xref: /dpdk/drivers/net/netvsc/hn_rxtx.c (revision e9fd1ebf981f361844aea9ec94e17f4bda5e1479)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2018 Microsoft Corporation
3  * Copyright(c) 2013-2016 Brocade Communications Systems, Inc.
4  * All rights reserved.
5  */
6 
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdio.h>
10 #include <errno.h>
11 #include <unistd.h>
12 #include <strings.h>
13 #include <malloc.h>
14 
15 #include <rte_ethdev.h>
16 #include <rte_memcpy.h>
17 #include <rte_string_fns.h>
18 #include <rte_memzone.h>
19 #include <rte_malloc.h>
20 #include <rte_atomic.h>
21 #include <rte_bitmap.h>
22 #include <rte_branch_prediction.h>
23 #include <rte_ether.h>
24 #include <rte_common.h>
25 #include <rte_errno.h>
26 #include <rte_memory.h>
27 #include <rte_eal.h>
28 #include <dev_driver.h>
29 #include <rte_net.h>
30 #include <bus_vmbus_driver.h>
31 #include <rte_spinlock.h>
32 
33 #include "hn_logs.h"
34 #include "hn_var.h"
35 #include "hn_rndis.h"
36 #include "hn_nvs.h"
37 #include "ndis.h"
38 
39 #define HN_NVS_SEND_MSG_SIZE \
40 	(sizeof(struct vmbus_chanpkt_hdr) + sizeof(struct hn_nvs_rndis))
41 
42 #define HN_TXD_CACHE_SIZE	32 /* per cpu tx_descriptor pool cache */
43 #define HN_RXQ_EVENT_DEFAULT	2048
44 
45 struct hn_rxinfo {
46 	uint32_t	vlan_info;
47 	uint32_t	csum_info;
48 	uint32_t	hash_info;
49 	uint32_t	hash_value;
50 };
51 
52 #define HN_RXINFO_VLAN			0x0001
53 #define HN_RXINFO_CSUM			0x0002
54 #define HN_RXINFO_HASHINF		0x0004
55 #define HN_RXINFO_HASHVAL		0x0008
56 #define HN_RXINFO_ALL			\
57 	(HN_RXINFO_VLAN |		\
58 	 HN_RXINFO_CSUM |		\
59 	 HN_RXINFO_HASHINF |		\
60 	 HN_RXINFO_HASHVAL)
61 
62 #define HN_NDIS_VLAN_INFO_INVALID	0xffffffff
63 #define HN_NDIS_RXCSUM_INFO_INVALID	0
64 #define HN_NDIS_HASH_INFO_INVALID	0
65 
66 /*
67  * Per-transmit book keeping.
68  * A slot in transmit ring (chim_index) is reserved for each transmit.
69  *
70  * There are two types of transmit:
71  *   - buffered transmit where chimney buffer is used and RNDIS header
72  *     is in the buffer. mbuf == NULL for this case.
73  *
74  *   - direct transmit where RNDIS header is in the in  rndis_pkt
75  *     mbuf is freed after transmit.
76  *
77  * Descriptors come from per-port pool which is used
78  * to limit number of outstanding requests per device.
79  */
80 struct hn_txdesc {
81 	struct rte_mbuf *m;
82 
83 	uint16_t	queue_id;
84 	uint32_t	chim_index;
85 	uint32_t	chim_size;
86 	uint32_t	data_size;
87 	uint32_t	packets;
88 
89 	struct rndis_packet_msg *rndis_pkt;
90 };
91 
92 #define HN_RNDIS_PKT_LEN				\
93 	(sizeof(struct rndis_packet_msg) +		\
94 	 RNDIS_PKTINFO_SIZE(NDIS_HASH_VALUE_SIZE) +	\
95 	 RNDIS_PKTINFO_SIZE(NDIS_VLAN_INFO_SIZE) +	\
96 	 RNDIS_PKTINFO_SIZE(NDIS_LSO2_INFO_SIZE) +	\
97 	 RNDIS_PKTINFO_SIZE(NDIS_TXCSUM_INFO_SIZE))
98 
99 #define HN_RNDIS_PKT_ALIGNED	RTE_ALIGN(HN_RNDIS_PKT_LEN, RTE_CACHE_LINE_SIZE)
100 
101 /* Minimum space required for a packet */
102 #define HN_PKTSIZE_MIN(align) \
103 	RTE_ALIGN(RTE_ETHER_MIN_LEN + HN_RNDIS_PKT_LEN, align)
104 
105 #define DEFAULT_TX_FREE_THRESH 32
106 
107 static void
108 hn_update_packet_stats(struct hn_stats *stats, const struct rte_mbuf *m)
109 {
110 	uint32_t s = m->pkt_len;
111 	const struct rte_ether_addr *ea;
112 
113 	if (s == 64) {
114 		stats->size_bins[1]++;
115 	} else if (s > 64 && s < 1024) {
116 		uint32_t bin;
117 
118 		/* count zeros, and offset into correct bin */
119 		bin = (sizeof(s) * 8) - rte_clz32(s) - 5;
120 		stats->size_bins[bin]++;
121 	} else {
122 		if (s < 64)
123 			stats->size_bins[0]++;
124 		else if (s < 1519)
125 			stats->size_bins[6]++;
126 		else
127 			stats->size_bins[7]++;
128 	}
129 
130 	ea = rte_pktmbuf_mtod(m, const struct rte_ether_addr *);
131 	if (rte_is_multicast_ether_addr(ea)) {
132 		if (rte_is_broadcast_ether_addr(ea))
133 			stats->broadcast++;
134 		else
135 			stats->multicast++;
136 	}
137 }
138 
139 static inline unsigned int hn_rndis_pktlen(const struct rndis_packet_msg *pkt)
140 {
141 	return pkt->pktinfooffset + pkt->pktinfolen;
142 }
143 
144 static inline uint32_t
145 hn_rndis_pktmsg_offset(uint32_t ofs)
146 {
147 	return ofs - offsetof(struct rndis_packet_msg, dataoffset);
148 }
149 
150 static void hn_txd_init(struct rte_mempool *mp __rte_unused,
151 			void *opaque, void *obj, unsigned int idx)
152 {
153 	struct hn_tx_queue *txq = opaque;
154 	struct hn_txdesc *txd = obj;
155 
156 	memset(txd, 0, sizeof(*txd));
157 
158 	txd->queue_id = txq->queue_id;
159 	txd->chim_index = NVS_CHIM_IDX_INVALID;
160 	txd->rndis_pkt = (struct rndis_packet_msg *)((char *)txq->tx_rndis
161 		+ idx * HN_RNDIS_PKT_ALIGNED);
162 }
163 
164 int
165 hn_chim_init(struct rte_eth_dev *dev)
166 {
167 	struct hn_data *hv = dev->data->dev_private;
168 	uint32_t i, chim_bmp_size;
169 
170 	rte_spinlock_init(&hv->chim_lock);
171 	chim_bmp_size = rte_bitmap_get_memory_footprint(hv->chim_cnt);
172 	hv->chim_bmem = rte_zmalloc("hn_chim_bitmap", chim_bmp_size,
173 				    RTE_CACHE_LINE_SIZE);
174 	if (hv->chim_bmem == NULL) {
175 		PMD_INIT_LOG(ERR, "failed to allocate bitmap size %u",
176 			     chim_bmp_size);
177 		return -1;
178 	}
179 
180 	hv->chim_bmap = rte_bitmap_init(hv->chim_cnt,
181 					hv->chim_bmem, chim_bmp_size);
182 	if (hv->chim_bmap == NULL) {
183 		PMD_INIT_LOG(ERR, "failed to init chim bitmap");
184 		return -1;
185 	}
186 
187 	for (i = 0; i < hv->chim_cnt; i++)
188 		rte_bitmap_set(hv->chim_bmap, i);
189 
190 	return 0;
191 }
192 
193 void
194 hn_chim_uninit(struct rte_eth_dev *dev)
195 {
196 	struct hn_data *hv = dev->data->dev_private;
197 
198 	rte_bitmap_free(hv->chim_bmap);
199 	rte_free(hv->chim_bmem);
200 	hv->chim_bmem = NULL;
201 }
202 
203 static uint32_t hn_chim_alloc(struct hn_data *hv)
204 {
205 	uint32_t index = NVS_CHIM_IDX_INVALID;
206 	uint64_t slab = 0;
207 
208 	rte_spinlock_lock(&hv->chim_lock);
209 	if (rte_bitmap_scan(hv->chim_bmap, &index, &slab)) {
210 		index += rte_bsf64(slab);
211 		rte_bitmap_clear(hv->chim_bmap, index);
212 	}
213 	rte_spinlock_unlock(&hv->chim_lock);
214 
215 	return index;
216 }
217 
218 static void hn_chim_free(struct hn_data *hv, uint32_t chim_idx)
219 {
220 	if (chim_idx >= hv->chim_cnt) {
221 		PMD_DRV_LOG(ERR, "Invalid chimney index %u", chim_idx);
222 	} else {
223 		rte_spinlock_lock(&hv->chim_lock);
224 		rte_bitmap_set(hv->chim_bmap, chim_idx);
225 		rte_spinlock_unlock(&hv->chim_lock);
226 	}
227 }
228 
229 static void hn_reset_txagg(struct hn_tx_queue *txq)
230 {
231 	txq->agg_szleft = txq->agg_szmax;
232 	txq->agg_pktleft = txq->agg_pktmax;
233 	txq->agg_txd = NULL;
234 	txq->agg_prevpkt = NULL;
235 }
236 
237 int
238 hn_dev_tx_queue_setup(struct rte_eth_dev *dev,
239 		      uint16_t queue_idx, uint16_t nb_desc,
240 		      unsigned int socket_id,
241 		      const struct rte_eth_txconf *tx_conf)
242 
243 {
244 	struct hn_data *hv = dev->data->dev_private;
245 	struct hn_tx_queue *txq;
246 	char name[RTE_MEMPOOL_NAMESIZE];
247 	uint32_t tx_free_thresh;
248 	int err = -ENOMEM;
249 
250 	PMD_INIT_FUNC_TRACE();
251 
252 	tx_free_thresh = tx_conf->tx_free_thresh;
253 	if (tx_free_thresh == 0)
254 		tx_free_thresh = RTE_MIN(nb_desc / 4,
255 					 DEFAULT_TX_FREE_THRESH);
256 
257 	if (tx_free_thresh + 3 >= nb_desc) {
258 		PMD_INIT_LOG(ERR,
259 			     "tx_free_thresh must be less than the number of TX entries minus 3(%u)."
