 	if (mbuf) {
766 		nb_segs = mbuf->nb_segs;
767 		PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
768 		while (nb_segs) {
769 			/* It's like consuming rxbuf in recv() */
770 			ecore_chain_consume(&txq->tx_pbl);
771 			txq->nb_tx_avail++;
772 			nb_segs--;
773 		}
774 		rte_pktmbuf_free(mbuf);
775 		txq->sw_tx_ring[idx].mbuf = NULL;
776 		txq->sw_tx_cons++;
777 		PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
778 	} else {
779 		ecore_chain_consume(&txq->tx_pbl);
780 		txq->nb_tx_avail++;
781 	}
782 }
783 
784 static inline void
785 qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
786 		      struct qede_tx_queue *txq)
787 {
788 	uint16_t hw_bd_cons;
789 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
790 	uint16_t sw_tx_cons;
791 #endif
792 
793 	rte_compiler_barrier();
794 	hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
795 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
796 	sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
797 	PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
798 		   abs(hw_bd_cons - sw_tx_cons));
799 #endif
800 	while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
801 		qede_free_tx_pkt(txq);
802 }
803 
804 static int qede_drain_txq(struct qede_dev *qdev,
805 			  struct qede_tx_queue *txq, bool allow_drain)
806 {
807 	struct ecore_dev *edev = &qdev->edev;
808 	int rc, cnt = 1000;
809 
810 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
811 		qede_process_tx_compl(edev, txq);
812 		if (!cnt) {
813 			if (allow_drain) {
814 				DP_ERR(edev, "Tx queue[%u] is stuck,"
815 					  "requesting MCP to drain\n",
816 					  txq->queue_id);
817 				rc = qdev->ops->common->drain(edev);
818 				if (rc)
819 					return rc;
820 				return qede_drain_txq(qdev, txq, false);
821 			}
822 			DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
823 				  "PROD=%d, CONS=%d\n",
824 				  txq->queue_id, txq->sw_tx_prod,
825 				  txq->sw_tx_cons);
826 			return -1;
827 		}
828 		cnt--;
829 		DELAY(1000);
830 		rte_compiler_barrier();
831 	}
832 
833 	/* FW finished processing, wait for HW to transmit all tx packets */
834 	DELAY(2000);
835 
836 	return 0;
837 }
838 
839 /* Stops a given TX queue in the HW */
840 static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
841 {
842 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
843 	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
844 	struct ecore_hwfn *p_hwfn;
845 	struct qede_tx_queue *txq;
846 	int hwfn_index;
847 	int rc;
848 
849 	if (tx_queue_id < eth_dev->data->nb_tx_queues) {
850 		txq = eth_dev->data->tx_queues[tx_queue_id];
851 		/* Drain txq */
852 		if (qede_drain_txq(qdev, txq, true))
853 			return -1; /* For the lack of retcodes */
854 		/* Stop txq */
855 		hwfn_index = tx_queue_id % edev->num_hwfns;
856 		p_hwfn = &edev->hwfns[hwfn_index];
857 		rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
858 		if (rc != ECORE_SUCCESS) {
859 			DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
860 			return -1;
861 		}
862 		qede_tx_queue_release_mbufs(txq);
863 		qede_tx_queue_reset(qdev, txq);
864 		eth_dev->data->tx_queue_state[tx_queue_id] =
865 			RTE_ETH_QUEUE_STATE_STOPPED;
866 		DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
867 	} else {
868 		DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
869 		rc = -EINVAL;
870 	}
871 
872 	return rc;
873 }
874 
875 int qede_start_queues(struct rte_eth_dev *eth_dev)
876 {
877 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
878 	uint8_t id;
879 	int rc = -1;
880 
881 	for_each_rss(id) {
882 		rc = qede_rx_queue_start(eth_dev, id);
883 		if (rc != ECORE_SUCCESS)
884 			return -1;
885 	}
886 
887 	for_each_tss(id) {
888 		rc = qede_tx_queue_start(eth_dev, id);
889 		if (rc != ECORE_SUCCESS)
890 			return -1;
891 	}
892 
893 	return rc;
894 }
895 
896 void qede_stop_queues(struct rte_eth_dev *eth_dev)
897 {
898 	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
899 	uint8_t id;
900 
901 	/* Stopping RX/TX queues */
902 	for_each_tss(id) {
903 		qede_tx_queue_stop(eth_dev, id);
904 	}
905 
906 	for_each_rss(id) {
907 		qede_rx_queue_stop(eth_dev, id);
908 	}
909 }
910 
911 static inline bool qede_tunn_exist(uint16_t flag)
912 {
913 	return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
914 		    PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
915 }
916 
917 static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
918 {
919 	return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
920 		PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
921 }
922 
923 /*
924  * qede_check_tunn_csum_l4:
925  * Returns:
926  * 1 : If L4 csum is enabled AND if the validation has failed.
