1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2018 Microsoft Corporation 3 * Copyright(c) 2013-2016 Brocade Communications Systems, Inc. 4 * All rights reserved. 5 */ 6 7 #include <stdint.h> 8 #include <string.h> 9 #include <stdio.h> 10 #include <errno.h> 11 #include <unistd.h> 12 #include <strings.h> 13 #include <malloc.h> 14 15 #include <rte_ethdev.h> 16 #include <rte_memcpy.h> 17 #include <rte_string_fns.h> 18 #include <rte_memzone.h> 19 #include <rte_malloc.h> 20 #include <rte_atomic.h> 21 #include <rte_bitmap.h> 22 #include <rte_branch_prediction.h> 23 #include <rte_ether.h> 24 #include <rte_common.h> 25 #include <rte_errno.h> 26 #include <rte_memory.h> 27 #include <rte_eal.h> 28 #include <rte_dev.h> 29 #include <rte_net.h> 30 #include <rte_bus_vmbus.h> 31 #include <rte_spinlock.h> 32 33 #include "hn_logs.h" 34 #include "hn_var.h" 35 #include "hn_rndis.h" 36 #include "hn_nvs.h" 37 #include "ndis.h" 38 39 #define HN_NVS_SEND_MSG_SIZE \ 40 (sizeof(struct vmbus_chanpkt_hdr) + sizeof(struct hn_nvs_rndis)) 41 42 #define HN_TXD_CACHE_SIZE 32 /* per cpu tx_descriptor pool cache */ 43 #define HN_TXCOPY_THRESHOLD 512 44 45 #define HN_RXCOPY_THRESHOLD 256 46 #define HN_RXQ_EVENT_DEFAULT 2048 47 48 struct hn_rxinfo { 49 uint32_t vlan_info; 50 uint32_t csum_info; 51 uint32_t hash_info; 52 uint32_t hash_value; 53 }; 54 55 #define HN_RXINFO_VLAN 0x0001 56 #define HN_RXINFO_CSUM 0x0002 57 #define HN_RXINFO_HASHINF 0x0004 58 #define HN_RXINFO_HASHVAL 0x0008 59 #define HN_RXINFO_ALL \ 60 (HN_RXINFO_VLAN | \ 61 HN_RXINFO_CSUM | \ 62 HN_RXINFO_HASHINF | \ 63 HN_RXINFO_HASHVAL) 64 65 #define HN_NDIS_VLAN_INFO_INVALID 0xffffffff 66 #define HN_NDIS_RXCSUM_INFO_INVALID 0 67 #define HN_NDIS_HASH_INFO_INVALID 0 68 69 /* 70 * Per-transmit book keeping. 71 * A slot in transmit ring (chim_index) is reserved for each transmit. 72 * 73 * There are two types of transmit: 74 * - buffered transmit where chimney buffer is used and RNDIS header 75 * is in the buffer. mbuf == NULL for this case. 76 * 77 * - direct transmit where RNDIS header is in the in rndis_pkt 78 * mbuf is freed after transmit. 79 * 80 * Descriptors come from per-port pool which is used 81 * to limit number of outstanding requests per device. 82 */ 83 struct hn_txdesc { 84 struct rte_mbuf *m; 85 86 uint16_t queue_id; 87 uint32_t chim_index; 88 uint32_t chim_size; 89 uint32_t data_size; 90 uint32_t packets; 91 92 struct rndis_packet_msg *rndis_pkt; 93 }; 94 95 #define HN_RNDIS_PKT_LEN \ 96 (sizeof(struct rndis_packet_msg) + \ 97 RNDIS_PKTINFO_SIZE(NDIS_HASH_VALUE_SIZE) + \ 98 RNDIS_PKTINFO_SIZE(NDIS_VLAN_INFO_SIZE) + \ 99 RNDIS_PKTINFO_SIZE(NDIS_LSO2_INFO_SIZE) + \ 100 RNDIS_PKTINFO_SIZE(NDIS_TXCSUM_INFO_SIZE)) 101 102 #define HN_RNDIS_PKT_ALIGNED RTE_ALIGN(HN_RNDIS_PKT_LEN, RTE_CACHE_LINE_SIZE) 103 104 /* Minimum space required for a packet */ 105 #define HN_PKTSIZE_MIN(align) \ 106 RTE_ALIGN(RTE_ETHER_MIN_LEN + HN_RNDIS_PKT_LEN, align) 107 108 #define DEFAULT_TX_FREE_THRESH 32 109 110 static void 111 hn_update_packet_stats(struct hn_stats *stats, const struct rte_mbuf *m) 112 { 113 uint32_t s = m->pkt_len; 114 const struct rte_ether_addr *ea; 115 116 if (s == 64) { 117 stats->size_bins[1]++; 118 } else if (s > 64 && s < 1024) { 119 uint32_t bin; 120 121 /* count zeros, and offset into correct bin */ 122 bin = (sizeof(s) * 8) - __builtin_clz(s) - 5; 123 stats->size_bins[bin]++; 124 } else { 125 if (s < 64) 126 stats->size_bins[0]++; 127 else if (s < 1519) 128 stats->size_bins[6]++; 129 else 130 stats->size_bins[7]++; 131 } 132 133 ea = rte_pktmbuf_mtod(m, const struct rte_ether_addr *); 134 if (rte_is_multicast_ether_addr(ea)) { 135 if (rte_is_broadcast_ether_addr(ea)) 136 stats->broadcast++; 137 else 138 stats->multicast++; 139 } 140 } 141 142 static inline unsigned int hn_rndis_pktlen(const struct rndis_packet_msg *pkt) 143 { 144 return pkt->pktinfooffset + pkt->pktinfolen; 145 } 146 147 static inline uint32_t 148 hn_rndis_pktmsg_offset(uint32_t ofs) 149 { 150 return ofs - offsetof(struct rndis_packet_msg, dataoffset); 151 } 152 153 static void hn_txd_init(struct rte_mempool *mp __rte_unused, 154 void *opaque, void *obj, unsigned int idx) 155 { 156 struct hn_tx_queue *txq = opaque; 157 struct hn_txdesc *txd = obj; 158 159 memset(txd, 0, sizeof(*txd)); 160 161 txd->queue_id = txq->queue_id; 162 txd->chim_index = NVS_CHIM_IDX_INVALID; 163 txd->rndis_pkt = (struct rndis_packet_msg *)((char *)txq->tx_rndis 164 + idx * HN_RNDIS_PKT_ALIGNED); 165 } 166 167 int 168 hn_chim_init(struct rte_eth_dev *dev) 169 { 170 struct hn_data *hv = dev->data->dev_private; 171 uint32_t i, chim_bmp_size; 172 173 rte_spinlock_init(&hv->chim_lock); 174 chim_bmp_size = rte_bitmap_get_memory_footprint(hv->chim_cnt); 175 hv->chim_bmem = rte_zmalloc("hn_chim_bitmap", chim_bmp_size, 176 RTE_CACHE_LINE_SIZE); 177 if (hv->chim_bmem == NULL) { 178 PMD_INIT_LOG(ERR, "failed to allocate bitmap size %u", 179 chim_bmp_size); 180 return -1; 181 } 182 183 hv->chim_bmap = rte_bitmap_init(hv->chim_cnt, 184 hv->chim_bmem, chim_bmp_size); 185 if (hv->chim_bmap == NULL) { 186 PMD_INIT_LOG(ERR, "failed to init chim bitmap"); 187 return -1; 188 } 189 190 for (i = 0; i < hv->chim_cnt; i++) 191 rte_bitmap_set(hv->chim_bmap, i); 192 193 return 0; 194 } 195 196 void 197 hn_chim_uninit(struct rte_eth_dev *dev) 198 { 199 struct hn_data *hv = dev->data->dev_private; 200 201 rte_bitmap_free(hv->chim_bmap); 202 rte_free(hv->chim_bmem); 203 hv->chim_bmem = NULL; 204 } 205 206 static uint32_t hn_chim_alloc(struct hn_data *hv) 207 { 208 uint32_t index = NVS_CHIM_IDX_INVALID; 209 uint64_t slab = 0; 210 211 rte_spinlock_lock(&hv->chim_lock); 