260 			     " (tx_free_thresh=%u port=%u queue=%u)\n",
261 			     nb_desc - 3,
262 			     tx_free_thresh, dev->data->port_id, queue_idx);
263 		return -EINVAL;
264 	}
265 
266 	txq = rte_zmalloc_socket("HN_TXQ", sizeof(*txq), RTE_CACHE_LINE_SIZE,
267 				 socket_id);
268 	if (!txq)
269 		return -ENOMEM;
270 
271 	txq->hv = hv;
272 	txq->chan = hv->channels[queue_idx];
273 	txq->port_id = dev->data->port_id;
274 	txq->queue_id = queue_idx;
275 	txq->free_thresh = tx_free_thresh;
276 
277 	snprintf(name, sizeof(name),
278 		 "hn_txd_%u_%u", dev->data->port_id, queue_idx);
279 
280 	PMD_INIT_LOG(DEBUG, "TX descriptor pool %s n=%u size=%zu",
281 		     name, nb_desc, sizeof(struct hn_txdesc));
282 
283 	txq->tx_rndis_mz = rte_memzone_reserve_aligned(name,
284 			nb_desc * HN_RNDIS_PKT_ALIGNED, rte_socket_id(),
285 			RTE_MEMZONE_IOVA_CONTIG, HN_RNDIS_PKT_ALIGNED);
286 	if (!txq->tx_rndis_mz) {
287 		err = -rte_errno;
288 		goto error;
289 	}
290 	txq->tx_rndis = txq->tx_rndis_mz->addr;
291 	txq->tx_rndis_iova = txq->tx_rndis_mz->iova;
292 
293 	txq->txdesc_pool = rte_mempool_create(name, nb_desc,
294 					      sizeof(struct hn_txdesc),
295 					      0, 0, NULL, NULL,
296 					      hn_txd_init, txq,
297 					      dev->device->numa_node, 0);
298 	if (txq->txdesc_pool == NULL) {
299 		PMD_DRV_LOG(ERR,
300 			    "mempool %s create failed: %d", name, rte_errno);
301 		goto error;
302 	}
303 
304 	txq->agg_szmax  = RTE_MIN(hv->chim_szmax, hv->rndis_agg_size);
305 	txq->agg_pktmax = hv->rndis_agg_pkts;
306 	txq->agg_align  = hv->rndis_agg_align;
307 
308 	hn_reset_txagg(txq);
309 
310 	err = hn_vf_tx_queue_setup(dev, queue_idx, nb_desc,
311 				     socket_id, tx_conf);
312 	if (err == 0) {
313 		dev->data->tx_queues[queue_idx] = txq;
314 		return 0;
315 	}
316 
317 error:
318 	rte_mempool_free(txq->txdesc_pool);
319 	rte_memzone_free(txq->tx_rndis_mz);
320 	rte_free(txq);
321 	return err;
322 }
323 
324 void
325 hn_dev_tx_queue_info(struct rte_eth_dev *dev, uint16_t queue_id,
326 		     struct rte_eth_txq_info *qinfo)
327 {
328 	struct hn_tx_queue *txq = dev->data->tx_queues[queue_id];
329 
330 	qinfo->nb_desc = txq->txdesc_pool->size;
331 	qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
332 }
333 
334 static struct hn_txdesc *hn_txd_get(struct hn_tx_queue *txq)
335 {
336 	struct hn_txdesc *txd;
337 
338 	if (rte_mempool_get(txq->txdesc_pool, (void **)&txd)) {
339 		++txq->stats.ring_full;
340 		PMD_TX_LOG(DEBUG, "tx pool exhausted!");
341 		return NULL;
342 	}
343 
344 	txd->m = NULL;
345 	txd->packets = 0;
346 	txd->data_size = 0;
347 	txd->chim_size = 0;
348 
349 	return txd;
350 }
351 
352 static void hn_txd_put(struct hn_tx_queue *txq, struct hn_txdesc *txd)
353 {
354 	rte_mempool_put(txq->txdesc_pool, txd);
355 }
356 
357 void
358 hn_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
359 {
360 	struct hn_tx_queue *txq = dev->data->tx_queues[qid];
361 
362 	PMD_INIT_FUNC_TRACE();
363 
364 	if (!txq)
365 		return;
366 
367 	rte_mempool_free(txq->txdesc_pool);
368 
369 	rte_memzone_free(txq->tx_rndis_mz);
370 	rte_free(txq);
371 }
372 
373 /*
374  * Check the status of a Tx descriptor in the queue.
375  *
376  * returns:
377  *  - -EINVAL              - offset outside of tx_descriptor pool.
378  *  - RTE_ETH_TX_DESC_FULL - descriptor is not acknowledged by host.
379  *  - RTE_ETH_TX_DESC_DONE - descriptor is available.
