1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2015 6WIND S.A. 3 * Copyright 2015 Mellanox Technologies, Ltd 4 */ 5 6 #include <stddef.h> 7 #include <errno.h> 8 #include <string.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <rte_mbuf.h> 14 #include <rte_malloc.h> 15 #include <ethdev_driver.h> 16 #include <rte_common.h> 17 #include <rte_eal_paging.h> 18 19 #include <mlx5_common.h> 20 #include <mlx5_common_mr.h> 21 #include <mlx5_malloc.h> 22 23 #include "mlx5_defs.h" 24 #include "mlx5_utils.h" 25 #include "mlx5.h" 26 #include "mlx5_rxtx.h" 27 #include "mlx5_autoconf.h" 28 29 /** 30 * Allocate TX queue elements. 31 * 32 * @param txq_ctrl 33 * Pointer to TX queue structure. 34 */ 35 void 36 txq_alloc_elts(struct mlx5_txq_ctrl *txq_ctrl) 37 { 38 const unsigned int elts_n = 1 << txq_ctrl->txq.elts_n; 39 unsigned int i; 40 41 for (i = 0; (i != elts_n); ++i) 42 txq_ctrl->txq.elts[i] = NULL; 43 DRV_LOG(DEBUG, "port %u Tx queue %u allocated and configured %u WRs", 44 PORT_ID(txq_ctrl->priv), txq_ctrl->txq.idx, elts_n); 45 txq_ctrl->txq.elts_head = 0; 46 txq_ctrl->txq.elts_tail = 0; 47 txq_ctrl->txq.elts_comp = 0; 48 } 49 50 /** 51 * Free TX queue elements. 52 * 53 * @param txq_ctrl 54 * Pointer to TX queue structure. 55 */ 56 void 57 txq_free_elts(struct mlx5_txq_ctrl *txq_ctrl) 58 { 59 const uint16_t elts_n = 1 << txq_ctrl->txq.elts_n; 60 const uint16_t elts_m = elts_n - 1; 61 uint16_t elts_head = txq_ctrl->txq.elts_head; 62 uint16_t elts_tail = txq_ctrl->txq.elts_tail; 63 struct rte_mbuf *(*elts)[elts_n] = &txq_ctrl->txq.elts; 64 65 DRV_LOG(DEBUG, "port %u Tx queue %u freeing WRs", 66 PORT_ID(txq_ctrl->priv), txq_ctrl->txq.idx); 67 txq_ctrl->txq.elts_head = 0; 68 txq_ctrl->txq.elts_tail = 0; 69 txq_ctrl->txq.elts_comp = 0; 70 71 while (elts_tail != elts_head) { 72 struct rte_mbuf *elt = (*elts)[elts_tail & elts_m]; 73 74 MLX5_ASSERT(elt != NULL); 75 rte_pktmbuf_free_seg(elt); 76 #ifdef RTE_LIBRTE_MLX5_DEBUG 77 /* Poisoning. */ 78 memset(&(*elts)[elts_tail & elts_m], 79 0x77, 80 sizeof((*elts)[elts_tail & elts_m])); 81 #endif 82 ++elts_tail; 83 } 84 } 85 86 /** 87 * Returns the per-port supported offloads. 88 * 89 * @param dev 90 * Pointer to Ethernet device. 91 * 92 * @return 93 * Supported Tx offloads. 94 */ 95 uint64_t 96 mlx5_get_tx_port_offloads(struct rte_eth_dev *dev) 97 { 98 struct mlx5_priv *priv = dev->data->dev_private; 99 uint64_t offloads = (DEV_TX_OFFLOAD_MULTI_SEGS | 100 DEV_TX_OFFLOAD_VLAN_INSERT); 101 struct mlx5_dev_config *config = &priv->config; 102 103 if (config->hw_csum) 104 offloads |= (DEV_TX_OFFLOAD_IPV4_CKSUM | 105 DEV_TX_OFFLOAD_UDP_CKSUM | 106 DEV_TX_OFFLOAD_TCP_CKSUM); 107 if (config->tso) 108 offloads |= DEV_TX_OFFLOAD_TCP_TSO; 109 if (config->tx_pp) 110 offloads |= DEV_TX_OFFLOAD_SEND_ON_TIMESTAMP; 111 if (config->swp) { 112 if (config->hw_csum) 113 offloads |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM; 114 if (config->tso) 115 offloads |= (DEV_TX_OFFLOAD_IP_TNL_TSO | 116 DEV_TX_OFFLOAD_UDP_TNL_TSO); 117 } 118 if (config->tunnel_en) { 119 if (config->hw_csum) 120 offloads |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM; 121 if (config->tso) 122 offloads |= (DEV_TX_OFFLOAD_VXLAN_TNL_TSO | 123 DEV_TX_OFFLOAD_GRE_TNL_TSO | 124 DEV_TX_OFFLOAD_GENEVE_TNL_TSO); 125 } 126 if (!config->mprq.enabled) 127 offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 128 return offloads; 129 } 130 131 /* Fetches and drops all SW-owned and error CQEs to synchronize CQ. */ 132 static void 133 txq_sync_cq(struct mlx5_txq_data *txq) 134 { 135 volatile struct mlx5_cqe *cqe; 136 int ret, i; 137 138 i = txq->cqe_s; 139 do { 140 cqe = &txq->cqes[txq->cq_ci & txq->cqe_m]; 141 ret = check_cqe(cqe, txq->cqe_s, txq->cq_ci); 142 if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) { 143 if (likely(ret != MLX5_CQE_STATUS_ERR)) { 