1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017-2021 Marvell International Ltd. 3 * Copyright(c) 2017-2021 Semihalf. 4 * All rights reserved. 5 */ 6 7 #include <rte_string_fns.h> 8 #include <ethdev_driver.h> 9 #include <rte_kvargs.h> 10 #include <rte_log.h> 11 #include <rte_malloc.h> 12 #include <rte_bus_vdev.h> 13 14 #include <fcntl.h> 15 #include <linux/ethtool.h> 16 #include <linux/sockios.h> 17 #include <net/if.h> 18 #include <net/if_arp.h> 19 #include <sys/ioctl.h> 20 #include <sys/socket.h> 21 #include <sys/stat.h> 22 #include <sys/types.h> 23 24 #include <rte_mvep_common.h> 25 #include "mrvl_ethdev.h" 26 #include "mrvl_qos.h" 27 #include "mrvl_flow.h" 28 #include "mrvl_mtr.h" 29 #include "mrvl_tm.h" 30 31 /* bitmask with reserved hifs */ 32 #define MRVL_MUSDK_HIFS_RESERVED 0x0F 33 /* bitmask with reserved bpools */ 34 #define MRVL_MUSDK_BPOOLS_RESERVED 0x07 35 /* bitmask with reserved kernel RSS tables */ 36 #define MRVL_MUSDK_RSS_RESERVED 0x0F 37 /* maximum number of available hifs */ 38 #define MRVL_MUSDK_HIFS_MAX 9 39 40 /* prefetch shift */ 41 #define MRVL_MUSDK_PREFETCH_SHIFT 2 42 43 /* TCAM has 25 entries reserved for uc/mc filter entries 44 * + 1 for primary mac address 45 */ 46 #define MRVL_MAC_ADDRS_MAX (1 + 25) 47 #define MRVL_MATCH_LEN 16 48 #define MRVL_PKT_EFFEC_OFFS (MRVL_PKT_OFFS + MV_MH_SIZE) 49 /* Maximum allowable packet size */ 50 #define MRVL_PKT_SIZE_MAX (10240 - MV_MH_SIZE) 51 52 #define MRVL_IFACE_NAME_ARG "iface" 53 #define MRVL_CFG_ARG "cfg" 54 55 #define MRVL_ARP_LENGTH 28 56 57 #define MRVL_COOKIE_ADDR_INVALID ~0ULL 58 #define MRVL_COOKIE_HIGH_ADDR_MASK 0xffffff0000000000 59 60 /** Port Rx offload capabilities */ 61 #define MRVL_RX_OFFLOADS (RTE_ETH_RX_OFFLOAD_VLAN_FILTER | \ 62 RTE_ETH_RX_OFFLOAD_CHECKSUM) 63 64 /** Port Tx offloads capabilities */ 65 #define MRVL_TX_OFFLOAD_CHECKSUM (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | \ 66 RTE_ETH_TX_OFFLOAD_UDP_CKSUM | \ 67 RTE_ETH_TX_OFFLOAD_TCP_CKSUM) 68 #define MRVL_TX_OFFLOADS (MRVL_TX_OFFLOAD_CHECKSUM | \ 69 RTE_ETH_TX_OFFLOAD_MULTI_SEGS) 70 71 #define MRVL_TX_PKT_OFFLOADS (RTE_MBUF_F_TX_IP_CKSUM | \ 72 RTE_MBUF_F_TX_TCP_CKSUM | \ 73 RTE_MBUF_F_TX_UDP_CKSUM) 74 75 static const char * const valid_args[] = { 76 MRVL_IFACE_NAME_ARG, 77 MRVL_CFG_ARG, 78 NULL 79 }; 80 81 static int used_hifs = MRVL_MUSDK_HIFS_RESERVED; 82 static struct pp2_hif *hifs[RTE_MAX_LCORE]; 83 static int used_bpools[PP2_NUM_PKT_PROC] = { 84 [0 ... PP2_NUM_PKT_PROC - 1] = MRVL_MUSDK_BPOOLS_RESERVED 85 }; 86 87 static struct pp2_bpool *mrvl_port_to_bpool_lookup[RTE_MAX_ETHPORTS]; 88 static int mrvl_port_bpool_size[PP2_NUM_PKT_PROC][PP2_BPOOL_NUM_POOLS][RTE_MAX_LCORE]; 89 static uint64_t cookie_addr_high = MRVL_COOKIE_ADDR_INVALID; 90 static int dummy_pool_id[PP2_NUM_PKT_PROC]; 91 struct pp2_bpool *dummy_pool[PP2_NUM_PKT_PROC] = {0}; 92 93 struct mrvl_ifnames { 94 const char *names[PP2_NUM_ETH_PPIO * PP2_NUM_PKT_PROC]; 95 int idx; 96 }; 97 98 /* 99 * To use buffer harvesting based on loopback port shadow queue structure 100 * was introduced for buffers information bookkeeping. 101 * 102 * Before sending the packet, related buffer information (pp2_buff_inf) is 103 * stored in shadow queue. After packet is transmitted no longer used 104 * packet buffer is released back to it's original hardware pool, 105 * on condition it originated from interface. 106 * In case it was generated by application itself i.e: mbuf->port field is 107 * 0xff then its released to software mempool. 108 */ 109 struct mrvl_shadow_txq { 110 int head; /* write index - used when sending buffers */ 111 int tail; /* read index - used when releasing buffers */ 112 u16 size; /* queue occupied size */ 113 u16 num_to_release; /* number of descriptors sent, that can be 114 * released 115 */ 116 struct buff_release_entry ent[MRVL_PP2_TX_SHADOWQ_SIZE]; /* q entries */ 117 }; 118 119 struct mrvl_rxq { 120 struct mrvl_priv *priv; 121 struct rte_mempool *mp; 122 int queue_id; 123 int port_id; 124 int cksum_enabled; 125 uint64_t bytes_recv; 126 uint64_t drop_mac; 127 }; 128 129 struct mrvl_txq { 130 struct mrvl_priv *priv; 131 int queue_id; 132 int port_id; 133 uint64_t bytes_sent; 134 struct mrvl_shadow_txq shadow_txqs[RTE_MAX_LCORE]; 135 int tx_deferred_start; 136 }; 137 138 static int mrvl_lcore_first; 139 static int mrvl_lcore_last; 140 static int mrvl_dev_num; 141 142 static int mrvl_fill_bpool(struct mrvl_rxq *rxq, int num); 143 static inline void mrvl_free_sent_buffers(struct pp2_ppio *ppio, 144 struct pp2_hif *hif, unsigned int core_id, 145 struct mrvl_shadow_txq *sq, int qid, int force); 146 147 static uint16_t mrvl_tx_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, 148 uint16_t nb_pkts); 149 static uint16_t mrvl_tx_sg_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, 150 uint16_t nb_pkts); 151 static int rte_pmd_mrvl_remove(struct rte_vdev_device *vdev); 152 static void mrvl_deinit_pp2(void); 153 static void mrvl_deinit_hifs(void); 154 155 static int 156 mrvl_mac_addr_add(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr, 157 uint32_t index, uint32_t vmdq __rte_unused); 158 static int 159 mrvl_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr); 160 static int 161 mrvl_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); 162 static int mrvl_promiscuous_enable(struct rte_eth_dev *dev); 163 static int mrvl_allmulticast_enable(struct rte_eth_dev *dev); 164 static int 165 mrvl_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf); 166 167 #define MRVL_XSTATS_TBL_ENTRY(name) { \ 168 #name, offsetof(struct pp2_ppio_statistics, name), \ 169 sizeof(((struct pp2_ppio_statistics *)0)->name) \ 170 } 171 172 /* Table with xstats data */ 173 static struct { 174 const char *name; 175 unsigned int offset; 176 unsigned int size; 177 } mrvl_xstats_tbl[] = { 178 MRVL_XSTATS_TBL_ENTRY(rx_bytes), 179 MRVL_XSTATS_TBL_ENTRY(rx_packets), 180 MRVL_XSTATS_TBL_ENTRY(rx_unicast_packets), 181 MRVL_XSTATS_TBL_ENTRY(rx_errors), 182 MRVL_XSTATS_TBL_ENTRY(rx_fullq_dropped), 183 MRVL_XSTATS_TBL_ENTRY(rx_bm_dropped), 184 MRVL_XSTATS_TBL_ENTRY(rx_early_dropped), 185 MRVL_XSTATS_TBL_ENTRY(rx_fifo_dropped), 186 MRVL_XSTATS_TBL_ENTRY(rx_cls_dropped), 187 MRVL_XSTATS_TBL_ENTRY(tx_bytes), 188 MRVL_XSTATS_TBL_ENTRY(tx_packets), 189 MRVL_XSTATS_TBL_ENTRY(tx_unicast_packets), 190 MRVL_XSTATS_TBL_ENTRY(tx_errors) 191 }; 192 193 static inline int 194 mrvl_reserve_bit(int *bitmap, int max) 195 { 196 int n = sizeof(*bitmap) * 8 - __builtin_clz(*bitmap); 197 198 if (n >= max) 199 return -1; 200 201 *bitmap |= 1 << n; 202 203 return n; 204 } 205 206 static int 207 mrvl_pp2_fixup_init(void) 208 { 209 struct pp2_bpool_params bpool_params; 210 char name[15]; 211 int err, i; 212 213 memset(dummy_pool, 0, sizeof(dummy_pool)); 214 for (i = 0; i < pp2_get_num_inst(); i++) { 215 dummy_pool_id[i] = mrvl_reserve_bit(&used_bpools[i], 216 PP2_BPOOL_NUM_POOLS); 217 if (dummy_pool_id[i] < 0) { 218 MRVL_LOG(ERR, "Can't find free pool\n"); 219 return -1; 220 } 221 222 memset(name, 0, sizeof(name)); 223 snprintf(name, sizeof(name), "pool-%d:%d", i, dummy_pool_id[i]); 224 memset(&bpool_params, 0, sizeof(bpool_params)); 225 bpool_params.match = name; 226 bpool_params.buff_len = MRVL_PKT_OFFS; 227 bpool_params.dummy_short_pool = 1; 228 err = pp2_bpool_init(&bpool_params, &dummy_pool[i]); 229 if (err != 0 || !dummy_pool[i]) { 230 MRVL_LOG(ERR, "BPool init failed!\n"); 231 used_bpools[i] &= ~(1 << dummy_pool_id[i]); 232 return -1; 233 } 234 } 235 236 return 0; 237 } 238 239 /** 240 * Initialize packet processor. 241 * 242 * @return 243 * 0 on success, negative error value otherwise. 244 */ 245 static int 246 mrvl_init_pp2(void) 247 { 248 struct pp2_init_params init_params; 249 int err; 250 251 memset(&init_params, 0, sizeof(init_params)); 252 init_params.hif_reserved_map = MRVL_MUSDK_HIFS_RESERVED; 253 init_params.bm_pool_reserved_map = MRVL_MUSDK_BPOOLS_RESERVED; 254 init_params.rss_tbl_reserved_map = MRVL_MUSDK_RSS_RESERVED; 255 if (mrvl_cfg && mrvl_cfg->pp2_cfg.prs_udfs.num_udfs) 256 memcpy(&init_params.prs_udfs, &mrvl_cfg->pp2_cfg.prs_udfs, 257 sizeof(struct pp2_parse_udfs)); 258 err = pp2_init(&init_params); 259 if (err != 0) { 260 MRVL_LOG(ERR, "PP2 init failed"); 261 return -1; 262 } 263 264 err = mrvl_pp2_fixup_init(); 265 if (err != 0) { 266 MRVL_LOG(ERR, "PP2 fixup init failed"); 267 return -1; 268 } 269 270 return 0; 271 } 272 273 static void 274 mrvl_pp2_fixup_deinit(void) 275 { 276 int i; 277 278 for (i = 0; i < PP2_NUM_PKT_PROC; i++) { 279 if (!dummy_pool[i]) 280 continue; 281 pp2_bpool_deinit(dummy_pool[i]); 282 used_bpools[i] &= ~(1 << dummy_pool_id[i]); 283 } 284 } 285 286 /** 287 * Deinitialize packet processor. 288 * 289 * @return 290 * 0 on success, negative error value otherwise. 291 */ 292 static void 293 mrvl_deinit_pp2(void) 294 { 295 mrvl_pp2_fixup_deinit(); 296 pp2_deinit(); 297 } 298 299 static inline void 300 mrvl_fill_shadowq(struct mrvl_shadow_txq *sq, struct rte_mbuf *buf) 301 { 302 sq->ent[sq->head].buff.cookie = (uint64_t)buf; 303 sq->ent[sq->head].buff.addr = buf ? 304 rte_mbuf_data_iova_default(buf) : 0; 305 306 sq->ent[sq->head].bpool = 307 (unlikely(!buf || buf->port >= RTE_MAX_ETHPORTS || 308 buf->refcnt > 1)) ? NULL : 309 mrvl_port_to_bpool_lookup[buf->port]; 310 311 sq->head = (sq->head + 1) & MRVL_PP2_TX_SHADOWQ_MASK; 312 sq->size++; 313 } 314 315 /** 316 * Deinitialize per-lcore MUSDK hardware interfaces (hifs). 317 */ 318 static void 319 mrvl_deinit_hifs(void) 320 { 321 int i; 322 323 for (i = mrvl_lcore_first; i <= mrvl_lcore_last; i++) { 324 if (hifs[i]) 325 pp2_hif_deinit(hifs[i]); 326 } 327 used_hifs = MRVL_MUSDK_HIFS_RESERVED; 328 memset(hifs, 0, sizeof(hifs)); 329 } 330 331 static inline void 332 mrvl_fill_desc(struct pp2_ppio_desc *desc, struct rte_mbuf *buf) 333 { 334 pp2_ppio_outq_desc_reset(desc); 335 pp2_ppio_outq_desc_set_phys_addr(desc, rte_pktmbuf_iova(buf)); 336 pp2_ppio_outq_desc_set_pkt_offset(desc, 0); 337 pp2_ppio_outq_desc_set_pkt_len(desc, rte_pktmbuf_data_len(buf)); 338 } 339 340 static inline int 341 mrvl_get_bpool_size(int pp2_id, int pool_id) 342 { 343 int i; 344 int size = 0; 345 346 for (i = mrvl_lcore_first; i <= mrvl_lcore_last; i++) 347 size += mrvl_port_bpool_size[pp2_id][pool_id][i]; 348 349 return size; 350 } 351 352 static int 353 mrvl_init_hif(int core_id) 354 { 355 struct pp2_hif_params params; 356 char match[MRVL_MATCH_LEN]; 357 int ret; 358 359 ret = mrvl_reserve_bit(&used_hifs, MRVL_MUSDK_HIFS_MAX); 360 if (ret < 0) { 361 MRVL_LOG(ERR, "Failed to allocate hif %d", core_id); 362 return ret; 363 } 364 365 snprintf(match, sizeof(match), "hif-%d", ret); 366 memset(¶ms, 0, sizeof(params)); 367 params.match = match; 368 params.out_size = MRVL_PP2_AGGR_TXQD_MAX; 369 ret = pp2_hif_init(¶ms, &hifs[core_id]); 370 if (ret) { 371 MRVL_LOG(ERR, "Failed to initialize hif %d", core_id); 372 return ret; 373 } 374 375 return 0; 376 } 377 378 static inline struct pp2_hif* 379 mrvl_get_hif(struct mrvl_priv *priv, int core_id) 380 { 381 int ret; 382 383 if (likely(hifs[core_id] != NULL)) 384 return hifs[core_id]; 385 386 rte_spinlock_lock(&priv->lock); 387 388 ret = mrvl_init_hif(core_id); 389 if (ret < 0) { 390 MRVL_LOG(ERR, "Failed to allocate hif %d", core_id); 391 goto out; 392 } 393 394 if (core_id < mrvl_lcore_first) 395 mrvl_lcore_first = core_id; 396 397 if (core_id > mrvl_lcore_last) 398 mrvl_lcore_last = core_id; 399 out: 400 rte_spinlock_unlock(&priv->lock); 401 402 return hifs[core_id]; 403 } 404 405 /** 406 * Set tx burst function according to offload flag 407 * 408 * @param dev 409 * Pointer to Ethernet device structure. 