927  * 0 : Otherwise
928  */
929 static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
930 {
931 	if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
932 	     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
933 		return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
934 			PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
935 
936 	return 0;
937 }
938 
939 static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
940 {
941 	if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
942 	     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
943 		return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
944 			   PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
945 
946 	return 0;
947 }
948 
949 /* Returns outer L2, L3 and L4 packet_type for tunneled packets */
950 static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
951 {
952 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
953 	struct ether_hdr *eth_hdr;
954 	struct ipv4_hdr *ipv4_hdr;
955 	struct ipv6_hdr *ipv6_hdr;
956 	struct vlan_hdr *vlan_hdr;
957 	uint16_t ethertype;
958 	bool vlan_tagged = 0;
959 	uint16_t len;
960 
961 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
962 	len = sizeof(struct ether_hdr);
963 	ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
964 
965 	 /* Note: Valid only if VLAN stripping is disabled */
966 	if (ethertype == ETHER_TYPE_VLAN) {
967 		vlan_tagged = 1;
968 		vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
969 		len += sizeof(struct vlan_hdr);
970 		ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
971 	}
972 
973 	if (ethertype == ETHER_TYPE_IPv4) {
974 		packet_type |= RTE_PTYPE_L3_IPV4;
975 		ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, len);
976 		if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
977 			packet_type |= RTE_PTYPE_L4_TCP;
978 		else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
979 			packet_type |= RTE_PTYPE_L4_UDP;
980 	} else if (ethertype == ETHER_TYPE_IPv6) {
981 		packet_type |= RTE_PTYPE_L3_IPV6;
982 		ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, len);
983 		if (ipv6_hdr->proto == IPPROTO_TCP)
984 			packet_type |= RTE_PTYPE_L4_TCP;
985 		else if (ipv6_hdr->proto == IPPROTO_UDP)
986 			packet_type |= RTE_PTYPE_L4_UDP;
987 	}
988 
989 	if (vlan_tagged)
990 		packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
991 	else
992 		packet_type |= RTE_PTYPE_L2_ETHER;
993 
994 	return packet_type;
995 }
996 
997 static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
998 {
999 	uint16_t val;
1000 
1001 	/* Lookup table */
1002 	static const uint32_t
1003 	ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1004 		[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4		|
1005 				       RTE_PTYPE_INNER_L2_ETHER,
1006 		[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6		|
1007 				       RTE_PTYPE_INNER_L2_ETHER,
1008 		[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4	|
1009 					   RTE_PTYPE_INNER_L4_TCP	|
1010 					   RTE_PTYPE_INNER_L2_ETHER,
1011 		[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6	|
1012 					   RTE_PTYPE_INNER_L4_TCP	|
1013 					   RTE_PTYPE_INNER_L2_ETHER,
1014 		[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4	|
1015 					   RTE_PTYPE_INNER_L4_UDP	|
1016 					   RTE_PTYPE_INNER_L2_ETHER,
1017 		[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6	|
1018 					   RTE_PTYPE_INNER_L4_UDP	|
1019 					   RTE_PTYPE_INNER_L2_ETHER,
1020 		/* Frags with no VLAN */
1021 		[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4	|
1022 					    RTE_PTYPE_INNER_L4_FRAG	|
1023 					    RTE_PTYPE_INNER_L2_ETHER,
1024 		[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6	|
1025 					    RTE_PTYPE_INNER_L4_FRAG	|
1026 					    RTE_PTYPE_INNER_L2_ETHER,
1027 		/* VLANs */
1028 		[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4	|
1029 					    RTE_PTYPE_INNER_L2_ETHER_VLAN,
1030 		[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6	|
1031 					    RTE_PTYPE_INNER_L2_ETHER_VLAN,
1032 		[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4	|
1033 						RTE_PTYPE_INNER_L4_TCP	|
1034 						RTE_PTYPE_INNER_L2_ETHER_VLAN,
1035 		[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6	|
1036 						RTE_PTYPE_INNER_L4_TCP	|
1037 						RTE_PTYPE_INNER_L2_ETHER_VLAN,
1038 		[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4	|
1039 						RTE_PTYPE_INNER_L4_UDP	|
1040 						RTE_PTYPE_INNER_L2_ETHER_VLAN,
1041 		[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6	|
1042 						RTE_PTYPE_INNER_L4_UDP	|
1043 						RTE_PTYPE_INNER_L2_ETHER_VLAN,
1044 		/* Frags with VLAN */
1045 		[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
1046 						 RTE_PTYPE_INNER_L4_FRAG |
1047 						 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1048 		[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
1049 						 RTE_PTYPE_INNER_L4_FRAG |
1050 						 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1051 	};
1052 
1053 	/* Bits (0..3) provides L3/L4 protocol type */
1054 	/* Bits (4,5) provides frag and VLAN info */
1055 	val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1056 	       PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1057 	       (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1058 		PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1059 	       (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1060 		PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1061 		(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1062 		 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1063 
1064 	if (val < QEDE_PKT_TYPE_MAX)
1065 		return ptype_lkup_tbl[val];
1066 
1067 	return RTE_PTYPE_UNKNOWN;
1068 }
1069 
1070 static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
1071 {
1072 	uint16_t val;
1073 
1074 	/* Lookup table */
1075 	static const uint32_t
1076 	ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1077 		[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
1078 		[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
1079 		[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4	|
1080 					   RTE_PTYPE_L4_TCP	|
1081 					   RTE_PTYPE_L2_ETHER,
1082 		[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6	|
1083 					   RTE_PTYPE_L4_TCP	|
1084 					   RTE_PTYPE_L2_ETHER,
1085 		[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4	|
1086 					   RTE_PTYPE_L4_UDP	|
1087 					   RTE_PTYPE_L2_ETHER,
1088 		[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6	|
1089 					   RTE_PTYPE_L4_UDP	|
1090 					   RTE_PTYPE_L2_ETHER,
1091 		/* Frags with no VLAN */
1092 		[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4	|
1093 					    RTE_PTYPE_L4_FRAG	|
1094 					    RTE_PTYPE_L2_ETHER,
1095 		[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6	|
1096 					    RTE_PTYPE_L4_FRAG	|
1097 					    RTE_PTYPE_L2_ETHER,
1098 		/* VLANs */
1099 		[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4		|
1100 					    RTE_PTYPE_L2_ETHER_VLAN,
1101 		[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6		|
1102 					    RTE_PTYPE_L2_ETHER_VLAN,
1103 		[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4	|
1104 						RTE_PTYPE_L4_TCP	|
1105 						RTE_PTYPE_L2_ETHER_VLAN,
1106 		[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6	|
1107 						RTE_PTYPE_L4_TCP	|
1108 						RTE_PTYPE_L2_ETHER_VLAN,
1109 		[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4	|
1110 						RTE_PTYPE_L4_UDP	|
1111 						RTE_PTYPE_L2_ETHER_VLAN,
1112 		[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6	|
1113 						RTE_PTYPE_L4_UDP	|
1114 						RTE_PTYPE_L2_ETHER_VLAN,
1115 		/* Frags with VLAN */
1116 		[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4	|
1117 						 RTE_PTYPE_L4_FRAG	|
1118 						 RTE_PTYPE_L2_ETHER_VLAN,
1119 		[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6	|
1120 						 RTE_PTYPE_L4_FRAG	|
1121 						 RTE_PTYPE_L2_ETHER_VLAN,
1122 	};
1123 
1124 	/* Bits (0..3) provides L3/L4 protocol type */
1125 	/* Bits (4,5) provides frag and VLAN info */
1126 	val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1127 	       PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1128 	       (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1129 		PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1130 	       (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1131 		PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1132 		(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1133 		 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1134 