380  */
381 int hn_dev_tx_descriptor_status(void *arg, uint16_t offset)
382 {
383 	const struct hn_tx_queue *txq = arg;
384 
385 	hn_process_events(txq->hv, txq->queue_id, 0);
386 
387 	if (offset >= rte_mempool_avail_count(txq->txdesc_pool))
388 		return -EINVAL;
389 
390 	if (offset < rte_mempool_in_use_count(txq->txdesc_pool))
391 		return RTE_ETH_TX_DESC_FULL;
392 	else
393 		return RTE_ETH_TX_DESC_DONE;
394 }
395 
396 static void
397 hn_nvs_send_completed(struct rte_eth_dev *dev, uint16_t queue_id,
398 		      unsigned long xactid, const struct hn_nvs_rndis_ack *ack)
399 {
400 	struct hn_data *hv = dev->data->dev_private;
401 	struct hn_txdesc *txd = (struct hn_txdesc *)xactid;
402 	struct hn_tx_queue *txq;
403 
404 	/* Control packets are sent with xacid == 0 */
405 	if (!txd)
406 		return;
407 
408 	txq = dev->data->tx_queues[queue_id];
409 	if (likely(ack->status == NVS_STATUS_OK)) {
410 		PMD_TX_LOG(DEBUG, "port %u:%u complete tx %u packets %u bytes %u",
411 			   txq->port_id, txq->queue_id, txd->chim_index,
412 			   txd->packets, txd->data_size);
413 		txq->stats.bytes += txd->data_size;
414 		txq->stats.packets += txd->packets;
415 	} else {
416 		PMD_DRV_LOG(NOTICE, "port %u:%u complete tx %u failed status %u",
417 			    txq->port_id, txq->queue_id, txd->chim_index, ack->status);
418 		++txq->stats.errors;
419 	}
420 
421 	if (txd->chim_index != NVS_CHIM_IDX_INVALID) {
422 		hn_chim_free(hv, txd->chim_index);
423 		txd->chim_index = NVS_CHIM_IDX_INVALID;
424 	}
425 
426 	rte_pktmbuf_free(txd->m);
427 	hn_txd_put(txq, txd);
428 }
429 
430 /* Handle transmit completion events */
431 static void
432 hn_nvs_handle_comp(struct rte_eth_dev *dev, uint16_t queue_id,
433 		   const struct vmbus_chanpkt_hdr *pkt,
434 		   const void *data)
435 {
436 	const struct hn_nvs_hdr *hdr = data;
437 
438 	switch (hdr->type) {
439 	case NVS_TYPE_RNDIS_ACK:
440 		hn_nvs_send_completed(dev, queue_id, pkt->xactid, data);
441 		break;
442 
443 	default:
444 		PMD_DRV_LOG(NOTICE, "unexpected send completion type %u",
445 			   hdr->type);
446 	}
447 }
448 
449 /* Parse per-packet info (meta data) */
450 static int
451 hn_rndis_rxinfo(const void *info_data, unsigned int info_dlen,
452 		struct hn_rxinfo *info)
453 {
454 	const struct rndis_pktinfo *pi = info_data;
455 	uint32_t mask = 0;
456 
457 	while (info_dlen != 0) {
458 		const void *data;
459 		uint32_t dlen;
460 
461 		if (unlikely(info_dlen < sizeof(*pi)))
462 			return -EINVAL;
463 
464 		if (unlikely(info_dlen < pi->size))
465 			return -EINVAL;
466 		info_dlen -= pi->size;
467 
468 		if (unlikely(pi->size & RNDIS_PKTINFO_SIZE_ALIGNMASK))
469 			return -EINVAL;
470 		if (unlikely(pi->size < pi->offset))
471 			return -EINVAL;
472 
473 		dlen = pi->size - pi->offset;
474 		data = pi->data;
475 
476 		switch (pi->type) {
477 		case NDIS_PKTINFO_TYPE_VLAN:
478 			if (unlikely(dlen < NDIS_VLAN_INFO_SIZE))
479 				return -EINVAL;
480 			info->vlan_info = *((const uint32_t *)data);
481 			mask |= HN_RXINFO_VLAN;
482 			break;
483 
484 		case NDIS_PKTINFO_TYPE_CSUM:
485 			if (unlikely(dlen < NDIS_RXCSUM_INFO_SIZE))
486 				return -EINVAL;
487 			info->csum_info = *((const uint32_t *)data);
488 			mask |= HN_RXINFO_CSUM;
489 			break;
490 
491 		case NDIS_PKTINFO_TYPE_HASHVAL:
492 			if (unlikely(dlen < NDIS_HASH_VALUE_SIZE))
493 				return -EINVAL;
494 			info->hash_value = *((const uint32_t *)data);
495 			mask |= HN_RXINFO_HASHVAL;
496 			break;
497 
498 		case NDIS_PKTINFO_TYPE_HASHINF:
499 			if (unlikely(dlen < NDIS_HASH_INFO_SIZE))
500 				return -EINVAL;
501 			info->hash_info = *((const uint32_t *)data);
502 			mask |= HN_RXINFO_HASHINF;
503 			break;
504 
505 		default:
506 			goto next;
507 		}
508 
509 		if (mask == HN_RXINFO_ALL)
510 			break; /* All found; done */
511 next:
512 		pi = (const struct rndis_pktinfo *)
513 		    ((const uint8_t *)pi + pi->size);
514 	}
515 
516 	/*
517 	 * Final fixup.
518 	 * - If there is no hash value, invalidate the hash info.
519 	 */
520 	if (!(mask & HN_RXINFO_HASHVAL))
521 		info->hash_info = HN_NDIS_HASH_INFO_INVALID;
522 	return 0;
523 }
524 
525 static void hn_rx_buf_free_cb(void *buf __rte_unused, void *opaque)
526 {
527 	struct hn_rx_bufinfo *rxb = opaque;
528 	struct hn_rx_queue *rxq = rxb->rxq;
529 
530 	rte_atomic32_dec(&rxq->rxbuf_outstanding);
531 	hn_nvs_ack_rxbuf(rxb->chan, rxb->xactid);
532 }
533 
534 static struct hn_rx_bufinfo *hn_rx_buf_init(struct hn_rx_queue *rxq,
535 					    const struct vmbus_chanpkt_rxbuf *pkt)
536 {
537 	struct hn_rx_bufinfo *rxb;
538 
539 	rxb = rxq->rxbuf_info + pkt->hdr.xactid;
540 	rxb->chan = rxq->chan;
541 	rxb->xactid = pkt->hdr.xactid;
542 	rxb->rxq = rxq;
543 
544 	rxb->shinfo.free_cb = hn_rx_buf_free_cb;
545 	rxb->shinfo.fcb_opaque = rxb;
546 	rte_mbuf_ext_refcnt_set(&rxb->shinfo, 1);
547 	return rxb;
548 }
549 
550 static void hn_rxpkt(struct hn_rx_queue *rxq, struct hn_rx_bufinfo *rxb,
551 		     uint8_t *data, unsigned int headroom, unsigned int dlen,
552 		     const struct hn_rxinfo *info)
553 {
554 	struct hn_data *hv = rxq->hv;
555 	struct rte_mbuf *m;
556 	bool use_extbuf = false;
557 
558 	m = rte_pktmbuf_alloc(rxq->mb_pool);
559 	if (unlikely(!m)) {
560 		struct rte_eth_dev *dev =
561 			&rte_eth_devices[rxq->port_id];
562 
563 		dev->data->rx_mbuf_alloc_failed++;
564 		return;
565 	}
566 
567 	/*
568 	 * For large packets, avoid copy if possible but need to keep
569 	 * some space available in receive area for later packets.
570 	 */
571 	if (hv->rx_extmbuf_enable && dlen > hv->rx_copybreak &&
572 	    (uint32_t)rte_atomic32_read(&rxq->rxbuf_outstanding) <
573 			hv->rxbuf_section_cnt / 2) {
574 		struct rte_mbuf_ext_shared_info *shinfo;
575 		const void *rxbuf;
576 		rte_iova_t iova;
577 
578 		/*
579 		 * Build an external mbuf that points to receive area.
580 		 * Use refcount to handle multiple packets in same
581 		 * receive buffer section.