410 */ 411 static void 412 mrvl_set_tx_function(struct rte_eth_dev *dev) 413 { 414 struct mrvl_priv *priv = dev->data->dev_private; 415 416 /* Use a simple Tx queue (no offloads, no multi segs) if possible */ 417 if (priv->multiseg) { 418 RTE_LOG(INFO, PMD, "Using multi-segment tx callback\n"); 419 dev->tx_pkt_burst = mrvl_tx_sg_pkt_burst; 420 } else { 421 RTE_LOG(INFO, PMD, "Using single-segment tx callback\n"); 422 dev->tx_pkt_burst = mrvl_tx_pkt_burst; 423 } 424 } 425 426 /** 427 * Configure rss based on dpdk rss configuration. 428 * 429 * @param priv 430 * Pointer to private structure. 431 * @param rss_conf 432 * Pointer to RSS configuration. 433 * 434 * @return 435 * 0 on success, negative error value otherwise. 436 */ 437 static int 438 mrvl_configure_rss(struct mrvl_priv *priv, struct rte_eth_rss_conf *rss_conf) 439 { 440 if (rss_conf->rss_key) 441 MRVL_LOG(WARNING, "Changing hash key is not supported"); 442 443 if (rss_conf->rss_hf == 0) { 444 priv->ppio_params.inqs_params.hash_type = PP2_PPIO_HASH_T_NONE; 445 } else if (rss_conf->rss_hf & RTE_ETH_RSS_IPV4) { 446 priv->ppio_params.inqs_params.hash_type = 447 PP2_PPIO_HASH_T_2_TUPLE; 448 } else if (rss_conf->rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP) { 449 priv->ppio_params.inqs_params.hash_type = 450 PP2_PPIO_HASH_T_5_TUPLE; 451 priv->rss_hf_tcp = 1; 452 } else if (rss_conf->rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP) { 453 priv->ppio_params.inqs_params.hash_type = 454 PP2_PPIO_HASH_T_5_TUPLE; 455 priv->rss_hf_tcp = 0; 456 } else { 457 return -EINVAL; 458 } 459 460 return 0; 461 } 462 463 /** 464 * Ethernet device configuration. 465 * 466 * Prepare the driver for a given number of TX and RX queues and 467 * configure RSS. 468 * 469 * @param dev 470 * Pointer to Ethernet device structure. 471 * 472 * @return 473 * 0 on success, negative error value otherwise. 474 */ 475 static int 476 mrvl_dev_configure(struct rte_eth_dev *dev) 477 { 478 struct mrvl_priv *priv = dev->data->dev_private; 479 int ret; 480 481 if (priv->ppio) { 482 MRVL_LOG(INFO, "Device reconfiguration is not supported"); 483 return -EINVAL; 484 } 485 486 if (dev->data->dev_conf.rxmode.mq_mode != RTE_ETH_MQ_RX_NONE && 487 dev->data->dev_conf.rxmode.mq_mode != RTE_ETH_MQ_RX_RSS) { 488 MRVL_LOG(INFO, "Unsupported rx multi queue mode %d", 489 dev->data->dev_conf.rxmode.mq_mode); 490 return -EINVAL; 491 } 492 493 if (dev->data->dev_conf.rxmode.split_hdr_size) { 494 MRVL_LOG(INFO, "Split headers not supported"); 495 return -EINVAL; 496 } 497 498 if (dev->data->dev_conf.rxmode.mtu > priv->max_mtu) { 499 MRVL_LOG(ERR, "MTU %u is larger than max_mtu %u\n", 500 dev->data->dev_conf.rxmode.mtu, 501 priv->max_mtu); 502 return -EINVAL; 503 } 504 505 if (dev->data->dev_conf.txmode.offloads & RTE_ETH_TX_OFFLOAD_MULTI_SEGS) 506 priv->multiseg = 1; 507 508 ret = mrvl_configure_rxqs(priv, dev->data->port_id, 509 dev->data->nb_rx_queues); 510 if (ret < 0) 511 return ret; 512 513 ret = mrvl_configure_txqs(priv, dev->data->port_id, 514 dev->data->nb_tx_queues); 515 if (ret < 0) 516 return ret; 517 518 priv->ppio_params.outqs_params.num_outqs = dev->data->nb_tx_queues; 519 priv->ppio_params.maintain_stats = 1; 520 priv->nb_rx_queues = dev->data->nb_rx_queues; 521 522 ret = mrvl_tm_init(dev); 523 if (ret < 0) 524 return ret; 525 526 if (dev->data->nb_rx_queues == 1 && 527 dev->data->dev_conf.rxmode.mq_mode == RTE_ETH_MQ_RX_RSS) { 528 MRVL_LOG(WARNING, "Disabling hash for 1 rx queue"); 529 priv->ppio_params.inqs_params.hash_type = PP2_PPIO_HASH_T_NONE; 530 priv->configured = 1; 531 return 0; 532 } 533 534 ret = mrvl_configure_rss(priv, 535 &dev->data->dev_conf.rx_adv_conf.rss_conf); 536 if (ret < 0) 537 return ret; 538 539 priv->configured = 1; 540 541 return 0; 542 } 543 544 /** 545 * DPDK callback to change the MTU. 546 * 547 * Setting the MTU affects hardware MRU (packets larger than the MRU 548 * will be dropped). 549 * 550 * @param dev 551 * Pointer to Ethernet device structure. 552 * @param mtu 553 * New MTU. 554 * 555 * @return 556 * 0 on success, negative error value otherwise. 557 */ 558 static int 559 mrvl_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) 560 { 561 struct mrvl_priv *priv = dev->data->dev_private; 562 uint16_t mru; 563 uint16_t mbuf_data_size = 0; /* SW buffer size */ 564 int ret; 565 566 mru = MRVL_PP2_MTU_TO_MRU(mtu); 567 /* 568 * min_rx_buf_size is equal to mbuf data size 569 * if pmd didn't set it differently 570 */ 571 mbuf_data_size = dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM; 572 /* Prevent PMD from: 573 * - setting mru greater than the mbuf size resulting in 574 * hw and sw buffer size mismatch 575 * - setting mtu that requires the support of scattered packets 576 * when this feature has not been enabled/supported so far 577 * (TODO check scattered_rx flag here once scattered RX is supported). 578 */ 579 if (mru - RTE_ETHER_CRC_LEN + MRVL_PKT_OFFS > mbuf_data_size) { 580 mru = mbuf_data_size + RTE_ETHER_CRC_LEN - MRVL_PKT_OFFS; 581 mtu = MRVL_PP2_MRU_TO_MTU(mru); 582 MRVL_LOG(WARNING, "MTU too big, max MTU possible limitted " 583 "by current mbuf size: %u. Set MTU to %u, MRU to %u", 584 mbuf_data_size, mtu, mru); 585 } 586 587 if (mtu < RTE_ETHER_MIN_MTU || mru > MRVL_PKT_SIZE_MAX) { 588 MRVL_LOG(ERR, "Invalid MTU [%u] or MRU [%u]", mtu, mru); 589 return -EINVAL; 590 } 591 592 if (!priv->ppio) 593 return 0; 594 595 ret = pp2_ppio_set_mru(priv->ppio, mru); 596 if (ret) { 597 MRVL_LOG(ERR, "Failed to change MRU"); 598 return ret; 599 } 600 601 ret = pp2_ppio_set_mtu(priv->ppio, mtu); 602 if (ret) { 603 MRVL_LOG(ERR, "Failed to change MTU"); 604 return ret; 605 } 606 607 return 0; 608 } 609 610 /** 611 * DPDK callback to bring the link up. 612 * 613 * @param dev 614 * Pointer to Ethernet device structure. 615 * 616 * @return 617 * 0 on success, negative error value otherwise. 618 */ 619 static int 620 mrvl_dev_set_link_up(struct rte_eth_dev *dev) 621 { 622 struct mrvl_priv *priv = dev->data->dev_private; 623 int ret; 624 625 if (!priv->ppio) { 626 dev->data->dev_link.link_status = RTE_ETH_LINK_UP; 627 return 0; 628 } 629 630 ret = pp2_ppio_enable(priv->ppio); 631 if (ret) 632 return ret; 633 634 /* 635 * mtu/mru can be updated if pp2_ppio_enable() was called at least once 636 * as pp2_ppio_enable() changes port->t_mode from default 0 to 637 * PP2_TRAFFIC_INGRESS_EGRESS. 638 * 639 * Set mtu to default DPDK value here. 640 */ 641 ret = mrvl_mtu_set(dev, dev->data->mtu); 642 if (ret) { 643 pp2_ppio_disable(priv->ppio); 644 return ret; 645 } 646 647 dev->data->dev_link.link_status = RTE_ETH_LINK_UP; 648 return 0; 649 } 650 651 /** 652 * DPDK callback to bring the link down. 653 * 654 * @param dev 655 * Pointer to Ethernet device structure. 656 * 657 * @return 658 * 0 on success, negative error value otherwise. 659 */ 660 static int 661 mrvl_dev_set_link_down(struct rte_eth_dev *dev) 662 { 663 struct mrvl_priv *priv = dev->data->dev_private; 664 int ret; 665 666 if (!priv->ppio) { 667 dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN; 668 return 0; 669 } 670 ret = pp2_ppio_disable(priv->ppio); 671 if (ret) 672 return ret; 673 674 dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN; 675 return 0; 676 } 677 678 /** 679 * DPDK callback to start tx queue. 680 * 681 * @param dev 682 * Pointer to Ethernet device structure. 683 * @param queue_id 684 * Transmit queue index. 685 * 686 * @return 687 * 0 on success, negative error value otherwise. 688 */ 689 static int 690 mrvl_tx_queue_start(struct rte_eth_dev *dev, uint16_t queue_id) 691 { 692 struct mrvl_priv *priv = dev->data->dev_private; 693 int ret; 694 695 if (!priv) 696 return -EPERM; 697 698 /* passing 1 enables given tx queue */ 699 ret = pp2_ppio_set_outq_state(priv->ppio, queue_id, 1); 700 if (ret) { 701 MRVL_LOG(ERR, "Failed to start txq %d", queue_id); 702 return ret; 703 } 704 705 dev->data->tx_queue_state[queue_id] = RTE_ETH_QUEUE_STATE_STARTED; 706 707 return 0; 708 } 709 710 /** 711 * DPDK callback to stop tx queue. 712 * 713 * @param dev 714 * Pointer to Ethernet device structure. 715 * @param queue_id 716 * Transmit queue index. 717 * 718 * @return 719 * 0 on success, negative error value otherwise. 720 */ 721 static int 722 mrvl_tx_queue_stop(struct rte_eth_dev *dev, uint16_t queue_id) 723 { 724 struct mrvl_priv *priv = dev->data->dev_private; 725 int ret; 726 727 if (!priv->ppio) 728 return -EPERM; 729 730 /* passing 0 disables given tx queue */ 731 ret = pp2_ppio_set_outq_state(priv->ppio, queue_id, 0); 732 if (ret) { 733 MRVL_LOG(ERR, "Failed to stop txq %d", queue_id); 734 return ret; 735 } 736 737 dev->data->tx_queue_state[queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; 738 739 return 0; 740 } 741 742 /** 743 * Populate VLAN Filter configuration. 744 * 745 * @param dev 746 * Pointer to Ethernet device structure. 747 * @param on 748 * Toggle filter. 749 * 750 * @return 751 * 0 on success, negative error value otherwise. 752 */ 753 static int mrvl_populate_vlan_table(struct rte_eth_dev *dev, int on) 754 { 755 uint32_t j; 756 int ret; 757 struct rte_vlan_filter_conf *vfc; 758 759 vfc = &dev->data->vlan_filter_conf; 760 for (j = 0; j < RTE_DIM(vfc->ids); j++) { 761 uint64_t vlan; 762 uint64_t vbit; 763 uint64_t ids = vfc->ids[j]; 764 765 if (ids == 0) 766 continue; 767 768 while (ids) { 769 vlan = 64 * j; 770 /* count trailing zeroes */ 771 vbit = ~ids & (ids - 1); 772 /* clear least significant bit set */ 773 ids ^= (ids ^ (ids - 1)) ^ vbit; 774 for (; vbit; vlan++) 775 vbit >>= 1; 776 ret = mrvl_vlan_filter_set(dev, vlan, on); 777 if (ret) { 778 MRVL_LOG(ERR, "Failed to setup VLAN filter\n"); 779 return ret; 780 } 781 } 782 } 783 784 return 0; 785 } 786 787 /** 788 * DPDK callback to start the device. 789 * 790 * @param dev 791 * Pointer to Ethernet device structure. 792 * 793 * @return 794 * 0 on success, negative errno value on failure. 795 */ 796 static int 797 mrvl_dev_start(struct rte_eth_dev *dev) 798 { 799 struct mrvl_priv *priv = dev->data->dev_private; 800 char match[MRVL_MATCH_LEN]; 801 int ret = 0, i, def_init_size; 802 struct rte_ether_addr *mac_addr; 803 804 if (priv->ppio) 805 return mrvl_dev_set_link_up(dev); 806 807 snprintf(match, sizeof(match), "ppio-%d:%d", 808 priv->pp_id, priv->ppio_id); 809 priv->ppio_params.match = match; 810 priv->ppio_params.eth_start_hdr = PP2_PPIO_HDR_ETH; 811 priv->forward_bad_frames = 0; 812 priv->fill_bpool_buffs = MRVL_BURST_SIZE; 813 814 if (mrvl_cfg) { 815 priv->ppio_params.eth_start_hdr = 816 mrvl_cfg->port[dev->data->port_id].eth_start_hdr; 817 priv->forward_bad_frames = 818 mrvl_cfg->port[dev->data->port_id].forward_bad_frames; 819 priv->fill_bpool_buffs = 820 mrvl_cfg->port[dev->data->port_id].fill_bpool_buffs; 821 } 822 823 /* 824 * Calculate the minimum bpool size for refill feature as follows: 825 * 2 default burst sizes multiply by number of rx queues. 