1135 	if (val < QEDE_PKT_TYPE_MAX)
1136 		return ptype_lkup_tbl[val];
1137 
1138 	return RTE_PTYPE_UNKNOWN;
1139 }
1140 
1141 static inline uint8_t
1142 qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1143 {
1144 	struct ipv4_hdr *ip;
1145 	uint16_t pkt_csum;
1146 	uint16_t calc_csum;
1147 	uint16_t val;
1148 
1149 	val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1150 		PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1151 
1152 	if (unlikely(val)) {
1153 		m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1154 		if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1155 			ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
1156 					   sizeof(struct ether_hdr));
1157 			pkt_csum = ip->hdr_checksum;
1158 			ip->hdr_checksum = 0;
1159 			calc_csum = rte_ipv4_cksum(ip);
1160 			ip->hdr_checksum = pkt_csum;
1161 			return (calc_csum != pkt_csum);
1162 		} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1163 			return 1;
1164 		}
1165 	}
1166 	return 0;
1167 }
1168 
1169 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1170 {
1171 	ecore_chain_consume(&rxq->rx_bd_ring);
1172 	rxq->sw_rx_cons++;
1173 }
1174 
1175 static inline void
1176 qede_reuse_page(__rte_unused struct qede_dev *qdev,
1177 		struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
1178 {
1179 	struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1180 	uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
1181 	struct qede_rx_entry *curr_prod;
1182 	dma_addr_t new_mapping;
1183 
1184 	curr_prod = &rxq->sw_rx_ring[idx];
1185 	*curr_prod = *curr_cons;
1186 
1187 	new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
1188 		      curr_prod->page_offset;
1189 
1190 	rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1191 	rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1192 
1193 	rxq->sw_rx_prod++;
1194 }
1195 
1196 static inline void
1197 qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1198 			struct qede_dev *qdev, uint8_t count)
1199 {
1200 	struct qede_rx_entry *curr_cons;
1201 
1202 	for (; count > 0; count--) {
1203 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1204 		qede_reuse_page(qdev, rxq, curr_cons);
1205 		qede_rx_bd_ring_consume(rxq);
1206 	}
1207 }
1208 
1209 static inline void
1210 qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1211 				     struct qede_rx_queue *rxq,
1212 				     uint8_t agg_index, uint16_t len)
1213 {
1214 	struct qede_agg_info *tpa_info;
1215 	struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1216 	uint16_t cons_idx;
1217 
1218 	/* Under certain conditions it is possible that FW may not consume
1219 	 * additional or new BD. So decision to consume the BD must be made
1220 	 * based on len_list[0].
1221 	 */
1222 	if (rte_le_to_cpu_16(len)) {
1223 		tpa_info = &rxq->tpa_info[agg_index];
1224 		cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1225 		curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
1226 		assert(curr_frag);
1227 		curr_frag->nb_segs = 1;
1228 		curr_frag->pkt_len = rte_le_to_cpu_16(len);
1229 		curr_frag->data_len = curr_frag->pkt_len;
1230 		tpa_info->tpa_tail->next = curr_frag;
1231 		tpa_info->tpa_tail = curr_frag;
1232 		qede_rx_bd_ring_consume(rxq);
1233 		if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1234 			PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1235 			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1236 			rxq->rx_alloc_errors++;
1237 		}
1238 	}
1239 }
1240 
1241 static inline void
1242 qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1243 			     struct qede_rx_queue *rxq,
1244 			     struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1245 {
1246 	PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1247 		   cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1248 	/* only len_list[0] will have value */
1249 	qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1250 					     cqe->len_list[0]);
1251 }
1252 
1253 static inline void
1254 qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1255 			    struct qede_rx_queue *rxq,
1256 			    struct eth_fast_path_rx_tpa_end_cqe *cqe)
1257 {
1258 	struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1259 
1260 	qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1261 					     cqe->len_list[0]);
1262 	/* Update total length and frags based on end TPA */
1263 	rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1264 	/* TODO:  Add Sanity Checks */
1265 	rx_mb->nb_segs = cqe->num_of_bds;
1266 	rx_mb->pkt_len = cqe->total_packet_len;
1267 
1268 	PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1269 		   " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1270 		   rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1271 		   rx_mb->pkt_len);
1272 }
1273 
1274 static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1275 {
1276 	uint32_t val;
1277 
1278 	/* Lookup table */
1279 	static const uint32_t
1280 	ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1281 		[QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1282 		[QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1283 		[QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1284 		[QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1285 		[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1286 				RTE_PTYPE_TUNNEL_GENEVE,
1287 		[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1288 				RTE_PTYPE_TUNNEL_GRE,
1289 		[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1290 				RTE_PTYPE_TUNNEL_VXLAN,
1291 		[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1292 				RTE_PTYPE_TUNNEL_GENEVE,
1293 		[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1294 				RTE_PTYPE_TUNNEL_GRE,
1295 		[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1296 				RTE_PTYPE_TUNNEL_VXLAN,
1297 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1298 				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1299 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1300 				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1301 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1302 				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1303 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1304 				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1305 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1306 				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1307 		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1308 				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1309 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1310 				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1311 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1312 				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1313 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1314 				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1315 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1316 				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1317 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1318 				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1319 		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1320 				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1321 	};
1322 
1323 	/* Cover bits[4-0] to include tunn_type and next protocol */
1324 	val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1325 		ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1326 		(ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1327 		ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1328 
1329 	if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1330 		return ptype_tunn_lkup_tbl[val];
1331 	else
1332 		return RTE_PTYPE_UNKNOWN;
1333 }
1334 
1335 static inline int
1336 qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1337 		     uint8_t num_segs, uint16_t pkt_len)
1338 {
1339 	struct qede_rx_queue *rxq = p_rxq;
1340 	struct qede_dev *qdev = rxq->qdev;
1341 	register struct rte_mbuf *seg1 = NULL;
1342 	register struct rte_mbuf *seg2 = NULL;
1343 	uint16_t sw_rx_index;
1344 	uint16_t cur_size;