212 if (rte_bitmap_scan(hv->chim_bmap, &index, &slab)) { 213 index += rte_bsf64(slab); 214 rte_bitmap_clear(hv->chim_bmap, index); 215 } 216 rte_spinlock_unlock(&hv->chim_lock); 217 218 return index; 219 } 220 221 static void hn_chim_free(struct hn_data *hv, uint32_t chim_idx) 222 { 223 if (chim_idx >= hv->chim_cnt) { 224 PMD_DRV_LOG(ERR, "Invalid chimney index %u", chim_idx); 225 } else { 226 rte_spinlock_lock(&hv->chim_lock); 227 rte_bitmap_set(hv->chim_bmap, chim_idx); 228 rte_spinlock_unlock(&hv->chim_lock); 229 } 230 } 231 232 static void hn_reset_txagg(struct hn_tx_queue *txq) 233 { 234 txq->agg_szleft = txq->agg_szmax; 235 txq->agg_pktleft = txq->agg_pktmax; 236 txq->agg_txd = NULL; 237 txq->agg_prevpkt = NULL; 238 } 239 240 int 241 hn_dev_tx_queue_setup(struct rte_eth_dev *dev, 242 uint16_t queue_idx, uint16_t nb_desc, 243 unsigned int socket_id, 244 const struct rte_eth_txconf *tx_conf) 245 246 { 247 struct hn_data *hv = dev->data->dev_private; 248 struct hn_tx_queue *txq; 249 char name[RTE_MEMPOOL_NAMESIZE]; 250 uint32_t tx_free_thresh; 251 int err = -ENOMEM; 252 253 PMD_INIT_FUNC_TRACE(); 254 255 tx_free_thresh = tx_conf->tx_free_thresh; 256 if (tx_free_thresh == 0) 257 tx_free_thresh = RTE_MIN(nb_desc / 4, 258 DEFAULT_TX_FREE_THRESH); 259 260 if (tx_free_thresh + 3 >= nb_desc) { 261 PMD_INIT_LOG(ERR, 262 "tx_free_thresh must be less than the number of TX entries minus 3(%u)." 263 " (tx_free_thresh=%u port=%u queue=%u)\n", 264 nb_desc - 3, 265 tx_free_thresh, dev->data->port_id, queue_idx); 266 return -EINVAL; 267 } 268 269 txq = rte_zmalloc_socket("HN_TXQ", sizeof(*txq), RTE_CACHE_LINE_SIZE, 270 socket_id); 271 if (!txq) 272 return -ENOMEM; 273 274 txq->hv = hv; 275 txq->chan = hv->channels[queue_idx]; 276 txq->port_id = dev->data->port_id; 277 txq->queue_id = queue_idx; 278 txq->free_thresh = tx_free_thresh; 279 280 snprintf(name, sizeof(name), 281 "hn_txd_%u_%u", dev->data->port_id, queue_idx); 282 283 PMD_INIT_LOG(DEBUG, "TX descriptor pool %s n=%u size=%zu", 284 name, nb_desc, sizeof(struct hn_txdesc)); 285 286 txq->tx_rndis = rte_calloc("hn_txq_rndis", nb_desc, 287 HN_RNDIS_PKT_ALIGNED, RTE_CACHE_LINE_SIZE); 288 if (txq->tx_rndis == NULL) 289 goto error; 290 291 txq->txdesc_pool = rte_mempool_create(name, nb_desc, 292 sizeof(struct hn_txdesc), 293 0, 0, NULL, NULL, 294 hn_txd_init, txq, 295 dev->device->numa_node, 0); 296 if (txq->txdesc_pool == NULL) { 297 PMD_DRV_LOG(ERR, 298 "mempool %s create failed: %d", name, rte_errno); 299 goto error; 300 } 301 302 txq->agg_szmax = RTE_MIN(hv->chim_szmax, hv->rndis_agg_size); 303 txq->agg_pktmax = hv->rndis_agg_pkts; 304 txq->agg_align = hv->rndis_agg_align; 305 306 hn_reset_txagg(txq); 307 308 err = hn_vf_tx_queue_setup(dev, queue_idx, nb_desc, 309 socket_id, tx_conf); 310 if (err == 0) { 311 dev->data->tx_queues[queue_idx] = txq; 312 return 0; 313 } 314 315 error: 316 if (txq->txdesc_pool) 317 rte_mempool_free(txq->txdesc_pool); 318 rte_free(txq->tx_rndis); 319 rte_free(txq); 320 return err; 321 } 322 323 void 324 hn_dev_tx_queue_info(struct rte_eth_dev *dev, uint16_t queue_id, 325 struct rte_eth_txq_info *qinfo) 326 { 327 struct hn_tx_queue *txq = dev->data->tx_queues[queue_id]; 328 329 qinfo->nb_desc = txq->txdesc_pool->size; 330 qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads; 331 } 332 333 static struct hn_txdesc *hn_txd_get(struct hn_tx_queue *txq) 334 { 335 struct hn_txdesc *txd; 336 337 if (rte_mempool_get(txq->txdesc_pool, (void **)&txd)) { 338 ++txq->stats.ring_full; 339 PMD_TX_LOG(DEBUG, "tx pool exhausted!"); 340 return NULL; 341 } 342 343 txd->m = NULL; 344 txd->packets = 0; 345 txd->data_size = 0; 346 txd->chim_size = 0; 347 348 return txd; 349 } 350 351 static void hn_txd_put(struct hn_tx_queue *txq, struct hn_txdesc *txd) 352 { 353 rte_mempool_put(txq->txdesc_pool, txd); 354 } 355 356 void 357 hn_dev_tx_queue_release(void *arg) 358 { 359 struct hn_tx_queue *txq = arg; 360 361 PMD_INIT_FUNC_TRACE(); 362 363 if (!txq) 364 return; 365 366 if (txq->txdesc_pool) 367 rte_mempool_free(txq->txdesc_pool); 368 369 rte_free(txq->tx_rndis); 370 rte_free(txq); 371 } 372 373 /* 374 * Check the status of a Tx descriptor in the queue. 375 * 376 * returns: 377 * - -EINVAL - offset outside of tx_descriptor pool. 378 * - RTE_ETH_TX_DESC_FULL - descriptor is not acknowledged by host. 379 * - RTE_ETH_TX_DESC_DONE - descriptor is available. 380 */ 381 int hn_dev_tx_descriptor_status(void *arg, uint16_t offset) 382 { 383 const struct hn_tx_queue *txq = arg; 384 385 hn_process_events(txq->hv, txq->queue_id, 0); 386 387 if (offset >= rte_mempool_avail_count(txq->txdesc_pool)) 388 return -EINVAL; 389 390 if (offset < rte_mempool_in_use_count(txq->txdesc_pool)) 391 return RTE_ETH_TX_DESC_FULL; 392 else 393 return RTE_ETH_TX_DESC_DONE; 394 } 395 396 static void 397 hn_nvs_send_completed(struct rte_eth_dev *dev, uint16_t queue_id, 398 unsigned long xactid, const struct hn_nvs_rndis_ack *ack) 399 { 400 struct hn_data *hv = dev->data->dev_private; 401 struct hn_txdesc *txd = (struct hn_txdesc *)xactid; 402 struct hn_tx_queue *txq; 403 404 /* Control packets are sent with xacid == 0 */ 405 if (!txd) 406 return; 407 408 txq = dev->data->tx_queues[queue_id]; 409 if (likely(ack->status == NVS_STATUS_OK)) { 410 PMD_TX_LOG(DEBUG, "port %u:%u complete tx %u packets %u bytes %u", 411 txq->port_id, txq->queue_id, txd->chim_index, 412 txd->packets, txd->data_size); 413 txq->stats.bytes += txd->data_size; 414 txq->stats.packets += txd->packets; 415 } else { 416 PMD_DRV_LOG(NOTICE, "port %u:%u complete tx %u failed status %u", 417 txq->port_id, txq->queue_id, txd->chim_index, ack->status); 