826 * If the bpool size will be below this value, new buffers will 827 * be added to the pool. 828 */ 829 priv->bpool_min_size = priv->nb_rx_queues * MRVL_BURST_SIZE * 2; 830 831 /* In case initial bpool size configured in queues setup is 832 * smaller than minimum size add more buffers 833 */ 834 def_init_size = priv->bpool_min_size + MRVL_BURST_SIZE * 2; 835 if (priv->bpool_init_size < def_init_size) { 836 int buffs_to_add = def_init_size - priv->bpool_init_size; 837 838 priv->bpool_init_size += buffs_to_add; 839 ret = mrvl_fill_bpool(dev->data->rx_queues[0], buffs_to_add); 840 if (ret) 841 MRVL_LOG(ERR, "Failed to add buffers to bpool"); 842 } 843 844 /* 845 * Calculate the maximum bpool size for refill feature as follows: 846 * maximum number of descriptors in rx queue multiply by number 847 * of rx queues plus minimum bpool size. 848 * In case the bpool size will exceed this value, superfluous buffers 849 * will be removed 850 */ 851 priv->bpool_max_size = (priv->nb_rx_queues * MRVL_PP2_RXD_MAX) + 852 priv->bpool_min_size; 853 854 ret = pp2_ppio_init(&priv->ppio_params, &priv->ppio); 855 if (ret) { 856 MRVL_LOG(ERR, "Failed to init ppio"); 857 return ret; 858 } 859 860 /* 861 * In case there are some some stale uc/mc mac addresses flush them 862 * here. It cannot be done during mrvl_dev_close() as port information 863 * is already gone at that point (due to pp2_ppio_deinit() in 864 * mrvl_dev_stop()). 865 */ 866 if (!priv->uc_mc_flushed) { 867 ret = pp2_ppio_flush_mac_addrs(priv->ppio, 1, 1); 868 if (ret) { 869 MRVL_LOG(ERR, 870 "Failed to flush uc/mc filter list"); 871 goto out; 872 } 873 priv->uc_mc_flushed = 1; 874 } 875 876 ret = mrvl_mtu_set(dev, dev->data->mtu); 877 if (ret) 878 MRVL_LOG(ERR, "Failed to set MTU to %d", dev->data->mtu); 879 880 if (!rte_is_zero_ether_addr(&dev->data->mac_addrs[0])) 881 mrvl_mac_addr_set(dev, &dev->data->mac_addrs[0]); 882 883 for (i = 1; i < MRVL_MAC_ADDRS_MAX; i++) { 884 mac_addr = &dev->data->mac_addrs[i]; 885 886 /* skip zero address */ 887 if (rte_is_zero_ether_addr(mac_addr)) 888 continue; 889 890 mrvl_mac_addr_add(dev, mac_addr, i, 0); 891 } 892 893 if (dev->data->all_multicast == 1) 894 mrvl_allmulticast_enable(dev); 895 896 if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) { 897 ret = mrvl_populate_vlan_table(dev, 1); 898 if (ret) { 899 MRVL_LOG(ERR, "Failed to populate VLAN table"); 900 goto out; 901 } 902 } 903 904 /* For default QoS config, don't start classifier. */ 905 if (mrvl_cfg && 906 mrvl_cfg->port[dev->data->port_id].use_qos_global_defaults == 0) { 907 ret = mrvl_start_qos_mapping(priv); 908 if (ret) { 909 MRVL_LOG(ERR, "Failed to setup QoS mapping"); 910 goto out; 911 } 912 } 913 914 ret = pp2_ppio_set_loopback(priv->ppio, dev->data->dev_conf.lpbk_mode); 915 if (ret) { 916 MRVL_LOG(ERR, "Failed to set loopback"); 917 goto out; 918 } 919 920 if (dev->data->promiscuous == 1) 921 mrvl_promiscuous_enable(dev); 922 923 if (priv->flow_ctrl) { 924 ret = mrvl_flow_ctrl_set(dev, &priv->fc_conf); 925 if (ret) { 926 MRVL_LOG(ERR, "Failed to configure flow control"); 927 goto out; 928 } 929 priv->flow_ctrl = 0; 930 } 931 932 if (dev->data->dev_link.link_status == RTE_ETH_LINK_UP) { 933 ret = mrvl_dev_set_link_up(dev); 934 if (ret) { 935 MRVL_LOG(ERR, "Failed to set link up"); 936 dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN; 937 goto out; 938 } 939 } 940 941 /* start tx queues */ 942 for (i = 0; i < dev->data->nb_tx_queues; i++) { 943 struct mrvl_txq *txq = dev->data->tx_queues[i]; 944 945 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; 946 947 if (!txq->tx_deferred_start) 948 continue; 949 950 /* 951 * All txqs are started by default. Stop them 952 * so that tx_deferred_start works as expected. 953 */ 954 ret = mrvl_tx_queue_stop(dev, i); 955 if (ret) 956 goto out; 957 } 958 959 mrvl_flow_init(dev); 960 mrvl_mtr_init(dev); 961 mrvl_set_tx_function(dev); 962 963 return 0; 964 out: 965 MRVL_LOG(ERR, "Failed to start device"); 966 pp2_ppio_deinit(priv->ppio); 967 return ret; 968 } 969 970 /** 971 * Flush receive queues. 972 * 973 * @param dev 974 * Pointer to Ethernet device structure. 975 */ 976 static void 977 mrvl_flush_rx_queues(struct rte_eth_dev *dev) 978 { 979 int i; 980 981 MRVL_LOG(INFO, "Flushing rx queues"); 982 for (i = 0; i < dev->data->nb_rx_queues; i++) { 983 int ret, num; 984 985 do { 986 struct mrvl_rxq *q = dev->data->rx_queues[i]; 987 struct pp2_ppio_desc descs[MRVL_PP2_RXD_MAX]; 988 989 num = MRVL_PP2_RXD_MAX; 990 ret = pp2_ppio_recv(q->priv->ppio, 991 q->priv->rxq_map[q->queue_id].tc, 992 q->priv->rxq_map[q->queue_id].inq, 993 descs, (uint16_t *)&num); 994 } while (ret == 0 && num); 995 } 996 } 997 998 /** 999 * Flush transmit shadow queues. 1000 * 1001 * @param dev 1002 * Pointer to Ethernet device structure. 1003 */ 1004 static void 1005 mrvl_flush_tx_shadow_queues(struct rte_eth_dev *dev) 1006 { 1007 int i, j; 1008 struct mrvl_txq *txq; 1009 1010 MRVL_LOG(INFO, "Flushing tx shadow queues"); 1011 for (i = 0; i < dev->data->nb_tx_queues; i++) { 1012 txq = (struct mrvl_txq *)dev->data->tx_queues[i]; 1013 1014 for (j = 0; j < RTE_MAX_LCORE; j++) { 1015 struct mrvl_shadow_txq *sq; 1016 1017 if (!hifs[j]) 1018 continue; 1019 1020 sq = &txq->shadow_txqs[j]; 1021 mrvl_free_sent_buffers(txq->priv->ppio, 1022 hifs[j], j, sq, txq->queue_id, 1); 1023 while (sq->tail != sq->head) { 1024 uint64_t addr = cookie_addr_high | 1025 sq->ent[sq->tail].buff.cookie; 1026 rte_pktmbuf_free( 1027 (struct rte_mbuf *)addr); 1028 sq->tail = (sq->tail + 1) & 1029 MRVL_PP2_TX_SHADOWQ_MASK; 1030 } 1031 memset(sq, 0, sizeof(*sq)); 1032 } 1033 } 1034 } 1035 1036 /** 1037 * Flush hardware bpool (buffer-pool). 1038 * 1039 * @param dev 1040 * Pointer to Ethernet device structure. 1041 */ 1042 static void 1043 mrvl_flush_bpool(struct rte_eth_dev *dev) 1044 { 1045 struct mrvl_priv *priv = dev->data->dev_private; 1046 struct pp2_hif *hif; 1047 uint32_t num; 1048 int ret; 1049 unsigned int core_id = rte_lcore_id(); 1050 1051 if (core_id == LCORE_ID_ANY) 1052 core_id = rte_get_main_lcore(); 1053 1054 hif = mrvl_get_hif(priv, core_id); 1055 1056 ret = pp2_bpool_get_num_buffs(priv->bpool, &num); 1057 if (ret) { 1058 MRVL_LOG(ERR, "Failed to get bpool buffers number"); 1059 return; 1060 } 1061 1062 while (num--) { 1063 struct pp2_buff_inf inf; 1064 uint64_t addr; 1065 1066 ret = pp2_bpool_get_buff(hif, priv->bpool, &inf); 1067 if (ret) 1068 break; 1069 1070 addr = cookie_addr_high | inf.cookie; 1071 rte_pktmbuf_free((struct rte_mbuf *)addr); 1072 } 1073 } 1074 1075 /** 1076 * DPDK callback to stop the device. 1077 * 1078 * @param dev 1079 * Pointer to Ethernet device structure. 1080 */ 1081 static int 1082 mrvl_dev_stop(struct rte_eth_dev *dev) 1083 { 1084 return mrvl_dev_set_link_down(dev); 1085 } 1086 1087 /** 1088 * DPDK callback to close the device. 1089 * 1090 * @param dev 1091 * Pointer to Ethernet device structure. 1092 */ 1093 static int 1094 mrvl_dev_close(struct rte_eth_dev *dev) 1095 { 1096 struct mrvl_priv *priv = dev->data->dev_private; 1097 size_t i; 1098 1099 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1100 return 0; 1101 1102 mrvl_flush_rx_queues(dev); 1103 mrvl_flush_tx_shadow_queues(dev); 1104 mrvl_flow_deinit(dev); 1105 mrvl_mtr_deinit(dev); 1106 1107 for (i = 0; i < priv->ppio_params.inqs_params.num_tcs; ++i) { 1108 struct pp2_ppio_tc_params *tc_params = 1109 &priv->ppio_params.inqs_params.tcs_params[i]; 1110 1111 if (tc_params->inqs_params) { 1112 rte_free(tc_params->inqs_params); 1113 tc_params->inqs_params = NULL; 1114 } 1115 } 1116 1117 if (priv->cls_tbl) { 1118 pp2_cls_tbl_deinit(priv->cls_tbl); 1119 priv->cls_tbl = NULL; 1120 } 1121 1122 if (priv->qos_tbl) { 1123 pp2_cls_qos_tbl_deinit(priv->qos_tbl); 1124 priv->qos_tbl = NULL; 1125 } 1126 1127 mrvl_flush_bpool(dev); 1128 mrvl_tm_deinit(dev); 1129 1130 if (priv->ppio) { 1131 pp2_ppio_deinit(priv->ppio); 1132 priv->ppio = NULL; 1133 } 1134 1135 /* policer must be released after ppio deinitialization */ 1136 if (priv->default_policer) { 1137 pp2_cls_plcr_deinit(priv->default_policer); 1138 priv->default_policer = NULL; 1139 } 1140 1141 1142 if (priv->bpool) { 1143 pp2_bpool_deinit(priv->bpool); 1144 used_bpools[priv->pp_id] &= ~(1 << priv->bpool_bit); 1145 priv->bpool = NULL; 1146 } 1147 1148 mrvl_dev_num--; 1149 1150 if (mrvl_dev_num == 0) { 1151 MRVL_LOG(INFO, "Perform MUSDK deinit"); 1152 mrvl_deinit_hifs(); 1153 mrvl_deinit_pp2(); 1154 rte_mvep_deinit(MVEP_MOD_T_PP2); 1155 } 1156 1157 return 0; 1158 } 1159 1160 /** 1161 * DPDK callback to retrieve physical link information. 1162 * 1163 * @param dev 1164 * Pointer to Ethernet device structure. 1165 * @param wait_to_complete 1166 * Wait for request completion (ignored). 1167 * 1168 * @return 1169 * 0 on success, negative error value otherwise. 1170 */ 1171 static int 1172 mrvl_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused) 1173 { 1174 /* 1175 * TODO 1176 * once MUSDK provides necessary API use it here 1177 */ 1178 struct mrvl_priv *priv = dev->data->dev_private; 1179 struct ethtool_cmd edata; 1180 struct ifreq req; 1181 int ret, fd, link_up; 1182 1183 if (!priv->ppio) 1184 return -EPERM; 1185 1186 edata.cmd = ETHTOOL_GSET; 1187 1188 strcpy(req.ifr_name, dev->data->name); 1189 req.ifr_data = (void *)&edata; 1190 1191 fd = socket(AF_INET, SOCK_DGRAM, 0); 1192 if (fd == -1) 1193 return -EFAULT; 1194 1195 ret = ioctl(fd, SIOCETHTOOL, &req); 1196 if (ret == -1) { 1197 close(fd); 1198 return -EFAULT; 1199 } 1200 1201 close(fd); 1202 1203 switch (ethtool_cmd_speed(&edata)) { 1204 case SPEED_10: 1205 dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_10M; 1206 break; 1207 case SPEED_100: 1208 dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_100M; 1209 break; 1210 case SPEED_1000: 1211 dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_1G; 1212 break; 1213 case SPEED_2500: 1214 dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_2_5G; 1215 break; 1216 case SPEED_10000: 1217 dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_10G; 1218 break; 1219 default: 1220 dev->data->dev_link.link_speed = RTE_ETH_SPEED_NUM_NONE; 1221 } 1222 1223 dev->data->dev_link.link_duplex = edata.duplex ? RTE_ETH_LINK_FULL_DUPLEX : 1224 RTE_ETH_LINK_HALF_DUPLEX; 1225 dev->data->dev_link.link_autoneg = edata.autoneg ? RTE_ETH_LINK_AUTONEG : 1226 RTE_ETH_LINK_FIXED; 1227 pp2_ppio_get_link_state(priv->ppio, &link_up); 1228 dev->data->dev_link.link_status = link_up ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN; 1229 1230 return 0; 1231 } 1232 1233 /** 1234 * DPDK callback to enable promiscuous mode. 1235 * 1236 * @param dev 1237 * Pointer to Ethernet device structure. 1238 * 1239 * @return 1240 * 0 on success, negative error value otherwise. 1241 */ 1242 static int 1243 mrvl_promiscuous_enable(struct rte_eth_dev *dev) 1244 { 1245 struct mrvl_priv *priv = dev->data->dev_private; 1246 int ret; 1247 1248 if (priv->isolated) 1249 return -ENOTSUP; 1250 1251 if (!priv->ppio) 1252 return 0; 1253 1254 ret = pp2_ppio_set_promisc(priv->ppio, 1); 1255 if (ret) { 1256 MRVL_LOG(ERR, "Failed to enable promiscuous mode"); 1257 return -EAGAIN; 1258 } 1259 1260 return 0; 1261 } 1262 1263 /** 1264 * DPDK callback to enable allmulti mode. 1265 * 1266 * @param dev 1267 * Pointer to Ethernet device structure. 