144 /* No new CQEs in completion queue. */ 145 MLX5_ASSERT(ret == MLX5_CQE_STATUS_HW_OWN); 146 break; 147 } 148 } 149 ++txq->cq_ci; 150 } while (--i); 151 /* Move all CQEs to HW ownership. */ 152 for (i = 0; i < txq->cqe_s; i++) { 153 cqe = &txq->cqes[i]; 154 cqe->op_own = MLX5_CQE_INVALIDATE; 155 } 156 /* Resync CQE and WQE (WQ in reset state). */ 157 rte_io_wmb(); 158 *txq->cq_db = rte_cpu_to_be_32(txq->cq_ci); 159 txq->cq_pi = txq->cq_ci; 160 rte_io_wmb(); 161 } 162 163 /** 164 * Tx queue stop. Device queue goes to the idle state, 165 * all involved mbufs are freed from elts/WQ. 166 * 167 * @param dev 168 * Pointer to Ethernet device structure. 169 * @param idx 170 * Tx queue index. 171 * 172 * @return 173 * 0 on success, a negative errno value otherwise and rte_errno is set. 174 */ 175 int 176 mlx5_tx_queue_stop_primary(struct rte_eth_dev *dev, uint16_t idx) 177 { 178 struct mlx5_priv *priv = dev->data->dev_private; 179 struct mlx5_txq_data *txq = (*priv->txqs)[idx]; 180 struct mlx5_txq_ctrl *txq_ctrl = 181 container_of(txq, struct mlx5_txq_ctrl, txq); 182 int ret; 183 184 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 185 /* Move QP to RESET state. */ 186 ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj, MLX5_TXQ_MOD_RDY2RST, 187 (uint8_t)priv->dev_port); 188 if (ret) 189 return ret; 190 /* Handle all send completions. */ 191 txq_sync_cq(txq); 192 /* Free elts stored in the SQ. */ 193 txq_free_elts(txq_ctrl); 194 /* Prevent writing new pkts to SQ by setting no free WQE.*/ 195 txq->wqe_ci = txq->wqe_s; 196 txq->wqe_pi = 0; 197 txq->elts_comp = 0; 198 /* Set the actual queue state. */ 199 dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED; 200 return 0; 201 } 202 203 /** 204 * Tx queue stop. Device queue goes to the idle state, 205 * all involved mbufs are freed from elts/WQ. 206 * 207 * @param dev 208 * Pointer to Ethernet device structure. 209 * @param idx 210 * Tx queue index. 211 * 212 * @return 213 * 0 on success, a negative errno value otherwise and rte_errno is set. 214 */ 215 int 216 mlx5_tx_queue_stop(struct rte_eth_dev *dev, uint16_t idx) 217 { 218 int ret; 219 220 if (rte_eth_dev_is_tx_hairpin_queue(dev, idx)) { 221 DRV_LOG(ERR, "Hairpin queue can't be stopped"); 222 rte_errno = EINVAL; 223 return -EINVAL; 224 } 225 if (dev->data->tx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STOPPED) 226 return 0; 227 if (rte_eal_process_type() == RTE_PROC_SECONDARY) { 228 ret = mlx5_mp_os_req_queue_control(dev, idx, 229 MLX5_MP_REQ_QUEUE_TX_STOP); 230 } else { 231 ret = mlx5_tx_queue_stop_primary(dev, idx); 232 } 233 return ret; 234 } 235 236 /** 237 * Rx queue start. Device queue goes to the ready state, 238 * all required mbufs are allocated and WQ is replenished. 239 * 240 * @param dev 241 * Pointer to Ethernet device structure. 242 * @param idx 243 * RX queue index. 244 * 245 * @return 246 * 0 on success, a negative errno value otherwise and rte_errno is set. 247 */ 248 int 249 mlx5_tx_queue_start_primary(struct rte_eth_dev *dev, uint16_t idx) 250 { 251 struct mlx5_priv *priv = dev->data->dev_private; 252 struct mlx5_txq_data *txq = (*priv->txqs)[idx]; 253 struct mlx5_txq_ctrl *txq_ctrl = 254 container_of(txq, struct mlx5_txq_ctrl, txq); 255 int ret; 256 257 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 258 ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj, 259 MLX5_TXQ_MOD_RST2RDY, 260 (uint8_t)priv->dev_port); 261 if (ret) 262 return ret; 263 txq_ctrl->txq.wqe_ci = 0; 264 txq_ctrl->txq.wqe_pi = 0; 265 txq_ctrl->txq.elts_comp = 0; 266 /* Set the actual queue state. */ 267 dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STARTED; 268 return 0; 269 } 270 271 /** 272 * Rx queue start. Device queue goes to the ready state, 273 * all required mbufs are allocated and WQ is replenished. 