1345 
1346 	seg1 = rx_mb;
1347 	while (num_segs) {
1348 		cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1349 							pkt_len;
1350 		if (unlikely(!cur_size)) {
1351 			PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1352 				   " left for mapping jumbo\n", num_segs);
1353 			qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1354 			return -EINVAL;
1355 		}
1356 		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1357 		seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
1358 		qede_rx_bd_ring_consume(rxq);
1359 		pkt_len -= cur_size;
1360 		seg2->data_len = cur_size;
1361 		seg1->next = seg2;
1362 		seg1 = seg1->next;
1363 		num_segs--;
1364 		rxq->rx_segs++;
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1371 static inline void
1372 print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1373 		 uint8_t bitfield)
1374 {
1375 	PMD_RX_LOG(INFO, rxq,
1376 		"len 0x%04x bf 0x%04x hash_val 0x%x"
1377 		" ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1378 		" inner_l2=%s inner_l3=%s inner_l4=%s\n",
1379 		m->data_len, bitfield, m->hash.rss,
1380 		(unsigned long)m->ol_flags,
1381 		rte_get_ptype_l2_name(m->packet_type),
1382 		rte_get_ptype_l3_name(m->packet_type),
1383 		rte_get_ptype_l4_name(m->packet_type),
1384 		rte_get_ptype_tunnel_name(m->packet_type),
1385 		rte_get_ptype_inner_l2_name(m->packet_type),
1386 		rte_get_ptype_inner_l3_name(m->packet_type),
1387 		rte_get_ptype_inner_l4_name(m->packet_type));
1388 }
1389 #endif
1390 
1391 uint16_t
1392 qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1393 {
1394 	struct qede_rx_queue *rxq = p_rxq;
1395 	struct qede_dev *qdev = rxq->qdev;
1396 	struct ecore_dev *edev = &qdev->edev;
1397 	uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1398 	uint16_t rx_pkt = 0;
1399 	union eth_rx_cqe *cqe;
1400 	struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1401 	register struct rte_mbuf *rx_mb = NULL;
1402 	register struct rte_mbuf *seg1 = NULL;
1403 	enum eth_rx_cqe_type cqe_type;
1404 	uint16_t pkt_len = 0; /* Sum of all BD segments */
1405 	uint16_t len; /* Length of first BD */
1406 	uint8_t num_segs = 1;
1407 	uint16_t preload_idx;
1408 	uint16_t parse_flag;
1409 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1410 	uint8_t bitfield_val;
1411 #endif
1412 	uint8_t tunn_parse_flag;
1413 	struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1414 	uint64_t ol_flags;
1415 	uint32_t packet_type;
1416 	uint16_t vlan_tci;
1417 	bool tpa_start_flg;
1418 	uint8_t offset, tpa_agg_idx, flags;
1419 	struct qede_agg_info *tpa_info = NULL;
1420 	uint32_t rss_hash;
1421 	int rx_alloc_count = 0;
1422 
1423 	hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1424 	sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1425 
1426 	rte_rmb();
1427 
1428 	if (hw_comp_cons == sw_comp_cons)
1429 		return 0;
1430 
1431 	/* Allocate buffers that we used in previous loop */
1432 	if (rxq->rx_alloc_count) {
1433 		if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
1434 			     rxq->rx_alloc_count))) {
1435 			struct rte_eth_dev *dev;
1436 
1437 			PMD_RX_LOG(ERR, rxq,
1438 				   "New buffer allocation failed,"
1439 				   "dropping incoming packetn");
1440 			dev = &rte_eth_devices[rxq->port_id];
1441 			dev->data->rx_mbuf_alloc_failed +=
1442 							rxq->rx_alloc_count;
1443 			rxq->rx_alloc_errors += rxq->rx_alloc_count;
1444 			return 0;
1445 		}
1446 		qede_update_rx_prod(qdev, rxq);
1447 		rxq->rx_alloc_count = 0;
1448 	}
1449 
1450 	while (sw_comp_cons != hw_comp_cons) {
1451 		ol_flags = 0;
1452 		packet_type = RTE_PTYPE_UNKNOWN;
1453 		vlan_tci = 0;
1454 		tpa_start_flg = false;
1455 		rss_hash = 0;
1456 
1457 		/* Get the CQE from the completion ring */
1458 		cqe =
1459 		    (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1460 		cqe_type = cqe->fast_path_regular.type;
1461 		PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1462 
1463 		switch (cqe_type) {
1464 		case ETH_RX_CQE_TYPE_REGULAR:
1465 			fp_cqe = &cqe->fast_path_regular;
1466 		break;
1467 		case ETH_RX_CQE_TYPE_TPA_START:
1468 			cqe_start_tpa = &cqe->fast_path_tpa_start;
1469 			tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1470 			tpa_start_flg = true;
1471 			/* Mark it as LRO packet */
1472 			ol_flags |= PKT_RX_LRO;
1473 			/* In split mode,  seg_len is same as len_on_first_bd
1474 			 * and ext_bd_len_list will be empty since there are
1475 			 * no additional buffers
1476 			 */
1477 			PMD_RX_LOG(INFO, rxq,
1478 			    "TPA start[%d] - len_on_first_bd %d header %d"
1479 			    " [bd_list[0] %d], [seg_len %d]\n",
1480 			    cqe_start_tpa->tpa_agg_index,
1481 			    rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1482 			    cqe_start_tpa->header_len,
1483 			    rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
1484 			    rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1485 
1486 		break;
1487 		case ETH_RX_CQE_TYPE_TPA_CONT:
1488 			qede_rx_process_tpa_cont_cqe(qdev, rxq,
1489 						     &cqe->fast_path_tpa_cont);
1490 			goto next_cqe;
1491 		case ETH_RX_CQE_TYPE_TPA_END:
1492 			qede_rx_process_tpa_end_cqe(qdev, rxq,
1493 						    &cqe->fast_path_tpa_end);
1494 			tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1495 			tpa_info = &rxq->tpa_info[tpa_agg_idx];
1496 			rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1497 			goto tpa_end;
1498 		case ETH_RX_CQE_TYPE_SLOW_PATH:
1499 			PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1500 			ecore_eth_cqe_completion(
1501 				&edev->hwfns[rxq->queue_id % edev->num_hwfns],
1502 				(struct eth_slow_path_rx_cqe *)cqe);
1503 			/* fall-thru */
1504 		default:
1505 			goto next_cqe;
1506 		}
1507 
1508 		/* Get the data from the SW ring */
1509 		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1510 		rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
1511 		assert(rx_mb != NULL);
1512 
1513 		/* Handle regular CQE or TPA start CQE */
1514 		if (!tpa_start_flg) {
1515 			parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1516 			offset = fp_cqe->placement_offset;
1517 			len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1518 			pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1519 			vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1520 			rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1521 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1522 			bitfield_val = fp_cqe->bitfields;
1523 #endif
1524 		} else {
1525 			parse_flag =
1526 			    rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1527 			offset = cqe_start_tpa->placement_offset;
1528 			/* seg_len = len_on_first_bd */
1529 			len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1530 			vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1531 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1532 			bitfield_val = cqe_start_tpa->bitfields;
1533 #endif
1534 			rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1535 		}
1536 		if (qede_tunn_exist(parse_flag)) {
1537 			PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1538 			if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1539 				PMD_RX_LOG(ERR, rxq,
1540 					    "L4 csum failed, flags = 0x%x\n",
1541 					    parse_flag);
1542 				rxq->rx_hw_errors++;
1543 				ol_flags |= PKT_RX_L4_CKSUM_BAD;
1544 			} else {
1545 				ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1546 			}
1547 
1548 			if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1549 				PMD_RX_LOG(ERR, rxq,
1550 					"Outer L3 csum failed, flags = 0x%x\n",
1551 					parse_flag);
1552 				  rxq->rx_hw_errors++;
1553 				  ol_flags |= PKT_RX_EIP_CKSUM_BAD;
1554 			} else {
1555 				  ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1556 			}
1557 
1558 			if (tpa_start_flg)
1559 				flags = cqe_start_tpa->tunnel_pars_flags.flags;
1560 			else
1561 				flags = fp_cqe->tunnel_pars_flags.flags;
1562 			tunn_parse_flag = flags;
1563 
1564 			/* Tunnel_type */
1565 			packet_type =
1566 				qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1567 
1568 			/* Inner header */
1569 			packet_type |=
1570 			      qede_rx_cqe_to_pkt_type_inner(parse_flag);
1571 
1572 			/* Outer L3/L4 types is not available in CQE */
1573 			packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1574 
1575 			/* Outer L3/L4 types is not available in CQE.
