xref: /dpdk/drivers/net/ngbe/ngbe_rxtx_vec_sse.c (revision 7917b0d38e92e8b9ec5a870415b791420e10f11a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2024 Beijing WangXun Technology Co., Ltd.
3  * Copyright(c) 2010-2015 Intel Corporation
4  */
5 
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8 
9 #include "ngbe_type.h"
10 #include "ngbe_ethdev.h"
11 #include "ngbe_rxtx.h"
12 #include "ngbe_rxtx_vec_common.h"
13 
14 #include <rte_vect.h>
15 
16 static inline void
17 ngbe_rxq_rearm(struct ngbe_rx_queue *rxq)
18 {
19 	int i;
20 	uint16_t rx_id;
21 	volatile struct ngbe_rx_desc *rxdp;
22 	struct ngbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
23 	struct rte_mbuf *mb0, *mb1;
24 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
25 			RTE_PKTMBUF_HEADROOM);
26 	__m128i dma_addr0, dma_addr1;
27 
28 	const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX);
29 
30 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
31 
32 	/* Pull 'n' more MBUFs into the software ring */
33 	if (rte_mempool_get_bulk(rxq->mb_pool,
34 				 (void *)rxep,
35 				 RTE_NGBE_RXQ_REARM_THRESH) < 0) {
36 		if (rxq->rxrearm_nb + RTE_NGBE_RXQ_REARM_THRESH >=
37 		    rxq->nb_rx_desc) {
38 			dma_addr0 = _mm_setzero_si128();
39 			for (i = 0; i < RTE_NGBE_DESCS_PER_LOOP; i++) {
40 				rxep[i].mbuf = &rxq->fake_mbuf;
41 				_mm_store_si128((__m128i *)(uintptr_t)&rxdp[i],
42 						dma_addr0);
43 			}
44 		}
45 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46 			RTE_NGBE_RXQ_REARM_THRESH;
47 		return;
48 	}
49 
50 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
51 	for (i = 0; i < RTE_NGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
52 		__m128i vaddr0, vaddr1;
53 
54 		mb0 = rxep[0].mbuf;
55 		mb1 = rxep[1].mbuf;
56 
57 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
58 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
59 				offsetof(struct rte_mbuf, buf_addr) + 8);
60 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
61 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
62 
63 		/* convert pa to dma_addr hdr/data */
64 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
65 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
66 
67 		/* add headroom to pa values */
68 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
69 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
70 
71 		/* set Header Buffer Address to zero */
72 		dma_addr0 =  _mm_and_si128(dma_addr0, hba_msk);
73 		dma_addr1 =  _mm_and_si128(dma_addr1, hba_msk);
74 
75 		/* flush desc with pa dma_addr */
76 		_mm_store_si128((__m128i *)(uintptr_t)rxdp++, dma_addr0);
77 		_mm_store_si128((__m128i *)(uintptr_t)rxdp++, dma_addr1);
78 	}
79 
80 	rxq->rxrearm_start += RTE_NGBE_RXQ_REARM_THRESH;
81 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
82 		rxq->rxrearm_start = 0;
83 
84 	rxq->rxrearm_nb -= RTE_NGBE_RXQ_REARM_THRESH;
85 
86 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
87 			   (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
88 
89 	/* Update the tail pointer on the NIC */
90 	ngbe_set32(rxq->rdt_reg_addr, rx_id);
91 }
92 
93 static inline void
94 desc_to_olflags_v(__m128i descs[4], __m128i mbuf_init, uint8_t vlan_flags,
95 	struct rte_mbuf **rx_pkts)
96 {
97 	__m128i ptype0, ptype1, vtag0, vtag1, csum, vp;
98 	__m128i rearm0, rearm1, rearm2, rearm3;
99 
100 	/* mask everything except rss type */
101 	const __m128i rsstype_msk = _mm_set_epi16(0x0000, 0x0000, 0x0000, 0x0000,
102 						  0x000F, 0x000F, 0x000F, 0x000F);
103 
104 	/* mask the lower byte of ol_flags */
105 	const __m128i ol_flags_msk = _mm_set_epi16(0x0000, 0x0000, 0x0000, 0x0000,
106 						   0x00FF, 0x00FF, 0x00FF, 0x00FF);
107 