1268 * 1269 * @return 1270 * 0 on success, negative error value otherwise. 1271 */ 1272 static int 1273 mrvl_allmulticast_enable(struct rte_eth_dev *dev) 1274 { 1275 struct mrvl_priv *priv = dev->data->dev_private; 1276 int ret; 1277 1278 if (priv->isolated) 1279 return -ENOTSUP; 1280 1281 if (!priv->ppio) 1282 return 0; 1283 1284 ret = pp2_ppio_set_mc_promisc(priv->ppio, 1); 1285 if (ret) { 1286 MRVL_LOG(ERR, "Failed enable all-multicast mode"); 1287 return -EAGAIN; 1288 } 1289 1290 return 0; 1291 } 1292 1293 /** 1294 * DPDK callback to disable promiscuous mode. 1295 * 1296 * @param dev 1297 * Pointer to Ethernet device structure. 1298 * 1299 * @return 1300 * 0 on success, negative error value otherwise. 1301 */ 1302 static int 1303 mrvl_promiscuous_disable(struct rte_eth_dev *dev) 1304 { 1305 struct mrvl_priv *priv = dev->data->dev_private; 1306 int ret; 1307 1308 if (priv->isolated) 1309 return -ENOTSUP; 1310 1311 if (!priv->ppio) 1312 return 0; 1313 1314 ret = pp2_ppio_set_promisc(priv->ppio, 0); 1315 if (ret) { 1316 MRVL_LOG(ERR, "Failed to disable promiscuous mode"); 1317 return -EAGAIN; 1318 } 1319 1320 return 0; 1321 } 1322 1323 /** 1324 * DPDK callback to disable allmulticast mode. 1325 * 1326 * @param dev 1327 * Pointer to Ethernet device structure. 1328 * 1329 * @return 1330 * 0 on success, negative error value otherwise. 1331 */ 1332 static int 1333 mrvl_allmulticast_disable(struct rte_eth_dev *dev) 1334 { 1335 struct mrvl_priv *priv = dev->data->dev_private; 1336 int ret; 1337 1338 if (priv->isolated) 1339 return -ENOTSUP; 1340 1341 if (!priv->ppio) 1342 return 0; 1343 1344 ret = pp2_ppio_set_mc_promisc(priv->ppio, 0); 1345 if (ret) { 1346 MRVL_LOG(ERR, "Failed to disable all-multicast mode"); 1347 return -EAGAIN; 1348 } 1349 1350 return 0; 1351 } 1352 1353 /** 1354 * DPDK callback to remove a MAC address. 1355 * 1356 * @param dev 1357 * Pointer to Ethernet device structure. 1358 * @param index 1359 * MAC address index. 1360 */ 1361 static void 1362 mrvl_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index) 1363 { 1364 struct mrvl_priv *priv = dev->data->dev_private; 1365 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 1366 int ret; 1367 1368 if (priv->isolated) 1369 return; 1370 1371 if (!priv->ppio) 1372 return; 1373 1374 ret = pp2_ppio_remove_mac_addr(priv->ppio, 1375 dev->data->mac_addrs[index].addr_bytes); 1376 if (ret) { 1377 rte_ether_format_addr(buf, sizeof(buf), 1378 &dev->data->mac_addrs[index]); 1379 MRVL_LOG(ERR, "Failed to remove mac %s", buf); 1380 } 1381 } 1382 1383 /** 1384 * DPDK callback to add a MAC address. 1385 * 1386 * @param dev 1387 * Pointer to Ethernet device structure. 1388 * @param mac_addr 1389 * MAC address to register. 1390 * @param index 1391 * MAC address index. 1392 * @param vmdq 1393 * VMDq pool index to associate address with (unused). 1394 * 1395 * @return 1396 * 0 on success, negative error value otherwise. 1397 */ 1398 static int 1399 mrvl_mac_addr_add(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr, 1400 uint32_t index, uint32_t vmdq __rte_unused) 1401 { 1402 struct mrvl_priv *priv = dev->data->dev_private; 1403 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 1404 int ret; 1405 1406 if (priv->isolated) 1407 return -ENOTSUP; 1408 1409 if (!priv->ppio) 1410 return 0; 1411 1412 if (index == 0) 1413 /* For setting index 0, mrvl_mac_addr_set() should be used.*/ 1414 return -1; 1415 1416 /* 1417 * Maximum number of uc addresses can be tuned via kernel module mvpp2x 1418 * parameter uc_filter_max. Maximum number of mc addresses is then 1419 * MRVL_MAC_ADDRS_MAX - uc_filter_max. Currently it defaults to 4 and 1420 * 21 respectively. 1421 * 1422 * If more than uc_filter_max uc addresses were added to filter list 1423 * then NIC will switch to promiscuous mode automatically. 1424 * 1425 * If more than MRVL_MAC_ADDRS_MAX - uc_filter_max number mc addresses 1426 * were added to filter list then NIC will switch to all-multicast mode 1427 * automatically. 1428 */ 1429 ret = pp2_ppio_add_mac_addr(priv->ppio, mac_addr->addr_bytes); 1430 if (ret) { 1431 rte_ether_format_addr(buf, sizeof(buf), mac_addr); 1432 MRVL_LOG(ERR, "Failed to add mac %s", buf); 1433 return -1; 1434 } 1435 1436 return 0; 1437 } 1438 1439 /** 1440 * DPDK callback to set the primary MAC address. 1441 * 1442 * @param dev 1443 * Pointer to Ethernet device structure. 1444 * @param mac_addr 1445 * MAC address to register. 1446 * 1447 * @return 1448 * 0 on success, negative error value otherwise. 1449 */ 1450 static int 1451 mrvl_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1452 { 1453 struct mrvl_priv *priv = dev->data->dev_private; 1454 int ret; 1455 1456 if (priv->isolated) 1457 return -ENOTSUP; 1458 1459 if (!priv->ppio) 1460 return 0; 1461 1462 ret = pp2_ppio_set_mac_addr(priv->ppio, mac_addr->addr_bytes); 1463 if (ret) { 1464 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 1465 rte_ether_format_addr(buf, sizeof(buf), mac_addr); 1466 MRVL_LOG(ERR, "Failed to set mac to %s", buf); 1467 } 1468 1469 return ret; 1470 } 1471 1472 /** 1473 * DPDK callback to get device statistics. 1474 * 1475 * @param dev 1476 * Pointer to Ethernet device structure. 1477 * @param stats 1478 * Stats structure output buffer. 1479 * 1480 * @return 1481 * 0 on success, negative error value otherwise. 1482 */ 1483 static int 1484 mrvl_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 1485 { 1486 struct mrvl_priv *priv = dev->data->dev_private; 1487 struct pp2_ppio_statistics ppio_stats; 1488 uint64_t drop_mac = 0; 1489 unsigned int i, idx, ret; 1490 1491 if (!priv->ppio) 1492 return -EPERM; 1493 1494 for (i = 0; i < dev->data->nb_rx_queues; i++) { 1495 struct mrvl_rxq *rxq = dev->data->rx_queues[i]; 1496 struct pp2_ppio_inq_statistics rx_stats; 1497 1498 if (!rxq) 1499 continue; 1500 1501 idx = rxq->queue_id; 1502 if (unlikely(idx >= RTE_ETHDEV_QUEUE_STAT_CNTRS)) { 1503 MRVL_LOG(ERR, 1504 "rx queue %d stats out of range (0 - %d)", 1505 idx, RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 1506 continue; 1507 } 1508 1509 ret = pp2_ppio_inq_get_statistics(priv->ppio, 1510 priv->rxq_map[idx].tc, 1511 priv->rxq_map[idx].inq, 1512 &rx_stats, 0); 1513 if (unlikely(ret)) { 1514 MRVL_LOG(ERR, 1515 "Failed to update rx queue %d stats", idx); 1516 break; 1517 } 1518 1519 stats->q_ibytes[idx] = rxq->bytes_recv; 1520 stats->q_ipackets[idx] = rx_stats.enq_desc - rxq->drop_mac; 1521 stats->q_errors[idx] = rx_stats.drop_early + 1522 rx_stats.drop_fullq + 1523 rx_stats.drop_bm + 1524 rxq->drop_mac; 1525 stats->ibytes += rxq->bytes_recv; 1526 drop_mac += rxq->drop_mac; 1527 } 1528 1529 for (i = 0; i < dev->data->nb_tx_queues; i++) { 1530 struct mrvl_txq *txq = dev->data->tx_queues[i]; 1531 struct pp2_ppio_outq_statistics tx_stats; 1532 1533 if (!txq) 1534 continue; 1535 1536 idx = txq->queue_id; 1537 if (unlikely(idx >= RTE_ETHDEV_QUEUE_STAT_CNTRS)) { 1538 MRVL_LOG(ERR, 1539 "tx queue %d stats out of range (0 - %d)", 1540 idx, RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 1541 } 1542 1543 ret = pp2_ppio_outq_get_statistics(priv->ppio, idx, 1544 &tx_stats, 0); 1545 if (unlikely(ret)) { 1546 MRVL_LOG(ERR, 1547 "Failed to update tx queue %d stats", idx); 1548 break; 1549 } 1550 1551 stats->q_opackets[idx] = tx_stats.deq_desc; 1552 stats->q_obytes[idx] = txq->bytes_sent; 1553 stats->obytes += txq->bytes_sent; 1554 } 1555 1556 ret = pp2_ppio_get_statistics(priv->ppio, &ppio_stats, 0); 1557 if (unlikely(ret)) { 1558 MRVL_LOG(ERR, "Failed to update port statistics"); 1559 return ret; 1560 } 1561 1562 stats->ipackets += ppio_stats.rx_packets - drop_mac; 1563 stats->opackets += ppio_stats.tx_packets; 1564 stats->imissed += ppio_stats.rx_fullq_dropped + 1565 ppio_stats.rx_bm_dropped + 1566 ppio_stats.rx_early_dropped + 1567 ppio_stats.rx_fifo_dropped + 1568 ppio_stats.rx_cls_dropped; 1569 stats->ierrors = drop_mac; 1570 1571 return 0; 1572 } 1573 1574 /** 1575 * DPDK callback to clear device statistics. 1576 * 1577 * @param dev 1578 * Pointer to Ethernet device structure. 1579 * 1580 * @return 1581 * 0 on success, negative error value otherwise. 1582 */ 1583 static int 1584 mrvl_stats_reset(struct rte_eth_dev *dev) 1585 { 1586 struct mrvl_priv *priv = dev->data->dev_private; 1587 int i; 1588 1589 if (!priv->ppio) 1590 return 0; 1591 1592 for (i = 0; i < dev->data->nb_rx_queues; i++) { 1593 struct mrvl_rxq *rxq = dev->data->rx_queues[i]; 1594 1595 pp2_ppio_inq_get_statistics(priv->ppio, priv->rxq_map[i].tc, 1596 priv->rxq_map[i].inq, NULL, 1); 1597 rxq->bytes_recv = 0; 1598 rxq->drop_mac = 0; 1599 } 1600 1601 for (i = 0; i < dev->data->nb_tx_queues; i++) { 1602 struct mrvl_txq *txq = dev->data->tx_queues[i]; 1603 1604 pp2_ppio_outq_get_statistics(priv->ppio, i, NULL, 1); 1605 txq->bytes_sent = 0; 1606 } 1607 1608 return pp2_ppio_get_statistics(priv->ppio, NULL, 1); 1609 } 1610 1611 /** 1612 * DPDK callback to get extended statistics. 1613 * 1614 * @param dev 1615 * Pointer to Ethernet device structure. 1616 * @param stats 1617 * Pointer to xstats table. 1618 * @param n 1619 * Number of entries in xstats table. 1620 * @return 1621 * Negative value on error, number of read xstats otherwise. 1622 */ 1623 static int 1624 mrvl_xstats_get(struct rte_eth_dev *dev, 1625 struct rte_eth_xstat *stats, unsigned int n) 1626 { 1627 struct mrvl_priv *priv = dev->data->dev_private; 1628 struct pp2_ppio_statistics ppio_stats; 1629 unsigned int i; 1630 1631 if (!stats) 1632 return 0; 1633 1634 pp2_ppio_get_statistics(priv->ppio, &ppio_stats, 0); 1635 for (i = 0; i < n && i < RTE_DIM(mrvl_xstats_tbl); i++) { 1636 uint64_t val; 1637 1638 if (mrvl_xstats_tbl[i].size == sizeof(uint32_t)) 1639 val = *(uint32_t *)((uint8_t *)&ppio_stats + 1640 mrvl_xstats_tbl[i].offset); 1641 else if (mrvl_xstats_tbl[i].size == sizeof(uint64_t)) 1642 val = *(uint64_t *)((uint8_t *)&ppio_stats + 1643 mrvl_xstats_tbl[i].offset); 1644 else 1645 return -EINVAL; 1646 1647 stats[i].id = i; 1648 stats[i].value = val; 1649 } 1650 1651 return n; 1652 } 1653 1654 /** 1655 * DPDK callback to reset extended statistics. 1656 * 1657 * @param dev 1658 * Pointer to Ethernet device structure. 1659 * 1660 * @return 1661 * 0 on success, negative error value otherwise. 1662 */ 1663 static int 1664 mrvl_xstats_reset(struct rte_eth_dev *dev) 1665 { 1666 return mrvl_stats_reset(dev); 1667 } 1668 1669 /** 1670 * DPDK callback to get extended statistics names. 1671 * 1672 * @param dev (unused) 1673 * Pointer to Ethernet device structure. 1674 * @param xstats_names 1675 * Pointer to xstats names table. 1676 * @param size 1677 * Size of the xstats names table. 1678 * @return 1679 * Number of read names. 1680 */ 1681 static int 1682 mrvl_xstats_get_names(struct rte_eth_dev *dev __rte_unused, 1683 struct rte_eth_xstat_name *xstats_names, 1684 unsigned int size) 1685 { 1686 unsigned int i; 1687 1688 if (!xstats_names) 1689 return RTE_DIM(mrvl_xstats_tbl); 1690 1691 for (i = 0; i < size && i < RTE_DIM(mrvl_xstats_tbl); i++) 1692 strlcpy(xstats_names[i].name, mrvl_xstats_tbl[i].name, 1693 RTE_ETH_XSTATS_NAME_SIZE); 1694 1695 return size; 1696 } 1697 1698 /** 1699 * DPDK callback to get information about the device. 