xref: /dpdk/drivers/net/netvsc/hn_rxtx.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2018 Microsoft Corporation
3  * Copyright(c) 2013-2016 Brocade Communications Systems, Inc.
4  * All rights reserved.
5  */
6 
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdio.h>
10 #include <errno.h>
11 #include <unistd.h>
12 #include <strings.h>
13 #include <malloc.h>
14 
15 #include <rte_ethdev.h>
16 #include <rte_memcpy.h>
17 #include <rte_string_fns.h>
18 #include <rte_memzone.h>
19 #include <rte_malloc.h>
20 #include <rte_atomic.h>
21 #include <rte_bitmap.h>
22 #include <rte_branch_prediction.h>
23 #include <rte_ether.h>
24 #include <rte_common.h>
25 #include <rte_errno.h>
26 #include <rte_memory.h>
27 #include <rte_eal.h>
28 #include <rte_dev.h>
29 #include <rte_net.h>
30 #include <rte_bus_vmbus.h>
31 #include <rte_spinlock.h>
32 
33 #include "hn_logs.h"
34 #include "hn_var.h"
35 #include "hn_rndis.h"
36 #include "hn_nvs.h"
37 #include "ndis.h"
38 
39 #define HN_NVS_SEND_MSG_SIZE \
40 	(sizeof(struct vmbus_chanpkt_hdr) + sizeof(struct hn_nvs_rndis))
41 
42 #define HN_TXD_CACHE_SIZE	32 /* per cpu tx_descriptor pool cache */
43 #define HN_TXCOPY_THRESHOLD	512
44 
45 #define HN_RXCOPY_THRESHOLD	256
46 #define HN_RXQ_EVENT_DEFAULT	2048
47 
48 struct hn_rxinfo {
49 	uint32_t	vlan_info;
50 	uint32_t	csum_info;
51 	uint32_t	hash_info;
52 	uint32_t	hash_value;
53 };
54 
55 #define HN_RXINFO_VLAN			0x0001
56 #define HN_RXINFO_CSUM			0x0002
57 #define HN_RXINFO_HASHINF		0x0004
58 #define HN_RXINFO_HASHVAL		0x0008
59 #define HN_RXINFO_ALL			\
60 	(HN_RXINFO_VLAN |		\
61 	 HN_RXINFO_CSUM |		\
62 	 HN_RXINFO_HASHINF |		\
63 	 HN_RXINFO_HASHVAL)
64 
65 #define HN_NDIS_VLAN_INFO_INVALID	0xffffffff
66 #define HN_NDIS_RXCSUM_INFO_INVALID	0
67 #define HN_NDIS_HASH_INFO_INVALID	0
68 
69 /*
70  * Per-transmit book keeping.
71  * A slot in transmit ring (chim_index) is reserved for each transmit.
72  *
73  * There are two types of transmit:
74  *   - buffered transmit where chimney buffer is used and RNDIS header
75  *     is in the buffer. mbuf == NULL for this case.
76  *
77  *   - direct transmit where RNDIS header is in the in  rndis_pkt
78  *     mbuf is freed after transmit.
79  *
80  * Descriptors come from per-port pool which is used
81  * to limit number of outstanding requests per device.
82  */
83 struct hn_txdesc {
84 	struct rte_mbuf *m;
85 
86 	uint16_t	queue_id;
87 	uint32_t	chim_index;
88 	uint32_t	chim_size;
89 	uint32_t	data_size;
90 	uint32_t	packets;
91 
92 	struct rndis_packet_msg *rndis_pkt;
93 };
94 
95 #define HN_RNDIS_PKT_LEN				\
96 	(sizeof(struct rndis_packet_msg) +		\
97 	 RNDIS_PKTINFO_SIZE(NDIS_HASH_VALUE_SIZE) +	\
98 	 RNDIS_PKTINFO_SIZE(NDIS_VLAN_INFO_SIZE) +	\
99 	 RNDIS_PKTINFO_SIZE(NDIS_LSO2_INFO_SIZE) +	\
100 	 RNDIS_PKTINFO_SIZE(NDIS_TXCSUM_INFO_SIZE))
101 
102 #define HN_RNDIS_PKT_ALIGNED	RTE_ALIGN(HN_RNDIS_PKT_LEN, RTE_CACHE_LINE_SIZE)
103 
104 /* Minimum space required for a packet */
105 #define HN_PKTSIZE_MIN(align) \
106 	RTE_ALIGN(RTE_ETHER_MIN_LEN + HN_RNDIS_PKT_LEN, align)
107 
108 #define DEFAULT_TX_FREE_THRESH 32
109 
110 static void
111 hn_update_packet_stats(struct hn_stats *stats, const struct rte_mbuf *m)
112 {
113 	uint32_t s = m->pkt_len;
114 	const struct rte_ether_addr *ea;
115 
116 	if (s == 64) {
117 		stats->size_bins[1]++;
118 	} else if (s > 64 && s < 1024) {
119 		uint32_t bin;
120 
121 		/* count zeros, and offset into correct bin */
122 		bin = (sizeof(s) * 8) - __builtin_clz(s) - 5;
123 		stats->size_bins[bin]++;
124 	} else {
125 		if (s < 64)
126 			stats->size_bins[0]++;
127 		else if (s < 1519)
128 			stats->size_bins[6]++;
129 		else
130 			stats->size_bins[7]++;
131 	}
132 
133 	ea = rte_pktmbuf_mtod(m, const struct rte_ether_addr *);
134 	if (rte_is_multicast_ether_addr(ea)) {
135 		if (rte_is_broadcast_ether_addr(ea))
136 			stats->broadcast++;
137 		else
138 			stats->multicast++;
139 	}
140 }
141 
142 static inline unsigned int hn_rndis_pktlen(const struct rndis_packet_msg *pkt)
143 {
144 	return pkt->pktinfooffset + pkt->pktinfolen;
145 }
146 
147 static inline uint32_t
148 hn_rndis_pktmsg_offset(uint32_t ofs)
149 {
150 	return ofs - offsetof(struct rndis_packet_msg, dataoffset);
151 }
152 
153 static void hn_txd_init(struct rte_mempool *mp __rte_unused,
154 			void *opaque, void *obj, unsigned int idx)
155 {
156 	struct hn_tx_queue *txq = opaque;
157 	struct hn_txdesc *txd = obj;
158 
159 	memset(txd, 0, sizeof(*txd));
160 
161 	txd->queue_id = txq->queue_id;
162 	txd->chim_index = NVS_CHIM_IDX_INVALID;
163 	txd->rndis_pkt = (struct rndis_packet_msg *)((char *)txq->tx_rndis
164 		+ idx * HN_RNDIS_PKT_ALIGNED);
165 }
166 
167 int
168 hn_chim_init(struct rte_eth_dev *dev)
169 {
170 	struct hn_data *hv = dev->data->dev_private;
171 	uint32_t i, chim_bmp_size;
172 
173 	rte_spinlock_init(&hv->chim_lock);
174 	chim_bmp_size = rte_bitmap_get_memory_footprint(hv->chim_cnt);
175 	hv->chim_bmem = rte_zmalloc("hn_chim_bitmap", chim_bmp_size,
176 				    RTE_CACHE_LINE_SIZE);
177 	if (hv->chim_bmem == NULL) {
178 		PMD_INIT_LOG(ERR, "failed to allocate bitmap size %u",
179 			     chim_bmp_size);
180 		return -1;
181 	}
182 
183 	hv->chim_bmap = rte_bitmap_init(hv->chim_cnt,
184 					hv->chim_bmem, chim_bmp_size);
185 	if (hv->chim_bmap == NULL) {