274 * 275 * @param dev 276 * Pointer to Ethernet device structure. 277 * @param idx 278 * RX queue index. 279 * 280 * @return 281 * 0 on success, a negative errno value otherwise and rte_errno is set. 282 */ 283 int 284 mlx5_tx_queue_start(struct rte_eth_dev *dev, uint16_t idx) 285 { 286 int ret; 287 288 if (rte_eth_dev_is_tx_hairpin_queue(dev, idx)) { 289 DRV_LOG(ERR, "Hairpin queue can't be started"); 290 rte_errno = EINVAL; 291 return -EINVAL; 292 } 293 if (dev->data->tx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STARTED) 294 return 0; 295 if (rte_eal_process_type() == RTE_PROC_SECONDARY) { 296 ret = mlx5_mp_os_req_queue_control(dev, idx, 297 MLX5_MP_REQ_QUEUE_TX_START); 298 } else { 299 ret = mlx5_tx_queue_start_primary(dev, idx); 300 } 301 return ret; 302 } 303 304 /** 305 * Tx queue presetup checks. 306 * 307 * @param dev 308 * Pointer to Ethernet device structure. 309 * @param idx 310 * Tx queue index. 311 * @param desc 312 * Number of descriptors to configure in queue. 313 * 314 * @return 315 * 0 on success, a negative errno value otherwise and rte_errno is set. 316 */ 317 static int 318 mlx5_tx_queue_pre_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t *desc) 319 { 320 struct mlx5_priv *priv = dev->data->dev_private; 321 322 if (*desc <= MLX5_TX_COMP_THRESH) { 323 DRV_LOG(WARNING, 324 "port %u number of descriptors requested for Tx queue" 325 " %u must be higher than MLX5_TX_COMP_THRESH, using %u" 326 " instead of %u", dev->data->port_id, idx, 327 MLX5_TX_COMP_THRESH + 1, *desc); 328 *desc = MLX5_TX_COMP_THRESH + 1; 329 } 330 if (!rte_is_power_of_2(*desc)) { 331 *desc = 1 << log2above(*desc); 332 DRV_LOG(WARNING, 333 "port %u increased number of descriptors in Tx queue" 334 " %u to the next power of two (%d)", 335 dev->data->port_id, idx, *desc); 336 } 337 DRV_LOG(DEBUG, "port %u configuring queue %u for %u descriptors", 338 dev->data->port_id, idx, *desc); 339 if (idx >= priv->txqs_n) { 340 DRV_LOG(ERR, "port %u Tx queue index out of range (%u >= %u)", 341 dev->data->port_id, idx, priv->txqs_n); 342 rte_errno = EOVERFLOW; 343 return -rte_errno; 344 } 345 if (!mlx5_txq_releasable(dev, idx)) { 346 rte_errno = EBUSY; 347 DRV_LOG(ERR, "port %u unable to release queue index %u", 348 dev->data->port_id, idx); 349 return -rte_errno; 350 } 351 mlx5_txq_release(dev, idx); 352 return 0; 353 } 354 355 /** 356 * DPDK callback to configure a TX queue. 357 * 358 * @param dev 359 * Pointer to Ethernet device structure. 360 * @param idx 361 * TX queue index. 362 * @param desc 363 * Number of descriptors to configure in queue. 364 * @param socket 365 * NUMA socket on which memory must be allocated. 366 * @param[in] conf 367 * Thresholds parameters. 368 * 369 * @return 370 * 0 on success, a negative errno value otherwise and rte_errno is set. 371 */ 372 int 373 mlx5_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, 374 unsigned int socket, const struct rte_eth_txconf *conf) 375 { 376 struct mlx5_priv *priv = dev->data->dev_private; 377 struct mlx5_txq_data *txq = (*priv->txqs)[idx]; 378 struct mlx5_txq_ctrl *txq_ctrl = 379 container_of(txq, struct mlx5_txq_ctrl, txq); 380 int res; 381 382 res = mlx5_tx_queue_pre_setup(dev, idx, &desc); 383 if (res) 384 return res; 385 txq_ctrl = mlx5_txq_new(dev, idx, desc, socket, conf); 386 if (!txq_ctrl) { 387 DRV_LOG(ERR, "port %u unable to allocate queue index %u", 388 dev->data->port_id, idx); 389 return -rte_errno; 390 } 391 DRV_LOG(DEBUG, "port %u adding Tx queue %u to list", 392 dev->data->port_id, idx); 393 (*priv->txqs)[idx] = &txq_ctrl->txq; 394 return 0; 395 } 396 397 /** 398 * DPDK callback to configure a TX hairpin queue. 399 * 400 * @param dev 401 * Pointer to Ethernet device structure. 402 * @param idx 403 * TX queue index. 404 * @param desc 405 * Number of descriptors to configure in queue. 