582 		 */
583 		rxbuf = hv->rxbuf_res.addr;
584 		iova = rte_mem_virt2iova(rxbuf) + RTE_PTR_DIFF(data, rxbuf);
585 		shinfo = &rxb->shinfo;
586 
587 		/* shinfo is already set to 1 by the caller */
588 		if (rte_mbuf_ext_refcnt_update(shinfo, 1) == 2)
589 			rte_atomic32_inc(&rxq->rxbuf_outstanding);
590 
591 		rte_pktmbuf_attach_extbuf(m, data, iova,
592 					  dlen + headroom, shinfo);
593 		m->data_off = headroom;
594 		use_extbuf = true;
595 	} else {
596 		/* Mbuf's in pool must be large enough to hold small packets */
597 		if (unlikely(rte_pktmbuf_tailroom(m) < dlen)) {
598 			rte_pktmbuf_free_seg(m);
599 			++rxq->stats.errors;
600 			return;
601 		}
602 		rte_memcpy(rte_pktmbuf_mtod(m, void *),
603 			   data + headroom, dlen);
604 	}
605 
606 	m->port = rxq->port_id;
607 	m->pkt_len = dlen;
608 	m->data_len = dlen;
609 	m->packet_type = rte_net_get_ptype(m, NULL,
610 					   RTE_PTYPE_L2_MASK |
611 					   RTE_PTYPE_L3_MASK |
612 					   RTE_PTYPE_L4_MASK);
613 
614 	if (info->vlan_info != HN_NDIS_VLAN_INFO_INVALID) {
615 		m->vlan_tci = RTE_VLAN_TCI_MAKE(NDIS_VLAN_INFO_ID(info->vlan_info),
616 						NDIS_VLAN_INFO_PRI(info->vlan_info),
617 						NDIS_VLAN_INFO_CFI(info->vlan_info));
618 		m->ol_flags |= RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
619 
620 		/* NDIS always strips tag, put it back if necessary */
621 		if (!hv->vlan_strip && rte_vlan_insert(&m)) {
622 			PMD_DRV_LOG(DEBUG, "vlan insert failed");
623 			++rxq->stats.errors;
624 			if (use_extbuf)
625 				rte_pktmbuf_detach_extbuf(m);
626 			rte_pktmbuf_free(m);
627 			return;
628 		}
629 	}
630 
631 	if (info->csum_info != HN_NDIS_RXCSUM_INFO_INVALID) {
632 		if (info->csum_info & NDIS_RXCSUM_INFO_IPCS_OK)
633 			m->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
634 
635 		if (info->csum_info & (NDIS_RXCSUM_INFO_UDPCS_OK
636 				       | NDIS_RXCSUM_INFO_TCPCS_OK))
637 			m->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
638 		else if (info->csum_info & (NDIS_RXCSUM_INFO_TCPCS_FAILED
639 					    | NDIS_RXCSUM_INFO_UDPCS_FAILED))
640 			m->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
641 	}
642 
643 	if (info->hash_info != HN_NDIS_HASH_INFO_INVALID) {
644 		m->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
645 		m->hash.rss = info->hash_value;
646 	}
647 
648 	PMD_RX_LOG(DEBUG,
649 		   "port %u:%u RX id %"PRIu64" size %u type %#x ol_flags %#"PRIx64,
650 		   rxq->port_id, rxq->queue_id, rxb->xactid,
651 		   m->pkt_len, m->packet_type, m->ol_flags);
652 
653 	++rxq->stats.packets;
654 	rxq->stats.bytes += m->pkt_len;
655 	hn_update_packet_stats(&rxq->stats, m);
656 
657 	if (unlikely(rte_ring_sp_enqueue(rxq->rx_ring, m) != 0)) {
658 		++rxq->stats.ring_full;
659 		PMD_RX_LOG(DEBUG, "rx ring full");
660 		if (use_extbuf)
661 			rte_pktmbuf_detach_extbuf(m);
662 		rte_pktmbuf_free(m);
663 	}
664 }
665 
666 static void hn_rndis_rx_data(struct hn_rx_queue *rxq,
667 			     struct hn_rx_bufinfo *rxb,
668 			     void *data, uint32_t dlen)
669 {
670 	unsigned int data_off, data_len;
671 	unsigned int pktinfo_off, pktinfo_len;
672 	const struct rndis_packet_msg *pkt = data;
673 	struct hn_rxinfo info = {
674 		.vlan_info = HN_NDIS_VLAN_INFO_INVALID,
675 		.csum_info = HN_NDIS_RXCSUM_INFO_INVALID,
676 		.hash_info = HN_NDIS_HASH_INFO_INVALID,
677 	};
678 	int err;
679 
680 	hn_rndis_dump(pkt);
681 
682 	if (unlikely(dlen < sizeof(*pkt)))
683 		goto error;
684 
685 	if (unlikely(dlen < pkt->len))
686 		goto error; /* truncated RNDIS from host */
687 
688 	if (unlikely(pkt->len < pkt->datalen
689 		     + pkt->oobdatalen + pkt->pktinfolen))
690 		goto error;
691 
692 	if (unlikely(pkt->datalen == 0))
693 		goto error;
694 
695 	/* Check offsets. */
696 	if (unlikely(pkt->dataoffset < RNDIS_PACKET_MSG_OFFSET_MIN))
697 		goto error;
698 
699 	if (likely(pkt->pktinfooffset > 0) &&
700 	    unlikely(pkt->pktinfooffset < RNDIS_PACKET_MSG_OFFSET_MIN ||
701 		     (pkt->pktinfooffset & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK)))
702 		goto error;
703 
704 	data_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->dataoffset);
705 	data_len = pkt->datalen;
706 	pktinfo_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->pktinfooffset);
707 	pktinfo_len = pkt->pktinfolen;
708 
709 	if (likely(pktinfo_len > 0)) {
710 		err = hn_rndis_rxinfo((const uint8_t *)pkt + pktinfo_off,
711 				      pktinfo_len, &info);
712 		if (err)
713 			goto error;
714 	}
715 
716 	/* overflow check */
717 	if (data_len > data_len + data_off || data_len + data_off > pkt->len)
718 		goto error;
719 
720 	if (unlikely(data_len < RTE_ETHER_HDR_LEN))
721 		goto error;
722 
723 	hn_rxpkt(rxq, rxb, data, data_off, data_len, &info);
724 	return;
725 error:
726 	++rxq->stats.errors;
727 }
728 
729 static void
730 hn_rndis_receive(struct rte_eth_dev *dev, struct hn_rx_queue *rxq,
731 		 struct hn_rx_bufinfo *rxb, void *buf, uint32_t len)
732 {
733 	const struct rndis_msghdr *hdr = buf;
734 
735 	switch (hdr->type) {
736 	case RNDIS_PACKET_MSG:
737 		if (dev->data->dev_started)
738 			hn_rndis_rx_data(rxq, rxb, buf, len);
739 		break;
740 
741 	case RNDIS_INDICATE_STATUS_MSG:
742 		hn_rndis_link_status(dev, buf);
743 		break;
744 
745 	case RNDIS_INITIALIZE_CMPLT:
746 	case RNDIS_QUERY_CMPLT:
747 	case RNDIS_SET_CMPLT:
748 		hn_rndis_receive_response(rxq->hv, buf, len);
749 		break;
750 
751 	default:
752 		PMD_DRV_LOG(NOTICE,
753 			    "unexpected RNDIS message (type %#x len %u)",
754 			    hdr->type, len);
755 		break;
756 	}
757 }
758 
759 static void
760 hn_nvs_handle_rxbuf(struct rte_eth_dev *dev,
761 		    struct hn_data *hv,
762 		    struct hn_rx_queue *rxq,
763 		    const struct vmbus_chanpkt_hdr *hdr,
764 		    const void *buf)
765 {
766 	const struct vmbus_chanpkt_rxbuf *pkt;
767 	const struct hn_nvs_hdr *nvs_hdr = buf;
768 	uint32_t rxbuf_sz = hv->rxbuf_res.len;
769 	char *rxbuf = hv->rxbuf_res.addr;
770 	unsigned int i, hlen, count;
771 	struct hn_rx_bufinfo *rxb;
772 
773 	/* At minimum we need type header */
774 	if (unlikely(vmbus_chanpkt_datalen(hdr) < sizeof(*nvs_hdr))) {
775 		PMD_RX_LOG(ERR, "invalid receive nvs RNDIS");
776 		return;
777 	}
778 
779 	/* Make sure that this is a RNDIS message. */
780 	if (unlikely(nvs_hdr->type != NVS_TYPE_RNDIS)) {
781 		PMD_RX_LOG(ERR, "nvs type %u, not RNDIS",
782 			   nvs_hdr->type);
783 		return;
784 	}
785 
786 	hlen = vmbus_chanpkt_getlen(hdr->hlen);
787 	if (unlikely(hlen < sizeof(*pkt))) {
788 		PMD_RX_LOG(ERR, "invalid rxbuf chanpkt");
789 		return;
790 	}
791 
792 	pkt = container_of(hdr, const struct vmbus_chanpkt_rxbuf, hdr);
793 	if (unlikely(pkt->rxbuf_id != NVS_RXBUF_SIG)) {
794 		PMD_RX_LOG(ERR, "invalid rxbuf_id 0x%08x",
795 			   pkt->rxbuf_id);
796 		return;
797 	}
798 
799 	count = pkt->rxbuf_cnt;
800 	if (unlikely(hlen < offsetof(struct vmbus_chanpkt_rxbuf,
801 				     rxbuf[count]))) {
802 		PMD_RX_LOG(ERR, "invalid rxbuf_cnt %u", count);
803 		return;
804 	}
805 
806 	if (pkt->hdr.xactid > hv->rxbuf_section_cnt) {
807 		PMD_RX_LOG(ERR, "invalid rxbuf section id %" PRIx64,
808 			   pkt->hdr.xactid);
809 		return;
810 	}
811 
812 	/* Setup receive buffer info to allow for callback */
813 	rxb = hn_rx_buf_init(rxq, pkt);
814 
815 	/* Each range represents 1 RNDIS pkt that contains 1 Ethernet frame */
816 	for (i = 0; i < count; ++i) {
817 		unsigned int ofs, len;
818 
819 		ofs = pkt->rxbuf[i].ofs;
820 		len = pkt->rxbuf[i].len;
821 
822 		if (unlikely(ofs + len > rxbuf_sz)) {
823 			PMD_RX_LOG(ERR,
824 				   "%uth RNDIS msg overflow ofs %u, len %u",
825 				   i, ofs, len);
826 			continue;
827 		}
828 
829 		if (unlikely(len == 0)) {
830 			PMD_RX_LOG(ERR, "%uth RNDIS msg len %u", i, len);
831 			continue;
832 		}
833 
834 		hn_rndis_receive(dev, rxq, rxb,
835 				 rxbuf + ofs, len);
836 	}
837 
838 	/* Send ACK now if external mbuf not used */
839 	if (rte_mbuf_ext_refcnt_update(&rxb->shinfo, -1) == 0)
840 		hn_nvs_ack_rxbuf(rxb->chan, rxb->xactid);
841 }
842 
843 /*
844  * Called when NVS inband events are received.