418 ++txq->stats.errors; 419 } 420 421 if (txd->chim_index != NVS_CHIM_IDX_INVALID) { 422 hn_chim_free(hv, txd->chim_index); 423 txd->chim_index = NVS_CHIM_IDX_INVALID; 424 } 425 426 rte_pktmbuf_free(txd->m); 427 hn_txd_put(txq, txd); 428 } 429 430 /* Handle transmit completion events */ 431 static void 432 hn_nvs_handle_comp(struct rte_eth_dev *dev, uint16_t queue_id, 433 const struct vmbus_chanpkt_hdr *pkt, 434 const void *data) 435 { 436 const struct hn_nvs_hdr *hdr = data; 437 438 switch (hdr->type) { 439 case NVS_TYPE_RNDIS_ACK: 440 hn_nvs_send_completed(dev, queue_id, pkt->xactid, data); 441 break; 442 443 default: 444 PMD_DRV_LOG(NOTICE, "unexpected send completion type %u", 445 hdr->type); 446 } 447 } 448 449 /* Parse per-packet info (meta data) */ 450 static int 451 hn_rndis_rxinfo(const void *info_data, unsigned int info_dlen, 452 struct hn_rxinfo *info) 453 { 454 const struct rndis_pktinfo *pi = info_data; 455 uint32_t mask = 0; 456 457 while (info_dlen != 0) { 458 const void *data; 459 uint32_t dlen; 460 461 if (unlikely(info_dlen < sizeof(*pi))) 462 return -EINVAL; 463 464 if (unlikely(info_dlen < pi->size)) 465 return -EINVAL; 466 info_dlen -= pi->size; 467 468 if (unlikely(pi->size & RNDIS_PKTINFO_SIZE_ALIGNMASK)) 469 return -EINVAL; 470 if (unlikely(pi->size < pi->offset)) 471 return -EINVAL; 472 473 dlen = pi->size - pi->offset; 474 data = pi->data; 475 476 switch (pi->type) { 477 case NDIS_PKTINFO_TYPE_VLAN: 478 if (unlikely(dlen < NDIS_VLAN_INFO_SIZE)) 479 return -EINVAL; 480 info->vlan_info = *((const uint32_t *)data); 481 mask |= HN_RXINFO_VLAN; 482 break; 483 484 case NDIS_PKTINFO_TYPE_CSUM: 485 if (unlikely(dlen < NDIS_RXCSUM_INFO_SIZE)) 486 return -EINVAL; 487 info->csum_info = *((const uint32_t *)data); 488 mask |= HN_RXINFO_CSUM; 489 break; 490 491 case NDIS_PKTINFO_TYPE_HASHVAL: 492 if (unlikely(dlen < NDIS_HASH_VALUE_SIZE)) 493 return -EINVAL; 494 info->hash_value = *((const uint32_t *)data); 495 mask |= HN_RXINFO_HASHVAL; 496 break; 497 498 case NDIS_PKTINFO_TYPE_HASHINF: 499 if (unlikely(dlen < NDIS_HASH_INFO_SIZE)) 500 return -EINVAL; 501 info->hash_info = *((const uint32_t *)data); 502 mask |= HN_RXINFO_HASHINF; 503 break; 504 505 default: 506 goto next; 507 } 508 509 if (mask == HN_RXINFO_ALL) 510 break; /* All found; done */ 511 next: 512 pi = (const struct rndis_pktinfo *) 513 ((const uint8_t *)pi + pi->size); 514 } 515 516 /* 517 * Final fixup. 518 * - If there is no hash value, invalidate the hash info. 519 */ 520 if (!(mask & HN_RXINFO_HASHVAL)) 521 info->hash_info = HN_NDIS_HASH_INFO_INVALID; 522 return 0; 523 } 524 525 static void hn_rx_buf_free_cb(void *buf __rte_unused, void *opaque) 526 { 527 struct hn_rx_bufinfo *rxb = opaque; 528 struct hn_rx_queue *rxq = rxb->rxq; 529 530 rte_atomic32_dec(&rxq->rxbuf_outstanding); 531 hn_nvs_ack_rxbuf(rxb->chan, rxb->xactid); 532 } 533 534 static struct hn_rx_bufinfo *hn_rx_buf_init(struct hn_rx_queue *rxq, 535 const struct vmbus_chanpkt_rxbuf *pkt) 536 { 537 struct hn_rx_bufinfo *rxb; 538 539 rxb = rxq->rxbuf_info + pkt->hdr.xactid; 540 rxb->chan = rxq->chan; 541 rxb->xactid = pkt->hdr.xactid; 542 rxb->rxq = rxq; 543 544 rxb->shinfo.free_cb = hn_rx_buf_free_cb; 545 rxb->shinfo.fcb_opaque = rxb; 546 rte_mbuf_ext_refcnt_set(&rxb->shinfo, 1); 547 return rxb; 548 } 549 550 static void hn_rxpkt(struct hn_rx_queue *rxq, struct hn_rx_bufinfo *rxb, 551 uint8_t *data, unsigned int headroom, unsigned int dlen, 552 const struct hn_rxinfo *info) 553 { 554 struct hn_data *hv = rxq->hv; 555 struct rte_mbuf *m; 556 bool use_extbuf = false; 557 558 m = rte_pktmbuf_alloc(rxq->mb_pool); 559 if (unlikely(!m)) { 560 struct rte_eth_dev *dev = 561 &rte_eth_devices[rxq->port_id]; 562 563 dev->data->rx_mbuf_alloc_failed++; 564 return; 565 } 566 567 /* 568 * For large packets, avoid copy if possible but need to keep 569 * some space available in receive area for later packets. 570 */ 571 if (dlen >= HN_RXCOPY_THRESHOLD && 572 (uint32_t)rte_atomic32_read(&rxq->rxbuf_outstanding) < 573 hv->rxbuf_section_cnt / 2) { 574 struct rte_mbuf_ext_shared_info *shinfo; 575 const void *rxbuf; 576 rte_iova_t iova; 577 578 /* 579 * Build an external mbuf that points to recveive area. 580 * Use refcount to handle multiple packets in same 581 * receive buffer section. 582 */ 583 rxbuf = hv->rxbuf_res->addr; 584 iova = rte_mem_virt2iova(rxbuf) + RTE_PTR_DIFF(data, rxbuf); 585 shinfo = &rxb->shinfo; 586 587 /* shinfo is already set to 1 by the caller */ 588 if (rte_mbuf_ext_refcnt_update(shinfo, 1) == 2) 589 rte_atomic32_inc(&rxq->rxbuf_outstanding); 590 591 rte_pktmbuf_attach_extbuf(m, data, iova, 592 dlen + headroom, shinfo); 593 m->data_off = headroom; 594 use_extbuf = true; 595 } else { 596 /* Mbuf's in pool must be large enough to hold small packets */ 597 if (unlikely(rte_pktmbuf_tailroom(m) < dlen)) { 598 rte_pktmbuf_free_seg(m); 599 ++rxq->stats.errors; 600 return; 601 } 602 rte_memcpy(rte_pktmbuf_mtod(m, void *), 603 data + headroom, dlen); 604 } 605 606 m->port = rxq->port_id; 607 m->pkt_len = dlen; 608 m->data_len = dlen; 609 m->packet_type = rte_net_get_ptype(m, NULL, 610 RTE_PTYPE_L2_MASK | 611 RTE_PTYPE_L3_MASK | 612 RTE_PTYPE_L4_MASK); 613 614 if (info->vlan_info != HN_NDIS_VLAN_INFO_INVALID) { 615 m->vlan_tci = info->vlan_info; 616 m->ol_flags |= PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN; 617 618 /* NDIS always strips tag, put it back if necessary */ 619 if (!hv->vlan_strip && rte_vlan_insert(&m)) { 620 PMD_DRV_LOG(DEBUG, "vlan insert failed"); 621 ++rxq->stats.errors; 622 if (use_extbuf) 623 rte_pktmbuf_detach_extbuf(m); 624 rte_pktmbuf_free(m); 