406 * @param[in] hairpin_conf 407 * The hairpin binding configuration. 408 * 409 * @return 410 * 0 on success, a negative errno value otherwise and rte_errno is set. 411 */ 412 int 413 mlx5_tx_hairpin_queue_setup(struct rte_eth_dev *dev, uint16_t idx, 414 uint16_t desc, 415 const struct rte_eth_hairpin_conf *hairpin_conf) 416 { 417 struct mlx5_priv *priv = dev->data->dev_private; 418 struct mlx5_txq_data *txq = (*priv->txqs)[idx]; 419 struct mlx5_txq_ctrl *txq_ctrl = 420 container_of(txq, struct mlx5_txq_ctrl, txq); 421 int res; 422 423 res = mlx5_tx_queue_pre_setup(dev, idx, &desc); 424 if (res) 425 return res; 426 if (hairpin_conf->peer_count != 1) { 427 rte_errno = EINVAL; 428 DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue index %u" 429 " peer count is %u", dev->data->port_id, 430 idx, hairpin_conf->peer_count); 431 return -rte_errno; 432 } 433 if (hairpin_conf->peers[0].port == dev->data->port_id) { 434 if (hairpin_conf->peers[0].queue >= priv->rxqs_n) { 435 rte_errno = EINVAL; 436 DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue" 437 " index %u, Rx %u is larger than %u", 438 dev->data->port_id, idx, 439 hairpin_conf->peers[0].queue, priv->txqs_n); 440 return -rte_errno; 441 } 442 } else { 443 if (hairpin_conf->manual_bind == 0 || 444 hairpin_conf->tx_explicit == 0) { 445 rte_errno = EINVAL; 446 DRV_LOG(ERR, "port %u unable to setup Tx hairpin queue" 447 " index %u peer port %u with attributes %u %u", 448 dev->data->port_id, idx, 449 hairpin_conf->peers[0].port, 450 hairpin_conf->manual_bind, 451 hairpin_conf->tx_explicit); 452 return -rte_errno; 453 } 454 } 455 txq_ctrl = mlx5_txq_hairpin_new(dev, idx, desc, hairpin_conf); 456 if (!txq_ctrl) { 457 DRV_LOG(ERR, "port %u unable to allocate queue index %u", 458 dev->data->port_id, idx); 459 return -rte_errno; 460 } 461 DRV_LOG(DEBUG, "port %u adding Tx queue %u to list", 462 dev->data->port_id, idx); 463 (*priv->txqs)[idx] = &txq_ctrl->txq; 464 dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_HAIRPIN; 465 return 0; 466 } 467 468 /** 469 * DPDK callback to release a TX queue. 470 * 471 * @param dpdk_txq 472 * Generic TX queue pointer. 473 */ 474 void 475 mlx5_tx_queue_release(void *dpdk_txq) 476 { 477 struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq; 478 struct mlx5_txq_ctrl *txq_ctrl; 479 struct mlx5_priv *priv; 480 unsigned int i; 481 482 if (txq == NULL) 483 return; 484 txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); 485 priv = txq_ctrl->priv; 486 for (i = 0; (i != priv->txqs_n); ++i) 487 if ((*priv->txqs)[i] == txq) { 488 DRV_LOG(DEBUG, "port %u removing Tx queue %u from list", 489 PORT_ID(priv), txq->idx); 490 mlx5_txq_release(ETH_DEV(priv), i); 491 break; 492 } 493 } 494 495 /** 496 * Configure the doorbell register non-cached attribute. 497 * 498 * @param txq_ctrl 499 * Pointer to Tx queue control structure. 500 * @param page_size 501 * Systme page size 502 */ 503 static void 504 txq_uar_ncattr_init(struct mlx5_txq_ctrl *txq_ctrl, size_t page_size) 505 { 506 struct mlx5_priv *priv = txq_ctrl->priv; 507 off_t cmd; 508 509 txq_ctrl->txq.db_heu = priv->config.dbnc == MLX5_TXDB_HEURISTIC; 510 txq_ctrl->txq.db_nc = 0; 511 /* Check the doorbell register mapping type. */ 512 cmd = txq_ctrl->uar_mmap_offset / page_size; 513 cmd >>= MLX5_UAR_MMAP_CMD_SHIFT; 514 cmd &= MLX5_UAR_MMAP_CMD_MASK; 515 if (cmd == MLX5_MMAP_GET_NC_PAGES_CMD) 516 txq_ctrl->txq.db_nc = 1; 517 } 518 519 /** 520 * Initialize Tx UAR registers for primary process. 521 * 522 * @param txq_ctrl 523 * Pointer to Tx queue control structure. 