1576 			 * Need to add offset to parse correctly,
1577 			 */
1578 			rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1579 			packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1580 		} else {
1581 			packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1582 		}
1583 
1584 		/* Common handling for non-tunnel packets and for inner
1585 		 * headers in the case of tunnel.
1586 		 */
1587 		if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1588 			PMD_RX_LOG(ERR, rxq,
1589 				    "L4 csum failed, flags = 0x%x\n",
1590 				    parse_flag);
1591 			rxq->rx_hw_errors++;
1592 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
1593 		} else {
1594 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1595 		}
1596 		if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1597 			PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1598 				   parse_flag);
1599 			rxq->rx_hw_errors++;
1600 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
1601 		} else {
1602 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1603 		}
1604 
1605 		if (CQE_HAS_VLAN(parse_flag) ||
1606 		    CQE_HAS_OUTER_VLAN(parse_flag)) {
1607 			/* Note: FW doesn't indicate Q-in-Q packet */
1608 			ol_flags |= PKT_RX_VLAN;
1609 			if (qdev->vlan_strip_flg) {
1610 				ol_flags |= PKT_RX_VLAN_STRIPPED;
1611 				rx_mb->vlan_tci = vlan_tci;
1612 			}
1613 		}
1614 
1615 		/* RSS Hash */
1616 		if (qdev->rss_enable) {
1617 			ol_flags |= PKT_RX_RSS_HASH;
1618 			rx_mb->hash.rss = rss_hash;
1619 		}
1620 
1621 		rx_alloc_count++;
1622 		qede_rx_bd_ring_consume(rxq);
1623 
1624 		if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1625 			PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1626 				   " len on first: %04x Total Len: %04x",
1627 				   fp_cqe->bd_num, len, pkt_len);
1628 			num_segs = fp_cqe->bd_num - 1;
1629 			seg1 = rx_mb;
1630 			if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1631 						 pkt_len - len))
1632 				goto next_cqe;
1633 
1634 			rx_alloc_count += num_segs;
1635 			rxq->rx_segs += num_segs;
1636 		}
1637 		rxq->rx_segs++; /* for the first segment */
1638 
1639 		/* Prefetch next mbuf while processing current one. */
1640 		preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1641 		rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
1642 
1643 		/* Update rest of the MBUF fields */
1644 		rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1645 		rx_mb->port = rxq->port_id;
1646 		rx_mb->ol_flags = ol_flags;
1647 		rx_mb->data_len = len;
1648 		rx_mb->packet_type = packet_type;
1649 #ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1650 		print_rx_bd_info(rx_mb, rxq, bitfield_val);
1651 #endif
1652 		if (!tpa_start_flg) {
1653 			rx_mb->nb_segs = fp_cqe->bd_num;
1654 			rx_mb->pkt_len = pkt_len;
1655 		} else {
1656 			/* store ref to the updated mbuf */
1657 			tpa_info->tpa_head = rx_mb;
1658 			tpa_info->tpa_tail = tpa_info->tpa_head;
1659 		}
1660 		rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
1661 tpa_end:
1662 		if (!tpa_start_flg) {
1663 			rx_pkts[rx_pkt] = rx_mb;
1664 			rx_pkt++;
1665 		}
1666 next_cqe:
1667 		ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1668 		sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1669 		if (rx_pkt == nb_pkts) {
1670 			PMD_RX_LOG(DEBUG, rxq,
1671 				   "Budget reached nb_pkts=%u received=%u",
1672 				   rx_pkt, nb_pkts);
1673 			break;
1674 		}
1675 	}
1676 
1677 	/* Request number of bufferes to be allocated in next loop */
1678 	rxq->rx_alloc_count = rx_alloc_count;
1679 
1680 	rxq->rcv_pkts += rx_pkt;
1681 
1682 	PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1683 
1684 	return rx_pkt;
1685 }
1686 
1687 
1688 /* Populate scatter gather buffer descriptor fields */
1689 static inline uint16_t
1690 qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
1691 		  struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
1692 		  uint16_t start_seg)
1693 {
1694 	struct qede_tx_queue *txq = p_txq;
1695 	struct eth_tx_bd *tx_bd = NULL;
1696 	dma_addr_t mapping;
1697 	uint16_t nb_segs = 0;
1698 
1699 	/* Check for scattered buffers */
1700 	while (m_seg) {
1701 		if (start_seg == 0) {
1702 			if (!*bd2) {
1703 				*bd2 = (struct eth_tx_2nd_bd *)
1704 					ecore_chain_produce(&txq->tx_pbl);
1705 				memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
1706 				nb_segs++;
1707 			}
1708 			mapping = rte_mbuf_data_iova(m_seg);
1709 			QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
1710 			PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
1711 		} else if (start_seg == 1) {
1712 			if (!*bd3) {
1713 				*bd3 = (struct eth_tx_3rd_bd *)
1714 					ecore_chain_produce(&txq->tx_pbl);
1715 				memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
1716 				nb_segs++;
1717 			}
1718 			mapping = rte_mbuf_data_iova(m_seg);
1719 			QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
1720 			PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
1721 		} else {
1722 			tx_bd = (struct eth_tx_bd *)
1723 				ecore_chain_produce(&txq->tx_pbl);
1724 			memset(tx_bd, 0, sizeof(*tx_bd));
1725 			nb_segs++;
1726 			mapping = rte_mbuf_data_iova(m_seg);
1727 			QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
1728 			PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
1729 		}
1730 		start_seg++;
1731 		m_seg = m_seg->next;
1732 	}
1733 
1734 	/* Return total scattered buffers */
1735 	return nb_segs;
1736 }
1737 
1738 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1739 static inline void
1740 print_tx_bd_info(struct qede_tx_queue *txq,
1741 		 struct eth_tx_1st_bd *bd1,
1742 		 struct eth_tx_2nd_bd *bd2,
1743 		 struct eth_tx_3rd_bd *bd3,
1744 		 uint64_t tx_ol_flags)
1745 {
1746 	char ol_buf[256] = { 0 }; /* for verbose prints */
1747 
1748 	if (bd1)
1749 		PMD_TX_LOG(INFO, txq,
1750 		   "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
1751 		   rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
1752 		   bd1->data.bd_flags.bitfields,
1753 		   rte_cpu_to_le_16(bd1->data.bitfields));
1754 	if (bd2)