108 	/* map rss type to rss hash flag */
109 	const __m128i rss_flags = _mm_set_epi8(RTE_MBUF_F_RX_FDIR, 0, 0, 0,
110 			0, 0, 0, RTE_MBUF_F_RX_RSS_HASH,
111 			RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH, 0,
112 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, 0);
113 
114 	/* mask everything except vlan present and l4/ip csum error */
115 	const __m128i vlan_csum_msk =
116 		_mm_set_epi16((NGBE_RXD_ERR_L4CS | NGBE_RXD_ERR_IPCS) >> 16,
117 			      (NGBE_RXD_ERR_L4CS | NGBE_RXD_ERR_IPCS) >> 16,
118 			      (NGBE_RXD_ERR_L4CS | NGBE_RXD_ERR_IPCS) >> 16,
119 			      (NGBE_RXD_ERR_L4CS | NGBE_RXD_ERR_IPCS) >> 16,
120 			      NGBE_RXD_STAT_VLAN, NGBE_RXD_STAT_VLAN,
121 			      NGBE_RXD_STAT_VLAN, NGBE_RXD_STAT_VLAN);
122 
123 	/* map vlan present and l4/ip csum error to ol_flags */
124 	const __m128i vlan_csum_map_lo = _mm_set_epi8(0, 0, 0, 0,
125 		vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
126 		vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD,
127 		vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
128 		vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD,
129 		0, 0, 0, 0,
130 		RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
131 		RTE_MBUF_F_RX_IP_CKSUM_BAD,
132 		RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
133 		RTE_MBUF_F_RX_IP_CKSUM_GOOD);
134 
135 	const __m128i vlan_csum_map_hi = _mm_set_epi8(0, 0, 0, 0,
136 		0, RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
137 		RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t),
138 		0, 0, 0, 0,
139 		0, RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
140 		RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t));
141 
142 	const __m128i vtag_msk = _mm_set_epi16(0x0000, 0x0000, 0x0000, 0x0000,
143 					       0x000F, 0x000F, 0x000F, 0x000F);
144 
145 	ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
146 	ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
147 	vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
148 	vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
149 
150 	ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
151 	ptype0 = _mm_and_si128(ptype0, rsstype_msk);
152 	ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
153 
154 	vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
155 	vtag1 = _mm_and_si128(vtag1, vlan_csum_msk);
156 
157 	/* csum bits are in the most significant, to use shuffle we need to
158 	 * shift them. Change mask to 0xc000 to 0x0003.
159 	 */
160 	csum = _mm_srli_epi16(vtag1, 14);
161 
162 	/* Change mask to 0x20 to 0x08. */
163 	vp = _mm_srli_epi16(vtag1, 2);
164 
165 	/* now or the most significant 64 bits containing the checksum
166 	 * flags with the vlan present flags.
167 	 */
168 	csum = _mm_srli_si128(csum, 8);
169 	vtag1 = _mm_or_si128(csum, vtag1);
170 	vtag1 = _mm_or_si128(vtag1, vp);
171 	vtag1 = _mm_and_si128(vtag1, vtag_msk);
172 
173 	/* convert STAT_VLAN, ERR_IPCS, ERR_L4CS to ol_flags */
174 	vtag0 = _mm_shuffle_epi8(vlan_csum_map_hi, vtag1);
175 	vtag0 = _mm_slli_epi16(vtag0, sizeof(uint8_t));
176 
177 	vtag1 = _mm_shuffle_epi8(vlan_csum_map_lo, vtag1);
178 	vtag1 = _mm_and_si128(vtag1, ol_flags_msk);
179 	vtag1 = _mm_or_si128(vtag0, vtag1);
180 
181 	vtag1 = _mm_or_si128(ptype0, vtag1);
182 
183 	/*
184 	 * At this point, we have the 4 sets of flags in the low 64-bits
185 	 * of vtag1 (4x16).
186 	 * We want to extract these, and merge them with the mbuf init data
187 	 * so we can do a single 16-byte write to the mbuf to set the flags
188 	 * and all the other initialization fields. Extracting the
189 	 * appropriate flags means that we have to do a shift and blend for
190 	 * each mbuf before we do the write.