524 */ 525 void 526 txq_uar_init(struct mlx5_txq_ctrl *txq_ctrl) 527 { 528 struct mlx5_priv *priv = txq_ctrl->priv; 529 struct mlx5_proc_priv *ppriv = MLX5_PROC_PRIV(PORT_ID(priv)); 530 #ifndef RTE_ARCH_64 531 unsigned int lock_idx; 532 #endif 533 const size_t page_size = rte_mem_page_size(); 534 if (page_size == (size_t)-1) { 535 DRV_LOG(ERR, "Failed to get mem page size"); 536 rte_errno = ENOMEM; 537 } 538 539 if (txq_ctrl->type != MLX5_TXQ_TYPE_STANDARD) 540 return; 541 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 542 MLX5_ASSERT(ppriv); 543 ppriv->uar_table[txq_ctrl->txq.idx] = txq_ctrl->bf_reg; 544 txq_uar_ncattr_init(txq_ctrl, page_size); 545 #ifndef RTE_ARCH_64 546 /* Assign an UAR lock according to UAR page number */ 547 lock_idx = (txq_ctrl->uar_mmap_offset / page_size) & 548 MLX5_UAR_PAGE_NUM_MASK; 549 txq_ctrl->txq.uar_lock = &priv->sh->uar_lock[lock_idx]; 550 #endif 551 } 552 553 /** 554 * Remap UAR register of a Tx queue for secondary process. 555 * 556 * Remapped address is stored at the table in the process private structure of 557 * the device, indexed by queue index. 558 * 559 * @param txq_ctrl 560 * Pointer to Tx queue control structure. 561 * @param fd 562 * Verbs file descriptor to map UAR pages. 563 * 564 * @return 565 * 0 on success, a negative errno value otherwise and rte_errno is set. 566 */ 567 static int 568 txq_uar_init_secondary(struct mlx5_txq_ctrl *txq_ctrl, int fd) 569 { 570 struct mlx5_priv *priv = txq_ctrl->priv; 571 struct mlx5_proc_priv *ppriv = MLX5_PROC_PRIV(PORT_ID(priv)); 572 struct mlx5_txq_data *txq = &txq_ctrl->txq; 573 void *addr; 574 uintptr_t uar_va; 575 uintptr_t offset; 576 const size_t page_size = rte_mem_page_size(); 577 if (page_size == (size_t)-1) { 578 DRV_LOG(ERR, "Failed to get mem page size"); 579 rte_errno = ENOMEM; 580 return -rte_errno; 581 } 582 583 if (txq_ctrl->type != MLX5_TXQ_TYPE_STANDARD) 584 return 0; 585 MLX5_ASSERT(ppriv); 586 /* 587 * As rdma-core, UARs are mapped in size of OS page 588 * size. Ref to libmlx5 function: mlx5_init_context() 589 */ 590 uar_va = (uintptr_t)txq_ctrl->bf_reg; 591 offset = uar_va & (page_size - 1); /* Offset in page. */ 592 addr = rte_mem_map(NULL, page_size, RTE_PROT_WRITE, RTE_MAP_SHARED, 593 fd, txq_ctrl->uar_mmap_offset); 594 if (!addr) { 595 DRV_LOG(ERR, 596 "port %u mmap failed for BF reg of txq %u", 597 txq->port_id, txq->idx); 598 rte_errno = ENXIO; 599 return -rte_errno; 600 } 601 addr = RTE_PTR_ADD(addr, offset); 602 ppriv->uar_table[txq->idx] = addr; 603 txq_uar_ncattr_init(txq_ctrl, page_size); 604 return 0; 605 } 606 607 /** 608 * Unmap UAR register of a Tx queue for secondary process. 609 * 610 * @param txq_ctrl 611 * Pointer to Tx queue control structure. 612 */ 613 static void 614 txq_uar_uninit_secondary(struct mlx5_txq_ctrl *txq_ctrl) 615 { 616 struct mlx5_proc_priv *ppriv = MLX5_PROC_PRIV(PORT_ID(txq_ctrl->priv)); 617 void *addr; 618 const size_t page_size = rte_mem_page_size(); 619 if (page_size == (size_t)-1) { 620 DRV_LOG(ERR, "Failed to get mem page size"); 621 rte_errno = ENOMEM; 622 } 623 624 if (txq_ctrl->type != MLX5_TXQ_TYPE_STANDARD) 625 return; 626 addr = ppriv->uar_table[txq_ctrl->txq.idx]; 627 rte_mem_unmap(RTE_PTR_ALIGN_FLOOR(addr, page_size), page_size); 628 } 629 630 /** 631 * Deinitialize Tx UAR registers for secondary process. 632 * 633 * @param dev 634 * Pointer to Ethernet device. 635 */ 636 void 637 mlx5_tx_uar_uninit_secondary(struct rte_eth_dev *dev) 638 { 639 struct mlx5_proc_priv *ppriv = (struct mlx5_proc_priv *) 640 dev->process_private; 641 const size_t page_size = rte_mem_page_size(); 642 void *addr; 643 unsigned int i; 644 645 if (page_size == (size_t)-1) { 646 DRV_LOG(ERR, "Failed to get mem page size"); 647 return; 648 } 649 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_SECONDARY); 650 for (i = 0; i != ppriv->uar_table_sz; ++i) { 651 if (!ppriv->uar_table[i]) 652 continue; 653 addr = ppriv->uar_table[i]; 654 rte_mem_unmap(RTE_PTR_ALIGN_FLOOR(addr, page_size), page_size); 655 656 } 657 } 658 659 /** 660 * Initialize Tx UAR registers for secondary process. 