845  * Send up a two part message with port_id and the NVS message
846  * to the pipe to the netvsc-vf-event control thread.
847  */
848 static void hn_nvs_handle_notify(struct rte_eth_dev *dev,
849 				 const struct vmbus_chanpkt_hdr *pkt,
850 				 const void *data)
851 {
852 	const struct hn_nvs_hdr *hdr = data;
853 
854 	switch (hdr->type) {
855 	case NVS_TYPE_TXTBL_NOTE:
856 		/* Transmit indirection table has locking problems
857 		 * in DPDK and therefore not implemented
858 		 */
859 		PMD_DRV_LOG(DEBUG, "host notify of transmit indirection table");
860 		break;
861 
862 	case NVS_TYPE_VFASSOC_NOTE:
863 		hn_nvs_handle_vfassoc(dev, pkt, data);
864 		break;
865 
866 	default:
867 		PMD_DRV_LOG(INFO,
868 			    "got notify, nvs type %u", hdr->type);
869 	}
870 }
871 
872 struct hn_rx_queue *hn_rx_queue_alloc(struct hn_data *hv,
873 				      uint16_t queue_id,
874 				      unsigned int socket_id)
875 {
876 	struct hn_rx_queue *rxq;
877 
878 	rxq = rte_zmalloc_socket("HN_RXQ", sizeof(*rxq),
879 				 RTE_CACHE_LINE_SIZE, socket_id);
880 	if (!rxq)
881 		return NULL;
882 
883 	rxq->hv = hv;
884 	rxq->chan = hv->channels[queue_id];
885 	rte_spinlock_init(&rxq->ring_lock);
886 	rxq->port_id = hv->port_id;
887 	rxq->queue_id = queue_id;
888 	rxq->event_sz = HN_RXQ_EVENT_DEFAULT;
889 	rxq->event_buf = rte_malloc_socket("HN_EVENTS", HN_RXQ_EVENT_DEFAULT,
890 					   RTE_CACHE_LINE_SIZE, socket_id);
891 	if (!rxq->event_buf) {
892 		rte_free(rxq);
893 		return NULL;
894 	}
895 
896 	/* setup rxbuf_info for non-primary queue */
897 	if (queue_id) {
898 		rxq->rxbuf_info = rte_calloc("HN_RXBUF_INFO",
899 					hv->rxbuf_section_cnt,
900 					sizeof(*rxq->rxbuf_info),
901 					RTE_CACHE_LINE_SIZE);
902 
903 		if (!rxq->rxbuf_info) {
904 			PMD_DRV_LOG(ERR,
905 				"Could not allocate rxbuf info for queue %d\n",
906 				queue_id);
907 			rte_free(rxq->event_buf);
908 			rte_free(rxq);
909 			return NULL;
910 		}
911 	}
912 
913 	return rxq;
914 }
915 
916 void
917 hn_dev_rx_queue_info(struct rte_eth_dev *dev, uint16_t queue_id,
918 		     struct rte_eth_rxq_info *qinfo)
919 {
920 	struct hn_rx_queue *rxq = dev->data->rx_queues[queue_id];
921 
922 	qinfo->mp = rxq->mb_pool;
923 	qinfo->nb_desc = rxq->rx_ring->size;
924 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
925 }
926 
927 int
928 hn_dev_rx_queue_setup(struct rte_eth_dev *dev,
929 		      uint16_t queue_idx, uint16_t nb_desc,
930 		      unsigned int socket_id,
931 		      const struct rte_eth_rxconf *rx_conf,
932 		      struct rte_mempool *mp)
933 {
934 	struct hn_data *hv = dev->data->dev_private;
935 	char ring_name[RTE_RING_NAMESIZE];
936 	struct hn_rx_queue *rxq;
937 	unsigned int count;
938 	int error = -ENOMEM;
939 
940 	PMD_INIT_FUNC_TRACE();
941 
942 	if (queue_idx == 0) {
943 		rxq = hv->primary;
944 	} else {
945 		rxq = hn_rx_queue_alloc(hv, queue_idx, socket_id);
946 		if (!rxq)
947 			return -ENOMEM;
948 	}
949 
950 	rxq->mb_pool = mp;
951 	count = rte_mempool_avail_count(mp) / dev->data->nb_rx_queues;
952 	if (nb_desc == 0 || nb_desc > count)
953 		nb_desc = count;
954 
955 	/*
956 	 * Staging ring from receive event logic to rx_pkts.
957 	 * rx_pkts assumes caller is handling multi-thread issue.
958 	 * event logic has locking.
959 	 */
960 	snprintf(ring_name, sizeof(ring_name),
961 		 "hn_rx_%u_%u", dev->data->port_id, queue_idx);
962 	rxq->rx_ring = rte_ring_create(ring_name,
963 				       rte_align32pow2(nb_desc),
964 				       socket_id, 0);
965 	if (!rxq->rx_ring)
966 		goto fail;
967 
968 	error = hn_vf_rx_queue_setup(dev, queue_idx, nb_desc,
969 				     socket_id, rx_conf, mp);
970 	if (error)
971 		goto fail;
972 
973 	dev->data->rx_queues[queue_idx] = rxq;
974 	return 0;
975 
976 fail:
977 	rte_ring_free(rxq->rx_ring);
978 	rte_free(rxq->rxbuf_info);
979 	rte_free(rxq->event_buf);
980 	rte_free(rxq);
981 	return error;
982 }
983 
984 static void
985 hn_rx_queue_free(struct hn_rx_queue *rxq, bool keep_primary)
986 {
987 
988 	if (!rxq)
989 		return;
990 
991 	rte_ring_free(rxq->rx_ring);
992 	rxq->rx_ring = NULL;
993 	rxq->mb_pool = NULL;
994 
995 	hn_vf_rx_queue_release(rxq->hv, rxq->queue_id);
996 
997 	/* Keep primary queue to allow for control operations */
998 	if (keep_primary && rxq == rxq->hv->primary)
999 		return;
1000 
1001 	rte_free(rxq->rxbuf_info);
1002 	rte_free(rxq->event_buf);
1003 	rte_free(rxq);
1004 }
1005 
1006 void
1007 hn_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1008 {
1009 	struct hn_rx_queue *rxq = dev->data->rx_queues[qid];
1010 
1011 	PMD_INIT_FUNC_TRACE();
1012 
1013 	hn_rx_queue_free(rxq, true);
1014 }
1015 
1016 /*
1017  * Get the number of used descriptor in a rx queue
1018  * For this device that means how many packets are pending in the ring.
1019  */
1020 uint32_t
1021 hn_dev_rx_queue_count(void *rx_queue)
1022 {
1023 	struct hn_rx_queue *rxq = rx_queue;
1024 
1025 	return rte_ring_count(rxq->rx_ring);
1026 }
1027 
1028 /*
1029  * Check the status of a Rx descriptor in the queue
1030  *
1031  * returns:
1032  *  - -EINVAL               - offset outside of ring
1033  *  - RTE_ETH_RX_DESC_AVAIL - no data available yet
1034  *  - RTE_ETH_RX_DESC_DONE  - data is waiting in staging ring
1035  */
1036 int hn_dev_rx_queue_status(void *arg, uint16_t offset)
1037 {
1038 	const struct hn_rx_queue *rxq = arg;
1039 
1040 	hn_process_events(rxq->hv, rxq->queue_id, 0);
1041 	if (offset >= rxq->rx_ring->capacity)
1042 		return -EINVAL;
1043 
1044 	if (offset < rte_ring_count(rxq->rx_ring))
1045 		return RTE_ETH_RX_DESC_DONE;
1046 	else
1047 		return RTE_ETH_RX_DESC_AVAIL;
1048 }
1049 
1050 int
1051 hn_dev_tx_done_cleanup(void *arg, uint32_t free_cnt)
1052 {
1053 	struct hn_tx_queue *txq = arg;
1054 
1055 	return hn_process_events(txq->hv, txq->queue_id, free_cnt);
1056 }
1057 
1058 /*
1059  * Process pending events on the channel.