186 		PMD_INIT_LOG(ERR, "failed to init chim bitmap");
187 		return -1;
188 	}
189 
190 	for (i = 0; i < hv->chim_cnt; i++)
191 		rte_bitmap_set(hv->chim_bmap, i);
192 
193 	return 0;
194 }
195 
196 void
197 hn_chim_uninit(struct rte_eth_dev *dev)
198 {
199 	struct hn_data *hv = dev->data->dev_private;
200 
201 	rte_bitmap_free(hv->chim_bmap);
202 	rte_free(hv->chim_bmem);
203 	hv->chim_bmem = NULL;
204 }
205 
206 static uint32_t hn_chim_alloc(struct hn_data *hv)
207 {
208 	uint32_t index = NVS_CHIM_IDX_INVALID;
209 	uint64_t slab = 0;
210 
211 	rte_spinlock_lock(&hv->chim_lock);
212 	if (rte_bitmap_scan(hv->chim_bmap, &index, &slab)) {
213 		index += rte_bsf64(slab);
214 		rte_bitmap_clear(hv->chim_bmap, index);
215 	}
216 	rte_spinlock_unlock(&hv->chim_lock);
217 
218 	return index;
219 }
220 
221 static void hn_chim_free(struct hn_data *hv, uint32_t chim_idx)
222 {
223 	if (chim_idx >= hv->chim_cnt) {
224 		PMD_DRV_LOG(ERR, "Invalid chimney index %u", chim_idx);
225 	} else {
226 		rte_spinlock_lock(&hv->chim_lock);
227 		rte_bitmap_set(hv->chim_bmap, chim_idx);
228 		rte_spinlock_unlock(&hv->chim_lock);
229 	}
230 }
231 
232 static void hn_reset_txagg(struct hn_tx_queue *txq)
233 {
234 	txq->agg_szleft = txq->agg_szmax;
235 	txq->agg_pktleft = txq->agg_pktmax;
236 	txq->agg_txd = NULL;
237 	txq->agg_prevpkt = NULL;
238 }
239 
240 int
241 hn_dev_tx_queue_setup(struct rte_eth_dev *dev,
242 		      uint16_t queue_idx, uint16_t nb_desc,
243 		      unsigned int socket_id,
244 		      const struct rte_eth_txconf *tx_conf)
245 
246 {
247 	struct hn_data *hv = dev->data->dev_private;
248 	struct hn_tx_queue *txq;
249 	char name[RTE_MEMPOOL_NAMESIZE];
250 	uint32_t tx_free_thresh;
251 	int err = -ENOMEM;
252 
253 	PMD_INIT_FUNC_TRACE();
254 
255 	txq = rte_zmalloc_socket("HN_TXQ", sizeof(*txq), RTE_CACHE_LINE_SIZE,
256 				 socket_id);
257 	if (!txq)
258 		return -ENOMEM;
259 
260 	txq->hv = hv;
261 	txq->chan = hv->channels[queue_idx];
262 	txq->port_id = dev->data->port_id;
263 	txq->queue_id = queue_idx;
264 
265 	tx_free_thresh = tx_conf->tx_free_thresh;
266 	if (tx_free_thresh == 0)
267 		tx_free_thresh = RTE_MIN(nb_desc / 4,
268 					 DEFAULT_TX_FREE_THRESH);
269 
270 	if (tx_free_thresh + 3 >= nb_desc) {
271 		PMD_INIT_LOG(ERR,
272 			     "tx_free_thresh must be less than the number of TX entries minus 3(%u)."
273 			     " (tx_free_thresh=%u port=%u queue=%u)\n",
274 			     nb_desc - 3,
275 			     tx_free_thresh, dev->data->port_id, queue_idx);
276 		return -EINVAL;
277 	}
278 
279 	txq->free_thresh = tx_free_thresh;
280 
281 	snprintf(name, sizeof(name),
282 		 "hn_txd_%u_%u", dev->data->port_id, queue_idx);
283 
284 	PMD_INIT_LOG(DEBUG, "TX descriptor pool %s n=%u size=%zu",
285 		     name, nb_desc, sizeof(struct hn_txdesc));
286 
287 	txq->tx_rndis = rte_calloc("hn_txq_rndis", nb_desc,
288 				   HN_RNDIS_PKT_ALIGNED, RTE_CACHE_LINE_SIZE);
289 	if (txq->tx_rndis == NULL)
290 		goto error;
291 
292 	txq->txdesc_pool = rte_mempool_create(name, nb_desc,
293 					      sizeof(struct hn_txdesc),
294 					      0, 0, NULL, NULL,
295 					      hn_txd_init, txq,
296 					      dev->device->numa_node, 0);
297 	if (txq->txdesc_pool == NULL) {
298 		PMD_DRV_LOG(ERR,
299 			    "mempool %s create failed: %d", name, rte_errno);
300 		goto error;
301 	}
302 
303 	txq->agg_szmax  = RTE_MIN(hv->chim_szmax, hv->rndis_agg_size);
304 	txq->agg_pktmax = hv->rndis_agg_pkts;
305 	txq->agg_align  = hv->rndis_agg_align;
306 
307 	hn_reset_txagg(txq);
308 
309 	err = hn_vf_tx_queue_setup(dev, queue_idx, nb_desc,
310 				     socket_id, tx_conf);
311 	if (err == 0) {
312 		dev->data->tx_queues[queue_idx] = txq;
313 		return 0;
314 	}
315 
316 error:
317 	if (txq->txdesc_pool)
318 		rte_mempool_free(txq->txdesc_pool);
319 	rte_free(txq->tx_rndis);
320 	rte_free(txq);
321 	return err;
322 }
323 
324 void
325 hn_dev_tx_queue_info(struct rte_eth_dev *dev, uint16_t queue_id,
326 		     struct rte_eth_txq_info *qinfo)
327 {
328 	struct hn_tx_queue *txq = dev->data->tx_queues[queue_id];
329 
330 	qinfo->nb_desc = txq->txdesc_pool->size;
331 	qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
332 }
333 
334 static struct hn_txdesc *hn_txd_get(struct hn_tx_queue *txq)
335 {
336 	struct hn_txdesc *txd;
337 
338 	if (rte_mempool_get(txq->txdesc_pool, (void **)&txd)) {
339 		++txq->stats.ring_full;
340 		PMD_TX_LOG(DEBUG, "tx pool exhausted!");
341 		return NULL;
342 	}
343 
344 	txd->m = NULL;
345 	txd->packets = 0;
346 	txd->data_size = 0;
347 	txd->chim_size = 0;
348 
349 	return txd;
350 }
351 
352 static void hn_txd_put(struct hn_tx_queue *txq, struct hn_txdesc *txd)
353 {
354 	rte_mempool_put(txq->txdesc_pool, txd);
355 }
356 
357 void
358 hn_dev_tx_queue_release(void *arg)
359 {
360 	struct hn_tx_queue *txq = arg;
361 
362 	PMD_INIT_FUNC_TRACE();
363 
364 	if (!txq)
365 		return;
366 
367 	if (txq->txdesc_pool)
368 		rte_mempool_free(txq->txdesc_pool);
369 
370 	rte_free(txq->tx_rndis);
371 	rte_free(txq);
372 }
373 
374 /*
375  * Check the status of a Tx descriptor in the queue.
376  *
377  * returns:
378  *  - -EINVAL              - offset outside of tx_descriptor pool.
379  *  - RTE_ETH_TX_DESC_FULL - descriptor is not acknowledged by host.
380  *  - RTE_ETH_TX_DESC_DONE - descriptor is available.