661 * 662 * @param dev 663 * Pointer to Ethernet device. 664 * @param fd 665 * Verbs file descriptor to map UAR pages. 666 * 667 * @return 668 * 0 on success, a negative errno value otherwise and rte_errno is set. 669 */ 670 int 671 mlx5_tx_uar_init_secondary(struct rte_eth_dev *dev, int fd) 672 { 673 struct mlx5_priv *priv = dev->data->dev_private; 674 struct mlx5_txq_data *txq; 675 struct mlx5_txq_ctrl *txq_ctrl; 676 unsigned int i; 677 int ret; 678 679 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_SECONDARY); 680 for (i = 0; i != priv->txqs_n; ++i) { 681 if (!(*priv->txqs)[i]) 682 continue; 683 txq = (*priv->txqs)[i]; 684 txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); 685 if (txq_ctrl->type != MLX5_TXQ_TYPE_STANDARD) 686 continue; 687 MLX5_ASSERT(txq->idx == (uint16_t)i); 688 ret = txq_uar_init_secondary(txq_ctrl, fd); 689 if (ret) 690 goto error; 691 } 692 return 0; 693 error: 694 /* Rollback. */ 695 do { 696 if (!(*priv->txqs)[i]) 697 continue; 698 txq = (*priv->txqs)[i]; 699 txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq); 700 txq_uar_uninit_secondary(txq_ctrl); 701 } while (i--); 702 return -rte_errno; 703 } 704 705 /** 706 * Verify the Verbs Tx queue list is empty 707 * 708 * @param dev 709 * Pointer to Ethernet device. 710 * 711 * @return 712 * The number of object not released. 713 */ 714 int 715 mlx5_txq_obj_verify(struct rte_eth_dev *dev) 716 { 717 struct mlx5_priv *priv = dev->data->dev_private; 718 int ret = 0; 719 struct mlx5_txq_obj *txq_obj; 720 721 LIST_FOREACH(txq_obj, &priv->txqsobj, next) { 722 DRV_LOG(DEBUG, "port %u Verbs Tx queue %u still referenced", 723 dev->data->port_id, txq_obj->txq_ctrl->txq.idx); 724 ++ret; 725 } 726 return ret; 727 } 728 729 /** 730 * Calculate the total number of WQEBB for Tx queue. 731 * 732 * Simplified version of calc_sq_size() in rdma-core. 733 * 734 * @param txq_ctrl 735 * Pointer to Tx queue control structure. 736 * 737 * @return 738 * The number of WQEBB. 739 */ 740 static int 741 txq_calc_wqebb_cnt(struct mlx5_txq_ctrl *txq_ctrl) 742 { 743 unsigned int wqe_size; 744 const unsigned int desc = 1 << txq_ctrl->txq.elts_n; 745 746 wqe_size = MLX5_WQE_CSEG_SIZE + 747 MLX5_WQE_ESEG_SIZE + 748 MLX5_WSEG_SIZE - 749 MLX5_ESEG_MIN_INLINE_SIZE + 750 txq_ctrl->max_inline_data; 751 return rte_align32pow2(wqe_size * desc) / MLX5_WQE_SIZE; 752 } 753 754 /** 755 * Calculate the maximal inline data size for Tx queue. 756 * 757 * @param txq_ctrl 758 * Pointer to Tx queue control structure. 759 * 760 * @return 761 * The maximal inline data size. 762 */ 763 static unsigned int 764 txq_calc_inline_max(struct mlx5_txq_ctrl *txq_ctrl) 765 { 766 const unsigned int desc = 1 << txq_ctrl->txq.elts_n; 767 struct mlx5_priv *priv = txq_ctrl->priv; 768 unsigned int wqe_size; 769 770 wqe_size = priv->sh->device_attr.max_qp_wr / desc; 771 if (!wqe_size) 772 return 0; 773 /* 774 * This calculation is derived from tthe source of 775 * mlx5_calc_send_wqe() in rdma_core library. 776 */ 777 wqe_size = wqe_size * MLX5_WQE_SIZE - 778 MLX5_WQE_CSEG_SIZE - 779 MLX5_WQE_ESEG_SIZE - 780 MLX5_WSEG_SIZE - 781 MLX5_WSEG_SIZE + 782 MLX5_DSEG_MIN_INLINE_SIZE; 783 return wqe_size; 784 } 785 786 /** 787 * Set Tx queue parameters from device configuration. 788 * 789 * @param txq_ctrl 790 * Pointer to Tx queue control structure. 791 */ 792 static void 793 txq_set_params(struct mlx5_txq_ctrl *txq_ctrl) 794 { 795 struct mlx5_priv *priv = txq_ctrl->priv; 796 struct mlx5_dev_config *config = &priv->config; 797 unsigned int inlen_send; /* Inline data for ordinary SEND.*/ 798 unsigned int inlen_empw; /* Inline data for enhanced MPW. */ 799 unsigned int inlen_mode; /* Minimal required Inline data. */ 800 unsigned int txqs_inline; /* Min Tx queues to enable inline. */ 801 uint64_t dev_txoff = priv->dev_data->dev_conf.txmode.offloads; 802 bool tso = txq_ctrl->txq.offloads & (DEV_TX_OFFLOAD_TCP_TSO | 803 DEV_TX_OFFLOAD_VXLAN_TNL_TSO | 804 DEV_TX_OFFLOAD_GRE_TNL_TSO | 805 DEV_TX_OFFLOAD_IP_TNL_TSO | 806 DEV_TX_OFFLOAD_UDP_TNL_TSO); 807 bool vlan_inline; 808 unsigned int temp; 809 810 txq_ctrl->txq.fast_free = 811 !!