1700 * 1701 * @param dev 1702 * Pointer to Ethernet device structure (unused). 1703 * @param info 1704 * Info structure output buffer. 1705 */ 1706 static int 1707 mrvl_dev_infos_get(struct rte_eth_dev *dev, 1708 struct rte_eth_dev_info *info) 1709 { 1710 struct mrvl_priv *priv = dev->data->dev_private; 1711 1712 info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP; 1713 1714 info->speed_capa = RTE_ETH_LINK_SPEED_10M | 1715 RTE_ETH_LINK_SPEED_100M | 1716 RTE_ETH_LINK_SPEED_1G | 1717 RTE_ETH_LINK_SPEED_2_5G | 1718 RTE_ETH_LINK_SPEED_10G; 1719 1720 info->max_rx_queues = MRVL_PP2_RXQ_MAX; 1721 info->max_tx_queues = MRVL_PP2_TXQ_MAX; 1722 info->max_mac_addrs = MRVL_MAC_ADDRS_MAX; 1723 1724 info->rx_desc_lim.nb_max = MRVL_PP2_RXD_MAX; 1725 info->rx_desc_lim.nb_min = MRVL_PP2_RXD_MIN; 1726 info->rx_desc_lim.nb_align = MRVL_PP2_RXD_ALIGN; 1727 1728 info->tx_desc_lim.nb_max = MRVL_PP2_TXD_MAX; 1729 info->tx_desc_lim.nb_min = MRVL_PP2_TXD_MIN; 1730 info->tx_desc_lim.nb_align = MRVL_PP2_TXD_ALIGN; 1731 1732 info->rx_offload_capa = MRVL_RX_OFFLOADS; 1733 info->rx_queue_offload_capa = MRVL_RX_OFFLOADS; 1734 1735 info->tx_offload_capa = MRVL_TX_OFFLOADS; 1736 info->tx_queue_offload_capa = MRVL_TX_OFFLOADS; 1737 1738 info->flow_type_rss_offloads = RTE_ETH_RSS_IPV4 | 1739 RTE_ETH_RSS_NONFRAG_IPV4_TCP | 1740 RTE_ETH_RSS_NONFRAG_IPV4_UDP; 1741 1742 /* By default packets are dropped if no descriptors are available */ 1743 info->default_rxconf.rx_drop_en = 1; 1744 1745 info->max_rx_pktlen = MRVL_PKT_SIZE_MAX; 1746 info->max_mtu = priv->max_mtu; 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * Return supported packet types. 1753 * 1754 * @param dev 1755 * Pointer to Ethernet device structure (unused). 1756 * 1757 * @return 1758 * Const pointer to the table with supported packet types. 1759 */ 1760 static const uint32_t * 1761 mrvl_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused) 1762 { 1763 static const uint32_t ptypes[] = { 1764 RTE_PTYPE_L2_ETHER, 1765 RTE_PTYPE_L2_ETHER_VLAN, 1766 RTE_PTYPE_L2_ETHER_QINQ, 1767 RTE_PTYPE_L3_IPV4, 1768 RTE_PTYPE_L3_IPV4_EXT, 1769 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, 1770 RTE_PTYPE_L3_IPV6, 1771 RTE_PTYPE_L3_IPV6_EXT, 1772 RTE_PTYPE_L2_ETHER_ARP, 1773 RTE_PTYPE_L4_TCP, 1774 RTE_PTYPE_L4_UDP 1775 }; 1776 1777 return ptypes; 1778 } 1779 1780 /** 1781 * DPDK callback to get information about specific receive queue. 1782 * 1783 * @param dev 1784 * Pointer to Ethernet device structure. 1785 * @param rx_queue_id 1786 * Receive queue index. 1787 * @param qinfo 1788 * Receive queue information structure. 1789 */ 1790 static void mrvl_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1791 struct rte_eth_rxq_info *qinfo) 1792 { 1793 struct mrvl_rxq *q = dev->data->rx_queues[rx_queue_id]; 1794 struct mrvl_priv *priv = dev->data->dev_private; 1795 int inq = priv->rxq_map[rx_queue_id].inq; 1796 int tc = priv->rxq_map[rx_queue_id].tc; 1797 struct pp2_ppio_tc_params *tc_params = 1798 &priv->ppio_params.inqs_params.tcs_params[tc]; 1799 1800 qinfo->mp = q->mp; 1801 qinfo->nb_desc = tc_params->inqs_params[inq].size; 1802 } 1803 1804 /** 1805 * DPDK callback to get information about specific transmit queue. 1806 * 1807 * @param dev 1808 * Pointer to Ethernet device structure. 1809 * @param tx_queue_id 1810 * Transmit queue index. 1811 * @param qinfo 1812 * Transmit queue information structure. 1813 */ 1814 static void mrvl_txq_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1815 struct rte_eth_txq_info *qinfo) 1816 { 1817 struct mrvl_priv *priv = dev->data->dev_private; 1818 struct mrvl_txq *txq = dev->data->tx_queues[tx_queue_id]; 1819 1820 qinfo->nb_desc = 1821 priv->ppio_params.outqs_params.outqs_params[tx_queue_id].size; 1822 qinfo->conf.tx_deferred_start = txq->tx_deferred_start; 1823 } 1824 1825 /** 1826 * DPDK callback to Configure a VLAN filter. 1827 * 1828 * @param dev 1829 * Pointer to Ethernet device structure. 1830 * @param vlan_id 1831 * VLAN ID to filter. 1832 * @param on 1833 * Toggle filter. 1834 * 1835 * @return 1836 * 0 on success, negative error value otherwise. 1837 */ 1838 static int 1839 mrvl_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) 1840 { 1841 struct mrvl_priv *priv = dev->data->dev_private; 1842 1843 if (priv->isolated) 1844 return -ENOTSUP; 1845 1846 if (!priv->ppio) 1847 return 0; 1848 1849 return on ? pp2_ppio_add_vlan(priv->ppio, vlan_id) : 1850 pp2_ppio_remove_vlan(priv->ppio, vlan_id); 1851 } 1852 1853 /** 1854 * DPDK callback to Configure VLAN offload. 1855 * 1856 * @param dev 1857 * Pointer to Ethernet device structure. 1858 * @param mask 1859 * VLAN offload mask. 1860 * 1861 * @return 1862 * 0 on success, negative error value otherwise. 1863 */ 1864 static int mrvl_vlan_offload_set(struct rte_eth_dev *dev, int mask) 1865 { 1866 uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads; 1867 int ret; 1868 1869 if (mask & RTE_ETH_VLAN_STRIP_MASK) { 1870 MRVL_LOG(ERR, "VLAN stripping is not supported\n"); 1871 return -ENOTSUP; 1872 } 1873 1874 if (mask & RTE_ETH_VLAN_FILTER_MASK) { 1875 if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) 1876 ret = mrvl_populate_vlan_table(dev, 1); 1877 else 1878 ret = mrvl_populate_vlan_table(dev, 0); 1879 1880 if (ret) 1881 return ret; 1882 } 1883 1884 if (mask & RTE_ETH_VLAN_EXTEND_MASK) { 1885 MRVL_LOG(ERR, "Extend VLAN not supported\n"); 1886 return -ENOTSUP; 1887 } 1888 1889 return 0; 1890 } 1891 1892 /** 1893 * Release buffers to hardware bpool (buffer-pool) 1894 * 1895 * @param rxq 1896 * Receive queue pointer. 1897 * @param num 1898 * Number of buffers to release to bpool. 1899 * 1900 * @return 1901 * 0 on success, negative error value otherwise. 1902 */ 1903 static int 1904 mrvl_fill_bpool(struct mrvl_rxq *rxq, int num) 1905 { 1906 struct buff_release_entry entries[num]; 1907 struct rte_mbuf *mbufs[num]; 1908 int i, ret; 1909 unsigned int core_id; 1910 struct pp2_hif *hif; 1911 struct pp2_bpool *bpool; 1912 1913 core_id = rte_lcore_id(); 1914 if (core_id == LCORE_ID_ANY) 1915 core_id = rte_get_main_lcore(); 1916 1917 hif = mrvl_get_hif(rxq->priv, core_id); 1918 if (!hif) 1919 return -1; 1920 1921 bpool = rxq->priv->bpool; 1922 1923 ret = rte_pktmbuf_alloc_bulk(rxq->mp, mbufs, num); 1924 if (ret) 1925 return ret; 1926 1927 if (cookie_addr_high == MRVL_COOKIE_ADDR_INVALID) 1928 cookie_addr_high = 1929 (uint64_t)mbufs[0] & MRVL_COOKIE_HIGH_ADDR_MASK; 1930 1931 for (i = 0; i < num; i++) { 1932 if (((uint64_t)mbufs[i] & MRVL_COOKIE_HIGH_ADDR_MASK) 1933 != cookie_addr_high) { 1934 MRVL_LOG(ERR, 1935 "mbuf virtual addr high is out of range " 1936 "0x%x instead of 0x%x\n", 1937 (uint32_t)((uint64_t)mbufs[i] >> 32), 1938 (uint32_t)(cookie_addr_high >> 32)); 1939 goto out; 1940 } 1941 1942 entries[i].buff.addr = 1943 rte_mbuf_data_iova_default(mbufs[i]); 1944 entries[i].buff.cookie = (uintptr_t)mbufs[i]; 1945 entries[i].bpool = bpool; 1946 } 1947 1948 pp2_bpool_put_buffs(hif, entries, (uint16_t *)&i); 1949 mrvl_port_bpool_size[bpool->pp2_id][bpool->id][core_id] += i; 1950 1951 if (i != num) 1952 goto out; 1953 1954 return 0; 1955 out: 1956 for (; i < num; i++) 1957 rte_pktmbuf_free(mbufs[i]); 1958 1959 return -1; 1960 } 1961 1962 /** 1963 * DPDK callback to configure the receive queue. 1964 * 1965 * @param dev 1966 * Pointer to Ethernet device structure. 1967 * @param idx 1968 * RX queue index. 1969 * @param desc 1970 * Number of descriptors to configure in queue. 1971 * @param socket 1972 * NUMA socket on which memory must be allocated. 1973 * @param conf 1974 * Thresholds parameters. 1975 * @param mp 1976 * Memory pool for buffer allocations. 1977 * 1978 * @return 1979 * 0 on success, negative error value otherwise. 1980 */ 1981 static int 1982 mrvl_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, 1983 unsigned int socket, 1984 const struct rte_eth_rxconf *conf, 1985 struct rte_mempool *mp) 1986 { 1987 struct mrvl_priv *priv = dev->data->dev_private; 1988 struct mrvl_rxq *rxq; 1989 uint32_t frame_size, buf_size = rte_pktmbuf_data_room_size(mp); 1990 uint32_t max_rx_pktlen = dev->data->mtu + RTE_ETHER_HDR_LEN; 1991 int ret, tc, inq; 1992 uint64_t offloads; 1993 1994 offloads = conf->offloads | dev->data->dev_conf.rxmode.offloads; 1995 1996 if (priv->rxq_map[idx].tc == MRVL_UNKNOWN_TC) { 1997 /* 1998 * Unknown TC mapping, mapping will not have a correct queue. 1999 */ 2000 MRVL_LOG(ERR, "Unknown TC mapping for queue %hu eth%hhu", 2001 idx, priv->ppio_id); 2002 return -EFAULT; 2003 } 2004 2005 frame_size = buf_size - RTE_PKTMBUF_HEADROOM - MRVL_PKT_EFFEC_OFFS; 2006 if (frame_size < max_rx_pktlen) { 2007 MRVL_LOG(WARNING, 2008 "Mbuf size must be increased to %u bytes to hold up " 2009 "to %u bytes of data.", 2010 max_rx_pktlen + buf_size - frame_size, 2011 max_rx_pktlen); 2012 dev->data->mtu = frame_size - RTE_ETHER_HDR_LEN; 2013 MRVL_LOG(INFO, "Setting MTU to %u", dev->data->mtu); 2014 } 2015 2016 if (dev->data->rx_queues[idx]) { 2017 rte_free(dev->data->rx_queues[idx]); 2018 dev->data->rx_queues[idx] = NULL; 2019 } 2020 2021 rxq = rte_zmalloc_socket("rxq", sizeof(*rxq), 0, socket); 2022 if (!rxq) 2023 return -ENOMEM; 2024 2025 rxq->priv = priv; 2026 rxq->mp = mp; 2027 rxq->cksum_enabled = offloads & RTE_ETH_RX_OFFLOAD_IPV4_CKSUM; 2028 rxq->queue_id = idx; 2029 rxq->port_id = dev->data->port_id; 2030 mrvl_port_to_bpool_lookup[rxq->port_id] = priv->bpool; 2031 2032 tc = priv->rxq_map[rxq->queue_id].tc, 2033 inq = priv->rxq_map[rxq->queue_id].inq; 2034 priv->ppio_params.inqs_params.tcs_params[tc].inqs_params[inq].size = 2035 desc; 2036 2037 ret = mrvl_fill_bpool(rxq, desc); 2038 if (ret) { 2039 rte_free(rxq); 2040 return ret; 2041 } 2042 2043 priv->bpool_init_size += desc; 2044 2045 dev->data->rx_queues[idx] = rxq; 2046 2047 return 0; 2048 } 2049 2050 /** 2051 * DPDK callback to release the receive queue. 2052 * 2053 * @param dev 2054 * Pointer to Ethernet device structure. 2055 * @param qid 2056 * Receive queue index. 2057 */ 2058 static void 2059 mrvl_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid) 2060 { 2061 struct mrvl_rxq *q = dev->data->rx_queues[qid]; 2062 struct pp2_ppio_tc_params *tc_params; 2063 int i, num, tc, inq; 2064 struct pp2_hif *hif; 2065 unsigned int core_id = rte_lcore_id(); 2066 2067 if (core_id == LCORE_ID_ANY) 2068 core_id = rte_get_main_lcore(); 2069 2070 if (!q) 2071 return; 2072 2073 hif = mrvl_get_hif(q->priv, core_id); 2074 2075 if (!hif) 2076 return; 2077 2078 tc = q->priv->rxq_map[q->queue_id].tc; 2079 inq = q->priv->rxq_map[q->queue_id].inq; 2080 tc_params = &q->priv->ppio_params.inqs_params.tcs_params[tc]; 2081 num = tc_params->inqs_params[inq].size; 2082 for (i = 0; i < num; i++) { 2083 struct pp2_buff_inf inf; 2084 uint64_t addr; 2085 2086 pp2_bpool_get_buff(hif, q->priv->bpool, &inf); 2087 addr = cookie_addr_high | inf.cookie; 2088 rte_pktmbuf_free((struct rte_mbuf *)addr); 2089 } 2090 2091 rte_free(q); 2092 } 2093 2094 /** 2095 * DPDK callback to configure the transmit queue. 2096 * 2097 * @param dev 2098 * Pointer to Ethernet device structure. 