1060  * Called from both Rx queue poll and Tx cleanup
1061  */
1062 uint32_t hn_process_events(struct hn_data *hv, uint16_t queue_id,
1063 			   uint32_t tx_limit)
1064 {
1065 	struct rte_eth_dev *dev = &rte_eth_devices[hv->port_id];
1066 	struct hn_rx_queue *rxq;
1067 	uint32_t bytes_read = 0;
1068 	uint32_t tx_done = 0;
1069 	int ret = 0;
1070 
1071 	rxq = queue_id == 0 ? hv->primary : dev->data->rx_queues[queue_id];
1072 
1073 	/*
1074 	 * Since channel is shared between Rx and TX queue need to have a lock
1075 	 * since DPDK does not force same CPU to be used for Rx/Tx.
1076 	 */
1077 	if (unlikely(!rte_spinlock_trylock(&rxq->ring_lock)))
1078 		return 0;
1079 
1080 	for (;;) {
1081 		const struct vmbus_chanpkt_hdr *pkt;
1082 		uint32_t len = rxq->event_sz;
1083 		const void *data;
1084 
1085 retry:
1086 		ret = rte_vmbus_chan_recv_raw(rxq->chan, rxq->event_buf, &len);
1087 		if (ret == -EAGAIN)
1088 			break;	/* ring is empty */
1089 
1090 		if (unlikely(ret == -ENOBUFS)) {
1091 			/* event buffer not large enough to read ring */
1092 
1093 			PMD_DRV_LOG(DEBUG,
1094 				    "event buffer expansion (need %u)", len);
1095 			rxq->event_sz = len + len / 4;
1096 			rxq->event_buf = rte_realloc(rxq->event_buf, rxq->event_sz,
1097 						     RTE_CACHE_LINE_SIZE);
1098 			if (rxq->event_buf)
1099 				goto retry;
1100 			/* out of memory, no more events now */
1101 			rxq->event_sz = 0;
1102 			break;
1103 		}
1104 
1105 		if (unlikely(ret <= 0)) {
1106 			/* This indicates a failure to communicate (or worse) */
1107 			rte_exit(EXIT_FAILURE,
1108 				 "vmbus ring buffer error: %d", ret);
1109 		}
1110 
1111 		bytes_read += ret;
1112 		pkt = (const struct vmbus_chanpkt_hdr *)rxq->event_buf;
1113 		data = (char *)rxq->event_buf + vmbus_chanpkt_getlen(pkt->hlen);
1114 
1115 		switch (pkt->type) {
1116 		case VMBUS_CHANPKT_TYPE_COMP:
1117 			++tx_done;
1118 			hn_nvs_handle_comp(dev, queue_id, pkt, data);
1119 			break;
1120 
1121 		case VMBUS_CHANPKT_TYPE_RXBUF:
1122 			hn_nvs_handle_rxbuf(dev, hv, rxq, pkt, data);
1123 			break;
1124 
1125 		case VMBUS_CHANPKT_TYPE_INBAND:
1126 			hn_nvs_handle_notify(dev, pkt, data);
1127 			break;
1128 
1129 		default:
1130 			PMD_DRV_LOG(ERR, "unknown chan pkt %u", pkt->type);
1131 			break;
1132 		}
1133 
1134 		if (tx_limit && tx_done >= tx_limit)
1135 			break;
1136 	}
1137 
1138 	if (bytes_read > 0)
1139 		rte_vmbus_chan_signal_read(rxq->chan, bytes_read);
1140 
1141 	rte_spinlock_unlock(&rxq->ring_lock);
1142 
1143 	return tx_done;
1144 }
1145 
1146 static void hn_append_to_chim(struct hn_tx_queue *txq,
1147 			      struct rndis_packet_msg *pkt,
1148 			      const struct rte_mbuf *m)
1149 {
1150 	struct hn_txdesc *txd = txq->agg_txd;
1151 	uint8_t *buf = (uint8_t *)pkt;
1152 	unsigned int data_offs;
1153 
1154 	hn_rndis_dump(pkt);
1155 
1156 	data_offs = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->dataoffset);
1157 	txd->chim_size += pkt->len;
1158 	txd->data_size += m->pkt_len;
1159 	++txd->packets;
1160 	hn_update_packet_stats(&txq->stats, m);
1161 
1162 	for (; m; m = m->next) {
1163 		uint16_t len = rte_pktmbuf_data_len(m);
1164 
1165 		rte_memcpy(buf + data_offs,
1166 			   rte_pktmbuf_mtod(m, const char *), len);
1167 		data_offs += len;
1168 	}
1169 }
1170 
1171 /*
1172  * Send pending aggregated data in chimney buffer (if any).
1173  * Returns error if send was unsuccessful because channel ring buffer
1174  * was full.
1175  */
1176 static int hn_flush_txagg(struct hn_tx_queue *txq, bool *need_sig)
1177 
1178 {
1179 	struct hn_txdesc *txd = txq->agg_txd;
1180 	struct hn_nvs_rndis rndis;
1181 	int ret;
1182 
1183 	if (!txd)
1184 		return 0;
1185 
1186 	rndis = (struct hn_nvs_rndis) {
1187 		.type = NVS_TYPE_RNDIS,
1188 		.rndis_mtype = NVS_RNDIS_MTYPE_DATA,
1189 		.chim_idx = txd->chim_index,
1190 		.chim_sz = txd->chim_size,
1191 	};
1192 
1193 	PMD_TX_LOG(DEBUG, "port %u:%u tx %u size %u",
1194 		   txq->port_id, txq->queue_id, txd->chim_index, txd->chim_size);
1195 
1196 	ret = hn_nvs_send(txq->chan, VMBUS_CHANPKT_FLAG_RC,
1197 			  &rndis, sizeof(rndis), (uintptr_t)txd, need_sig);
1198 
1199 	if (likely(ret == 0))
1200 		hn_reset_txagg(txq);
1201 	else if (ret == -EAGAIN) {
1202 		PMD_TX_LOG(DEBUG, "port %u:%u channel full",
1203 			   txq->port_id, txq->queue_id);
1204 		++txq->stats.channel_full;
1205 	} else {
1206 		++txq->stats.errors;
1207 
1208 		PMD_DRV_LOG(NOTICE, "port %u:%u send failed: %d",
1209 			   txq->port_id, txq->queue_id, ret);
1210 	}
1211 	return ret;
1212 }
1213 
1214 /*
1215  * Try and find a place in a send chimney buffer to put
1216  * the small packet. If space is available, this routine
1217  * returns a pointer of where to place the data.
1218  * If no space, caller should try direct transmit.
1219  */
1220 static void *
1221 hn_try_txagg(struct hn_data *hv, struct hn_tx_queue *txq,
1222 	     struct hn_txdesc *txd, uint32_t pktsize)
1223 {
1224 	struct hn_txdesc *agg_txd = txq->agg_txd;
1225 	struct rndis_packet_msg *pkt;
1226 	void *chim;
1227 
1228 	if (agg_txd) {
1229 		unsigned int padding, olen;
1230 
1231 		/*
1232 		 * Update the previous RNDIS packet's total length,
1233 		 * it can be increased due to the mandatory alignment
1234 		 * padding for this RNDIS packet.  And update the
1235 		 * aggregating txdesc's chimney sending buffer size
1236 		 * accordingly.
1237 		 *
1238 		 * Zero-out the padding, as required by the RNDIS spec.
1239 		 */
1240 		pkt = txq->agg_prevpkt;
1241 		olen = pkt->len;
1242 		padding = RTE_ALIGN(olen, txq->agg_align) - olen;
1243 		if (padding > 0) {
1244 			agg_txd->chim_size += padding;
1245 			pkt->len += padding;
1246 			memset((uint8_t *)pkt + olen, 0, padding);
1247 		}
1248 
1249 		chim = (uint8_t *)pkt + pkt->len;
1250 		txq->agg_prevpkt = chim;
1251 		txq->agg_pktleft--;
1252 		txq->agg_szleft -= pktsize;
1253 		if (txq->agg_szleft < HN_PKTSIZE_MIN(txq->agg_align)) {
1254 			/*
1255 			 * Probably can't aggregate more packets,
1256 			 * flush this aggregating txdesc proactively.