191 	 */
192 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 8), 0x10);
193 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 6), 0x10);
194 	rearm2 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 4), 0x10);
195 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 2), 0x10);
196 
197 	/* write the rearm data and the olflags in one write */
198 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
199 			offsetof(struct rte_mbuf, rearm_data) + 8);
200 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
201 			RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
202 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
203 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
204 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
205 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
206 }
207 
208 static inline void
209 desc_to_ptype_v(__m128i descs[4], uint16_t pkt_type_mask,
210 		struct rte_mbuf **rx_pkts)
211 {
212 	__m128i ptype_mask = _mm_set_epi32(pkt_type_mask, pkt_type_mask,
213 					pkt_type_mask, pkt_type_mask);
214 
215 	__m128i ptype0 = _mm_unpacklo_epi32(descs[0], descs[2]);
216 	__m128i ptype1 = _mm_unpacklo_epi32(descs[1], descs[3]);
217 
218 	/* interleave low 32 bits,
219 	 * now we have 4 ptypes in a XMM register
220 	 */
221 	ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
222 
223 	/* shift left by NGBE_RXD_PTID_SHIFT, and apply ptype mask */
224 	ptype0 = _mm_and_si128(_mm_srli_epi32(ptype0, NGBE_RXD_PTID_SHIFT),
225 			       ptype_mask);
226 
227 	rx_pkts[0]->packet_type = ngbe_decode_ptype(_mm_extract_epi32(ptype0, 0));
228 	rx_pkts[1]->packet_type = ngbe_decode_ptype(_mm_extract_epi32(ptype0, 1));
229 	rx_pkts[2]->packet_type = ngbe_decode_ptype(_mm_extract_epi32(ptype0, 2));
230 	rx_pkts[3]->packet_type = ngbe_decode_ptype(_mm_extract_epi32(ptype0, 3));
231 }
232 
233 /*
234  * vPMD raw receive routine, only accept(nb_pkts >= RTE_NGBE_DESCS_PER_LOOP)
235  *
236  * Notice:
237  * - nb_pkts < RTE_NGBE_DESCS_PER_LOOP, just return no packet
238  * - floor align nb_pkts to a RTE_NGBE_DESC_PER_LOOP power-of-two
239  */
240 static inline uint16_t
241 _recv_raw_pkts_vec(struct ngbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
242 		uint16_t nb_pkts, uint8_t *split_packet)
243 {
244 	volatile struct ngbe_rx_desc *rxdp;
245 	struct ngbe_rx_entry *sw_ring;
246 	uint16_t nb_pkts_recd;
247 	int pos;
248 	uint64_t var;
249 	__m128i shuf_msk;
250 	__m128i crc_adjust = _mm_set_epi16(0, 0, 0, /* ignore non-length fields */
251 				-rxq->crc_len, /* sub crc on data_len */
252 				0,             /* ignore high-16bits of pkt_len */
253 				-rxq->crc_len, /* sub crc on pkt_len */
254 				0, 0);         /* ignore pkt_type field */
255 
256 	/*
257 	 * compile-time check the above crc_adjust layout is correct.
258 	 * NOTE: the first field (lowest address) is given last in set_epi16
259 	 * call above.
260 	 */
261 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
262 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
263 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
264 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
265 	__m128i dd_check, eop_check;
266 	__m128i mbuf_init;
267 	uint8_t vlan_flags;
268 
269 	/*
270 	 * Under the circumstance that `rx_tail` wrap back to zero
271 	 * and the advance speed of `rx_tail` is greater than `rxrearm_start`,
272 	 * `rx_tail` will catch up with `rxrearm_start` and surpass it.
273 	 * This may cause some mbufs be reused by application.
274 	 *
275 	 * So we need to make some restrictions to ensure that
276 	 * `rx_tail` will not exceed `rxrearm_start`.
277 	 */
278 	nb_pkts = RTE_MIN(nb_pkts, RTE_NGBE_RXQ_REARM_THRESH);
279 
280 	/* nb_pkts has to be floor-aligned to RTE_NGBE_DESCS_PER_LOOP */
281 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_NGBE_DESCS_PER_LOOP);
282 
283 	/* Just the act of getting into the function from the application is
284 	 * going to cost about 7 cycles
285 	 */
286 	rxdp = rxq->rx_ring + rxq->rx_tail;
287 
288 	rte_prefetch0(rxdp);
289 
290 	/* See if we need to rearm the RX queue - gives the prefetch a bit
291 	 * of time to act
292 	 */
293 	if (rxq->rxrearm_nb > RTE_NGBE_RXQ_REARM_THRESH)
294 		ngbe_rxq_rearm(rxq);
295 
296 	/* Before we start moving massive data around, check to see if
297 	 * there is actually a packet available
298 	 */
299 	if (!(rxdp->qw1.lo.status &
300 				rte_cpu_to_le_32(NGBE_RXD_STAT_DD)))
301 		return 0;
302 
303 	/* 4 packets DD mask */
304 	dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
305 
306 	/* 4 packets EOP mask */
307 	eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
308 
309 	/* mask to shuffle from desc. to mbuf */
310 	shuf_msk = _mm_set_epi8(7, 6, 5, 4,  /* octet 4~7, 32bits rss */
311 		15, 14,      /* octet 14~15, low 16 bits vlan_macip */
312 		13, 12,      /* octet 12~13, 16 bits data_len */
313 		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
314 		13, 12,      /* octet 12~13, low 16 bits pkt_len */
315 		0xFF, 0xFF,  /* skip 32 bit pkt_type */
316 		0xFF, 0xFF);
317 	/*
318 	 * Compile-time verify the shuffle mask
319 	 * NOTE: some field positions already verified above, but duplicated
320 	 * here for completeness in case of future modifications.