2099 * @param idx 2100 * Transmit queue index. 2101 * @param desc 2102 * Number of descriptors to configure in the queue. 2103 * @param socket 2104 * NUMA socket on which memory must be allocated. 2105 * @param conf 2106 * Tx queue configuration parameters. 2107 * 2108 * @return 2109 * 0 on success, negative error value otherwise. 2110 */ 2111 static int 2112 mrvl_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, 2113 unsigned int socket, 2114 const struct rte_eth_txconf *conf) 2115 { 2116 struct mrvl_priv *priv = dev->data->dev_private; 2117 struct mrvl_txq *txq; 2118 2119 if (dev->data->tx_queues[idx]) { 2120 rte_free(dev->data->tx_queues[idx]); 2121 dev->data->tx_queues[idx] = NULL; 2122 } 2123 2124 txq = rte_zmalloc_socket("txq", sizeof(*txq), 0, socket); 2125 if (!txq) 2126 return -ENOMEM; 2127 2128 txq->priv = priv; 2129 txq->queue_id = idx; 2130 txq->port_id = dev->data->port_id; 2131 txq->tx_deferred_start = conf->tx_deferred_start; 2132 dev->data->tx_queues[idx] = txq; 2133 2134 priv->ppio_params.outqs_params.outqs_params[idx].size = desc; 2135 2136 return 0; 2137 } 2138 2139 /** 2140 * DPDK callback to release the transmit queue. 2141 * 2142 * @param dev 2143 * Pointer to Ethernet device structure. 2144 * @param qid 2145 * Transmit queue index. 2146 */ 2147 static void 2148 mrvl_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid) 2149 { 2150 struct mrvl_txq *q = dev->data->tx_queues[qid]; 2151 2152 if (!q) 2153 return; 2154 2155 rte_free(q); 2156 } 2157 2158 /** 2159 * DPDK callback to get flow control configuration. 2160 * 2161 * @param dev 2162 * Pointer to Ethernet device structure. 2163 * @param fc_conf 2164 * Pointer to the flow control configuration. 2165 * 2166 * @return 2167 * 0 on success, negative error value otherwise. 2168 */ 2169 static int 2170 mrvl_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 2171 { 2172 struct mrvl_priv *priv = dev->data->dev_private; 2173 int ret, en; 2174 2175 if (!priv->ppio) { 2176 memcpy(fc_conf, &priv->fc_conf, sizeof(struct rte_eth_fc_conf)); 2177 return 0; 2178 } 2179 2180 fc_conf->autoneg = 1; 2181 ret = pp2_ppio_get_rx_pause(priv->ppio, &en); 2182 if (ret) { 2183 MRVL_LOG(ERR, "Failed to read rx pause state"); 2184 return ret; 2185 } 2186 2187 fc_conf->mode = en ? RTE_ETH_FC_RX_PAUSE : RTE_ETH_FC_NONE; 2188 2189 ret = pp2_ppio_get_tx_pause(priv->ppio, &en); 2190 if (ret) { 2191 MRVL_LOG(ERR, "Failed to read tx pause state"); 2192 return ret; 2193 } 2194 2195 if (en) { 2196 if (fc_conf->mode == RTE_ETH_FC_NONE) 2197 fc_conf->mode = RTE_ETH_FC_TX_PAUSE; 2198 else 2199 fc_conf->mode = RTE_ETH_FC_FULL; 2200 } 2201 2202 return 0; 2203 } 2204 2205 /** 2206 * DPDK callback to set flow control configuration. 2207 * 2208 * @param dev 2209 * Pointer to Ethernet device structure. 2210 * @param fc_conf 2211 * Pointer to the flow control configuration. 2212 * 2213 * @return 2214 * 0 on success, negative error value otherwise. 2215 */ 2216 static int 2217 mrvl_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 2218 { 2219 struct mrvl_priv *priv = dev->data->dev_private; 2220 struct pp2_ppio_tx_pause_params mrvl_pause_params; 2221 int ret; 2222 int rx_en, tx_en; 2223 2224 if (fc_conf->high_water || 2225 fc_conf->low_water || 2226 fc_conf->pause_time || 2227 fc_conf->mac_ctrl_frame_fwd) { 2228 MRVL_LOG(ERR, "Flowctrl parameter is not supported"); 2229 2230 return -EINVAL; 2231 } 2232 2233 if (fc_conf->autoneg == 0) { 2234 MRVL_LOG(ERR, "Flowctrl Autoneg disable is not supported"); 2235 return -EINVAL; 2236 } 2237 2238 if (!priv->ppio) { 2239 memcpy(&priv->fc_conf, fc_conf, sizeof(struct rte_eth_fc_conf)); 2240 priv->flow_ctrl = 1; 2241 return 0; 2242 } 2243 2244 switch (fc_conf->mode) { 2245 case RTE_ETH_FC_FULL: 2246 rx_en = 1; 2247 tx_en = 1; 2248 break; 2249 case RTE_ETH_FC_TX_PAUSE: 2250 rx_en = 0; 2251 tx_en = 1; 2252 break; 2253 case RTE_ETH_FC_RX_PAUSE: 2254 rx_en = 1; 2255 tx_en = 0; 2256 break; 2257 case RTE_ETH_FC_NONE: 2258 rx_en = 0; 2259 tx_en = 0; 2260 break; 2261 default: 2262 MRVL_LOG(ERR, "Incorrect Flow control flag (%d)", 2263 fc_conf->mode); 2264 return -EINVAL; 2265 } 2266 2267 /* Set RX flow control */ 2268 ret = pp2_ppio_set_rx_pause(priv->ppio, rx_en); 2269 if (ret) { 2270 MRVL_LOG(ERR, "Failed to change RX flowctrl"); 2271 return ret; 2272 } 2273 2274 /* Set TX flow control */ 2275 mrvl_pause_params.en = tx_en; 2276 /* all inqs participate in xon/xoff decision */ 2277 mrvl_pause_params.use_tc_pause_inqs = 0; 2278 ret = pp2_ppio_set_tx_pause(priv->ppio, &mrvl_pause_params); 2279 if (ret) { 2280 MRVL_LOG(ERR, "Failed to change TX flowctrl"); 2281 return ret; 2282 } 2283 2284 return 0; 2285 } 2286 2287 /** 2288 * Update RSS hash configuration 2289 * 2290 * @param dev 2291 * Pointer to Ethernet device structure. 2292 * @param rss_conf 2293 * Pointer to RSS configuration. 2294 * 2295 * @return 2296 * 0 on success, negative error value otherwise. 2297 */ 2298 static int 2299 mrvl_rss_hash_update(struct rte_eth_dev *dev, 2300 struct rte_eth_rss_conf *rss_conf) 2301 { 2302 struct mrvl_priv *priv = dev->data->dev_private; 2303 2304 if (priv->isolated) 2305 return -ENOTSUP; 2306 2307 return mrvl_configure_rss(priv, rss_conf); 2308 } 2309 2310 /** 2311 * DPDK callback to get RSS hash configuration. 2312 * 2313 * @param dev 2314 * Pointer to Ethernet device structure. 2315 * @rss_conf 2316 * Pointer to RSS configuration. 2317 * 2318 * @return 2319 * Always 0. 2320 */ 2321 static int 2322 mrvl_rss_hash_conf_get(struct rte_eth_dev *dev, 2323 struct rte_eth_rss_conf *rss_conf) 2324 { 2325 struct mrvl_priv *priv = dev->data->dev_private; 2326 enum pp2_ppio_hash_type hash_type = 2327 priv->ppio_params.inqs_params.hash_type; 2328 2329 rss_conf->rss_key = NULL; 2330 2331 if (hash_type == PP2_PPIO_HASH_T_NONE) 2332 rss_conf->rss_hf = 0; 2333 else if (hash_type == PP2_PPIO_HASH_T_2_TUPLE) 2334 rss_conf->rss_hf = RTE_ETH_RSS_IPV4; 2335 else if (hash_type == PP2_PPIO_HASH_T_5_TUPLE && priv->rss_hf_tcp) 2336 rss_conf->rss_hf = RTE_ETH_RSS_NONFRAG_IPV4_TCP; 2337 else if (hash_type == PP2_PPIO_HASH_T_5_TUPLE && !priv->rss_hf_tcp) 2338 rss_conf->rss_hf = RTE_ETH_RSS_NONFRAG_IPV4_UDP; 2339 2340 return 0; 2341 } 2342 2343 /** 2344 * DPDK callback to get rte_flow callbacks. 2345 * 2346 * @param dev 2347 * Pointer to the device structure. 2348 * @param ops 2349 * Pointer to pass the flow ops. 2350 * 2351 * @return 2352 * 0 on success, negative error value otherwise. 2353 */ 2354 static int 2355 mrvl_eth_flow_ops_get(struct rte_eth_dev *dev __rte_unused, 2356 const struct rte_flow_ops **ops) 2357 { 2358 *ops = &mrvl_flow_ops; 2359 return 0; 2360 } 2361 2362 /** 2363 * DPDK callback to get rte_mtr callbacks. 2364 * 2365 * @param dev 2366 * Pointer to the device structure. 2367 * @param ops 2368 * Pointer to pass the mtr ops. 2369 * 2370 * @return 2371 * Always 0. 2372 */ 2373 static int 2374 mrvl_mtr_ops_get(struct rte_eth_dev *dev __rte_unused, void *ops) 2375 { 2376 *(const void **)ops = &mrvl_mtr_ops; 2377 2378 return 0; 2379 } 2380 2381 /** 2382 * DPDK callback to get rte_tm callbacks. 2383 * 2384 * @param dev 2385 * Pointer to the device structure. 2386 * @param ops 2387 * Pointer to pass the tm ops. 2388 * 2389 * @return 2390 * Always 0. 2391 */ 2392 static int 2393 mrvl_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *ops) 2394 { 2395 *(const void **)ops = &mrvl_tm_ops; 2396 2397 return 0; 2398 } 2399 2400 static const struct eth_dev_ops mrvl_ops = { 2401 .dev_configure = mrvl_dev_configure, 2402 .dev_start = mrvl_dev_start, 2403 .dev_stop = mrvl_dev_stop, 2404 .dev_set_link_up = mrvl_dev_set_link_up, 2405 .dev_set_link_down = mrvl_dev_set_link_down, 2406 .dev_close = mrvl_dev_close, 2407 .link_update = mrvl_link_update, 2408 .promiscuous_enable = mrvl_promiscuous_enable, 2409 .allmulticast_enable = mrvl_allmulticast_enable, 2410 .promiscuous_disable = mrvl_promiscuous_disable, 2411 .allmulticast_disable = mrvl_allmulticast_disable, 2412 .mac_addr_remove = mrvl_mac_addr_remove, 2413 .mac_addr_add = mrvl_mac_addr_add, 2414 .mac_addr_set = mrvl_mac_addr_set, 2415 .mtu_set = mrvl_mtu_set, 2416 .stats_get = mrvl_stats_get, 2417 .stats_reset = mrvl_stats_reset, 2418 .xstats_get = mrvl_xstats_get, 2419 .xstats_reset = mrvl_xstats_reset, 2420 .xstats_get_names = mrvl_xstats_get_names, 2421 .dev_infos_get = mrvl_dev_infos_get, 2422 .dev_supported_ptypes_get = mrvl_dev_supported_ptypes_get, 2423 .rxq_info_get = mrvl_rxq_info_get, 2424 .txq_info_get = mrvl_txq_info_get, 2425 .vlan_filter_set = mrvl_vlan_filter_set, 2426 .vlan_offload_set = mrvl_vlan_offload_set, 2427 .tx_queue_start = mrvl_tx_queue_start, 2428 .tx_queue_stop = mrvl_tx_queue_stop, 2429 .rx_queue_setup = mrvl_rx_queue_setup, 2430 .rx_queue_release = mrvl_rx_queue_release, 2431 .tx_queue_setup = mrvl_tx_queue_setup, 2432 .tx_queue_release = mrvl_tx_queue_release, 2433 .flow_ctrl_get = mrvl_flow_ctrl_get, 2434 .flow_ctrl_set = mrvl_flow_ctrl_set, 2435 .rss_hash_update = mrvl_rss_hash_update, 2436 .rss_hash_conf_get = mrvl_rss_hash_conf_get, 2437 .flow_ops_get = mrvl_eth_flow_ops_get, 2438 .mtr_ops_get = mrvl_mtr_ops_get, 2439 .tm_ops_get = mrvl_tm_ops_get, 2440 }; 2441 2442 /** 2443 * Return packet type information and l3/l4 offsets. 2444 * 2445 * @param desc 2446 * Pointer to the received packet descriptor. 2447 * @param l3_offset 2448 * l3 packet offset. 2449 * @param l4_offset 2450 * l4 packet offset. 2451 * 2452 * @return 2453 * Packet type information. 2454 */ 2455 static inline uint64_t 2456 mrvl_desc_to_packet_type_and_offset(struct pp2_ppio_desc *desc, 2457 uint8_t *l3_offset, uint8_t *l4_offset) 2458 { 2459 enum pp2_inq_l3_type l3_type; 2460 enum pp2_inq_l4_type l4_type; 2461 enum pp2_inq_vlan_tag vlan_tag; 2462 uint64_t packet_type; 2463 2464 pp2_ppio_inq_desc_get_l3_info(desc, &l3_type, l3_offset); 2465 pp2_ppio_inq_desc_get_l4_info(desc, &l4_type, l4_offset); 2466 pp2_ppio_inq_desc_get_vlan_tag(desc, &vlan_tag); 2467 2468 packet_type = RTE_PTYPE_L2_ETHER; 2469 2470 switch (vlan_tag) { 2471 case PP2_INQ_VLAN_TAG_SINGLE: 2472 packet_type |= RTE_PTYPE_L2_ETHER_VLAN; 2473 break; 2474 case PP2_INQ_VLAN_TAG_DOUBLE: 2475 case PP2_INQ_VLAN_TAG_TRIPLE: 2476 packet_type |= RTE_PTYPE_L2_ETHER_QINQ; 2477 break; 2478 default: 2479 break; 2480 } 2481 2482 switch (l3_type) { 2483 case PP2_INQ_L3_TYPE_IPV4_NO_OPTS: 2484 packet_type |= RTE_PTYPE_L3_IPV4; 2485 break; 2486 case PP2_INQ_L3_TYPE_IPV4_OK: 2487 packet_type |= RTE_PTYPE_L3_IPV4_EXT; 2488 break; 2489 case PP2_INQ_L3_TYPE_IPV4_TTL_ZERO: 2490 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 2491 break; 2492 case PP2_INQ_L3_TYPE_IPV6_NO_EXT: 2493 packet_type |= RTE_PTYPE_L3_IPV6; 2494 break; 2495 case PP2_INQ_L3_TYPE_IPV6_EXT: 2496 packet_type |= RTE_PTYPE_L3_IPV6_EXT; 2497 break; 2498 case PP2_INQ_L3_TYPE_ARP: 2499 packet_type |= RTE_PTYPE_L2_ETHER_ARP; 2500 /* 2501 * In case of ARP l4_offset is set to wrong value. 2502 * Set it to proper one so that later on mbuf->l3_len can be 2503 * calculated subtracting l4_offset and l3_offset. 