1257 			 */
1258 			txq->agg_pktleft = 0;
1259 		}
1260 
1261 		hn_txd_put(txq, txd);
1262 		return chim;
1263 	}
1264 
1265 	txd->chim_index = hn_chim_alloc(hv);
1266 	if (txd->chim_index == NVS_CHIM_IDX_INVALID)
1267 		return NULL;
1268 
1269 	chim = (uint8_t *)hv->chim_res.addr
1270 			+ txd->chim_index * hv->chim_szmax;
1271 
1272 	txq->agg_txd = txd;
1273 	txq->agg_pktleft = txq->agg_pktmax - 1;
1274 	txq->agg_szleft = txq->agg_szmax - pktsize;
1275 	txq->agg_prevpkt = chim;
1276 
1277 	return chim;
1278 }
1279 
1280 static inline void *
1281 hn_rndis_pktinfo_append(struct rndis_packet_msg *pkt,
1282 			uint32_t pi_dlen, uint32_t pi_type)
1283 {
1284 	const uint32_t pi_size = RNDIS_PKTINFO_SIZE(pi_dlen);
1285 	struct rndis_pktinfo *pi;
1286 
1287 	/*
1288 	 * Per-packet-info does not move; it only grows.
1289 	 *
1290 	 * NOTE:
1291 	 * pktinfooffset in this phase counts from the beginning
1292 	 * of rndis_packet_msg.
1293 	 */
1294 	pi = (struct rndis_pktinfo *)((uint8_t *)pkt + hn_rndis_pktlen(pkt));
1295 
1296 	pkt->pktinfolen += pi_size;
1297 
1298 	pi->size = pi_size;
1299 	pi->type = pi_type;
1300 	pi->offset = RNDIS_PKTINFO_OFFSET;
1301 
1302 	return pi->data;
1303 }
1304 
1305 /* Put RNDIS header and packet info on packet */
1306 static void hn_encap(struct rndis_packet_msg *pkt,
1307 		     uint16_t queue_id,
1308 		     const struct rte_mbuf *m)
1309 {
1310 	unsigned int hlen = m->l2_len + m->l3_len;
1311 	uint32_t *pi_data;
1312 	uint32_t pkt_hlen;
1313 
1314 	pkt->type = RNDIS_PACKET_MSG;
1315 	pkt->len = m->pkt_len;
1316 	pkt->dataoffset = 0;
1317 	pkt->datalen = m->pkt_len;
1318 	pkt->oobdataoffset = 0;
1319 	pkt->oobdatalen = 0;
1320 	pkt->oobdataelements = 0;
1321 	pkt->pktinfooffset = sizeof(*pkt);
1322 	pkt->pktinfolen = 0;
1323 	pkt->vchandle = 0;
1324 	pkt->reserved = 0;
1325 
1326 	/*
1327 	 * Set the hash value for this packet, to the queue_id to cause
1328 	 * TX done event for this packet on the right channel.
1329 	 */
1330 	pi_data = hn_rndis_pktinfo_append(pkt, NDIS_HASH_VALUE_SIZE,
1331 					  NDIS_PKTINFO_TYPE_HASHVAL);
1332 	*pi_data = queue_id;
1333 
1334 	if (m->ol_flags & RTE_MBUF_F_TX_VLAN) {
1335 		pi_data = hn_rndis_pktinfo_append(pkt, NDIS_VLAN_INFO_SIZE,
1336 						  NDIS_PKTINFO_TYPE_VLAN);
1337 		*pi_data = NDIS_VLAN_INFO_MAKE(RTE_VLAN_TCI_ID(m->vlan_tci),
1338 					       RTE_VLAN_TCI_PRI(m->vlan_tci),
1339 					       RTE_VLAN_TCI_DEI(m->vlan_tci));
1340 	}
1341 
1342 	if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
1343 		pi_data = hn_rndis_pktinfo_append(pkt, NDIS_LSO2_INFO_SIZE,
1344 						  NDIS_PKTINFO_TYPE_LSO);
1345 
1346 		if (m->ol_flags & RTE_MBUF_F_TX_IPV6) {
1347 			*pi_data = NDIS_LSO2_INFO_MAKEIPV6(hlen,
1348 							   m->tso_segsz);
1349 		} else {
1350 			*pi_data = NDIS_LSO2_INFO_MAKEIPV4(hlen,
1351 							   m->tso_segsz);
1352 		}
1353 	} else if ((m->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
1354 			RTE_MBUF_F_TX_TCP_CKSUM ||
1355 		   (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
1356 			RTE_MBUF_F_TX_UDP_CKSUM ||
1357 		   (m->ol_flags & RTE_MBUF_F_TX_IP_CKSUM)) {
1358 		pi_data = hn_rndis_pktinfo_append(pkt, NDIS_TXCSUM_INFO_SIZE,
1359 						  NDIS_PKTINFO_TYPE_CSUM);
1360 		*pi_data = 0;
1361 
1362 		if (m->ol_flags & RTE_MBUF_F_TX_IPV6)
1363 			*pi_data |= NDIS_TXCSUM_INFO_IPV6;
1364 		if (m->ol_flags & RTE_MBUF_F_TX_IPV4) {
1365 			*pi_data |= NDIS_TXCSUM_INFO_IPV4;
1366 
1367 			if (m->ol_flags & RTE_MBUF_F_TX_IP_CKSUM)
1368 				*pi_data |= NDIS_TXCSUM_INFO_IPCS;
1369 		}
1370 
1371 		if ((m->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
1372 				RTE_MBUF_F_TX_TCP_CKSUM)
1373 			*pi_data |= NDIS_TXCSUM_INFO_MKTCPCS(hlen);
1374 		else if ((m->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
1375 				RTE_MBUF_F_TX_UDP_CKSUM)
1376 			*pi_data |= NDIS_TXCSUM_INFO_MKUDPCS(hlen);
1377 	}
1378 
1379 	pkt_hlen = pkt->pktinfooffset + pkt->pktinfolen;
1380 	/* Fixup RNDIS packet message total length */
1381 	pkt->len += pkt_hlen;
1382 
1383 	/* Convert RNDIS packet message offsets */
1384 	pkt->dataoffset = hn_rndis_pktmsg_offset(pkt_hlen);
1385 	pkt->pktinfooffset = hn_rndis_pktmsg_offset(pkt->pktinfooffset);
1386 }
1387 
1388 /* How many scatter gather list elements ar needed */
1389 static unsigned int hn_get_slots(const struct rte_mbuf *m)
1390 {
1391 	unsigned int slots = 1; /* for RNDIS header */
1392 
1393 	while (m) {
1394 		unsigned int size = rte_pktmbuf_data_len(m);
1395 		unsigned int offs = rte_mbuf_data_iova(m) & PAGE_MASK;
1396 
1397 		slots += (offs + size + rte_mem_page_size() - 1) /
1398 				rte_mem_page_size();
1399 		m = m->next;
1400 	}
1401 
1402 	return slots;
1403 }
1404 
1405 /* Build scatter gather list from chained mbuf */
1406 static unsigned int hn_fill_sg(struct vmbus_gpa *sg,
1407 			       const struct rte_mbuf *m)
1408 {
1409 	unsigned int segs = 0;
1410 
1411 	while (m) {
1412 		rte_iova_t addr = rte_mbuf_data_iova(m);
1413 		unsigned int page = addr / rte_mem_page_size();
1414 		unsigned int offset = addr & PAGE_MASK;
1415 		unsigned int len = rte_pktmbuf_data_len(m);
1416 
1417 		while (len > 0) {
1418 			unsigned int bytes = RTE_MIN(len,
1419 					rte_mem_page_size() - offset);
1420 
1421 			sg[segs].page = page;
1422 			sg[segs].ofs = offset;
1423 			sg[segs].len = bytes;
1424 			segs++;
1425 
1426 			++page;
1427 			offset = 0;
1428 			len -= bytes;
1429 		}
1430 		m = m->next;
1431 	}
1432 
1433 	return segs;
1434 }
1435 
1436 /* Transmit directly from mbuf */
1437 static int hn_xmit_sg(struct hn_tx_queue *txq,
1438 		      const struct hn_txdesc *txd, const struct rte_mbuf *m,
1439 		      bool *need_sig)
1440 {
1441 	struct vmbus_gpa sg[hn_get_slots(m)];
1442 	struct hn_nvs_rndis nvs_rndis = {
1443 		.type = NVS_TYPE_RNDIS,
1444 		.rndis_mtype = NVS_RNDIS_MTYPE_DATA,
1445 		.chim_sz = txd->chim_size,
1446 	};
1447 	rte_iova_t addr;
1448 	unsigned int segs;
1449 
1450 	/* attach aggregation data if present */
1451 	if (txd->chim_size > 0)
1452 		nvs_rndis.chim_idx = txd->chim_index;
1453 	else
1454 		nvs_rndis.chim_idx = NVS_CHIM_IDX_INVALID;
1455 
1456 	hn_rndis_dump(txd->rndis_pkt);
1457 
1458 	/* pass IOVA of rndis header in first segment */
1459 	addr = txq->tx_rndis_iova +
1460 		((char *)txd->rndis_pkt - (char *)txq->tx_rndis);
1461 
1462 	sg[0].page = addr / rte_mem_page_size();
1463 	sg[0].ofs = addr & PAGE_MASK;
1464 	sg[0].len = RNDIS_PACKET_MSG_OFFSET_ABS(hn_rndis_pktlen(txd->rndis_pkt));
1465 	segs = 1;
1466 
1467 	hn_update_packet_stats(&txq->stats, m);
1468 
1469 	segs += hn_fill_sg(sg + 1, m);
1470 
1471 	PMD_TX_LOG(DEBUG, "port %u:%u tx %u segs %u size %u",
1472 		   txq->port_id, txq->queue_id, txd->chim_index,
1473 		   segs, nvs_rndis.chim_sz);
1474 
1475 	return hn_nvs_send_sglist(txq->chan, sg, segs,
1476 				  &nvs_rndis, sizeof(nvs_rndis),
1477 				  (uintptr_t)txd, need_sig);
1478 }
1479 
1480 uint16_t
1481 hn_xmit_pkts(void *ptxq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1482 {
1483 	struct hn_tx_queue *txq = ptxq;
1484 	uint16_t queue_id = txq->queue_id;
1485 	struct hn_data *hv = txq->hv;
1486 	struct rte_eth_dev *vf_dev;
1487 	bool need_sig = false;
1488 	uint16_t nb_tx, tx_thresh;
1489 	int ret;
1490 
1491 	if (unlikely(hv->closed))
1492 		return 0;
1493 
1494 	/*
1495 	 * Always check for events on the primary channel
1496 	 * because that is where hotplug notifications occur.