625 return; 626 } 627 } 628 629 if (info->csum_info != HN_NDIS_RXCSUM_INFO_INVALID) { 630 if (info->csum_info & NDIS_RXCSUM_INFO_IPCS_OK) 631 m->ol_flags |= PKT_RX_IP_CKSUM_GOOD; 632 633 if (info->csum_info & (NDIS_RXCSUM_INFO_UDPCS_OK 634 | NDIS_RXCSUM_INFO_TCPCS_OK)) 635 m->ol_flags |= PKT_RX_L4_CKSUM_GOOD; 636 else if (info->csum_info & (NDIS_RXCSUM_INFO_TCPCS_FAILED 637 | NDIS_RXCSUM_INFO_UDPCS_FAILED)) 638 m->ol_flags |= PKT_RX_L4_CKSUM_BAD; 639 } 640 641 if (info->hash_info != HN_NDIS_HASH_INFO_INVALID) { 642 m->ol_flags |= PKT_RX_RSS_HASH; 643 m->hash.rss = info->hash_value; 644 } 645 646 PMD_RX_LOG(DEBUG, 647 "port %u:%u RX id %"PRIu64" size %u type %#x ol_flags %#"PRIx64, 648 rxq->port_id, rxq->queue_id, rxb->xactid, 649 m->pkt_len, m->packet_type, m->ol_flags); 650 651 ++rxq->stats.packets; 652 rxq->stats.bytes += m->pkt_len; 653 hn_update_packet_stats(&rxq->stats, m); 654 655 if (unlikely(rte_ring_sp_enqueue(rxq->rx_ring, m) != 0)) { 656 ++rxq->stats.ring_full; 657 PMD_RX_LOG(DEBUG, "rx ring full"); 658 if (use_extbuf) 659 rte_pktmbuf_detach_extbuf(m); 660 rte_pktmbuf_free(m); 661 } 662 } 663 664 static void hn_rndis_rx_data(struct hn_rx_queue *rxq, 665 struct hn_rx_bufinfo *rxb, 666 void *data, uint32_t dlen) 667 { 668 unsigned int data_off, data_len; 669 unsigned int pktinfo_off, pktinfo_len; 670 const struct rndis_packet_msg *pkt = data; 671 struct hn_rxinfo info = { 672 .vlan_info = HN_NDIS_VLAN_INFO_INVALID, 673 .csum_info = HN_NDIS_RXCSUM_INFO_INVALID, 674 .hash_info = HN_NDIS_HASH_INFO_INVALID, 675 }; 676 int err; 677 678 hn_rndis_dump(pkt); 679 680 if (unlikely(dlen < sizeof(*pkt))) 681 goto error; 682 683 if (unlikely(dlen < pkt->len)) 684 goto error; /* truncated RNDIS from host */ 685 686 if (unlikely(pkt->len < pkt->datalen 687 + pkt->oobdatalen + pkt->pktinfolen)) 688 goto error; 689 690 if (unlikely(pkt->datalen == 0)) 691 goto error; 692 693 /* Check offsets. */ 694 if (unlikely(pkt->dataoffset < RNDIS_PACKET_MSG_OFFSET_MIN)) 695 goto error; 696 697 if (likely(pkt->pktinfooffset > 0) && 698 unlikely(pkt->pktinfooffset < RNDIS_PACKET_MSG_OFFSET_MIN || 699 (pkt->pktinfooffset & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK))) 700 goto error; 701 702 data_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->dataoffset); 703 data_len = pkt->datalen; 704 pktinfo_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->pktinfooffset); 705 pktinfo_len = pkt->pktinfolen; 706 707 if (likely(pktinfo_len > 0)) { 708 err = hn_rndis_rxinfo((const uint8_t *)pkt + pktinfo_off, 709 pktinfo_len, &info); 710 if (err) 711 goto error; 712 } 713 714 /* overflow check */ 715 if (data_len > data_len + data_off || data_len + data_off > pkt->len) 716 goto error; 717 718 if (unlikely(data_len < RTE_ETHER_HDR_LEN)) 719 goto error; 720 721 hn_rxpkt(rxq, rxb, data, data_off, data_len, &info); 722 return; 723 error: 724 ++rxq->stats.errors; 725 } 726 727 static void 728 hn_rndis_receive(struct rte_eth_dev *dev, struct hn_rx_queue *rxq, 729 struct hn_rx_bufinfo *rxb, void *buf, uint32_t len) 730 { 731 const struct rndis_msghdr *hdr = buf; 732 733 switch (hdr->type) { 734 case RNDIS_PACKET_MSG: 735 if (dev->data->dev_started) 736 hn_rndis_rx_data(rxq, rxb, buf, len); 737 break; 738 739 case RNDIS_INDICATE_STATUS_MSG: 740 hn_rndis_link_status(dev, buf); 741 break; 742 743 case RNDIS_INITIALIZE_CMPLT: 744 case RNDIS_QUERY_CMPLT: 745 case RNDIS_SET_CMPLT: 746 hn_rndis_receive_response(rxq->hv, buf, len); 747 break; 748 749 default: 750 PMD_DRV_LOG(NOTICE, 751 "unexpected RNDIS message (type %#x len %u)", 752 hdr->type, len); 753 break; 754 } 755 } 756 757 static void 758 hn_nvs_handle_rxbuf(struct rte_eth_dev *dev, 759 struct hn_data *hv, 760 struct hn_rx_queue *rxq, 761 const struct vmbus_chanpkt_hdr *hdr, 762 const void *buf) 763 { 764 const struct vmbus_chanpkt_rxbuf *pkt; 765 const struct hn_nvs_hdr *nvs_hdr = buf; 766 uint32_t rxbuf_sz = hv->rxbuf_res->len; 767 char *rxbuf = hv->rxbuf_res->addr; 768 unsigned int i, hlen, count; 769 struct hn_rx_bufinfo *rxb; 770 771 /* At minimum we need type header */ 772 if (unlikely(vmbus_chanpkt_datalen(hdr) < sizeof(*nvs_hdr))) { 773 PMD_RX_LOG(ERR, "invalid receive nvs RNDIS"); 774 return; 775 } 776 777 /* Make sure that this is a RNDIS message. */ 778 if (unlikely(nvs_hdr->type != NVS_TYPE_RNDIS)) { 779 PMD_RX_LOG(ERR, "nvs type %u, not RNDIS", 780 nvs_hdr->type); 781 return; 782 } 783 784 hlen = vmbus_chanpkt_getlen(hdr->hlen); 785 if (unlikely(hlen < sizeof(*pkt))) { 786 PMD_RX_LOG(ERR, "invalid rxbuf chanpkt"); 787 return; 788 } 789 790 pkt = container_of(hdr, const struct vmbus_chanpkt_rxbuf, hdr); 791 if (unlikely(pkt->rxbuf_id != NVS_RXBUF_SIG)) { 792 PMD_RX_LOG(ERR, "invalid rxbuf_id 0x%08x", 793 pkt->rxbuf_id); 794 return; 795 } 796 797 count = pkt->rxbuf_cnt; 798 if (unlikely(hlen < offsetof(struct vmbus_chanpkt_rxbuf, 799 rxbuf[count]))) { 800 PMD_RX_LOG(ERR, "invalid rxbuf_cnt %u", count); 801 return; 802 } 803 804 if (pkt->hdr.xactid > hv->rxbuf_section_cnt) { 805 PMD_RX_LOG(ERR, "invalid rxbuf section id %" PRIx64, 806 pkt->hdr.xactid); 807 return; 808 } 809 810 /* Setup receive buffer info to allow for callback */ 811 rxb = hn_rx_buf_init(rxq, pkt); 812 813 /* Each range represents 1 RNDIS pkt that contains 1 Ethernet frame */ 814 for (i = 0; i < count; ++i) { 815 unsigned int ofs, len; 816 817 ofs = pkt->rxbuf[i].ofs; 818 len = pkt->rxbuf[i].len; 819 820 if (unlikely(ofs + len > rxbuf_sz)) { 821 PMD_RX_LOG(ERR, 822 "%uth RNDIS msg overflow ofs %u, len %u", 823 i, ofs, len); 824 continue; 825 } 826 827 if (unlikely(len == 0)) { 828 PMD_RX_LOG(ERR, "%uth RNDIS msg len %u", i, len); 829 continue; 830 } 831 832 hn_rndis_receive(dev, rxq, rxb, 833 rxbuf + ofs, len); 834 } 835 836 /* Send ACK now if external mbuf not used */ 837 if (rte_mbuf_ext_refcnt_update(&rxb->shinfo, -1) == 0) 838 hn_nvs_ack_rxbuf(rxb->chan, rxb->xactid); 839 } 840 841 /* 842 * Called when NVS inband events are received. 