1755 		PMD_TX_LOG(INFO, txq,
1756 		   "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
1757 		   rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
1758 		   bd2->data.bitfields2, bd2->data.tunn_ip_size);
1759 	if (bd3)
1760 		PMD_TX_LOG(INFO, txq,
1761 		   "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
1762 		   "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
1763 		   rte_cpu_to_le_16(bd3->nbytes),
1764 		   rte_cpu_to_le_16(bd3->data.bitfields),
1765 		   rte_cpu_to_le_16(bd3->data.lso_mss),
1766 		   bd3->data.tunn_l4_hdr_start_offset_w,
1767 		   bd3->data.tunn_hdr_size_w);
1768 
1769 	rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
1770 	PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
1771 }
1772 #endif
1773 
1774 /* TX prepare to check packets meets TX conditions */
1775 uint16_t
1776 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1777 qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
1778 		    uint16_t nb_pkts)
1779 {
1780 	struct qede_tx_queue *txq = p_txq;
1781 #else
1782 qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
1783 		    uint16_t nb_pkts)
1784 {
1785 #endif
1786 	uint64_t ol_flags;
1787 	struct rte_mbuf *m;
1788 	uint16_t i;
1789 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1790 	int ret;
1791 #endif
1792 
1793 	for (i = 0; i < nb_pkts; i++) {
1794 		m = tx_pkts[i];
1795 		ol_flags = m->ol_flags;
1796 		if (ol_flags & PKT_TX_TCP_SEG) {
1797 			if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
1798 				rte_errno = -EINVAL;
1799 				break;
1800 			}
1801 			/* TBD: confirm its ~9700B for both ? */
1802 			if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
1803 				rte_errno = -EINVAL;
1804 				break;
1805 			}
1806 		} else {
1807 			if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
1808 				rte_errno = -EINVAL;
1809 				break;
1810 			}
1811 		}
1812 		if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
1813 			/* We support only limited tunnel protocols */
1814 			if (ol_flags & PKT_TX_TUNNEL_MASK) {
1815 				uint64_t temp;
1816 
1817 				temp = ol_flags & PKT_TX_TUNNEL_MASK;
1818 				if (temp == PKT_TX_TUNNEL_VXLAN ||
1819 				    temp == PKT_TX_TUNNEL_GENEVE ||
1820 				    temp == PKT_TX_TUNNEL_MPLSINUDP ||
1821 				    temp == PKT_TX_TUNNEL_GRE)
1822 					break;
1823 			}
1824 
1825 			rte_errno = -ENOTSUP;
1826 			break;
1827 		}
1828 
1829 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1830 		ret = rte_validate_tx_offload(m);
1831 		if (ret != 0) {
1832 			rte_errno = ret;
1833 			break;
1834 		}
1835 #endif
1836 	}
1837 
1838 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1839 	if (unlikely(i != nb_pkts))
1840 		PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
1841 			   nb_pkts - i);
1842 #endif
1843 	return i;
1844 }
1845 
1846 #define MPLSINUDP_HDR_SIZE			(12)
1847 
1848 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1849 static inline void
1850 qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
1851 			       struct qede_tx_queue *txq)
1852 {
1853 	if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
1854 		PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
1855 	if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
1856 		MPLSINUDP_HDR_SIZE) / 2) > 0xff)
1857 		PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
1858 	if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
1859 		ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
1860 		PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1861 	if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
1862 		ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
1863 		PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
1864 }
1865 #endif
1866 
1867 uint16_t
1868 qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1869 {
1870 	struct qede_tx_queue *txq = p_txq;
1871 	struct qede_dev *qdev = txq->qdev;
1872 	struct ecore_dev *edev = &qdev->edev;
1873 	struct rte_mbuf *mbuf;
1874 	struct rte_mbuf *m_seg = NULL;
1875 	uint16_t nb_tx_pkts;
1876 	uint16_t bd_prod;
1877 	uint16_t idx;
1878 	uint16_t nb_frags;
1879 	uint16_t nb_pkt_sent = 0;
1880 	uint8_t nbds;
1881 	bool lso_flg;
1882 	bool mplsoudp_flg;
1883 	__rte_unused bool tunn_flg;
1884 	bool tunn_ipv6_ext_flg;
1885 	struct eth_tx_1st_bd *bd1;
1886 	struct eth_tx_2nd_bd *bd2;
1887 	struct eth_tx_3rd_bd *bd3;
1888 	uint64_t tx_ol_flags;
1889 	uint16_t hdr_size;
1890 	/* BD1 */
1891 	uint16_t bd1_bf;
1892 	uint8_t bd1_bd_flags_bf;
1893 	uint16_t vlan;
1894 	/* BD2 */
1895 	uint16_t bd2_bf1;
1896 	uint16_t bd2_bf2;
1897 	/* BD3 */
1898 	uint16_t mss;
1899 	uint16_t bd3_bf;
1900 
1901 	uint8_t tunn_l4_hdr_start_offset;
1902 	uint8_t tunn_hdr_size;
1903 	uint8_t inner_l2_hdr_size;
1904 	uint16_t inner_l4_hdr_offset;
1905 
1906 	if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
1907 		PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
1908 			   nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
1909 		qede_process_tx_compl(edev, txq);
1910 	}
1911 
1912 	nb_tx_pkts  = nb_pkts;
1913 	bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
1914 	while (nb_tx_pkts--) {
1915 		/* Init flags/values */
1916 		tunn_flg = false;
1917 		lso_flg = false;
1918 		nbds = 0;
1919 		vlan = 0;
1920 		bd1 = NULL;
1921 		bd2 = NULL;
1922 		bd3 = NULL;
1923 		hdr_size = 0;
1924 		bd1_bf = 0;
1925 		bd1_bd_flags_bf = 0;
1926 		bd2_bf1 = 0;
1927 		bd2_bf2 = 0;
1928 		mss = 0;
1929 		bd3_bf = 0;
1930 		mplsoudp_flg = false;
1931 		tunn_ipv6_ext_flg = false;
1932 		tunn_hdr_size = 0;
1933 		tunn_l4_hdr_start_offset = 0;
1934 
1935 		mbuf = *tx_pkts++;
1936 		assert(mbuf);
1937 
1938 		/* Check minimum TX BDS availability against available BDs */
1939 		if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
1940 			break;
1941 
1942 		tx_ol_flags = mbuf->ol_flags;
1943 		bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1944 
1945 		/* TX prepare would have already checked supported tunnel Tx
1946 		 * offloads. Don't rely on pkt_type marked by Rx, instead use
1947 		 * tx_ol_flags to decide.