1497 	 */
1498 	tx_thresh = RTE_MAX(txq->free_thresh, nb_pkts);
1499 	if (txq->queue_id == 0 ||
1500 	    rte_mempool_avail_count(txq->txdesc_pool) < tx_thresh)
1501 		hn_process_events(hv, txq->queue_id, 0);
1502 
1503 	/* Transmit over VF if present and up */
1504 	if (hv->vf_ctx.vf_vsc_switched) {
1505 		rte_rwlock_read_lock(&hv->vf_lock);
1506 		vf_dev = hn_get_vf_dev(hv);
1507 		if (hv->vf_ctx.vf_vsc_switched && vf_dev &&
1508 		    vf_dev->data->dev_started) {
1509 			void *sub_q = vf_dev->data->tx_queues[queue_id];
1510 
1511 			nb_tx = (*vf_dev->tx_pkt_burst)
1512 					(sub_q, tx_pkts, nb_pkts);
1513 			rte_rwlock_read_unlock(&hv->vf_lock);
1514 			return nb_tx;
1515 		}
1516 		rte_rwlock_read_unlock(&hv->vf_lock);
1517 	}
1518 
1519 	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1520 		struct rte_mbuf *m = tx_pkts[nb_tx];
1521 		uint32_t pkt_size = m->pkt_len + HN_RNDIS_PKT_LEN;
1522 		struct rndis_packet_msg *pkt;
1523 		struct hn_txdesc *txd;
1524 
1525 		txd = hn_txd_get(txq);
1526 		if (txd == NULL)
1527 			break;
1528 
1529 		/* For small packets aggregate them in chimney buffer */
1530 		if (m->pkt_len <= hv->tx_copybreak &&
1531 		    pkt_size <= txq->agg_szmax) {
1532 			/* If this packet will not fit, then flush  */
1533 			if (txq->agg_pktleft == 0 ||
1534 			    RTE_ALIGN(pkt_size, txq->agg_align) > txq->agg_szleft) {
1535 				if (hn_flush_txagg(txq, &need_sig))
1536 					goto fail;
1537 			}
1538 
1539 
1540 			pkt = hn_try_txagg(hv, txq, txd, pkt_size);
1541 			if (unlikely(!pkt))
1542 				break;
1543 
1544 			hn_encap(pkt, queue_id, m);
1545 			hn_append_to_chim(txq, pkt, m);
1546 
1547 			rte_pktmbuf_free(m);
1548 
1549 			/* if buffer is full, flush */
1550 			if (txq->agg_pktleft == 0 &&
1551 			    hn_flush_txagg(txq, &need_sig))
1552 				goto fail;
1553 		} else {
1554 			/* Send any outstanding packets in buffer */
1555 			if (txq->agg_txd && hn_flush_txagg(txq, &need_sig))
1556 				goto fail;
1557 
1558 			pkt = txd->rndis_pkt;
1559 			txd->m = m;
1560 			txd->data_size = m->pkt_len;
1561 			++txd->packets;
1562 
1563 			hn_encap(pkt, queue_id, m);
1564 
1565 			ret = hn_xmit_sg(txq, txd, m, &need_sig);
1566 			if (unlikely(ret != 0)) {
1567 				if (ret == -EAGAIN) {
1568 					PMD_TX_LOG(DEBUG, "sg channel full");
1569 					++txq->stats.channel_full;
1570 				} else {
1571 					PMD_DRV_LOG(NOTICE, "sg send failed: %d", ret);
1572 					++txq->stats.errors;
1573 				}
1574 				hn_txd_put(txq, txd);
1575 				goto fail;
1576 			}
1577 		}
1578 	}
1579 
1580 	/* If partial buffer left, then try and send it.
1581 	 * if that fails, then reuse it on next send.
1582 	 */
1583 	hn_flush_txagg(txq, &need_sig);
1584 
1585 fail:
1586 	if (need_sig)
1587 		rte_vmbus_chan_signal_tx(txq->chan);
1588 
1589 	return nb_tx;
1590 }
1591 
1592 static uint16_t
1593 hn_recv_vf(uint16_t vf_port, const struct hn_rx_queue *rxq,
1594 	   struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1595 {
1596 	uint16_t i, n;
1597 
1598 	if (unlikely(nb_pkts == 0))
1599 		return 0;
1600 
1601 	n = rte_eth_rx_burst(vf_port, rxq->queue_id, rx_pkts, nb_pkts);
1602 
1603 	/* relabel the received mbufs */
1604 	for (i = 0; i < n; i++)
1605 		rx_pkts[i]->port = rxq->port_id;
1606 
1607 	return n;
1608 }
1609 
1610 uint16_t
1611 hn_recv_pkts(void *prxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1612 {
1613 	struct hn_rx_queue *rxq = prxq;
1614 	struct hn_data *hv = rxq->hv;
1615 	struct rte_eth_dev *vf_dev;
1616 	uint16_t nb_rcv;
1617 
1618 	if (unlikely(hv->closed))
1619 		return 0;
1620 
1621 	/* Check for new completions (and hotplug) */
1622 	if (likely(rte_ring_count(rxq->rx_ring) < nb_pkts))
1623 		hn_process_events(hv, rxq->queue_id, 0);
1624 
1625 	/* Always check the vmbus path for multicast and new flows */
1626 	nb_rcv = rte_ring_sc_dequeue_burst(rxq->rx_ring,
1627 					   (void **)rx_pkts, nb_pkts, NULL);
1628 
1629 	/* If VF is available, check that as well */
1630 	if (hv->vf_ctx.vf_vsc_switched) {
1631 		rte_rwlock_read_lock(&hv->vf_lock);
1632 		vf_dev = hn_get_vf_dev(hv);
1633 		if (hv->vf_ctx.vf_vsc_switched && vf_dev &&
1634 		    vf_dev->data->dev_started)
1635 			nb_rcv += hn_recv_vf(vf_dev->data->port_id, rxq,
1636 					     rx_pkts + nb_rcv,
1637 					     nb_pkts - nb_rcv);
1638 
1639 		rte_rwlock_read_unlock(&hv->vf_lock);
1640 	}
1641 	return nb_rcv;
1642 }
1643 
1644 void
1645 hn_dev_free_queues(struct rte_eth_dev *dev)
1646 {
1647 	unsigned int i;
1648 
1649 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1650 		struct hn_rx_queue *rxq = dev->data->rx_queues[i];
1651 
1652 		hn_rx_queue_free(rxq, false);
1653 		dev->data->rx_queues[i] = NULL;
1654 	}
1655 	dev->data->nb_rx_queues = 0;
1656 
1657 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
1658 		hn_dev_tx_queue_release(dev, i);
1659 		dev->data->tx_queues[i] = NULL;
1660 	}
1661 	dev->data->nb_tx_queues = 0;
1662 }
1663