2504 */ 2505 *l4_offset = *l3_offset + MRVL_ARP_LENGTH; 2506 break; 2507 default: 2508 break; 2509 } 2510 2511 switch (l4_type) { 2512 case PP2_INQ_L4_TYPE_TCP: 2513 packet_type |= RTE_PTYPE_L4_TCP; 2514 break; 2515 case PP2_INQ_L4_TYPE_UDP: 2516 packet_type |= RTE_PTYPE_L4_UDP; 2517 break; 2518 default: 2519 break; 2520 } 2521 2522 return packet_type; 2523 } 2524 2525 /** 2526 * Get offload information from the received packet descriptor. 2527 * 2528 * @param desc 2529 * Pointer to the received packet descriptor. 2530 * 2531 * @return 2532 * Mbuf offload flags. 2533 */ 2534 static inline uint64_t 2535 mrvl_desc_to_ol_flags(struct pp2_ppio_desc *desc, uint64_t packet_type) 2536 { 2537 uint64_t flags = 0; 2538 enum pp2_inq_desc_status status; 2539 2540 if (RTE_ETH_IS_IPV4_HDR(packet_type)) { 2541 status = pp2_ppio_inq_desc_get_l3_pkt_error(desc); 2542 if (unlikely(status != PP2_DESC_ERR_OK)) 2543 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD; 2544 else 2545 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD; 2546 } 2547 2548 if (((packet_type & RTE_PTYPE_L4_UDP) == RTE_PTYPE_L4_UDP) || 2549 ((packet_type & RTE_PTYPE_L4_TCP) == RTE_PTYPE_L4_TCP)) { 2550 status = pp2_ppio_inq_desc_get_l4_pkt_error(desc); 2551 if (unlikely(status != PP2_DESC_ERR_OK)) 2552 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD; 2553 else 2554 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD; 2555 } 2556 2557 return flags; 2558 } 2559 2560 /** 2561 * DPDK callback for receive. 2562 * 2563 * @param rxq 2564 * Generic pointer to the receive queue. 2565 * @param rx_pkts 2566 * Array to store received packets. 2567 * @param nb_pkts 2568 * Maximum number of packets in array. 2569 * 2570 * @return 2571 * Number of packets successfully received. 2572 */ 2573 static uint16_t 2574 mrvl_rx_pkt_burst(void *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) 2575 { 2576 struct mrvl_rxq *q = rxq; 2577 struct pp2_ppio_desc descs[nb_pkts]; 2578 struct pp2_bpool *bpool; 2579 int i, ret, rx_done = 0; 2580 int num; 2581 struct pp2_hif *hif; 2582 unsigned int core_id = rte_lcore_id(); 2583 2584 hif = mrvl_get_hif(q->priv, core_id); 2585 2586 if (unlikely(!q->priv->ppio || !hif)) 2587 return 0; 2588 2589 bpool = q->priv->bpool; 2590 2591 ret = pp2_ppio_recv(q->priv->ppio, q->priv->rxq_map[q->queue_id].tc, 2592 q->priv->rxq_map[q->queue_id].inq, descs, &nb_pkts); 2593 if (unlikely(ret < 0)) 2594 return 0; 2595 2596 mrvl_port_bpool_size[bpool->pp2_id][bpool->id][core_id] -= nb_pkts; 2597 2598 for (i = 0; i < nb_pkts; i++) { 2599 struct rte_mbuf *mbuf; 2600 uint8_t l3_offset, l4_offset; 2601 enum pp2_inq_desc_status status; 2602 uint64_t addr; 2603 2604 if (likely(nb_pkts - i > MRVL_MUSDK_PREFETCH_SHIFT)) { 2605 struct pp2_ppio_desc *pref_desc; 2606 u64 pref_addr; 2607 2608 pref_desc = &descs[i + MRVL_MUSDK_PREFETCH_SHIFT]; 2609 pref_addr = cookie_addr_high | 2610 pp2_ppio_inq_desc_get_cookie(pref_desc); 2611 rte_mbuf_prefetch_part1((struct rte_mbuf *)(pref_addr)); 2612 rte_mbuf_prefetch_part2((struct rte_mbuf *)(pref_addr)); 2613 } 2614 2615 addr = cookie_addr_high | 2616 pp2_ppio_inq_desc_get_cookie(&descs[i]); 2617 mbuf = (struct rte_mbuf *)addr; 2618 rte_pktmbuf_reset(mbuf); 2619 2620 /* drop packet in case of mac, overrun or resource error */ 2621 status = pp2_ppio_inq_desc_get_l2_pkt_error(&descs[i]); 2622 if ((unlikely(status != PP2_DESC_ERR_OK)) && 2623 !(q->priv->forward_bad_frames)) { 2624 struct pp2_buff_inf binf = { 2625 .addr = rte_mbuf_data_iova_default(mbuf), 2626 .cookie = (uint64_t)mbuf, 2627 }; 2628 2629 pp2_bpool_put_buff(hif, bpool, &binf); 2630 mrvl_port_bpool_size 2631 [bpool->pp2_id][bpool->id][core_id]++; 2632 q->drop_mac++; 2633 continue; 2634 } 2635 2636 mbuf->data_off += MRVL_PKT_EFFEC_OFFS; 2637 mbuf->pkt_len = pp2_ppio_inq_desc_get_pkt_len(&descs[i]); 2638 mbuf->data_len = mbuf->pkt_len; 2639 mbuf->port = q->port_id; 2640 mbuf->packet_type = 2641 mrvl_desc_to_packet_type_and_offset(&descs[i], 2642 &l3_offset, 2643 &l4_offset); 2644 mbuf->l2_len = l3_offset; 2645 mbuf->l3_len = l4_offset - l3_offset; 2646 2647 if (likely(q->cksum_enabled)) 2648 mbuf->ol_flags = 2649 mrvl_desc_to_ol_flags(&descs[i], 2650 mbuf->packet_type); 2651 2652 rx_pkts[rx_done++] = mbuf; 2653 q->bytes_recv += mbuf->pkt_len; 2654 } 2655 2656 if (rte_spinlock_trylock(&q->priv->lock) == 1) { 2657 num = mrvl_get_bpool_size(bpool->pp2_id, bpool->id); 2658 2659 if (unlikely(num <= q->priv->bpool_min_size || 2660 (!rx_done && num < q->priv->bpool_init_size))) { 2661 mrvl_fill_bpool(q, q->priv->fill_bpool_buffs); 2662 } else if (unlikely(num > q->priv->bpool_max_size)) { 2663 int i; 2664 int pkt_to_remove = num - q->priv->bpool_init_size; 2665 struct rte_mbuf *mbuf; 2666 struct pp2_buff_inf buff; 2667 2668 for (i = 0; i < pkt_to_remove; i++) { 2669 ret = pp2_bpool_get_buff(hif, bpool, &buff); 2670 if (ret) 2671 break; 2672 mbuf = (struct rte_mbuf *) 2673 (cookie_addr_high | buff.cookie); 2674 rte_pktmbuf_free(mbuf); 2675 } 2676 mrvl_port_bpool_size 2677 [bpool->pp2_id][bpool->id][core_id] -= i; 2678 } 2679 rte_spinlock_unlock(&q->priv->lock); 2680 } 2681 2682 return rx_done; 2683 } 2684 2685 /** 2686 * Prepare offload information. 2687 * 2688 * @param ol_flags 2689 * Offload flags. 2690 * @param l3_type 2691 * Pointer to the pp2_ouq_l3_type structure. 2692 * @param l4_type 2693 * Pointer to the pp2_outq_l4_type structure. 2694 * @param gen_l3_cksum 2695 * Will be set to 1 in case l3 checksum is computed. 2696 * @param l4_cksum 2697 * Will be set to 1 in case l4 checksum is computed. 2698 */ 2699 static inline void 2700 mrvl_prepare_proto_info(uint64_t ol_flags, 2701 enum pp2_outq_l3_type *l3_type, 2702 enum pp2_outq_l4_type *l4_type, 2703 int *gen_l3_cksum, 2704 int *gen_l4_cksum) 2705 { 2706 /* 2707 * Based on ol_flags prepare information 2708 * for pp2_ppio_outq_desc_set_proto_info() which setups descriptor 2709 * for offloading. 2710 * in most of the checksum cases ipv4 must be set, so this is the 2711 * default value 2712 */ 2713 *l3_type = PP2_OUTQ_L3_TYPE_IPV4; 2714 *gen_l3_cksum = ol_flags & RTE_MBUF_F_TX_IP_CKSUM ? 1 : 0; 2715 2716 if (ol_flags & RTE_MBUF_F_TX_IPV6) { 2717 *l3_type = PP2_OUTQ_L3_TYPE_IPV6; 2718 /* no checksum for ipv6 header */ 2719 *gen_l3_cksum = 0; 2720 } 2721 2722 if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) { 2723 *l4_type = PP2_OUTQ_L4_TYPE_TCP; 2724 *gen_l4_cksum = 1; 2725 } else if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM) { 2726 *l4_type = PP2_OUTQ_L4_TYPE_UDP; 2727 *gen_l4_cksum = 1; 2728 } else { 2729 *l4_type = PP2_OUTQ_L4_TYPE_OTHER; 2730 /* no checksum for other type */ 2731 *gen_l4_cksum = 0; 2732 } 2733 } 2734 2735 /** 2736 * Release already sent buffers to bpool (buffer-pool). 2737 * 2738 * @param ppio 2739 * Pointer to the port structure. 2740 * @param hif 2741 * Pointer to the MUSDK hardware interface. 2742 * @param sq 2743 * Pointer to the shadow queue. 2744 * @param qid 2745 * Queue id number. 2746 * @param force 2747 * Force releasing packets. 2748 */ 2749 static inline void 2750 mrvl_free_sent_buffers(struct pp2_ppio *ppio, struct pp2_hif *hif, 2751 unsigned int core_id, struct mrvl_shadow_txq *sq, 2752 int qid, int force) 2753 { 2754 struct buff_release_entry *entry; 2755 uint16_t nb_done = 0, num = 0, skip_bufs = 0; 2756 int i; 2757 2758 pp2_ppio_get_num_outq_done(ppio, hif, qid, &nb_done); 2759 2760 sq->num_to_release += nb_done; 2761 2762 if (likely(!force && 2763 sq->num_to_release < MRVL_PP2_BUF_RELEASE_BURST_SIZE)) 2764 return; 2765 2766 nb_done = sq->num_to_release; 2767 sq->num_to_release = 0; 2768 2769 for (i = 0; i < nb_done; i++) { 2770 entry = &sq->ent[sq->tail + num]; 2771 if (unlikely(!entry->buff.addr)) { 2772 MRVL_LOG(ERR, 2773 "Shadow memory @%d: cookie(%lx), pa(%lx)!", 2774 sq->tail, (u64)entry->buff.cookie, 2775 (u64)entry->buff.addr); 2776 skip_bufs = 1; 2777 goto skip; 2778 } 2779 2780 if (unlikely(!entry->bpool)) { 2781 struct rte_mbuf *mbuf; 2782 2783 mbuf = (struct rte_mbuf *)entry->buff.cookie; 2784 rte_pktmbuf_free(mbuf); 2785 skip_bufs = 1; 2786 goto skip; 2787 } 2788 2789 mrvl_port_bpool_size 2790 [entry->bpool->pp2_id][entry->bpool->id][core_id]++; 2791 num++; 2792 if (unlikely(sq->tail + num == MRVL_PP2_TX_SHADOWQ_SIZE)) 2793 goto skip; 2794 continue; 2795 skip: 2796 if (likely(num)) 2797 pp2_bpool_put_buffs(hif, &sq->ent[sq->tail], &num); 2798 num += skip_bufs; 2799 sq->tail = (sq->tail + num) & MRVL_PP2_TX_SHADOWQ_MASK; 2800 sq->size -= num; 2801 num = 0; 2802 skip_bufs = 0; 2803 } 2804 2805 if (likely(num)) { 2806 pp2_bpool_put_buffs(hif, &sq->ent[sq->tail], &num); 2807 sq->tail = (sq->tail + num) & MRVL_PP2_TX_SHADOWQ_MASK; 2808 sq->size -= num; 2809 } 2810 } 2811 2812 /** 2813 * DPDK callback for transmit. 2814 * 2815 * @param txq 2816 * Generic pointer transmit queue. 2817 * @param tx_pkts 2818 * Packets to transmit. 2819 * @param nb_pkts 2820 * Number of packets in array. 2821 * 2822 * @return 2823 * Number of packets successfully transmitted. 2824 */ 2825 static uint16_t 2826 mrvl_tx_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 2827 { 2828 struct mrvl_txq *q = txq; 2829 struct mrvl_shadow_txq *sq; 2830 struct pp2_hif *hif; 2831 struct pp2_ppio_desc descs[nb_pkts]; 2832 unsigned int core_id = rte_lcore_id(); 2833 int i, bytes_sent = 0; 2834 uint16_t num, sq_free_size; 2835 uint64_t addr; 2836 2837 hif = mrvl_get_hif(q->priv, core_id); 2838 sq = &q->shadow_txqs[core_id]; 2839 2840 if (unlikely(!q->priv->ppio || !hif)) 2841 return 0; 2842 2843 if (sq->size) 2844 mrvl_free_sent_buffers(q->priv->ppio, hif, core_id, 2845 sq, q->queue_id, 0); 2846 2847 sq_free_size = MRVL_PP2_TX_SHADOWQ_SIZE - sq->size - 1; 2848 if (unlikely(nb_pkts > sq_free_size)) 2849 nb_pkts = sq_free_size; 2850 2851 for (i = 0; i < nb_pkts; i++) { 2852 struct rte_mbuf *mbuf = tx_pkts[i]; 2853 int gen_l3_cksum, gen_l4_cksum; 2854 enum pp2_outq_l3_type l3_type; 2855 enum pp2_outq_l4_type l4_type; 2856 2857 if (likely(nb_pkts - i > MRVL_MUSDK_PREFETCH_SHIFT)) { 2858 struct rte_mbuf *pref_pkt_hdr; 2859 2860 pref_pkt_hdr = tx_pkts[i + MRVL_MUSDK_PREFETCH_SHIFT]; 2861 rte_mbuf_prefetch_part1(pref_pkt_hdr); 2862 rte_mbuf_prefetch_part2(pref_pkt_hdr); 2863 } 2864 2865 mrvl_fill_shadowq(sq, mbuf); 2866 mrvl_fill_desc(&descs[i], mbuf); 2867 2868 bytes_sent += rte_pktmbuf_pkt_len(mbuf); 2869 /* 2870 * in case unsupported ol_flags were passed 2871 * do not update descriptor offload information 2872 */ 2873 if (!(mbuf->ol_flags & MRVL_TX_PKT_OFFLOADS)) 2874 continue; 2875 mrvl_prepare_proto_info(mbuf->ol_flags, &l3_type, &l4_type, 2876 &gen_l3_cksum, &gen_l4_cksum); 2877 2878 pp2_ppio_outq_desc_set_proto_info(&descs[i], l3_type, l4_type, 2879 mbuf->l2_len, 2880 mbuf->l2_len + mbuf->l3_len, 2881 gen_l3_cksum, gen_l4_cksum); 2882 } 2883 2884 num = nb_pkts; 2885 pp2_ppio_send(q->priv->ppio, hif, q->queue_id, descs, &nb_pkts); 2886 /* number of packets that were not sent */ 2887 if (unlikely(num > nb_pkts)) { 2888 for (i = nb_pkts; i < num; i++) { 2889 sq->head = (MRVL_PP2_TX_SHADOWQ_SIZE + sq->head - 1) & 2890 MRVL_PP2_TX_SHADOWQ_MASK; 2891 addr = sq->ent[sq->head].buff.cookie; 2892 bytes_sent -= 2893 rte_pktmbuf_pkt_len((struct rte_mbuf *)addr); 2894 } 2895 sq->size -= num - nb_pkts; 2896 } 2897 2898 q->bytes_sent += bytes_sent; 2899 2900 return nb_pkts; 2901 } 2902 2903 /** DPDK callback for S/G transmit. 