843 * Send up a two part message with port_id and the NVS message 844 * to the pipe to the netvsc-vf-event control thread. 845 */ 846 static void hn_nvs_handle_notify(struct rte_eth_dev *dev, 847 const struct vmbus_chanpkt_hdr *pkt, 848 const void *data) 849 { 850 const struct hn_nvs_hdr *hdr = data; 851 852 switch (hdr->type) { 853 case NVS_TYPE_TXTBL_NOTE: 854 /* Transmit indirection table has locking problems 855 * in DPDK and therefore not implemented 856 */ 857 PMD_DRV_LOG(DEBUG, "host notify of transmit indirection table"); 858 break; 859 860 case NVS_TYPE_VFASSOC_NOTE: 861 hn_nvs_handle_vfassoc(dev, pkt, data); 862 break; 863 864 default: 865 PMD_DRV_LOG(INFO, 866 "got notify, nvs type %u", hdr->type); 867 } 868 } 869 870 struct hn_rx_queue *hn_rx_queue_alloc(struct hn_data *hv, 871 uint16_t queue_id, 872 unsigned int socket_id) 873 { 874 struct hn_rx_queue *rxq; 875 876 rxq = rte_zmalloc_socket("HN_RXQ", sizeof(*rxq), 877 RTE_CACHE_LINE_SIZE, socket_id); 878 if (!rxq) 879 return NULL; 880 881 rxq->hv = hv; 882 rxq->chan = hv->channels[queue_id]; 883 rte_spinlock_init(&rxq->ring_lock); 884 rxq->port_id = hv->port_id; 885 rxq->queue_id = queue_id; 886 rxq->event_sz = HN_RXQ_EVENT_DEFAULT; 887 rxq->event_buf = rte_malloc_socket("HN_EVENTS", HN_RXQ_EVENT_DEFAULT, 888 RTE_CACHE_LINE_SIZE, socket_id); 889 if (!rxq->event_buf) { 890 rte_free(rxq); 891 return NULL; 892 } 893 894 /* setup rxbuf_info for non-primary queue */ 895 if (queue_id) { 896 rxq->rxbuf_info = rte_calloc("HN_RXBUF_INFO", 897 hv->rxbuf_section_cnt, 898 sizeof(*rxq->rxbuf_info), 899 RTE_CACHE_LINE_SIZE); 900 901 if (!rxq->rxbuf_info) { 902 PMD_DRV_LOG(ERR, 903 "Could not allocate rxbuf info for queue %d\n", 904 queue_id); 905 rte_free(rxq->event_buf); 906 rte_free(rxq); 907 return NULL; 908 } 909 } 910 911 return rxq; 912 } 913 914 void 915 hn_dev_rx_queue_info(struct rte_eth_dev *dev, uint16_t queue_id, 916 struct rte_eth_rxq_info *qinfo) 917 { 918 struct hn_rx_queue *rxq = dev->data->rx_queues[queue_id]; 919 920 qinfo->mp = rxq->mb_pool; 921 qinfo->nb_desc = rxq->rx_ring->size; 922 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 923 } 924 925 int 926 hn_dev_rx_queue_setup(struct rte_eth_dev *dev, 927 uint16_t queue_idx, uint16_t nb_desc, 928 unsigned int socket_id, 929 const struct rte_eth_rxconf *rx_conf, 930 struct rte_mempool *mp) 931 { 932 struct hn_data *hv = dev->data->dev_private; 933 char ring_name[RTE_RING_NAMESIZE]; 934 struct hn_rx_queue *rxq; 935 unsigned int count; 936 int error = -ENOMEM; 937 938 PMD_INIT_FUNC_TRACE(); 939 940 if (queue_idx == 0) { 941 rxq = hv->primary; 942 } else { 943 rxq = hn_rx_queue_alloc(hv, queue_idx, socket_id); 944 if (!rxq) 945 return -ENOMEM; 946 } 947 948 rxq->mb_pool = mp; 949 count = rte_mempool_avail_count(mp) / dev->data->nb_rx_queues; 950 if (nb_desc == 0 || nb_desc > count) 951 nb_desc = count; 952 953 /* 954 * Staging ring from receive event logic to rx_pkts. 955 * rx_pkts assumes caller is handling multi-thread issue. 956 * event logic has locking. 957 */ 958 snprintf(ring_name, sizeof(ring_name), 959 "hn_rx_%u_%u", dev->data->port_id, queue_idx); 960 rxq->rx_ring = rte_ring_create(ring_name, 961 rte_align32pow2(nb_desc), 962 socket_id, 0); 963 if (!rxq->rx_ring) 964 goto fail; 965 966 error = hn_vf_rx_queue_setup(dev, queue_idx, nb_desc, 967 socket_id, rx_conf, mp); 968 if (error) 969 goto fail; 970 971 dev->data->rx_queues[queue_idx] = rxq; 972 return 0; 973 974 fail: 975 rte_ring_free(rxq->rx_ring); 976 rte_free(rxq->rxbuf_info); 977 rte_free(rxq->event_buf); 978 rte_free(rxq); 979 return error; 980 } 981 982 static void 983 hn_rx_queue_free(struct hn_rx_queue *rxq, bool keep_primary) 984 { 985 986 if (!rxq) 987 return; 988 989 rte_ring_free(rxq->rx_ring); 990 rxq->rx_ring = NULL; 991 rxq->mb_pool = NULL; 992 993 hn_vf_rx_queue_release(rxq->hv, rxq->queue_id); 994 995 /* Keep primary queue to allow for control operations */ 996 if (keep_primary && rxq == rxq->hv->primary) 997 return; 998 999 rte_free(rxq->rxbuf_info); 1000 rte_free(rxq->event_buf); 1001 rte_free(rxq); 1002 } 1003 1004 void 1005 hn_dev_rx_queue_release(void *arg) 1006 { 1007 struct hn_rx_queue *rxq = arg; 1008 1009 PMD_INIT_FUNC_TRACE(); 1010 1011 hn_rx_queue_free(rxq, true); 1012 } 1013 1014 /* 1015 * Get the number of used descriptor in a rx queue 1016 * For this device that means how many packets are pending in the ring. 1017 */ 1018 uint32_t 1019 hn_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_id) 1020 { 1021 struct hn_rx_queue *rxq = dev->data->rx_queues[queue_id]; 1022 1023 return rte_ring_count(rxq->rx_ring); 1024 } 1025 1026 /* 1027 * Check the status of a Rx descriptor in the queue 1028 * 1029 * returns: 1030 * - -EINVAL - offset outside of ring 1031 * - RTE_ETH_RX_DESC_AVAIL - no data available yet 1032 * - RTE_ETH_RX_DESC_DONE - data is waiting in stagin ring 1033 */ 1034 int hn_dev_rx_queue_status(void *arg, uint16_t offset) 1035 { 1036 const struct hn_rx_queue *rxq = arg; 1037 1038 hn_process_events(rxq->hv, rxq->queue_id, 0); 1039 if (offset >= rxq->rx_ring->capacity) 1040 return -EINVAL; 1041 1042 if (offset < rte_ring_count(rxq->rx_ring)) 1043 return RTE_ETH_RX_DESC_DONE; 1044 else 1045 return RTE_ETH_RX_DESC_AVAIL; 1046 } 1047 1048 int 1049 hn_dev_tx_done_cleanup(void *arg, uint32_t free_cnt) 1050 { 1051 struct hn_tx_queue *txq = arg; 1052 1053 return hn_process_events(txq->hv, txq->queue_id, free_cnt); 1054 } 1055 1056 /* 1057 * Process pending events on the channel. 