((txq_ctrl->txq.offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) && 812 !(txq_ctrl->txq.offloads & DEV_TX_OFFLOAD_MULTI_SEGS) && 813 !config->mprq.enabled); 814 if (config->txqs_inline == MLX5_ARG_UNSET) 815 txqs_inline = 816 #if defined(RTE_ARCH_ARM64) 817 (priv->pci_dev->id.device_id == 818 PCI_DEVICE_ID_MELLANOX_CONNECTX5BF) ? 819 MLX5_INLINE_MAX_TXQS_BLUEFIELD : 820 #endif 821 MLX5_INLINE_MAX_TXQS; 822 else 823 txqs_inline = (unsigned int)config->txqs_inline; 824 inlen_send = (config->txq_inline_max == MLX5_ARG_UNSET) ? 825 MLX5_SEND_DEF_INLINE_LEN : 826 (unsigned int)config->txq_inline_max; 827 inlen_empw = (config->txq_inline_mpw == MLX5_ARG_UNSET) ? 828 MLX5_EMPW_DEF_INLINE_LEN : 829 (unsigned int)config->txq_inline_mpw; 830 inlen_mode = (config->txq_inline_min == MLX5_ARG_UNSET) ? 831 0 : (unsigned int)config->txq_inline_min; 832 if (config->mps != MLX5_MPW_ENHANCED && config->mps != MLX5_MPW) 833 inlen_empw = 0; 834 /* 835 * If there is requested minimal amount of data to inline 836 * we MUST enable inlining. This is a case for ConnectX-4 837 * which usually requires L2 inlined for correct operating 838 * and ConnectX-4 Lx which requires L2-L4 inlined to 839 * support E-Switch Flows. 840 */ 841 if (inlen_mode) { 842 if (inlen_mode <= MLX5_ESEG_MIN_INLINE_SIZE) { 843 /* 844 * Optimize minimal inlining for single 845 * segment packets to fill one WQEBB 846 * without gaps. 847 */ 848 temp = MLX5_ESEG_MIN_INLINE_SIZE; 849 } else { 850 temp = inlen_mode - MLX5_ESEG_MIN_INLINE_SIZE; 851 temp = RTE_ALIGN(temp, MLX5_WSEG_SIZE) + 852 MLX5_ESEG_MIN_INLINE_SIZE; 853 temp = RTE_MIN(temp, MLX5_SEND_MAX_INLINE_LEN); 854 } 855 if (temp != inlen_mode) { 856 DRV_LOG(INFO, 857 "port %u minimal required inline setting" 858 " aligned from %u to %u", 859 PORT_ID(priv), inlen_mode, temp); 860 inlen_mode = temp; 861 } 862 } 863 /* 864 * If port is configured to support VLAN insertion and device 865 * does not support this feature by HW (for NICs before ConnectX-5 866 * or in case of wqe_vlan_insert flag is not set) we must enable 867 * data inline on all queues because it is supported by single 868 * tx_burst routine. 869 */ 870 txq_ctrl->txq.vlan_en = config->hw_vlan_insert; 871 vlan_inline = (dev_txoff & DEV_TX_OFFLOAD_VLAN_INSERT) && 872 !config->hw_vlan_insert; 873 /* 874 * If there are few Tx queues it is prioritized 875 * to save CPU cycles and disable data inlining at all. 876 */ 877 if (inlen_send && priv->txqs_n >= txqs_inline) { 878 /* 879 * The data sent with ordinal MLX5_OPCODE_SEND 880 * may be inlined in Ethernet Segment, align the 881 * length accordingly to fit entire WQEBBs. 882 */ 883 temp = RTE_MAX(inlen_send, 884 MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE); 885 temp -= MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE; 886 temp = RTE_ALIGN(temp, MLX5_WQE_SIZE); 887 temp += MLX5_ESEG_MIN_INLINE_SIZE + MLX5_WQE_DSEG_SIZE; 888 temp = RTE_MIN(temp, MLX5_WQE_SIZE_MAX + 889 MLX5_ESEG_MIN_INLINE_SIZE - 890 MLX5_WQE_CSEG_SIZE - 891 MLX5_WQE_ESEG_SIZE - 892 MLX5_WQE_DSEG_SIZE * 2); 893 temp = RTE_MIN(temp, MLX5_SEND_MAX_INLINE_LEN); 894 temp = RTE_MAX(temp, inlen_mode); 895 if (temp != inlen_send) { 896 DRV_LOG(INFO, 897 "port %u ordinary send inline setting" 898 " aligned from %u to %u", 899 PORT_ID(priv), inlen_send, temp); 900 inlen_send = temp; 901 } 902 /* 903 * Not aligned to cache lines, but to WQEs. 904 * First bytes of data (initial alignment) 905 * is going to be copied explicitly at the 906 * beginning of inlining buffer in Ethernet 907 * Segment. 