381  */
382 int hn_dev_tx_descriptor_status(void *arg, uint16_t offset)
383 {
384 	const struct hn_tx_queue *txq = arg;
385 
386 	hn_process_events(txq->hv, txq->queue_id, 0);
387 
388 	if (offset >= rte_mempool_avail_count(txq->txdesc_pool))
389 		return -EINVAL;
390 
391 	if (offset < rte_mempool_in_use_count(txq->txdesc_pool))
392 		return RTE_ETH_TX_DESC_FULL;
393 	else
394 		return RTE_ETH_TX_DESC_DONE;
395 }
396 
397 static void
398 hn_nvs_send_completed(struct rte_eth_dev *dev, uint16_t queue_id,
399 		      unsigned long xactid, const struct hn_nvs_rndis_ack *ack)
400 {
401 	struct hn_data *hv = dev->data->dev_private;
402 	struct hn_txdesc *txd = (struct hn_txdesc *)xactid;
403 	struct hn_tx_queue *txq;
404 
405 	/* Control packets are sent with xacid == 0 */
406 	if (!txd)
407 		return;
408 
409 	txq = dev->data->tx_queues[queue_id];
410 	if (likely(ack->status == NVS_STATUS_OK)) {
411 		PMD_TX_LOG(DEBUG, "port %u:%u complete tx %u packets %u bytes %u",
412 			   txq->port_id, txq->queue_id, txd->chim_index,
413 			   txd->packets, txd->data_size);
414 		txq->stats.bytes += txd->data_size;
415 		txq->stats.packets += txd->packets;
416 	} else {
417 		PMD_DRV_LOG(NOTICE, "port %u:%u complete tx %u failed status %u",
418 			    txq->port_id, txq->queue_id, txd->chim_index, ack->status);
419 		++txq->stats.errors;
420 	}
421 
422 	if (txd->chim_index != NVS_CHIM_IDX_INVALID) {
423 		hn_chim_free(hv, txd->chim_index);
424 		txd->chim_index = NVS_CHIM_IDX_INVALID;
425 	}
426 
427 	rte_pktmbuf_free(txd->m);
428 	hn_txd_put(txq, txd);
429 }
430 
431 /* Handle transmit completion events */
432 static void
433 hn_nvs_handle_comp(struct rte_eth_dev *dev, uint16_t queue_id,
434 		   const struct vmbus_chanpkt_hdr *pkt,
435 		   const void *data)
436 {
437 	const struct hn_nvs_hdr *hdr = data;
438 
439 	switch (hdr->type) {
440 	case NVS_TYPE_RNDIS_ACK:
441 		hn_nvs_send_completed(dev, queue_id, pkt->xactid, data);
442 		break;
443 
444 	default:
445 		PMD_DRV_LOG(NOTICE, "unexpected send completion type %u",
446 			   hdr->type);
447 	}
448 }
449 
450 /* Parse per-packet info (meta data) */
451 static int
452 hn_rndis_rxinfo(const void *info_data, unsigned int info_dlen,
453 		struct hn_rxinfo *info)
454 {
455 	const struct rndis_pktinfo *pi = info_data;
456 	uint32_t mask = 0;
457 
458 	while (info_dlen != 0) {
459 		const void *data;
460 		uint32_t dlen;
461 
462 		if (unlikely(info_dlen < sizeof(*pi)))
463 			return -EINVAL;
464 
465 		if (unlikely(info_dlen < pi->size))
466 			return -EINVAL;
467 		info_dlen -= pi->size;
468 
469 		if (unlikely(pi->size & RNDIS_PKTINFO_SIZE_ALIGNMASK))
470 			return -EINVAL;
471 		if (unlikely(pi->size < pi->offset))
472 			return -EINVAL;
473 
474 		dlen = pi->size - pi->offset;
475 		data = pi->data;
476 
477 		switch (pi->type) {
478 		case NDIS_PKTINFO_TYPE_VLAN:
479 			if (unlikely(dlen < NDIS_VLAN_INFO_SIZE))
480 				return -EINVAL;
481 			info->vlan_info = *((const uint32_t *)data);
482 			mask |= HN_RXINFO_VLAN;
483 			break;
484 
485 		case NDIS_PKTINFO_TYPE_CSUM:
486 			if (unlikely(dlen < NDIS_RXCSUM_INFO_SIZE))
487 				return -EINVAL;
488 			info->csum_info = *((const uint32_t *)data);
489 			mask |= HN_RXINFO_CSUM;
490 			break;
491 
492 		case NDIS_PKTINFO_TYPE_HASHVAL:
493 			if (unlikely(dlen < NDIS_HASH_VALUE_SIZE))
494 				return -EINVAL;
495 			info->hash_value = *((const uint32_t *)data);
496 			mask |= HN_RXINFO_HASHVAL;
497 			break;
498 
499 		case NDIS_PKTINFO_TYPE_HASHINF:
500 			if (unlikely(dlen < NDIS_HASH_INFO_SIZE))
501 				return -EINVAL;
502 			info->hash_info = *((const uint32_t *)data);
503 			mask |= HN_RXINFO_HASHINF;
504 			break;
505 
506 		default:
507 			goto next;
508 		}
509 
510 		if (mask == HN_RXINFO_ALL)
511 			break; /* All found; done */
512 next:
513 		pi = (const struct rndis_pktinfo *)
514 		    ((const uint8_t *)pi + pi->size);
515 	}
516 
517 	/*
518 	 * Final fixup.
519 	 * - If there is no hash value, invalidate the hash info.
520 	 */
521 	if (!(mask & HN_RXINFO_HASHVAL))
522 		info->hash_info = HN_NDIS_HASH_INFO_INVALID;
523 	return 0;
524 }
525 
526 static void hn_rx_buf_free_cb(void *buf __rte_unused, void *opaque)
527 {
528 	struct hn_rx_bufinfo *rxb = opaque;
529 	struct hn_rx_queue *rxq = rxb->rxq;
530 
531 	rte_atomic32_dec(&rxq->rxbuf_outstanding);
532 	hn_nvs_ack_rxbuf(rxb->chan, rxb->xactid);
533 }
534 
535 static struct hn_rx_bufinfo *hn_rx_buf_init(struct hn_rx_queue *rxq,
536 					    const struct vmbus_chanpkt_rxbuf *pkt)
537 {
538 	struct hn_rx_bufinfo *rxb;
539 
540 	rxb = rxq->rxbuf_info + pkt->hdr.xactid;
541 	rxb->chan = rxq->chan;
542 	rxb->xactid = pkt->hdr.xactid;
543 	rxb->rxq = rxq;
544 
545 	rxb->shinfo.free_cb = hn_rx_buf_free_cb;
546 	rxb->shinfo.fcb_opaque = rxb;
547 	rte_mbuf_ext_refcnt_set(&rxb->shinfo, 1);
548 	return rxb;
549 }
550 
551 static void hn_rxpkt(struct hn_rx_queue *rxq, struct hn_rx_bufinfo *rxb,
552 		     uint8_t *data, unsigned int headroom, unsigned int dlen,
553 		     const struct hn_rxinfo *info)
554 {
555 	struct hn_data *hv = rxq->hv;
556 	struct rte_mbuf *m;
557 	bool use_extbuf = false;
558 
559 	m = rte_pktmbuf_alloc(rxq->mb_pool);
560 	if (unlikely(!m)) {
561 		struct rte_eth_dev *dev =
562 			&rte_eth_devices[rxq->port_id];
563 
564 		dev->data->rx_mbuf_alloc_failed++;
565 		return;
566 	}
567 
568 	/*
569 	 * For large packets, avoid copy if possible but need to keep
570 	 * some space available in receive area for later packets.
571 	 */
572 	if (dlen >= HN_RXCOPY_THRESHOLD &&
573 	    (uint32_t)rte_atomic32_read(&rxq->rxbuf_outstanding) <
574 			hv->rxbuf_section_cnt / 2) {
575 		struct rte_mbuf_ext_shared_info *shinfo;
576 		const void *rxbuf;
577 		rte_iova_t iova;
578 
579 		/*
580 		 * Build an external mbuf that points to recveive area.
581 		 * Use refcount to handle multiple packets in same
582 		 * receive buffer section.