321 	 */
322 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
323 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
324 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
325 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
326 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
327 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
328 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
329 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
330 
331 	mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
332 
333 	/* Cache is empty -> need to scan the buffer rings, but first move
334 	 * the next 'n' mbufs into the cache
335 	 */
336 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
337 
338 	/* ensure these 2 flags are in the lower 8 bits */
339 	RTE_BUILD_BUG_ON((RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED) > UINT8_MAX);
340 	vlan_flags = rxq->vlan_flags & UINT8_MAX;
341 
342 	/* A. load 4 packet in one loop
343 	 * [A*. mask out 4 unused dirty field in desc]
344 	 * B. copy 4 mbuf point from swring to rx_pkts
345 	 * C. calc the number of DD bits among the 4 packets
346 	 * [C*. extract the end-of-packet bit, if requested]
347 	 * D. fill info. from desc to mbuf
348 	 */
349 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
350 			pos += RTE_NGBE_DESCS_PER_LOOP,
351 			rxdp += RTE_NGBE_DESCS_PER_LOOP) {
352 		__m128i descs[RTE_NGBE_DESCS_PER_LOOP];
353 		__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
354 		__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
355 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
356 		__m128i mbp1;
357 #if defined(RTE_ARCH_X86_64)
358 		__m128i mbp2;
359 #endif
360 
361 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
362 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
363 
364 		/* Read desc statuses backwards to avoid race condition */
365 		/* A.1 load desc[3] */
366 		descs[3] = _mm_loadu_si128((__m128i *)(uintptr_t)(rxdp + 3));
367 		rte_compiler_barrier();
368 
369 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
370 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
371 
372 #if defined(RTE_ARCH_X86_64)
373 		/* B.1 load 2 64 bit mbuf points */
374 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
375 #endif
376 
377 		/* A.1 load desc[2-0] */
378 		descs[2] = _mm_loadu_si128((__m128i *)(uintptr_t)(rxdp + 2));
379 		rte_compiler_barrier();
380 		descs[1] = _mm_loadu_si128((__m128i *)(uintptr_t)(rxdp + 1));
381 		rte_compiler_barrier();
382 		descs[0] = _mm_loadu_si128((__m128i *)(uintptr_t)(rxdp));
383 
384 #if defined(RTE_ARCH_X86_64)
385 		/* B.2 copy 2 mbuf point into rx_pkts  */
386 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
387 #endif
388 
389 		if (split_packet) {
390 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
391 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
392 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
393 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
394 		}
395 
396 		/* avoid compiler reorder optimization */
397 		rte_compiler_barrier();
398 
399 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
400 		pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
401 		pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
402 
403 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
404 		pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
405 		pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
406 
407 		/* C.1 4=>2 filter staterr info only */
408 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
409 		/* C.1 4=>2 filter staterr info only */
410 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
411 
412 		/* set ol_flags with vlan packet type */
413 		desc_to_olflags_v(descs, mbuf_init, vlan_flags, &rx_pkts[pos]);
414 
415 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
416 		pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
417 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
418 
419 		/* C.2 get 4 pkts staterr value  */
420 		zero = _mm_xor_si128(dd_check, dd_check);