1058 * Called from both Rx queue poll and Tx cleanup 1059 */ 1060 uint32_t hn_process_events(struct hn_data *hv, uint16_t queue_id, 1061 uint32_t tx_limit) 1062 { 1063 struct rte_eth_dev *dev = &rte_eth_devices[hv->port_id]; 1064 struct hn_rx_queue *rxq; 1065 uint32_t bytes_read = 0; 1066 uint32_t tx_done = 0; 1067 int ret = 0; 1068 1069 rxq = queue_id == 0 ? hv->primary : dev->data->rx_queues[queue_id]; 1070 1071 /* 1072 * Since channel is shared between Rx and TX queue need to have a lock 1073 * since DPDK does not force same CPU to be used for Rx/Tx. 1074 */ 1075 if (unlikely(!rte_spinlock_trylock(&rxq->ring_lock))) 1076 return 0; 1077 1078 for (;;) { 1079 const struct vmbus_chanpkt_hdr *pkt; 1080 uint32_t len = rxq->event_sz; 1081 const void *data; 1082 1083 retry: 1084 ret = rte_vmbus_chan_recv_raw(rxq->chan, rxq->event_buf, &len); 1085 if (ret == -EAGAIN) 1086 break; /* ring is empty */ 1087 1088 if (unlikely(ret == -ENOBUFS)) { 1089 /* event buffer not large enough to read ring */ 1090 1091 PMD_DRV_LOG(DEBUG, 1092 "event buffer expansion (need %u)", len); 1093 rxq->event_sz = len + len / 4; 1094 rxq->event_buf = rte_realloc(rxq->event_buf, rxq->event_sz, 1095 RTE_CACHE_LINE_SIZE); 1096 if (rxq->event_buf) 1097 goto retry; 1098 /* out of memory, no more events now */ 1099 rxq->event_sz = 0; 1100 break; 1101 } 1102 1103 if (unlikely(ret <= 0)) { 1104 /* This indicates a failure to communicate (or worse) */ 1105 rte_exit(EXIT_FAILURE, 1106 "vmbus ring buffer error: %d", ret); 1107 } 1108 1109 bytes_read += ret; 1110 pkt = (const struct vmbus_chanpkt_hdr *)rxq->event_buf; 1111 data = (char *)rxq->event_buf + vmbus_chanpkt_getlen(pkt->hlen); 1112 1113 switch (pkt->type) { 1114 case VMBUS_CHANPKT_TYPE_COMP: 1115 ++tx_done; 1116 hn_nvs_handle_comp(dev, queue_id, pkt, data); 1117 break; 1118 1119 case VMBUS_CHANPKT_TYPE_RXBUF: 1120 hn_nvs_handle_rxbuf(dev, hv, rxq, pkt, data); 1121 break; 1122 1123 case VMBUS_CHANPKT_TYPE_INBAND: 1124 hn_nvs_handle_notify(dev, pkt, data); 1125 break; 1126 1127 default: 1128 PMD_DRV_LOG(ERR, "unknown chan pkt %u", pkt->type); 1129 break; 1130 } 1131 1132 if (tx_limit && tx_done >= tx_limit) 1133 break; 1134 } 1135 1136 if (bytes_read > 0) 1137 rte_vmbus_chan_signal_read(rxq->chan, bytes_read); 1138 1139 rte_spinlock_unlock(&rxq->ring_lock); 1140 1141 return tx_done; 1142 } 1143 1144 static void hn_append_to_chim(struct hn_tx_queue *txq, 1145 struct rndis_packet_msg *pkt, 1146 const struct rte_mbuf *m) 1147 { 1148 struct hn_txdesc *txd = txq->agg_txd; 1149 uint8_t *buf = (uint8_t *)pkt; 1150 unsigned int data_offs; 1151 1152 hn_rndis_dump(pkt); 1153 1154 data_offs = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->dataoffset); 1155 txd->chim_size += pkt->len; 1156 txd->data_size += m->pkt_len; 1157 ++txd->packets; 1158 hn_update_packet_stats(&txq->stats, m); 1159 1160 for (; m; m = m->next) { 1161 uint16_t len = rte_pktmbuf_data_len(m); 1162 1163 rte_memcpy(buf + data_offs, 1164 rte_pktmbuf_mtod(m, const char *), len); 1165 data_offs += len; 1166 } 1167 } 1168 1169 /* 1170 * Send pending aggregated data in chimney buffer (if any). 1171 * Returns error if send was unsuccessful because channel ring buffer 1172 * was full. 1173 */ 1174 static int hn_flush_txagg(struct hn_tx_queue *txq, bool *need_sig) 1175 1176 { 1177 struct hn_txdesc *txd = txq->agg_txd; 1178 struct hn_nvs_rndis rndis; 1179 int ret; 1180 1181 if (!txd) 1182 return 0; 1183 1184 rndis = (struct hn_nvs_rndis) { 1185 .type = NVS_TYPE_RNDIS, 1186 .rndis_mtype = NVS_RNDIS_MTYPE_DATA, 1187 .chim_idx = txd->chim_index, 1188 .chim_sz = txd->chim_size, 1189 }; 1190 1191 PMD_TX_LOG(DEBUG, "port %u:%u tx %u size %u", 1192 txq->port_id, txq->queue_id, txd->chim_index, txd->chim_size); 1193 1194 ret = hn_nvs_send(txq->chan, VMBUS_CHANPKT_FLAG_RC, 1195 &rndis, sizeof(rndis), (uintptr_t)txd, need_sig); 1196 1197 if (likely(ret == 0)) 1198 hn_reset_txagg(txq); 1199 else if (ret == -EAGAIN) { 1200 PMD_TX_LOG(DEBUG, "port %u:%u channel full", 1201 txq->port_id, txq->queue_id); 1202 ++txq->stats.channel_full; 1203 } else { 1204 ++txq->stats.errors; 1205 1206 PMD_DRV_LOG(NOTICE, "port %u:%u send failed: %d", 1207 txq->port_id, txq->queue_id, ret); 1208 } 1209 return ret; 1210 } 1211 1212 /* 1213 * Try and find a place in a send chimney buffer to put 1214 * the small packet. If space is available, this routine 1215 * returns a pointer of where to place the data. 1216 * If no space, caller should try direct transmit. 1217 */ 1218 static void * 1219 hn_try_txagg(struct hn_data *hv, struct hn_tx_queue *txq, 1220 struct hn_txdesc *txd, uint32_t pktsize) 1221 { 1222 struct hn_txdesc *agg_txd = txq->agg_txd; 1223 struct rndis_packet_msg *pkt; 1224 void *chim; 1225 1226 if (agg_txd) { 1227 unsigned int padding, olen; 1228 1229 /* 1230 * Update the previous RNDIS packet's total length, 1231 * it can be increased due to the mandatory alignment 1232 * padding for this RNDIS packet. And update the 1233 * aggregating txdesc's chimney sending buffer size 1234 * accordingly. 1235 * 1236 * Zero-out the padding, as required by the RNDIS spec. 1237 */ 1238 pkt = txq->agg_prevpkt; 1239 olen = pkt->len; 1240 padding = RTE_ALIGN(olen, txq->agg_align) - olen; 1241 if (padding > 0) { 1242 agg_txd->chim_size += padding; 1243 pkt->len += padding; 1244 memset((uint8_t *)pkt + olen, 0, padding); 1245 } 1246 1247 chim = (uint8_t *)pkt + pkt->len; 1248 txq->agg_prevpkt = chim; 1249 txq->agg_pktleft--; 1250 txq->agg_szleft -= pktsize; 1251 if (txq->agg_szleft < HN_PKTSIZE_MIN(txq->agg_align)) { 1252 /* 1253 * Probably can't aggregate more packets, 1254 * flush this aggregating txdesc proactively. 