583 		 */
584 		rxbuf = hv->rxbuf_res->addr;
585 		iova = rte_mem_virt2iova(rxbuf) + RTE_PTR_DIFF(data, rxbuf);
586 		shinfo = &rxb->shinfo;
587 
588 		/* shinfo is already set to 1 by the caller */
589 		if (rte_mbuf_ext_refcnt_update(shinfo, 1) == 2)
590 			rte_atomic32_inc(&rxq->rxbuf_outstanding);
591 
592 		rte_pktmbuf_attach_extbuf(m, data, iova,
593 					  dlen + headroom, shinfo);
594 		m->data_off = headroom;
595 		use_extbuf = true;
596 	} else {
597 		/* Mbuf's in pool must be large enough to hold small packets */
598 		if (unlikely(rte_pktmbuf_tailroom(m) < dlen)) {
599 			rte_pktmbuf_free_seg(m);
600 			++rxq->stats.errors;
601 			return;
602 		}
603 		rte_memcpy(rte_pktmbuf_mtod(m, void *),
604 			   data + headroom, dlen);
605 	}
606 
607 	m->port = rxq->port_id;
608 	m->pkt_len = dlen;
609 	m->data_len = dlen;
610 	m->packet_type = rte_net_get_ptype(m, NULL,
611 					   RTE_PTYPE_L2_MASK |
612 					   RTE_PTYPE_L3_MASK |
613 					   RTE_PTYPE_L4_MASK);
614 
615 	if (info->vlan_info != HN_NDIS_VLAN_INFO_INVALID) {
616 		m->vlan_tci = info->vlan_info;
617 		m->ol_flags |= PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
618 
619 		/* NDIS always strips tag, put it back if necessary */
620 		if (!hv->vlan_strip && rte_vlan_insert(&m)) {
621 			PMD_DRV_LOG(DEBUG, "vlan insert failed");
622 			++rxq->stats.errors;
623 			if (use_extbuf)
624 				rte_pktmbuf_detach_extbuf(m);
625 			rte_pktmbuf_free(m);
626 			return;
627 		}
628 	}
629 
630 	if (info->csum_info != HN_NDIS_RXCSUM_INFO_INVALID) {
631 		if (info->csum_info & NDIS_RXCSUM_INFO_IPCS_OK)
632 			m->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
633 
634 		if (info->csum_info & (NDIS_RXCSUM_INFO_UDPCS_OK
635 				       | NDIS_RXCSUM_INFO_TCPCS_OK))
636 			m->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
637 		else if (info->csum_info & (NDIS_RXCSUM_INFO_TCPCS_FAILED
638 					    | NDIS_RXCSUM_INFO_UDPCS_FAILED))
639 			m->ol_flags |= PKT_RX_L4_CKSUM_BAD;
640 	}
641 
642 	if (info->hash_info != HN_NDIS_HASH_INFO_INVALID) {
643 		m->ol_flags |= PKT_RX_RSS_HASH;
644 		m->hash.rss = info->hash_value;
645 	}
646 
647 	PMD_RX_LOG(DEBUG,
648 		   "port %u:%u RX id %"PRIu64" size %u type %#x ol_flags %#"PRIx64,
649 		   rxq->port_id, rxq->queue_id, rxb->xactid,
650 		   m->pkt_len, m->packet_type, m->ol_flags);
651 
652 	++rxq->stats.packets;
653 	rxq->stats.bytes += m->pkt_len;
654 	hn_update_packet_stats(&rxq->stats, m);
655 
656 	if (unlikely(rte_ring_sp_enqueue(rxq->rx_ring, m) != 0)) {
657 		++rxq->stats.ring_full;
658 		PMD_RX_LOG(DEBUG, "rx ring full");
659 		if (use_extbuf)
660 			rte_pktmbuf_detach_extbuf(m);
661 		rte_pktmbuf_free(m);
662 	}
663 }
664 
665 static void hn_rndis_rx_data(struct hn_rx_queue *rxq,
666 			     struct hn_rx_bufinfo *rxb,
667 			     void *data, uint32_t dlen)
668 {
669 	unsigned int data_off, data_len;
670 	unsigned int pktinfo_off, pktinfo_len;
671 	const struct rndis_packet_msg *pkt = data;
672 	struct hn_rxinfo info = {
673 		.vlan_info = HN_NDIS_VLAN_INFO_INVALID,
674 		.csum_info = HN_NDIS_RXCSUM_INFO_INVALID,
675 		.hash_info = HN_NDIS_HASH_INFO_INVALID,
676 	};
677 	int err;
678 
679 	hn_rndis_dump(pkt);
680 
681 	if (unlikely(dlen < sizeof(*pkt)))
682 		goto error;
683 
684 	if (unlikely(dlen < pkt->len))
685 		goto error; /* truncated RNDIS from host */
686 
687 	if (unlikely(pkt->len < pkt->datalen
688 		     + pkt->oobdatalen + pkt->pktinfolen))
689 		goto error;
690 
691 	if (unlikely(pkt->datalen == 0))
692 		goto error;
693 
694 	/* Check offsets. */
695 	if (unlikely(pkt->dataoffset < RNDIS_PACKET_MSG_OFFSET_MIN))
696 		goto error;
697 
698 	if (likely(pkt->pktinfooffset > 0) &&
699 	    unlikely(pkt->pktinfooffset < RNDIS_PACKET_MSG_OFFSET_MIN ||
700 		     (pkt->pktinfooffset & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK)))
701 		goto error;
702 
703 	data_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->dataoffset);
704 	data_len = pkt->datalen;
705 	pktinfo_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->pktinfooffset);
706 	pktinfo_len = pkt->pktinfolen;
707 
708 	if (likely(pktinfo_len > 0)) {
709 		err = hn_rndis_rxinfo((const uint8_t *)pkt + pktinfo_off,
710 				      pktinfo_len, &info);
711 		if (err)
712 			goto error;
713 	}
714 
715 	/* overflow check */
716 	if (data_len > data_len + data_off || data_len + data_off > pkt->len)
717 		goto error;
718 
719 	if (unlikely(data_len < RTE_ETHER_HDR_LEN))
720 		goto error;
721 
722 	hn_rxpkt(rxq, rxb, data, data_off, data_len, &info);
723 	return;
724 error:
725 	++rxq->stats.errors;
726 }
727 
728 static void
729 hn_rndis_receive(struct rte_eth_dev *dev, struct hn_rx_queue *rxq,
730 		 struct hn_rx_bufinfo *rxb, void *buf, uint32_t len)
731 {
732 	const struct rndis_msghdr *hdr = buf;
733 
734 	switch (hdr->type) {
735 	case RNDIS_PACKET_MSG:
736 		if (dev->data->dev_started)
737 			hn_rndis_rx_data(rxq, rxb, buf, len);
738 		break;
739 
740 	case RNDIS_INDICATE_STATUS_MSG:
741 		hn_rndis_link_status(dev, buf);
742 		break;
743 
744 	case RNDIS_INITIALIZE_CMPLT:
745 	case RNDIS_QUERY_CMPLT:
746 	case RNDIS_SET_CMPLT:
747 		hn_rndis_receive_response(rxq->hv, buf, len);
748 		break;
749 
750 	default:
751 		PMD_DRV_LOG(NOTICE,
752 			    "unexpected RNDIS message (type %#x len %u)",
753 			    hdr->type, len);
754 		break;
755 	}
756 }
757 
758 static void
759 hn_nvs_handle_rxbuf(struct rte_eth_dev *dev,
760 		    struct hn_data *hv,
761 		    struct hn_rx_queue *rxq,
762 		    const struct vmbus_chanpkt_hdr *hdr,
763 		    const void *buf)
764 {
765 	const struct vmbus_chanpkt_rxbuf *pkt;
766 	const struct hn_nvs_hdr *nvs_hdr = buf;
767 	uint32_t rxbuf_sz = hv->rxbuf_res->len;
768 	char *rxbuf = hv->rxbuf_res->addr;
769 	unsigned int i, hlen, count;
770 	struct hn_rx_bufinfo *rxb;
771 
772 	/* At minimum we need type header */
773 	if (unlikely(vmbus_chanpkt_datalen(hdr) < sizeof(*nvs_hdr))) {
774 		PMD_RX_LOG(ERR, "invalid receive nvs RNDIS");
775 		return;
776 	}
777 
778 	/* Make sure that this is a RNDIS message. */
779 	if (unlikely(nvs_hdr->type != NVS_TYPE_RNDIS)) {
780 		PMD_RX_LOG(ERR, "nvs type %u, not RNDIS",
781 			   nvs_hdr->type);
782 		return;
783 	}
784 
785 	hlen = vmbus_chanpkt_getlen(hdr->hlen);
786 	if (unlikely(hlen < sizeof(*pkt))) {
787 		PMD_RX_LOG(ERR, "invalid rxbuf chanpkt");
788 		return;
789 	}
790 
791 	pkt = container_of(hdr, const struct vmbus_chanpkt_rxbuf, hdr);
792 	if (unlikely(pkt->rxbuf_id != NVS_RXBUF_SIG)) {
793 		PMD_RX_LOG(ERR, "invalid rxbuf_id 0x%08x",
794 			   pkt->rxbuf_id);
795 		return;
796 	}
797 
798 	count = pkt->rxbuf_cnt;
799 	if (unlikely(hlen < offsetof(struct vmbus_chanpkt_rxbuf,
800 				     rxbuf[count]))) {
801 		PMD_RX_LOG(ERR, "invalid rxbuf_cnt %u", count);
802 		return;
803 	}
804 
805 	if (pkt->hdr.xactid > hv->rxbuf_section_cnt) {
806 		PMD_RX_LOG(ERR, "invalid rxbuf section id %" PRIx64,
807 			   pkt->hdr.xactid);
808 		return;
809 	}
810 
811 	/* Setup receive buffer info to allow for callback */
812 	rxb = hn_rx_buf_init(rxq, pkt);
813 
814 	/* Each range represents 1 RNDIS pkt that contains 1 Ethernet frame */
815 	for (i = 0; i < count; ++i) {
816 		unsigned int ofs, len;
817 
818 		ofs = pkt->rxbuf[i].ofs;
819 		len = pkt->rxbuf[i].len;
820 
821 		if (unlikely(ofs + len > rxbuf_sz)) {
822 			PMD_RX_LOG(ERR,
823 				   "%uth RNDIS msg overflow ofs %u, len %u",
824 				   i, ofs, len);
825 			continue;
826 		}
827 
828 		if (unlikely(len == 0)) {
829 			PMD_RX_LOG(ERR, "%uth RNDIS msg len %u", i, len);
830 			continue;
831 		}
832 
833 		hn_rndis_receive(dev, rxq, rxb,
834 				 rxbuf + ofs, len);
835 	}
836 
837 	/* Send ACK now if external mbuf not used */
838 	if (rte_mbuf_ext_refcnt_update(&rxb->shinfo, -1) == 0)
839 		hn_nvs_ack_rxbuf(rxb->chan, rxb->xactid);
840 }
841 
842 /*
843  * Called when NVS inband events are received.