2904 * 2905 * @param txq 2906 * Generic pointer transmit queue. 2907 * @param tx_pkts 2908 * Packets to transmit. 2909 * @param nb_pkts 2910 * Number of packets in array. 2911 * 2912 * @return 2913 * Number of packets successfully transmitted. 2914 */ 2915 static uint16_t 2916 mrvl_tx_sg_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, 2917 uint16_t nb_pkts) 2918 { 2919 struct mrvl_txq *q = txq; 2920 struct mrvl_shadow_txq *sq; 2921 struct pp2_hif *hif; 2922 struct pp2_ppio_desc descs[nb_pkts * PP2_PPIO_DESC_NUM_FRAGS]; 2923 struct pp2_ppio_sg_pkts pkts; 2924 uint8_t frags[nb_pkts]; 2925 unsigned int core_id = rte_lcore_id(); 2926 int i, j, bytes_sent = 0; 2927 int tail, tail_first; 2928 uint16_t num, sq_free_size; 2929 uint16_t nb_segs, total_descs = 0; 2930 uint64_t addr; 2931 2932 hif = mrvl_get_hif(q->priv, core_id); 2933 sq = &q->shadow_txqs[core_id]; 2934 pkts.frags = frags; 2935 pkts.num = 0; 2936 2937 if (unlikely(!q->priv->ppio || !hif)) 2938 return 0; 2939 2940 if (sq->size) 2941 mrvl_free_sent_buffers(q->priv->ppio, hif, core_id, 2942 sq, q->queue_id, 0); 2943 2944 /* Save shadow queue free size */ 2945 sq_free_size = MRVL_PP2_TX_SHADOWQ_SIZE - sq->size - 1; 2946 2947 tail = 0; 2948 for (i = 0; i < nb_pkts; i++) { 2949 struct rte_mbuf *mbuf = tx_pkts[i]; 2950 struct rte_mbuf *seg = NULL; 2951 int gen_l3_cksum, gen_l4_cksum; 2952 enum pp2_outq_l3_type l3_type; 2953 enum pp2_outq_l4_type l4_type; 2954 2955 nb_segs = mbuf->nb_segs; 2956 tail_first = tail; 2957 total_descs += nb_segs; 2958 2959 /* 2960 * Check if total_descs does not exceed 2961 * shadow queue free size 2962 */ 2963 if (unlikely(total_descs > sq_free_size)) { 2964 total_descs -= nb_segs; 2965 break; 2966 } 2967 2968 /* Check if nb_segs does not exceed the max nb of desc per 2969 * fragmented packet 2970 */ 2971 if (nb_segs > PP2_PPIO_DESC_NUM_FRAGS) { 2972 total_descs -= nb_segs; 2973 RTE_LOG(ERR, PMD, 2974 "Too many segments. Packet won't be sent.\n"); 2975 break; 2976 } 2977 2978 if (likely(nb_pkts - i > MRVL_MUSDK_PREFETCH_SHIFT)) { 2979 struct rte_mbuf *pref_pkt_hdr; 2980 2981 pref_pkt_hdr = tx_pkts[i + MRVL_MUSDK_PREFETCH_SHIFT]; 2982 rte_mbuf_prefetch_part1(pref_pkt_hdr); 2983 rte_mbuf_prefetch_part2(pref_pkt_hdr); 2984 } 2985 2986 pkts.frags[pkts.num] = nb_segs; 2987 pkts.num++; 2988 2989 seg = mbuf; 2990 for (j = 0; j < nb_segs - 1; j++) { 2991 /* For the subsequent segments, set shadow queue 2992 * buffer to NULL 2993 */ 2994 mrvl_fill_shadowq(sq, NULL); 2995 mrvl_fill_desc(&descs[tail], seg); 2996 2997 tail++; 2998 seg = seg->next; 2999 } 3000 /* Put first mbuf info in last shadow queue entry */ 3001 mrvl_fill_shadowq(sq, mbuf); 3002 /* Update descriptor with last segment */ 3003 mrvl_fill_desc(&descs[tail++], seg); 3004 3005 bytes_sent += rte_pktmbuf_pkt_len(mbuf); 3006 /* In case unsupported ol_flags were passed 3007 * do not update descriptor offload information 3008 */ 3009 if (!(mbuf->ol_flags & MRVL_TX_PKT_OFFLOADS)) 3010 continue; 3011 mrvl_prepare_proto_info(mbuf->ol_flags, &l3_type, &l4_type, 3012 &gen_l3_cksum, &gen_l4_cksum); 3013 3014 pp2_ppio_outq_desc_set_proto_info(&descs[tail_first], l3_type, 3015 l4_type, mbuf->l2_len, 3016 mbuf->l2_len + mbuf->l3_len, 3017 gen_l3_cksum, gen_l4_cksum); 3018 } 3019 3020 num = total_descs; 3021 pp2_ppio_send_sg(q->priv->ppio, hif, q->queue_id, descs, 3022 &total_descs, &pkts); 3023 /* number of packets that were not sent */ 3024 if (unlikely(num > total_descs)) { 3025 for (i = total_descs; i < num; i++) { 3026 sq->head = (MRVL_PP2_TX_SHADOWQ_SIZE + sq->head - 1) & 3027 MRVL_PP2_TX_SHADOWQ_MASK; 3028 3029 addr = sq->ent[sq->head].buff.cookie; 3030 if (addr) 3031 bytes_sent -= 3032 rte_pktmbuf_pkt_len((struct rte_mbuf *) 3033 (cookie_addr_high | addr)); 3034 } 3035 sq->size -= num - total_descs; 3036 nb_pkts = pkts.num; 3037 } 3038 3039 q->bytes_sent += bytes_sent; 3040 3041 return nb_pkts; 3042 } 3043 3044 /** 3045 * Create private device structure. 3046 * 3047 * @param dev_name 3048 * Pointer to the port name passed in the initialization parameters. 3049 * 3050 * @return 3051 * Pointer to the newly allocated private device structure. 3052 */ 3053 static struct mrvl_priv * 3054 mrvl_priv_create(const char *dev_name) 3055 { 3056 struct pp2_bpool_params bpool_params; 3057 char match[MRVL_MATCH_LEN]; 3058 struct mrvl_priv *priv; 3059 uint16_t max_frame_size; 3060 int ret, bpool_bit; 3061 3062 priv = rte_zmalloc_socket(dev_name, sizeof(*priv), 0, rte_socket_id()); 3063 if (!priv) 3064 return NULL; 3065 3066 ret = pp2_netdev_get_ppio_info((char *)(uintptr_t)dev_name, 3067 &priv->pp_id, &priv->ppio_id); 3068 if (ret) 3069 goto out_free_priv; 3070 3071 ret = pp2_ppio_get_l4_cksum_max_frame_size(priv->pp_id, priv->ppio_id, 3072 &max_frame_size); 3073 if (ret) 3074 goto out_free_priv; 3075 3076 priv->max_mtu = max_frame_size + RTE_ETHER_CRC_LEN - 3077 MRVL_PP2_ETH_HDRS_LEN; 3078 3079 bpool_bit = mrvl_reserve_bit(&used_bpools[priv->pp_id], 3080 PP2_BPOOL_NUM_POOLS); 3081 if (bpool_bit < 0) 3082 goto out_free_priv; 3083 priv->bpool_bit = bpool_bit; 3084 3085 snprintf(match, sizeof(match), "pool-%d:%d", priv->pp_id, 3086 priv->bpool_bit); 3087 memset(&bpool_params, 0, sizeof(bpool_params)); 3088 bpool_params.match = match; 3089 bpool_params.buff_len = MRVL_PKT_SIZE_MAX + MRVL_PKT_EFFEC_OFFS; 3090 ret = pp2_bpool_init(&bpool_params, &priv->bpool); 3091 if (ret) 3092 goto out_clear_bpool_bit; 3093 3094 priv->ppio_params.type = PP2_PPIO_T_NIC; 3095 rte_spinlock_init(&priv->lock); 3096 3097 return priv; 3098 out_clear_bpool_bit: 3099 used_bpools[priv->pp_id] &= ~(1 << priv->bpool_bit); 3100 out_free_priv: 3101 rte_free(priv); 3102 return NULL; 3103 } 3104 3105 /** 3106 * Create device representing Ethernet port. 3107 * 3108 * @param name 3109 * Pointer to the port's name. 3110 * 3111 * @return 3112 * 0 on success, negative error value otherwise. 3113 */ 3114 static int 3115 mrvl_eth_dev_create(struct rte_vdev_device *vdev, const char *name) 3116 { 3117 int ret, fd = socket(AF_INET, SOCK_DGRAM, 0); 3118 struct rte_eth_dev *eth_dev; 3119 struct mrvl_priv *priv; 3120 struct ifreq req; 3121 3122 eth_dev = rte_eth_dev_allocate(name); 3123 if (!eth_dev) 3124 return -ENOMEM; 3125 3126 priv = mrvl_priv_create(name); 3127 if (!priv) { 3128 ret = -ENOMEM; 3129 goto out_free; 3130 } 3131 eth_dev->data->dev_private = priv; 3132 3133 eth_dev->data->mac_addrs = 3134 rte_zmalloc("mac_addrs", 3135 RTE_ETHER_ADDR_LEN * MRVL_MAC_ADDRS_MAX, 0); 3136 if (!eth_dev->data->mac_addrs) { 3137 MRVL_LOG(ERR, "Failed to allocate space for eth addrs"); 3138 ret = -ENOMEM; 3139 goto out_free; 3140 } 3141 3142 memset(&req, 0, sizeof(req)); 3143 strcpy(req.ifr_name, name); 3144 ret = ioctl(fd, SIOCGIFHWADDR, &req); 3145 if (ret) 3146 goto out_free; 3147 3148 memcpy(eth_dev->data->mac_addrs[0].addr_bytes, 3149 req.ifr_addr.sa_data, RTE_ETHER_ADDR_LEN); 3150 3151 eth_dev->device = &vdev->device; 3152 eth_dev->rx_pkt_burst = mrvl_rx_pkt_burst; 3153 mrvl_set_tx_function(eth_dev); 3154 eth_dev->dev_ops = &mrvl_ops; 3155 eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 3156 3157 eth_dev->data->dev_link.link_status = RTE_ETH_LINK_UP; 3158 3159 rte_eth_dev_probing_finish(eth_dev); 3160 return 0; 3161 out_free: 3162 rte_eth_dev_release_port(eth_dev); 3163 3164 return ret; 3165 } 3166 3167 /** 3168 * Callback used by rte_kvargs_process() during argument parsing. 3169 * 3170 * @param key 3171 * Pointer to the parsed key (unused). 3172 * @param value 3173 * Pointer to the parsed value. 3174 * @param extra_args 3175 * Pointer to the extra arguments which contains address of the 3176 * table of pointers to parsed interface names. 3177 * 3178 * @return 3179 * Always 0. 3180 */ 3181 static int 3182 mrvl_get_ifnames(const char *key __rte_unused, const char *value, 3183 void *extra_args) 3184 { 3185 struct mrvl_ifnames *ifnames = extra_args; 3186 3187 ifnames->names[ifnames->idx++] = value; 3188 3189 return 0; 3190 } 3191 3192 /** 3193 * DPDK callback to register the virtual device. 3194 * 3195 * @param vdev 3196 * Pointer to the virtual device. 3197 * 3198 * @return 3199 * 0 on success, negative error value otherwise. 3200 */ 3201 static int 3202 rte_pmd_mrvl_probe(struct rte_vdev_device *vdev) 3203 { 3204 struct rte_kvargs *kvlist; 3205 struct mrvl_ifnames ifnames; 3206 int ret = -EINVAL; 3207 uint32_t i, ifnum, cfgnum; 3208 const char *params; 3209 3210 params = rte_vdev_device_args(vdev); 3211 if (!params) 3212 return -EINVAL; 3213 3214 kvlist = rte_kvargs_parse(params, valid_args); 3215 if (!kvlist) 3216 return -EINVAL; 3217 3218 ifnum = rte_kvargs_count(kvlist, MRVL_IFACE_NAME_ARG); 3219 if (ifnum > RTE_DIM(ifnames.names)) 3220 goto out_free_kvlist; 3221 3222 ifnames.idx = 0; 3223 rte_kvargs_process(kvlist, MRVL_IFACE_NAME_ARG, 3224 mrvl_get_ifnames, &ifnames); 3225 3226 3227 /* 3228 * The below system initialization should be done only once, 3229 * on the first provided configuration file 3230 */ 3231 if (!mrvl_cfg) { 3232 cfgnum = rte_kvargs_count(kvlist, MRVL_CFG_ARG); 3233 MRVL_LOG(INFO, "Parsing config file!"); 3234 if (cfgnum > 1) { 3235 MRVL_LOG(ERR, "Cannot handle more than one config file!"); 3236 goto out_free_kvlist; 3237 } else if (cfgnum == 1) { 3238 rte_kvargs_process(kvlist, MRVL_CFG_ARG, 3239 mrvl_get_cfg, &mrvl_cfg); 3240 } 3241 } 3242 3243 if (mrvl_dev_num) 3244 goto init_devices; 3245 3246 MRVL_LOG(INFO, "Perform MUSDK initializations"); 3247 3248 ret = rte_mvep_init(MVEP_MOD_T_PP2, kvlist); 3249 if (ret) 3250 goto out_free_kvlist; 3251 3252 ret = mrvl_init_pp2(); 3253 if (ret) { 3254 MRVL_LOG(ERR, "Failed to init PP!"); 3255 rte_mvep_deinit(MVEP_MOD_T_PP2); 3256 goto out_free_kvlist; 3257 } 3258 3259 memset(mrvl_port_bpool_size, 0, sizeof(mrvl_port_bpool_size)); 3260 memset(mrvl_port_to_bpool_lookup, 0, sizeof(mrvl_port_to_bpool_lookup)); 3261 3262 mrvl_lcore_first = RTE_MAX_LCORE; 3263 mrvl_lcore_last = 0; 3264 3265 init_devices: 3266 for (i = 0; i < ifnum; i++) { 3267 MRVL_LOG(INFO, "Creating %s", ifnames.names[i]); 3268 ret = mrvl_eth_dev_create(vdev, ifnames.names[i]); 3269 if (ret) 3270 goto out_cleanup; 3271 mrvl_dev_num++; 3272 } 3273 3274 rte_kvargs_free(kvlist); 3275 3276 return 0; 3277 out_cleanup: 3278 rte_pmd_mrvl_remove(vdev); 3279 3280 out_free_kvlist: 3281 rte_kvargs_free(kvlist); 3282 3283 return ret; 3284 } 3285 3286 /** 3287 * DPDK callback to remove virtual device. 3288 * 3289 * @param vdev 3290 * Pointer to the removed virtual device. 3291 * 3292 * @return 3293 * 0 on success, negative error value otherwise. 3294 */ 3295 static int 3296 rte_pmd_mrvl_remove(struct rte_vdev_device *vdev) 3297 { 3298 uint16_t port_id; 3299 int ret = 0; 3300 3301 RTE_ETH_FOREACH_DEV(port_id) { 3302 if (rte_eth_devices[port_id].device != &vdev->device) 3303 continue; 3304 ret |= rte_eth_dev_close(port_id); 3305 } 3306 3307 return ret == 0 ? 0 : -EIO; 3308 } 3309 3310 static struct rte_vdev_driver pmd_mrvl_drv = { 3311 .probe = rte_pmd_mrvl_probe, 3312 .remove = rte_pmd_mrvl_remove, 3313 }; 3314 3315 RTE_PMD_REGISTER_VDEV(net_mvpp2, pmd_mrvl_drv); 3316 RTE_PMD_REGISTER_ALIAS(net_mvpp2, eth_mvpp2); 3317 RTE_LOG_REGISTER_DEFAULT(mrvl_logtype, NOTICE); 3318