1948 		 */
1949 		tunn_flg = !!(tx_ol_flags & PKT_TX_TUNNEL_MASK);
1950 
1951 		if (tunn_flg) {
1952 			/* Check against max which is Tunnel IPv6 + ext */
1953 			if (unlikely(txq->nb_tx_avail <
1954 				ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
1955 					break;
1956 
1957 			/* First indicate its a tunnel pkt */
1958 			bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
1959 				  ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1960 			/* Legacy FW had flipped behavior in regard to this bit
1961 			 * i.e. it needed to set to prevent FW from touching
1962 			 * encapsulated packets when it didn't need to.
1963 			 */
1964 			if (unlikely(txq->is_legacy)) {
1965 				bd1_bf ^= 1 <<
1966 					ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1967 			}
1968 
1969 			/* Outer IP checksum offload */
1970 			if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
1971 					   PKT_TX_OUTER_IPV4)) {
1972 				bd1_bd_flags_bf |=
1973 					ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
1974 					ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1975 			}
1976 
1977 			/**
1978 			 * Currently, only inner checksum offload in MPLS-in-UDP
1979 			 * tunnel with one MPLS label is supported. Both outer
1980 			 * and inner layers  lengths need to be provided in
1981 			 * mbuf.
1982 			 */
1983 			if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
1984 						PKT_TX_TUNNEL_MPLSINUDP) {
1985 				mplsoudp_flg = true;
1986 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
1987 				qede_mpls_tunn_tx_sanity_check(mbuf, txq);
1988 #endif
1989 				/* Outer L4 offset in two byte words */
1990 				tunn_l4_hdr_start_offset =
1991 				  (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
1992 				/* Tunnel header size in two byte words */
1993 				tunn_hdr_size = (mbuf->outer_l2_len +
1994 						mbuf->outer_l3_len +
1995 						MPLSINUDP_HDR_SIZE) / 2;
1996 				/* Inner L2 header size in two byte words */
1997 				inner_l2_hdr_size = (mbuf->l2_len -
1998 						MPLSINUDP_HDR_SIZE) / 2;
1999 				/* Inner L4 header offset from the beggining
2000 				 * of inner packet in two byte words
2001 				 */
2002 				inner_l4_hdr_offset = (mbuf->l2_len -
2003 					MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
2004 
2005 				/* Inner L2 size and address type */
2006 				bd2_bf1 |= (inner_l2_hdr_size &
2007 					ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
2008 					ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
2009 				bd2_bf1 |= (UNICAST_ADDRESS &
2010 					ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
2011 					ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
2012 				/* Treated as IPv6+Ext */
2013 				bd2_bf1 |=
2014 				    1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
2015 
2016 				/* Mark inner IPv6 if present */
2017 				if (tx_ol_flags & PKT_TX_IPV6)
2018 					bd2_bf1 |=
2019 						1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
2020 
2021 				/* Inner L4 offsets */
2022 				if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2023 				     (tx_ol_flags & (PKT_TX_UDP_CKSUM |
2024 							PKT_TX_TCP_CKSUM))) {
2025 					/* Determines if BD3 is needed */
2026 					tunn_ipv6_ext_flg = true;
2027 					if ((tx_ol_flags & PKT_TX_L4_MASK) ==
2028 							PKT_TX_UDP_CKSUM) {
2029 						bd2_bf1 |=
2030 							1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
2031 					}
2032 
2033 					/* TODO other pseudo checksum modes are
2034 					 * not supported
2035 					 */
2036 					bd2_bf1 |=
2037 					ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
2038 					ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
2039 					bd2_bf2 |= (inner_l4_hdr_offset &
2040 						ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
2041 						ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
2042 				}
2043 			} /* End MPLSoUDP */
2044 		} /* End Tunnel handling */
2045 
2046 		if (tx_ol_flags & PKT_TX_TCP_SEG) {
2047 			lso_flg = true;
2048 			if (unlikely(txq->nb_tx_avail <
2049 						ETH_TX_MIN_BDS_PER_LSO_PKT))
2050 				break;
2051 			/* For LSO, packet header and payload must reside on
2052 			 * buffers pointed by different BDs. Using BD1 for HDR
2053 			 * and BD2 onwards for data.
2054 			 */
2055 			hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
2056 			if (tunn_flg)
2057 				hdr_size += mbuf->outer_l2_len +
2058 					    mbuf->outer_l3_len;
2059 
2060 			bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
2061 			bd1_bd_flags_bf |=
2062 					1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2063 			/* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
2064 			bd1_bd_flags_bf |=
2065 					1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2066 			mss = rte_cpu_to_le_16(mbuf->tso_segsz);
2067 			/* Using one header BD */
2068 			bd3_bf |= rte_cpu_to_le_16(1 <<
2069 					ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
2070 		} else {
2071 			if (unlikely(txq->nb_tx_avail <
2072 					ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2073 				break;
2074 			bd1_bf |=
2075 			       (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2076 				<< ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2077 		}
2078 
2079 		/* Descriptor based VLAN insertion */
2080 		if (tx_ol_flags & PKT_TX_VLAN_PKT) {
2081 			vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
2082 			bd1_bd_flags_bf |=
2083 			    1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
2084 		}
2085 
2086 		/* Offload the IP checksum in the hardware */
2087 		if (tx_ol_flags & PKT_TX_IP_CKSUM) {
2088 			bd1_bd_flags_bf |=
2089 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2090 			/* There's no DPDK flag to request outer-L4 csum
2091 			 * offload. But in the case of tunnel if inner L3 or L4
2092 			 * csum offload is requested then we need to force
2093 			 * recalculation of L4 tunnel header csum also.