844  * Send up a two part message with port_id and the NVS message
845  * to the pipe to the netvsc-vf-event control thread.
846  */
847 static void hn_nvs_handle_notify(struct rte_eth_dev *dev,
848 				 const struct vmbus_chanpkt_hdr *pkt,
849 				 const void *data)
850 {
851 	const struct hn_nvs_hdr *hdr = data;
852 
853 	switch (hdr->type) {
854 	case NVS_TYPE_TXTBL_NOTE:
855 		/* Transmit indirection table has locking problems
856 		 * in DPDK and therefore not implemented
857 		 */
858 		PMD_DRV_LOG(DEBUG, "host notify of transmit indirection table");
859 		break;
860 
861 	case NVS_TYPE_VFASSOC_NOTE:
862 		hn_nvs_handle_vfassoc(dev, pkt, data);
863 		break;
864 
865 	default:
866 		PMD_DRV_LOG(INFO,
867 			    "got notify, nvs type %u", hdr->type);
868 	}
869 }
870 
871 struct hn_rx_queue *hn_rx_queue_alloc(struct hn_data *hv,
872 				      uint16_t queue_id,
873 				      unsigned int socket_id)
874 {
875 	struct hn_rx_queue *rxq;
876 
877 	rxq = rte_zmalloc_socket("HN_RXQ", sizeof(*rxq),
878 				 RTE_CACHE_LINE_SIZE, socket_id);
879 	if (!rxq)
880 		return NULL;
881 
882 	rxq->hv = hv;
883 	rxq->chan = hv->channels[queue_id];
884 	rte_spinlock_init(&rxq->ring_lock);
885 	rxq->port_id = hv->port_id;
886 	rxq->queue_id = queue_id;
887 	rxq->event_sz = HN_RXQ_EVENT_DEFAULT;
888 	rxq->event_buf = rte_malloc_socket("HN_EVENTS", HN_RXQ_EVENT_DEFAULT,
889 					   RTE_CACHE_LINE_SIZE, socket_id);
890 	if (!rxq->event_buf) {
891 		rte_free(rxq);
892 		return NULL;
893 	}
894 
895 	/* setup rxbuf_info for non-primary queue */
896 	if (queue_id) {
897 		rxq->rxbuf_info = rte_calloc("HN_RXBUF_INFO",
898 					hv->rxbuf_section_cnt,
899 					sizeof(*rxq->rxbuf_info),
900 					RTE_CACHE_LINE_SIZE);
901 
902 		if (!rxq->rxbuf_info) {
903 			PMD_DRV_LOG(ERR,
904 				"Could not allocate rxbuf info for queue %d\n",
905 				queue_id);
906 			rte_free(rxq->event_buf);
907 			rte_free(rxq);
908 			return NULL;
909 		}
910 	}
911 
912 	return rxq;
913 }
914 
915 void
916 hn_dev_rx_queue_info(struct rte_eth_dev *dev, uint16_t queue_id,
917 		     struct rte_eth_rxq_info *qinfo)
918 {
919 	struct hn_rx_queue *rxq = dev->data->rx_queues[queue_id];
920 
921 	qinfo->mp = rxq->mb_pool;
922 	qinfo->nb_desc = rxq->rx_ring->size;
923 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
924 }
925 
926 int
927 hn_dev_rx_queue_setup(struct rte_eth_dev *dev,
928 		      uint16_t queue_idx, uint16_t nb_desc,
929 		      unsigned int socket_id,
930 		      const struct rte_eth_rxconf *rx_conf,
931 		      struct rte_mempool *mp)
932 {
933 	struct hn_data *hv = dev->data->dev_private;
934 	char ring_name[RTE_RING_NAMESIZE];
935 	struct hn_rx_queue *rxq;
936 	unsigned int count;
937 	int error = -ENOMEM;
938 
939 	PMD_INIT_FUNC_TRACE();
940 
941 	if (queue_idx == 0) {
942 		rxq = hv->primary;
943 	} else {
944 		rxq = hn_rx_queue_alloc(hv, queue_idx, socket_id);
945 		if (!rxq)
946 			return -ENOMEM;
947 	}
948 
949 	rxq->mb_pool = mp;
950 	count = rte_mempool_avail_count(mp) / dev->data->nb_rx_queues;
951 	if (nb_desc == 0 || nb_desc > count)
952 		nb_desc = count;
953 
954 	/*
955 	 * Staging ring from receive event logic to rx_pkts.
956 	 * rx_pkts assumes caller is handling multi-thread issue.
957 	 * event logic has locking.
958 	 */
959 	snprintf(ring_name, sizeof(ring_name),
960 		 "hn_rx_%u_%u", dev->data->port_id, queue_idx);
961 	rxq->rx_ring = rte_ring_create(ring_name,
962 				       rte_align32pow2(nb_desc),
963 				       socket_id, 0);
964 	if (!rxq->rx_ring)
965 		goto fail;
966 
967 	error = hn_vf_rx_queue_setup(dev, queue_idx, nb_desc,
968 				     socket_id, rx_conf, mp);
969 	if (error)
970 		goto fail;
971 
972 	dev->data->rx_queues[queue_idx] = rxq;
973 	return 0;
974 
975 fail:
976 	rte_ring_free(rxq->rx_ring);
977 	rte_free(rxq->rxbuf_info);
978 	rte_free(rxq->event_buf);
979 	rte_free(rxq);
980 	return error;
981 }
982 
983 static void
984 hn_rx_queue_free(struct hn_rx_queue *rxq, bool keep_primary)
985 {
986 
987 	if (!rxq)
988 		return;
989 
990 	rte_ring_free(rxq->rx_ring);
991 	rxq->rx_ring = NULL;
992 	rxq->mb_pool = NULL;
993 
994 	hn_vf_rx_queue_release(rxq->hv, rxq->queue_id);
995 
996 	/* Keep primary queue to allow for control operations */
997 	if (keep_primary && rxq == rxq->hv->primary)
998 		return;
999 
1000 	rte_free(rxq->rxbuf_info);
1001 	rte_free(rxq->event_buf);
1002 	rte_free(rxq);
1003 }
1004 
1005 void
1006 hn_dev_rx_queue_release(void *arg)
1007 {
1008 	struct hn_rx_queue *rxq = arg;
1009 
1010 	PMD_INIT_FUNC_TRACE();
1011 
1012 	hn_rx_queue_free(rxq, true);
1013 }
1014 
1015 /*
1016  * Get the number of used descriptor in a rx queue
1017  * For this device that means how many packets are pending in the ring.
1018  */
1019 uint32_t
1020 hn_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_id)
1021 {
1022 	struct hn_rx_queue *rxq = dev->data->rx_queues[queue_id];
1023 
1024 	return rte_ring_count(rxq->rx_ring);
1025 }
1026 
1027 /*
1028  * Check the status of a Rx descriptor in the queue
1029  *
1030  * returns:
1031  *  - -EINVAL               - offset outside of ring
1032  *  - RTE_ETH_RX_DESC_AVAIL - no data available yet
1033  *  - RTE_ETH_RX_DESC_DONE  - data is waiting in stagin ring
1034  */
1035 int hn_dev_rx_queue_status(void *arg, uint16_t offset)
1036 {
1037 	const struct hn_rx_queue *rxq = arg;
1038 
1039 	hn_process_events(rxq->hv, rxq->queue_id, 0);
1040 	if (offset >= rxq->rx_ring->capacity)
1041 		return -EINVAL;
1042 
1043 	if (offset < rte_ring_count(rxq->rx_ring))
1044 		return RTE_ETH_RX_DESC_DONE;
1045 	else
1046 		return RTE_ETH_RX_DESC_AVAIL;
1047 }
1048 
1049 int
1050 hn_dev_tx_done_cleanup(void *arg, uint32_t free_cnt)
1051 {
1052 	struct hn_tx_queue *txq = arg;
1053 
1054 	return hn_process_events(txq->hv, txq->queue_id, free_cnt);
1055 }
1056 
1057 /*
1058  * Process pending events on the channel.