421 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
422 
423 		/* D.3 copy final 3,4 data to rx_pkts */
424 		_mm_storeu_si128((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
425 				pkt_mb4);
426 		_mm_storeu_si128((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
427 				pkt_mb3);
428 
429 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
430 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
431 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
432 
433 		/* C* extract and record EOP bit */
434 		if (split_packet) {
435 			__m128i eop_shuf_mask =
436 				_mm_set_epi8(0xFF, 0xFF, 0xFF, 0xFF,
437 					     0xFF, 0xFF, 0xFF, 0xFF,
438 					     0xFF, 0xFF, 0xFF, 0xFF,
439 					     0x04, 0x0C, 0x00, 0x08);
440 
441 			/* and with mask to extract bits, flipping 1-0 */
442 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
443 			/* the staterr values are not in order, as the count
444 			 * of dd bits doesn't care. However, for end of
445 			 * packet tracking, we do care, so shuffle. This also
446 			 * compresses the 32-bit values to 8-bit
447 			 */
448 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
449 			/* store the resulting 32-bit value */
450 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
451 			split_packet += RTE_NGBE_DESCS_PER_LOOP;
452 		}
453 
454 		/* C.3 calc available number of desc */
455 		staterr = _mm_and_si128(staterr, dd_check);
456 		staterr = _mm_packs_epi32(staterr, zero);
457 
458 		/* D.3 copy final 1,2 data to rx_pkts */
459 		_mm_storeu_si128((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
460 				pkt_mb2);
461 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
462 				pkt_mb1);
463 
464 		desc_to_ptype_v(descs, NGBE_PTID_MASK, &rx_pkts[pos]);
465 
466 		/* C.4 calc available number of desc */
467 		var = rte_popcount64(_mm_cvtsi128_si64(staterr));
468 		nb_pkts_recd += var;
469 		if (likely(var != RTE_NGBE_DESCS_PER_LOOP))
470 			break;
471 	}
472 
473 	/* Update our internal tail pointer */
474 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
475 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
476 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
477 
478 	return nb_pkts_recd;
479 }
480 
481 /*
482  * vPMD receive routine, only accept(nb_pkts >= RTE_NGBE_DESCS_PER_LOOP)
483  *
484  * Notice:
485  * - nb_pkts < RTE_NGBE_DESCS_PER_LOOP, just return no packet
486  * - floor align nb_pkts to a RTE_NGBE_DESC_PER_LOOP power-of-two
487  */
488 uint16_t
489 ngbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
490 		uint16_t nb_pkts)
491 {
492 	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
493 }
494 
495 /**
496  * vPMD receive routine that reassembles scattered packets
497  *
498  * Notice:
499  * - nb_pkts < RTE_NGBE_DESCS_PER_LOOP, just return no packet
500  * - floor align nb_pkts to a RTE_NGBE_DESC_PER_LOOP power-of-two
501  */
502 static uint16_t
503 ngbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
504 			       uint16_t nb_pkts)
505 {
506 	struct ngbe_rx_queue *rxq = rx_queue;
507 	uint8_t split_flags[RTE_NGBE_MAX_RX_BURST] = {0};
508 
509 	/* get some new buffers */
510 	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
511 			split_flags);
512 	if (nb_bufs == 0)
513 		return 0;
514 
515 	/* happy day case, full burst + no packets to be joined */
516 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
517 	if (rxq->pkt_first_seg == NULL &&
518 			split_fl64[0] == 0 && split_fl64[1] == 0 &&
519 			split_fl64[2] == 0 && split_fl64[3] == 0)
520 		return nb_bufs;
521 
522 	/* reassemble any packets that need reassembly*/
523 	unsigned int i = 0;
524 	if (rxq->pkt_first_seg == NULL) {
525 		/* find the first split flag, and only reassemble then*/
526 		while (i < nb_bufs && !split_flags[i])
527 			i++;
528 		if (i == nb_bufs)
529 			return nb_bufs;
530 		rxq->pkt_first_seg = rx_pkts[i];
531 	}
532 	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
533 		&split_flags[i]);
534 }
535 
536 /**
537  * vPMD receive routine that reassembles scattered packets.