1255 */ 1256 txq->agg_pktleft = 0; 1257 } 1258 1259 hn_txd_put(txq, txd); 1260 return chim; 1261 } 1262 1263 txd->chim_index = hn_chim_alloc(hv); 1264 if (txd->chim_index == NVS_CHIM_IDX_INVALID) 1265 return NULL; 1266 1267 chim = (uint8_t *)hv->chim_res->addr 1268 + txd->chim_index * hv->chim_szmax; 1269 1270 txq->agg_txd = txd; 1271 txq->agg_pktleft = txq->agg_pktmax - 1; 1272 txq->agg_szleft = txq->agg_szmax - pktsize; 1273 txq->agg_prevpkt = chim; 1274 1275 return chim; 1276 } 1277 1278 static inline void * 1279 hn_rndis_pktinfo_append(struct rndis_packet_msg *pkt, 1280 uint32_t pi_dlen, uint32_t pi_type) 1281 { 1282 const uint32_t pi_size = RNDIS_PKTINFO_SIZE(pi_dlen); 1283 struct rndis_pktinfo *pi; 1284 1285 /* 1286 * Per-packet-info does not move; it only grows. 1287 * 1288 * NOTE: 1289 * pktinfooffset in this phase counts from the beginning 1290 * of rndis_packet_msg. 1291 */ 1292 pi = (struct rndis_pktinfo *)((uint8_t *)pkt + hn_rndis_pktlen(pkt)); 1293 1294 pkt->pktinfolen += pi_size; 1295 1296 pi->size = pi_size; 1297 pi->type = pi_type; 1298 pi->offset = RNDIS_PKTINFO_OFFSET; 1299 1300 return pi->data; 1301 } 1302 1303 /* Put RNDIS header and packet info on packet */ 1304 static void hn_encap(struct rndis_packet_msg *pkt, 1305 uint16_t queue_id, 1306 const struct rte_mbuf *m) 1307 { 1308 unsigned int hlen = m->l2_len + m->l3_len; 1309 uint32_t *pi_data; 1310 uint32_t pkt_hlen; 1311 1312 pkt->type = RNDIS_PACKET_MSG; 1313 pkt->len = m->pkt_len; 1314 pkt->dataoffset = 0; 1315 pkt->datalen = m->pkt_len; 1316 pkt->oobdataoffset = 0; 1317 pkt->oobdatalen = 0; 1318 pkt->oobdataelements = 0; 1319 pkt->pktinfooffset = sizeof(*pkt); 1320 pkt->pktinfolen = 0; 1321 pkt->vchandle = 0; 1322 pkt->reserved = 0; 1323 1324 /* 1325 * Set the hash value for this packet, to the queue_id to cause 1326 * TX done event for this packet on the right channel. 1327 */ 1328 pi_data = hn_rndis_pktinfo_append(pkt, NDIS_HASH_VALUE_SIZE, 1329 NDIS_PKTINFO_TYPE_HASHVAL); 1330 *pi_data = queue_id; 1331 1332 if (m->ol_flags & PKT_TX_VLAN_PKT) { 1333 pi_data = hn_rndis_pktinfo_append(pkt, NDIS_VLAN_INFO_SIZE, 1334 NDIS_PKTINFO_TYPE_VLAN); 1335 *pi_data = m->vlan_tci; 1336 } 1337 1338 if (m->ol_flags & PKT_TX_TCP_SEG) { 1339 pi_data = hn_rndis_pktinfo_append(pkt, NDIS_LSO2_INFO_SIZE, 1340 NDIS_PKTINFO_TYPE_LSO); 1341 1342 if (m->ol_flags & PKT_TX_IPV6) { 1343 *pi_data = NDIS_LSO2_INFO_MAKEIPV6(hlen, 1344 m->tso_segsz); 1345 } else { 1346 *pi_data = NDIS_LSO2_INFO_MAKEIPV4(hlen, 1347 m->tso_segsz); 1348 } 1349 } else if (m->ol_flags & 1350 (PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM | PKT_TX_IP_CKSUM)) { 1351 pi_data = hn_rndis_pktinfo_append(pkt, NDIS_TXCSUM_INFO_SIZE, 1352 NDIS_PKTINFO_TYPE_CSUM); 1353 *pi_data = 0; 1354 1355 if (m->ol_flags & PKT_TX_IPV6) 1356 *pi_data |= NDIS_TXCSUM_INFO_IPV6; 1357 if (m->ol_flags & PKT_TX_IPV4) { 1358 *pi_data |= NDIS_TXCSUM_INFO_IPV4; 1359 1360 if (m->ol_flags & PKT_TX_IP_CKSUM) 1361 *pi_data |= NDIS_TXCSUM_INFO_IPCS; 1362 } 1363 1364 if (m->ol_flags & PKT_TX_TCP_CKSUM) 1365 *pi_data |= NDIS_TXCSUM_INFO_MKTCPCS(hlen); 1366 else if (m->ol_flags & PKT_TX_UDP_CKSUM) 1367 *pi_data |= NDIS_TXCSUM_INFO_MKUDPCS(hlen); 1368 } 1369 1370 pkt_hlen = pkt->pktinfooffset + pkt->pktinfolen; 1371 /* Fixup RNDIS packet message total length */ 1372 pkt->len += pkt_hlen; 1373 1374 /* Convert RNDIS packet message offsets */ 1375 pkt->dataoffset = hn_rndis_pktmsg_offset(pkt_hlen); 1376 pkt->pktinfooffset = hn_rndis_pktmsg_offset(pkt->pktinfooffset); 1377 } 1378 1379 /* How many scatter gather list elements ar needed */ 1380 static unsigned int hn_get_slots(const struct rte_mbuf *m) 1381 { 1382 unsigned int slots = 1; /* for RNDIS header */ 1383 1384 while (m) { 1385 unsigned int size = rte_pktmbuf_data_len(m); 1386 unsigned int offs = rte_mbuf_data_iova(m) & PAGE_MASK; 1387 1388 slots += (offs + size + PAGE_SIZE - 1) / PAGE_SIZE; 1389 m = m->next; 1390 } 1391 1392 return slots; 1393 } 1394 1395 /* Build scatter gather list from chained mbuf */ 1396 static unsigned int hn_fill_sg(struct vmbus_gpa *sg, 1397 const struct rte_mbuf *m) 1398 { 1399 unsigned int segs = 0; 1400 1401 while (m) { 1402 rte_iova_t addr = rte_mbuf_data_iova(m); 1403 unsigned int page = addr / PAGE_SIZE; 1404 unsigned int offset = addr & PAGE_MASK; 1405 unsigned int len = rte_pktmbuf_data_len(m); 1406 1407 while (len > 0) { 1408 unsigned int bytes = RTE_MIN(len, PAGE_SIZE - offset); 1409 1410 sg[segs].page = page; 1411 sg[segs].ofs = offset; 1412 sg[segs].len = bytes; 1413 segs++; 1414 1415 ++page; 1416 offset = 0; 1417 len -= bytes; 1418 } 1419 m = m->next; 1420 } 1421 1422 return segs; 1423 } 1424 1425 /* Transmit directly from mbuf */ 1426 static int hn_xmit_sg(struct hn_tx_queue *txq, 1427 const struct hn_txdesc *txd, const struct rte_mbuf *m, 1428 bool *need_sig) 1429 { 1430 struct vmbus_gpa sg[hn_get_slots(m)]; 1431 struct hn_nvs_rndis nvs_rndis = { 1432 .type = NVS_TYPE_RNDIS, 1433 .rndis_mtype = NVS_RNDIS_MTYPE_DATA, 1434 .chim_sz = txd->chim_size, 1435 }; 1436 rte_iova_t addr; 1437 unsigned int segs; 1438 1439 /* attach aggregation data if present */ 1440 if (txd->chim_size > 0) 1441 nvs_rndis.chim_idx = txd->chim_index; 1442 else 1443 nvs_rndis.chim_idx = NVS_CHIM_IDX_INVALID; 1444 1445 hn_rndis_dump(txd->rndis_pkt); 1446 1447 /* pass IOVA of rndis header in first segment */ 1448 addr = rte_malloc_virt2iova(txq->tx_rndis); 