1059  * Called from both Rx queue poll and Tx cleanup
1060  */
1061 uint32_t hn_process_events(struct hn_data *hv, uint16_t queue_id,
1062 			   uint32_t tx_limit)
1063 {
1064 	struct rte_eth_dev *dev = &rte_eth_devices[hv->port_id];
1065 	struct hn_rx_queue *rxq;
1066 	uint32_t bytes_read = 0;
1067 	uint32_t tx_done = 0;
1068 	int ret = 0;
1069 
1070 	rxq = queue_id == 0 ? hv->primary : dev->data->rx_queues[queue_id];
1071 
1072 	/*
1073 	 * Since channel is shared between Rx and TX queue need to have a lock
1074 	 * since DPDK does not force same CPU to be used for Rx/Tx.
1075 	 */
1076 	if (unlikely(!rte_spinlock_trylock(&rxq->ring_lock)))
1077 		return 0;
1078 
1079 	for (;;) {
1080 		const struct vmbus_chanpkt_hdr *pkt;
1081 		uint32_t len = rxq->event_sz;
1082 		const void *data;
1083 
1084 retry:
1085 		ret = rte_vmbus_chan_recv_raw(rxq->chan, rxq->event_buf, &len);
1086 		if (ret == -EAGAIN)
1087 			break;	/* ring is empty */
1088 
1089 		if (unlikely(ret == -ENOBUFS)) {
1090 			/* event buffer not large enough to read ring */
1091 
1092 			PMD_DRV_LOG(DEBUG,
1093 				    "event buffer expansion (need %u)", len);
1094 			rxq->event_sz = len + len / 4;
1095 			rxq->event_buf = rte_realloc(rxq->event_buf, rxq->event_sz,
1096 						     RTE_CACHE_LINE_SIZE);
1097 			if (rxq->event_buf)
1098 				goto retry;
1099 			/* out of memory, no more events now */
1100 			rxq->event_sz = 0;
1101 			break;
1102 		}
1103 
1104 		if (unlikely(ret <= 0)) {
1105 			/* This indicates a failure to communicate (or worse) */
1106 			rte_exit(EXIT_FAILURE,
1107 				 "vmbus ring buffer error: %d", ret);
1108 		}
1109 
1110 		bytes_read += ret;
1111 		pkt = (const struct vmbus_chanpkt_hdr *)rxq->event_buf;
1112 		data = (char *)rxq->event_buf + vmbus_chanpkt_getlen(pkt->hlen);
1113 
1114 		switch (pkt->type) {
1115 		case VMBUS_CHANPKT_TYPE_COMP:
1116 			++tx_done;
1117 			hn_nvs_handle_comp(dev, queue_id, pkt, data);
1118 			break;
1119 
1120 		case VMBUS_CHANPKT_TYPE_RXBUF:
1121 			hn_nvs_handle_rxbuf(dev, hv, rxq, pkt, data);
1122 			break;
1123 
1124 		case VMBUS_CHANPKT_TYPE_INBAND:
1125 			hn_nvs_handle_notify(dev, pkt, data);
1126 			break;
1127 
1128 		default:
1129 			PMD_DRV_LOG(ERR, "unknown chan pkt %u", pkt->type);
1130 			break;
1131 		}
1132 
1133 		if (tx_limit && tx_done >= tx_limit)
1134 			break;
1135 	}
1136 
1137 	if (bytes_read > 0)
1138 		rte_vmbus_chan_signal_read(rxq->chan, bytes_read);
1139 
1140 	rte_spinlock_unlock(&rxq->ring_lock);
1141 
1142 	return tx_done;
1143 }
1144 
1145 static void hn_append_to_chim(struct hn_tx_queue *txq,
1146 			      struct rndis_packet_msg *pkt,
1147 			      const struct rte_mbuf *m)
1148 {
1149 	struct hn_txdesc *txd = txq->agg_txd;
1150 	uint8_t *buf = (uint8_t *)pkt;
1151 	unsigned int data_offs;
1152 
1153 	hn_rndis_dump(pkt);
1154 
1155 	data_offs = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->dataoffset);
1156 	txd->chim_size += pkt->len;
1157 	txd->data_size += m->pkt_len;
1158 	++txd->packets;
1159 	hn_update_packet_stats(&txq->stats, m);
1160 
1161 	for (; m; m = m->next) {
1162 		uint16_t len = rte_pktmbuf_data_len(m);
1163 
1164 		rte_memcpy(buf + data_offs,
1165 			   rte_pktmbuf_mtod(m, const char *), len);
1166 		data_offs += len;
1167 	}
1168 }
1169 
1170 /*
1171  * Send pending aggregated data in chimney buffer (if any).
1172  * Returns error if send was unsuccessful because channel ring buffer
1173  * was full.
1174  */
1175 static int hn_flush_txagg(struct hn_tx_queue *txq, bool *need_sig)
1176 
1177 {
1178 	struct hn_txdesc *txd = txq->agg_txd;
1179 	struct hn_nvs_rndis rndis;
1180 	int ret;
1181 
1182 	if (!txd)
1183 		return 0;
1184 
1185 	rndis = (struct hn_nvs_rndis) {
1186 		.type = NVS_TYPE_RNDIS,
1187 		.rndis_mtype = NVS_RNDIS_MTYPE_DATA,
1188 		.chim_idx = txd->chim_index,
1189 		.chim_sz = txd->chim_size,
1190 	};
1191 
1192 	PMD_TX_LOG(DEBUG, "port %u:%u tx %u size %u",
1193 		   txq->port_id, txq->queue_id, txd->chim_index, txd->chim_size);
1194 
1195 	ret = hn_nvs_send(txq->chan, VMBUS_CHANPKT_FLAG_RC,
1196 			  &rndis, sizeof(rndis), (uintptr_t)txd, need_sig);
1197 
1198 	if (likely(ret == 0))
1199 		hn_reset_txagg(txq);
1200 	else if (ret == -EAGAIN) {
1201 		PMD_TX_LOG(DEBUG, "port %u:%u channel full",
1202 			   txq->port_id, txq->queue_id);
1203 		++txq->stats.channel_full;
1204 	} else {
1205 		++txq->stats.errors;
1206 
1207 		PMD_DRV_LOG(NOTICE, "port %u:%u send failed: %d",
1208 			   txq->port_id, txq->queue_id, ret);
1209 	}
1210 	return ret;
1211 }
1212 
1213 /*
1214  * Try and find a place in a send chimney buffer to put
1215  * the small packet. If space is available, this routine
1216  * returns a pointer of where to place the data.
1217  * If no space, caller should try direct transmit.
1218  */
1219 static void *
1220 hn_try_txagg(struct hn_data *hv, struct hn_tx_queue *txq,
1221 	     struct hn_txdesc *txd, uint32_t pktsize)
1222 {
1223 	struct hn_txdesc *agg_txd = txq->agg_txd;
1224 	struct rndis_packet_msg *pkt;
1225 	void *chim;
1226 
1227 	if (agg_txd) {
1228 		unsigned int padding, olen;
1229 
1230 		/*
1231 		 * Update the previous RNDIS packet's total length,
1232 		 * it can be increased due to the mandatory alignment
1233 		 * padding for this RNDIS packet.  And update the
1234 		 * aggregating txdesc's chimney sending buffer size
1235 		 * accordingly.
1236 		 *
1237 		 * Zero-out the padding, as required by the RNDIS spec.
1238 		 */
1239 		pkt = txq->agg_prevpkt;
1240 		olen = pkt->len;
1241 		padding = RTE_ALIGN(olen, txq->agg_align) - olen;
1242 		if (padding > 0) {
1243 			agg_txd->chim_size += padding;
1244 			pkt->len += padding;
1245 			memset((uint8_t *)pkt + olen, 0, padding);
1246 		}
1247 
1248 		chim = (uint8_t *)pkt + pkt->len;
1249 		txq->agg_prevpkt = chim;
1250 		txq->agg_pktleft--;
1251 		txq->agg_szleft -= pktsize;
1252 		if (txq->agg_szleft < HN_PKTSIZE_MIN(txq->agg_align)) {
1253 			/*
1254 			 * Probably can't aggregate more packets,
1255 			 * flush this aggregating txdesc proactively.