2094 			 */
2095 			if (tunn_flg && ((tx_ol_flags & PKT_TX_TUNNEL_MASK) !=
2096 							PKT_TX_TUNNEL_GRE)) {
2097 				bd1_bd_flags_bf |=
2098 					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2099 					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2100 			}
2101 		}
2102 
2103 		/* L4 checksum offload (tcp or udp) */
2104 		if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2105 		    (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
2106 			bd1_bd_flags_bf |=
2107 				1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2108 			/* There's no DPDK flag to request outer-L4 csum
2109 			 * offload. But in the case of tunnel if inner L3 or L4
2110 			 * csum offload is requested then we need to force
2111 			 * recalculation of L4 tunnel header csum also.
2112 			 */
2113 			if (tunn_flg) {
2114 				bd1_bd_flags_bf |=
2115 					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2116 					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2117 			}
2118 		}
2119 
2120 		/* Fill the entry in the SW ring and the BDs in the FW ring */
2121 		idx = TX_PROD(txq);
2122 		txq->sw_tx_ring[idx].mbuf = mbuf;
2123 
2124 		/* BD1 */
2125 		bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2126 		memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2127 		nbds++;
2128 
2129 		/* Map MBUF linear data for DMA and set in the BD1 */
2130 		QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2131 				     mbuf->data_len);
2132 		bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2133 		bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2134 		bd1->data.vlan = vlan;
2135 
2136 		if (lso_flg || mplsoudp_flg) {
2137 			bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2138 							(&txq->tx_pbl);
2139 			memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2140 			nbds++;
2141 
2142 			/* BD1 */
2143 			QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2144 					     hdr_size);
2145 			/* BD2 */
2146 			QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2147 					     rte_mbuf_data_iova(mbuf)),
2148 					     mbuf->data_len - hdr_size);
2149 			bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2150 			if (mplsoudp_flg) {
2151 				bd2->data.bitfields2 =
2152 					rte_cpu_to_le_16(bd2_bf2);
2153 				/* Outer L3 size */
2154 				bd2->data.tunn_ip_size =
2155 					rte_cpu_to_le_16(mbuf->outer_l3_len);
2156 			}
2157 			/* BD3 */
2158 			if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2159 				bd3 = (struct eth_tx_3rd_bd *)
2160 					ecore_chain_produce(&txq->tx_pbl);
2161 				memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2162 				nbds++;
2163 				bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2164 				if (lso_flg)
2165 					bd3->data.lso_mss = mss;
2166 				if (mplsoudp_flg) {
2167 					bd3->data.tunn_l4_hdr_start_offset_w =
2168 						tunn_l4_hdr_start_offset;
2169 					bd3->data.tunn_hdr_size_w =
2170 						tunn_hdr_size;
2171 				}
2172 			}
2173 		}
2174 
2175 		/* Handle fragmented MBUF */
2176 		m_seg = mbuf->next;
2177 
2178 		/* Encode scatter gather buffer descriptors if required */
2179 		nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2180 		bd1->data.nbds = nbds + nb_frags;
2181 
2182 		txq->nb_tx_avail -= bd1->data.nbds;
2183 		txq->sw_tx_prod++;
2184 		bd_prod =
2185 		    rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2186 #ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2187 		print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2188 #endif
2189 		nb_pkt_sent++;
2190 		txq->xmit_pkts++;
2191 	}
2192 
2193 	/* Write value of prod idx into bd_prod */
2194 	txq->tx_db.data.bd_prod = bd_prod;
2195 	rte_wmb();
2196 	rte_compiler_barrier();
2197 	DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2198 	rte_wmb();
2199 
2200 	/* Check again for Tx completions */
2201 	qede_process_tx_compl(edev, txq);
2202 
2203 	PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2204 		   nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2205 
2206 	return nb_pkt_sent;
2207 }
2208 
2209 uint16_t
2210 qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
2211 		     __rte_unused struct rte_mbuf **pkts,
2212 		     __rte_unused uint16_t nb_pkts)
2213 {
2214 	return 0;
2215 }
2216 
2217 
2218 /* this function does a fake walk through over completion queue
2219  * to calculate number of BDs used by HW.
2220  * At the end, it restores the state of completion queue.
2221  */
2222 static uint16_t
2223 qede_parse_fp_cqe(struct qede_rx_queue *rxq)
2224 {
2225 	uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0;
2226 	union eth_rx_cqe *cqe, *orig_cqe = NULL;
2227 
2228 	hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
2229 	sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2230 
2231 	if (hw_comp_cons == sw_comp_cons)
2232 		return 0;
2233 
2234 	/* Get the CQE from the completion ring */
2235 	cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2236 	orig_cqe = cqe;
2237 
2238 	while (sw_comp_cons != hw_comp_cons) {
2239 		switch (cqe->fast_path_regular.type) {
2240 		case ETH_RX_CQE_TYPE_REGULAR:
2241 			bd_count += cqe->fast_path_regular.bd_num;
2242 			break;
2243 		case ETH_RX_CQE_TYPE_TPA_END:
2244 			bd_count += cqe->fast_path_tpa_end.num_of_bds;
2245 			break;
2246 		default:
2247 			break;
2248 		}
2249 
2250 		cqe =
2251 		(union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2252 		sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2253 	}
2254 
2255 	/* revert comp_ring to original state */
2256 	ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe);
2257 
2258 	return bd_count;
2259 }
2260 
2261 int
2262 qede_rx_descriptor_status(void *p_rxq, uint16_t offset)
2263 {
2264 	uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod;
2265 	uint16_t produced, consumed;
2266 	struct qede_rx_queue *rxq = p_rxq;
2267 
2268 	if (offset > rxq->nb_rx_desc)
2269 		return -EINVAL;
2270 
2271 	sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring);
2272 	sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
2273 
2274 	/* find BDs used by HW from completion queue elements */
2275 	hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq);
2276 
2277 	if (hw_bd_cons < sw_bd_cons)
2278 		/* wraparound case */
2279 		consumed = (0xffff - sw_bd_cons) + hw_bd_cons;
2280 	else
2281 		consumed = hw_bd_cons - sw_bd_cons;
2282 
2283 	if (offset <= consumed)
2284 		return RTE_ETH_RX_DESC_DONE;
2285 
2286 	if (sw_bd_prod < sw_bd_cons)
2287 		/* wraparound case */
2288 		produced = (0xffff - sw_bd_cons) + sw_bd_prod;
2289 	else
2290 		produced = sw_bd_prod - sw_bd_cons;
2291 
2292 	if (offset <= produced)
2293 		return RTE_ETH_RX_DESC_AVAIL;
2294 
2295 	return RTE_ETH_RX_DESC_UNAVAIL;
2296 }
2297