1449 if (unlikely(addr == RTE_BAD_IOVA)) { 1450 PMD_DRV_LOG(ERR, "RNDIS transmit can not get iova"); 1451 return -EINVAL; 1452 } 1453 addr = addr + ((char *)txd->rndis_pkt - (char *)txq->tx_rndis); 1454 1455 sg[0].page = addr / PAGE_SIZE; 1456 sg[0].ofs = addr & PAGE_MASK; 1457 sg[0].len = RNDIS_PACKET_MSG_OFFSET_ABS(hn_rndis_pktlen(txd->rndis_pkt)); 1458 segs = 1; 1459 1460 hn_update_packet_stats(&txq->stats, m); 1461 1462 segs += hn_fill_sg(sg + 1, m); 1463 1464 PMD_TX_LOG(DEBUG, "port %u:%u tx %u segs %u size %u", 1465 txq->port_id, txq->queue_id, txd->chim_index, 1466 segs, nvs_rndis.chim_sz); 1467 1468 return hn_nvs_send_sglist(txq->chan, sg, segs, 1469 &nvs_rndis, sizeof(nvs_rndis), 1470 (uintptr_t)txd, need_sig); 1471 } 1472 1473 uint16_t 1474 hn_xmit_pkts(void *ptxq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 1475 { 1476 struct hn_tx_queue *txq = ptxq; 1477 uint16_t queue_id = txq->queue_id; 1478 struct hn_data *hv = txq->hv; 1479 struct rte_eth_dev *vf_dev; 1480 bool need_sig = false; 1481 uint16_t nb_tx, tx_thresh; 1482 int ret; 1483 1484 if (unlikely(hv->closed)) 1485 return 0; 1486 1487 /* 1488 * Always check for events on the primary channel 1489 * because that is where hotplug notifications occur. 1490 */ 1491 tx_thresh = RTE_MAX(txq->free_thresh, nb_pkts); 1492 if (txq->queue_id == 0 || 1493 rte_mempool_avail_count(txq->txdesc_pool) < tx_thresh) 1494 hn_process_events(hv, txq->queue_id, 0); 1495 1496 /* Transmit over VF if present and up */ 1497 rte_rwlock_read_lock(&hv->vf_lock); 1498 vf_dev = hn_get_vf_dev(hv); 1499 if (vf_dev && vf_dev->data->dev_started) { 1500 void *sub_q = vf_dev->data->tx_queues[queue_id]; 1501 1502 nb_tx = (*vf_dev->tx_pkt_burst)(sub_q, tx_pkts, nb_pkts); 1503 rte_rwlock_read_unlock(&hv->vf_lock); 1504 return nb_tx; 1505 } 1506 rte_rwlock_read_unlock(&hv->vf_lock); 1507 1508 for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { 1509 struct rte_mbuf *m = tx_pkts[nb_tx]; 1510 uint32_t pkt_size = m->pkt_len + HN_RNDIS_PKT_LEN; 1511 struct rndis_packet_msg *pkt; 1512 struct hn_txdesc *txd; 1513 1514 txd = hn_txd_get(txq); 1515 if (txd == NULL) 1516 break; 1517 1518 /* For small packets aggregate them in chimney buffer */ 1519 if (m->pkt_len < HN_TXCOPY_THRESHOLD && pkt_size <= txq->agg_szmax) { 1520 /* If this packet will not fit, then flush */ 1521 if (txq->agg_pktleft == 0 || 1522 RTE_ALIGN(pkt_size, txq->agg_align) > txq->agg_szleft) { 1523 if (hn_flush_txagg(txq, &need_sig)) 1524 goto fail; 1525 } 1526 1527 1528 pkt = hn_try_txagg(hv, txq, txd, pkt_size); 1529 if (unlikely(!pkt)) 1530 break; 1531 1532 hn_encap(pkt, queue_id, m); 1533 hn_append_to_chim(txq, pkt, m); 1534 1535 rte_pktmbuf_free(m); 1536 1537 /* if buffer is full, flush */ 1538 if (txq->agg_pktleft == 0 && 1539 hn_flush_txagg(txq, &need_sig)) 1540 goto fail; 1541 } else { 1542 /* Send any outstanding packets in buffer */ 1543 if (txq->agg_txd && hn_flush_txagg(txq, &need_sig)) 1544 goto fail; 1545 1546 pkt = txd->rndis_pkt; 1547 txd->m = m; 1548 txd->data_size = m->pkt_len; 1549 ++txd->packets; 1550 1551 hn_encap(pkt, queue_id, m); 1552 1553 ret = hn_xmit_sg(txq, txd, m, &need_sig); 1554 if (unlikely(ret != 0)) { 1555 if (ret == -EAGAIN) { 1556 PMD_TX_LOG(DEBUG, "sg channel full"); 1557 ++txq->stats.channel_full; 1558 } else { 1559 PMD_DRV_LOG(NOTICE, "sg send failed: %d", ret); 1560 ++txq->stats.errors; 1561 } 1562 hn_txd_put(txq, txd); 1563 goto fail; 1564 } 1565 } 1566 } 1567 1568 /* If partial buffer left, then try and send it. 1569 * if that fails, then reuse it on next send. 1570 */ 1571 hn_flush_txagg(txq, &need_sig); 1572 1573 fail: 1574 if (need_sig) 1575 rte_vmbus_chan_signal_tx(txq->chan); 1576 1577 return nb_tx; 1578 } 1579 1580 static uint16_t 1581 hn_recv_vf(uint16_t vf_port, const struct hn_rx_queue *rxq, 1582 struct rte_mbuf **rx_pkts, uint16_t nb_pkts) 1583 { 1584 uint16_t i, n; 1585 1586 if (unlikely(nb_pkts == 0)) 1587 return 0; 1588 1589 n = rte_eth_rx_burst(vf_port, rxq->queue_id, rx_pkts, nb_pkts); 1590 1591 /* relabel the received mbufs */ 1592 for (i = 0; i < n; i++) 1593 rx_pkts[i]->port = rxq->port_id; 1594 1595 return n; 1596 } 1597 1598 uint16_t 1599 hn_recv_pkts(void *prxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) 1600 { 1601 struct hn_rx_queue *rxq = prxq; 1602 struct hn_data *hv = rxq->hv; 1603 struct rte_eth_dev *vf_dev; 1604 uint16_t nb_rcv; 1605 1606 if (unlikely(hv->closed)) 1607 return 0; 1608 1609 /* Check for new completions (and hotplug) */ 1610 if (likely(rte_ring_count(rxq->rx_ring) < nb_pkts)) 1611 hn_process_events(hv, rxq->queue_id, 0); 1612 1613 /* Always check the vmbus path for multicast and new flows */ 1614 nb_rcv = rte_ring_sc_dequeue_burst(rxq->rx_ring, 1615 (void **)rx_pkts, nb_pkts, NULL); 1616 1617 /* If VF is available, check that as well */ 1618 rte_rwlock_read_lock(&hv->vf_lock); 1619 vf_dev = hn_get_vf_dev(hv); 1620 if (vf_dev && vf_dev->data->dev_started) 1621 nb_rcv += hn_recv_vf(vf_dev->data->port_id, rxq, 1622 rx_pkts + nb_rcv, nb_pkts - nb_rcv); 1623 1624 rte_rwlock_read_unlock(&hv->vf_lock); 1625 return nb_rcv; 1626 } 1627 1628 void 1629 hn_dev_free_queues(struct rte_eth_dev *dev) 1630 { 1631 unsigned int i; 1632 1633 for (i = 0; i < dev->data->nb_rx_queues; i++) { 1634 struct hn_rx_queue *rxq = dev->data->rx_queues[i]; 1635 1636 hn_rx_queue_free(rxq, false); 1637 dev->data->rx_queues[i] = NULL; 1638 } 1639 dev->data->nb_rx_queues = 0; 1640 1641 for (i = 0; i < dev->data->nb_tx_queues; i++) { 1642 hn_dev_tx_queue_release(dev->data->tx_queues[i]); 1643 dev->data->tx_queues[i] = NULL; 1644 } 1645 dev->data->nb_tx_queues = 0; 1646 } 1647