538  */
539 uint16_t
540 ngbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
541 			     uint16_t nb_pkts)
542 {
543 	uint16_t retval = 0;
544 
545 	while (nb_pkts > RTE_NGBE_MAX_RX_BURST) {
546 		uint16_t burst;
547 
548 		burst = ngbe_recv_scattered_burst_vec(rx_queue,
549 						      rx_pkts + retval,
550 						      RTE_NGBE_MAX_RX_BURST);
551 		retval += burst;
552 		nb_pkts -= burst;
553 		if (burst < RTE_NGBE_MAX_RX_BURST)
554 			return retval;
555 	}
556 
557 	return retval + ngbe_recv_scattered_burst_vec(rx_queue,
558 						      rx_pkts + retval,
559 						      nb_pkts);
560 }
561 
562 static inline void
563 vtx1(volatile struct ngbe_tx_desc *txdp,
564 		struct rte_mbuf *pkt, uint64_t flags)
565 {
566 	__m128i descriptor = _mm_set_epi64x((uint64_t)pkt->pkt_len << 45 |
567 			flags | pkt->data_len,
568 			pkt->buf_iova + pkt->data_off);
569 	_mm_store_si128((__m128i *)(uintptr_t)txdp, descriptor);
570 }
571 
572 static inline void
573 vtx(volatile struct ngbe_tx_desc *txdp,
574 		struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
575 {
576 	int i;
577 
578 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
579 		vtx1(txdp, *pkt, flags);
580 }
581 
582 uint16_t
583 ngbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
584 			  uint16_t nb_pkts)
585 {
586 	struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue;
587 	volatile struct ngbe_tx_desc *txdp;
588 	struct ngbe_tx_entry_v *txep;
589 	uint16_t n, nb_commit, tx_id;
590 	uint64_t flags = NGBE_TXD_FLAGS;
591 	uint64_t rs = NGBE_TXD_FLAGS;
592 	int i;
593 
594 	/* cross rx_thresh boundary is not allowed */
595 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_free_thresh);
596 
597 	if (txq->nb_tx_free < txq->tx_free_thresh)
598 		ngbe_tx_free_bufs(txq);
599 
600 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
601 	if (unlikely(nb_pkts == 0))
602 		return 0;
603 
604 	tx_id = txq->tx_tail;
605 	txdp = &txq->tx_ring[tx_id];
606 	txep = &txq->sw_ring_v[tx_id];
607 
608 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
609 
610 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
611 	nb_commit = nb_pkts;
612 	if (nb_commit >= n) {
613 		tx_backlog_entry(txep, tx_pkts, n);
614 
615 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
616 			vtx1(txdp, *tx_pkts, flags);
617 
618 		vtx1(txdp, *tx_pkts++, rs);
619 
620 		nb_commit = (uint16_t)(nb_commit - n);
621 
622 		tx_id = 0;
623 
624 		/* avoid reach the end of ring */
625 		txdp = &txq->tx_ring[tx_id];
626 		txep = &txq->sw_ring_v[tx_id];
627 	}
628 
629 	tx_backlog_entry(txep, tx_pkts, nb_commit);
630 
631 	vtx(txdp, tx_pkts, nb_commit, flags);
632 
633 	tx_id = (uint16_t)(tx_id + nb_commit);
634 
635 	txq->tx_tail = tx_id;
636 
637 	ngbe_set32(txq->tdt_reg_addr, txq->tx_tail);
638 
639 	return nb_pkts;
640 }
641 
642 static void __rte_cold
643 ngbe_tx_queue_release_mbufs_vec(struct ngbe_tx_queue *txq)
644 {
645 	_ngbe_tx_queue_release_mbufs_vec(txq);
646 }
647 
648 void __rte_cold
649 ngbe_rx_queue_release_mbufs_vec(struct ngbe_rx_queue *rxq)
650 {
651 	_ngbe_rx_queue_release_mbufs_vec(rxq);
652 }
653 
654 static void __rte_cold
655 ngbe_tx_free_swring(struct ngbe_tx_queue *txq)
656 {
657 	_ngbe_tx_free_swring_vec(txq);
658 }
659 
660 static void __rte_cold
661 ngbe_reset_tx_queue(struct ngbe_tx_queue *txq)
662 {
663 	_ngbe_reset_tx_queue_vec(txq);
664 }
665 
666 static const struct ngbe_txq_ops vec_txq_ops = {
667 	.release_mbufs = ngbe_tx_queue_release_mbufs_vec,
668 	.free_swring = ngbe_tx_free_swring,
669 	.reset = ngbe_reset_tx_queue,
670 };
671 
672 int __rte_cold
673 ngbe_rxq_vec_setup(struct ngbe_rx_queue *rxq)
674 {
675 	return ngbe_rxq_vec_setup_default(rxq);
676 }
677 
678 int __rte_cold
679 ngbe_txq_vec_setup(struct ngbe_tx_queue *txq)
680 {
681 	return ngbe_txq_vec_setup_default(txq, &vec_txq_ops);
682 }
683 
684 int __rte_cold
685 ngbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
686 {
687 	return ngbe_rx_vec_dev_conf_condition_check_default(dev);
688 }
689