1256 			 */
1257 			txq->agg_pktleft = 0;
1258 		}
1259 
1260 		hn_txd_put(txq, txd);
1261 		return chim;
1262 	}
1263 
1264 	txd->chim_index = hn_chim_alloc(hv);
1265 	if (txd->chim_index == NVS_CHIM_IDX_INVALID)
1266 		return NULL;
1267 
1268 	chim = (uint8_t *)hv->chim_res->addr
1269 			+ txd->chim_index * hv->chim_szmax;
1270 
1271 	txq->agg_txd = txd;
1272 	txq->agg_pktleft = txq->agg_pktmax - 1;
1273 	txq->agg_szleft = txq->agg_szmax - pktsize;
1274 	txq->agg_prevpkt = chim;
1275 
1276 	return chim;
1277 }
1278 
1279 static inline void *
1280 hn_rndis_pktinfo_append(struct rndis_packet_msg *pkt,
1281 			uint32_t pi_dlen, uint32_t pi_type)
1282 {
1283 	const uint32_t pi_size = RNDIS_PKTINFO_SIZE(pi_dlen);
1284 	struct rndis_pktinfo *pi;
1285 
1286 	/*
1287 	 * Per-packet-info does not move; it only grows.
1288 	 *
1289 	 * NOTE:
1290 	 * pktinfooffset in this phase counts from the beginning
1291 	 * of rndis_packet_msg.
1292 	 */
1293 	pi = (struct rndis_pktinfo *)((uint8_t *)pkt + hn_rndis_pktlen(pkt));
1294 
1295 	pkt->pktinfolen += pi_size;
1296 
1297 	pi->size = pi_size;
1298 	pi->type = pi_type;
1299 	pi->offset = RNDIS_PKTINFO_OFFSET;
1300 
1301 	return pi->data;
1302 }
1303 
1304 /* Put RNDIS header and packet info on packet */
1305 static void hn_encap(struct rndis_packet_msg *pkt,
1306 		     uint16_t queue_id,
1307 		     const struct rte_mbuf *m)
1308 {
1309 	unsigned int hlen = m->l2_len + m->l3_len;
1310 	uint32_t *pi_data;
1311 	uint32_t pkt_hlen;
1312 
1313 	pkt->type = RNDIS_PACKET_MSG;
1314 	pkt->len = m->pkt_len;
1315 	pkt->dataoffset = 0;
1316 	pkt->datalen = m->pkt_len;
1317 	pkt->oobdataoffset = 0;
1318 	pkt->oobdatalen = 0;
1319 	pkt->oobdataelements = 0;
1320 	pkt->pktinfooffset = sizeof(*pkt);
1321 	pkt->pktinfolen = 0;
1322 	pkt->vchandle = 0;
1323 	pkt->reserved = 0;
1324 
1325 	/*
1326 	 * Set the hash value for this packet, to the queue_id to cause
1327 	 * TX done event for this packet on the right channel.
1328 	 */
1329 	pi_data = hn_rndis_pktinfo_append(pkt, NDIS_HASH_VALUE_SIZE,
1330 					  NDIS_PKTINFO_TYPE_HASHVAL);
1331 	*pi_data = queue_id;
1332 
1333 	if (m->ol_flags & PKT_TX_VLAN_PKT) {
1334 		pi_data = hn_rndis_pktinfo_append(pkt, NDIS_VLAN_INFO_SIZE,
1335 						  NDIS_PKTINFO_TYPE_VLAN);
1336 		*pi_data = m->vlan_tci;
1337 	}
1338 
1339 	if (m->ol_flags & PKT_TX_TCP_SEG) {
1340 		pi_data = hn_rndis_pktinfo_append(pkt, NDIS_LSO2_INFO_SIZE,
1341 						  NDIS_PKTINFO_TYPE_LSO);
1342 
1343 		if (m->ol_flags & PKT_TX_IPV6) {
1344 			*pi_data = NDIS_LSO2_INFO_MAKEIPV6(hlen,
1345 							   m->tso_segsz);
1346 		} else {
1347 			*pi_data = NDIS_LSO2_INFO_MAKEIPV4(hlen,
1348 							   m->tso_segsz);
1349 		}
1350 	} else if (m->ol_flags &
1351 		   (PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM | PKT_TX_IP_CKSUM)) {
1352 		pi_data = hn_rndis_pktinfo_append(pkt, NDIS_TXCSUM_INFO_SIZE,
1353 						  NDIS_PKTINFO_TYPE_CSUM);
1354 		*pi_data = 0;
1355 
1356 		if (m->ol_flags & PKT_TX_IPV6)
1357 			*pi_data |= NDIS_TXCSUM_INFO_IPV6;
1358 		if (m->ol_flags & PKT_TX_IPV4) {
1359 			*pi_data |= NDIS_TXCSUM_INFO_IPV4;
1360 
1361 			if (m->ol_flags & PKT_TX_IP_CKSUM)
1362 				*pi_data |= NDIS_TXCSUM_INFO_IPCS;
1363 		}
1364 
1365 		if (m->ol_flags & PKT_TX_TCP_CKSUM)
1366 			*pi_data |= NDIS_TXCSUM_INFO_MKTCPCS(hlen);
1367 		else if (m->ol_flags & PKT_TX_UDP_CKSUM)
1368 			*pi_data |= NDIS_TXCSUM_INFO_MKUDPCS(hlen);
1369 	}
1370 
1371 	pkt_hlen = pkt->pktinfooffset + pkt->pktinfolen;
1372 	/* Fixup RNDIS packet message total length */
1373 	pkt->len += pkt_hlen;
1374 
1375 	/* Convert RNDIS packet message offsets */
1376 	pkt->dataoffset = hn_rndis_pktmsg_offset(pkt_hlen);
1377 	pkt->pktinfooffset = hn_rndis_pktmsg_offset(pkt->pktinfooffset);
1378 }
1379 
1380 /* How many scatter gather list elements ar needed */
1381 static unsigned int hn_get_slots(const struct rte_mbuf *m)
1382 {
1383 	unsigned int slots = 1; /* for RNDIS header */
1384 
1385 	while (m) {
1386 		unsigned int size = rte_pktmbuf_data_len(m);
1387 		unsigned int offs = rte_mbuf_data_iova(m) & PAGE_MASK;
1388 
1389 		slots += (offs + size + PAGE_SIZE - 1) / PAGE_SIZE;
1390 		m = m->next;
1391 	}
1392 
1393 	return slots;
1394 }
1395 
1396 /* Build scatter gather list from chained mbuf */
1397 static unsigned int hn_fill_sg(struct vmbus_gpa *sg,
1398 			       const struct rte_mbuf *m)
1399 {
1400 	unsigned int segs = 0;
1401 
1402 	while (m) {
1403 		rte_iova_t addr = rte_mbuf_data_iova(m);
1404 		unsigned int page = addr / PAGE_SIZE;
1405 		unsigned int offset = addr & PAGE_MASK;
1406 		unsigned int len = rte_pktmbuf_data_len(m);
1407 
1408 		while (len > 0) {
1409 			unsigned int bytes = RTE_MIN(len, PAGE_SIZE - offset);
1410 
1411 			sg[segs].page = page;
1412 			sg[segs].ofs = offset;
1413 			sg[segs].len = bytes;
1414 			segs++;
1415 
1416 			++page;
1417 			offset = 0;
1418 			len -= bytes;
1419 		}
1420 		m = m->next;
1421 	}
1422 
1423 	return segs;
1424 }
1425 
1426 /* Transmit directly from mbuf */
1427 static int hn_xmit_sg(struct hn_tx_queue *txq,
1428 		      const struct hn_txdesc *txd, const struct rte_mbuf *m,
1429 		      bool *need_sig)
1430 {
1431 	struct vmbus_gpa sg[hn_get_slots(m)];
1432 	struct hn_nvs_rndis nvs_rndis = {
1433 		.type = NVS_TYPE_RNDIS,
1434 		.rndis_mtype = NVS_RNDIS_MTYPE_DATA,
1435 		.chim_sz = txd->chim_size,
1436 	};
1437 	rte_iova_t addr;
1438 	unsigned int segs;
1439 
1440 	/* attach aggregation data if present */
1441 	if (txd->chim_size > 0)
1442 		nvs_rndis.chim_idx = txd->chim_index;
1443 	else
1444 		nvs_rndis.chim_idx = NVS_CHIM_IDX_INVALID;
1445 
1446 	hn_rndis_dump(txd->rndis_pkt);
1447 
1448 	/* pass IOVA of rndis header in first segment */
1449 	addr = rte_malloc_virt2iova(txq->tx_rndis);
1450 	if (unlikely(addr == RTE_BAD_IOVA)) {
1451 		PMD_DRV_LOG(ERR, "RNDIS transmit can not get iova");
1452 		return -EINVAL;
1453 	}
1454 	addr = addr + ((char *)txd->rndis_pkt - (char *)txq->tx_rndis);
1455 
1456 	sg[0].page = addr / PAGE_SIZE;
1457 	sg[0].ofs = addr & PAGE_MASK;
1458 	sg[0].len = RNDIS_PACKET_MSG_OFFSET_ABS(hn_rndis_pktlen(txd->rndis_pkt));
1459 	segs = 1;
1460 
1461 	hn_update_packet_stats(&txq->stats, m);
1462 
1463 	segs += hn_fill_sg(sg + 1, m);
1464 
1465 	PMD_TX_LOG(DEBUG, "port %u:%u tx %u segs %u size %u",
1466 		   txq->port_id, txq->queue_id, txd->chim_index,
1467 		   segs, nvs_rndis.chim_sz);
1468 
1469 	return hn_nvs_send_sglist(txq->chan, sg, segs,
1470 				  &nvs_rndis, sizeof(nvs_rndis),
1471 				  (uintptr_t)txd, need_sig);
1472 }
1473 
1474 uint16_t
1475 hn_xmit_pkts(void *ptxq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1476 {
1477 	struct hn_tx_queue *txq = ptxq;
1478 	uint16_t queue_id = txq->queue_id;
1479 	struct hn_data *hv = txq->hv;
1480 	struct rte_eth_dev *vf_dev;
1481 	bool need_sig = false;
1482 	uint16_t nb_tx, tx_thresh;
1483 	int ret;
1484 
1485 	if (unlikely(hv->closed))
1486 		return 0;
1487 
1488 	/*
1489 	 * Always check for events on the primary channel
1490 	 * because that is where hotplug notifications occur.
1491 	 */
1492 	tx_thresh = RTE_MAX(txq->free_thresh, nb_pkts);
1493 	if (txq->queue_id == 0 ||
1494 	    rte_mempool_avail_count(txq->txdesc_pool) < tx_thresh)
1495 		hn_process_events(hv, txq->queue_id, 0);
1496 
1497 	/* Transmit over VF if present and up */
1498 	rte_rwlock_read_lock(&hv->vf_lock);
1499 	vf_dev = hn_get_vf_dev(hv);
1500 	if (vf_dev && vf_dev->data->dev_started) {
1501 		void *sub_q = vf_dev->data->tx_queues[queue_id];
1502 
1503 		nb_tx = (*vf_dev->tx_pkt_burst)(sub_q, tx_pkts, nb_pkts);
1504 		rte_rwlock_read_unlock(&hv->vf_lock);
1505 		return nb_tx;
1506 	}
1507 	rte_rwlock_read_unlock(&hv->vf_lock);
1508 
1509 	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1510 		struct rte_mbuf *m = tx_pkts[nb_tx];
1511 		uint32_t pkt_size = m->pkt_len + HN_RNDIS_PKT_LEN;
1512 		struct rndis_packet_msg *pkt;
1513 		struct hn_txdesc *txd;
1514 
1515 		txd = hn_txd_get(txq);
1516 		if (txd == NULL)
1517 			break;
1518 
1519 		/* For small packets aggregate them in chimney buffer */
1520 		if (m->pkt_len < HN_TXCOPY_THRESHOLD && pkt_size <= txq->agg_szmax) {
1521 			/* If this packet will not fit, then flush  */
1522 			if (txq->agg_pktleft == 0 ||
1523 			    RTE_ALIGN(pkt_size, txq->agg_align) > txq->agg_szleft) {
1524 				if (hn_flush_txagg(txq, &need_sig))
1525 					goto fail;
1526 			}
1527 
1528 
1529 			pkt = hn_try_txagg(hv, txq, txd, pkt_size);
1530 			if (unlikely(!pkt))
1531 				break;
1532 
1533 			hn_encap(pkt, queue_id, m);
1534 			hn_append_to_chim(txq, pkt, m);
1535 
1536 			rte_pktmbuf_free(m);
1537 
1538 			/* if buffer is full, flush */
1539 			if (txq->agg_pktleft == 0 &&
1540 			    hn_flush_txagg(txq, &need_sig))
1541 				goto fail;
1542 		} else {
1543 			/* Send any outstanding packets in buffer */
1544 			if (txq->agg_txd && hn_flush_txagg(txq, &need_sig))
1545 				goto fail;
1546 
1547 			pkt = txd->rndis_pkt;
1548 			txd->m = m;
1549 			txd->data_size = m->pkt_len;
1550 			++txd->packets;
1551 
1552 			hn_encap(pkt, queue_id, m);
1553 
1554 			ret = hn_xmit_sg(txq, txd, m, &need_sig);
1555 			if (unlikely(ret != 0)) {
1556 				if (ret == -EAGAIN) {
1557 					PMD_TX_LOG(DEBUG, "sg channel full");
1558 					++txq->stats.channel_full;
1559 				} else {
1560 					PMD_DRV_LOG(NOTICE, "sg send failed: %d", ret);
1561 					++txq->stats.errors;
1562 				}
1563 				hn_txd_put(txq, txd);
1564 				goto fail;
1565 			}
1566 		}
1567 	}
1568 
1569 	/* If partial buffer left, then try and send it.
1570 	 * if that fails, then reuse it on next send.
1571 	 */
1572 	hn_flush_txagg(txq, &need_sig);
1573 
1574 fail:
1575 	if (need_sig)
1576 		rte_vmbus_chan_signal_tx(txq->chan);
1577 
1578 	return nb_tx;
1579 }
1580 
1581 static uint16_t
1582 hn_recv_vf(uint16_t vf_port, const struct hn_rx_queue *rxq,
1583 	   struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1584 {
1585 	uint16_t i, n;
1586 
1587 	if (unlikely(nb_pkts == 0))
1588 		return 0;
1589 
1590 	n = rte_eth_rx_burst(vf_port, rxq->queue_id, rx_pkts, nb_pkts);
1591 
1592 	/* relabel the received mbufs */
1593 	for (i = 0; i < n; i++)
1594 		rx_pkts[i]->port = rxq->port_id;
1595 
1596 	return n;
1597 }
1598 
1599 uint16_t
1600 hn_recv_pkts(void *prxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1601 {
1602 	struct hn_rx_queue *rxq = prxq;
1603 	struct hn_data *hv = rxq->hv;
1604 	struct rte_eth_dev *vf_dev;
1605 	uint16_t nb_rcv;
1606 
1607 	if (unlikely(hv->closed))
1608 		return 0;
1609 
1610 	/* Check for new completions (and hotplug) */
1611 	if (likely(rte_ring_count(rxq->rx_ring) < nb_pkts))
1612 		hn_process_events(hv, rxq->queue_id, 0);
1613 
1614 	/* Always check the vmbus path for multicast and new flows */
1615 	nb_rcv = rte_ring_sc_dequeue_burst(rxq->rx_ring,
1616 					   (void **)rx_pkts, nb_pkts, NULL);
1617 
1618 	/* If VF is available, check that as well */
1619 	rte_rwlock_read_lock(&hv->vf_lock);
1620 	vf_dev = hn_get_vf_dev(hv);
1621 	if (vf_dev && vf_dev->data->dev_started)
1622 		nb_rcv += hn_recv_vf(vf_dev->data->port_id, rxq,
1623 				     rx_pkts + nb_rcv, nb_pkts - nb_rcv);
1624 
1625 	rte_rwlock_read_unlock(&hv->vf_lock);
1626 	return nb_rcv;
1627 }
1628 
1629 void
1630 hn_dev_free_queues(struct rte_eth_dev *dev)
1631 {
1632 	unsigned int i;
1633 
1634 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1635 		struct hn_rx_queue *rxq = dev->data->rx_queues[i];
1636 
1637 		hn_rx_queue_free(rxq, false);
1638 		dev->data->rx_queues[i] = NULL;
1639 	}
1640 	dev->data->nb_rx_queues = 0;
1641 
1642 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
1643 		hn_dev_tx_queue_release(dev->data->tx_queues[i]);
1644 		dev->data->tx_queues[i] = NULL;
1645 	}
1646 	dev->data->nb_tx_queues = 0;
1647 }
1648