908 */ 909 MLX5_ASSERT(inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE); 910 MLX5_ASSERT(inlen_send <= MLX5_WQE_SIZE_MAX + 911 MLX5_ESEG_MIN_INLINE_SIZE - 912 MLX5_WQE_CSEG_SIZE - 913 MLX5_WQE_ESEG_SIZE - 914 MLX5_WQE_DSEG_SIZE * 2); 915 } else if (inlen_mode) { 916 /* 917 * If minimal inlining is requested we must 918 * enable inlining in general, despite the 919 * number of configured queues. Ignore the 920 * txq_inline_max devarg, this is not 921 * full-featured inline. 922 */ 923 inlen_send = inlen_mode; 924 inlen_empw = 0; 925 } else if (vlan_inline) { 926 /* 927 * Hardware does not report offload for 928 * VLAN insertion, we must enable data inline 929 * to implement feature by software. 930 */ 931 inlen_send = MLX5_ESEG_MIN_INLINE_SIZE; 932 inlen_empw = 0; 933 } else { 934 inlen_send = 0; 935 inlen_empw = 0; 936 } 937 txq_ctrl->txq.inlen_send = inlen_send; 938 txq_ctrl->txq.inlen_mode = inlen_mode; 939 txq_ctrl->txq.inlen_empw = 0; 940 if (inlen_send && inlen_empw && priv->txqs_n >= txqs_inline) { 941 /* 942 * The data sent with MLX5_OPCODE_ENHANCED_MPSW 943 * may be inlined in Data Segment, align the 944 * length accordingly to fit entire WQEBBs. 945 */ 946 temp = RTE_MAX(inlen_empw, 947 MLX5_WQE_SIZE + MLX5_DSEG_MIN_INLINE_SIZE); 948 temp -= MLX5_DSEG_MIN_INLINE_SIZE; 949 temp = RTE_ALIGN(temp, MLX5_WQE_SIZE); 950 temp += MLX5_DSEG_MIN_INLINE_SIZE; 951 temp = RTE_MIN(temp, MLX5_WQE_SIZE_MAX + 952 MLX5_DSEG_MIN_INLINE_SIZE - 953 MLX5_WQE_CSEG_SIZE - 954 MLX5_WQE_ESEG_SIZE - 955 MLX5_WQE_DSEG_SIZE); 956 temp = RTE_MIN(temp, MLX5_EMPW_MAX_INLINE_LEN); 957 if (temp != inlen_empw) { 958 DRV_LOG(INFO, 959 "port %u enhanced empw inline setting" 960 " aligned from %u to %u", 961 PORT_ID(priv), inlen_empw, temp); 962 inlen_empw = temp; 963 } 964 MLX5_ASSERT(inlen_empw >= MLX5_ESEG_MIN_INLINE_SIZE); 965 MLX5_ASSERT(inlen_empw <= MLX5_WQE_SIZE_MAX + 966 MLX5_DSEG_MIN_INLINE_SIZE - 967 MLX5_WQE_CSEG_SIZE - 968 MLX5_WQE_ESEG_SIZE - 969 MLX5_WQE_DSEG_SIZE); 970 txq_ctrl->txq.inlen_empw = inlen_empw; 971 } 972 txq_ctrl->max_inline_data = RTE_MAX(inlen_send, inlen_empw); 973 if (tso) { 974 txq_ctrl->max_tso_header = MLX5_MAX_TSO_HEADER; 975 txq_ctrl->max_inline_data = RTE_MAX(txq_ctrl->max_inline_data, 976 MLX5_MAX_TSO_HEADER); 977 txq_ctrl->txq.tso_en = 1; 978 } 979 txq_ctrl->txq.tunnel_en = config->tunnel_en | config->swp; 980 txq_ctrl->txq.swp_en = ((DEV_TX_OFFLOAD_IP_TNL_TSO | 981 DEV_TX_OFFLOAD_UDP_TNL_TSO | 982 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) & 983 txq_ctrl->txq.offloads) && config->swp; 984 } 985 986 /** 987 * Adjust Tx queue data inline parameters for large queue sizes. 988 * The data inline feature requires multiple WQEs to fit the packets, 989 * and if the large amount of Tx descriptors is requested by application 990 * the total WQE amount may exceed the hardware capabilities. If the 991 * default inline setting are used we can try to adjust these ones and 992 * meet the hardware requirements and not exceed the queue size. 993 * 994 * @param txq_ctrl 995 * Pointer to Tx queue control structure. 996 * 997 * @return 998 * Zero on success, otherwise the parameters can not be adjusted. 999 */ 1000 static int 1001 txq_adjust_params(struct mlx5_txq_ctrl *txq_ctrl) 1002 { 1003 struct mlx5_priv *priv = txq_ctrl->priv; 1004 struct mlx5_dev_config *config = &priv->config; 1005 unsigned int max_inline; 1006 1007 max_inline = txq_calc_inline_max(txq_ctrl); 1008 if (!txq_ctrl->txq.inlen_send) { 1009 /* 1010 * Inline data feature is not engaged at all. 1011 * There is nothing to adjust. 1012 */ 1013 return 0; 1014 } 1015 if (txq_ctrl->max_inline_data <= max_inline) { 1016 /* 1017 * The requested inline data length does not 1018 * exceed queue capabilities. 1019 */ 1020 return 0; 1021 } 1022 if (txq_ctrl->txq.inlen_mode > max_inline) { 1023 DRV_LOG(ERR, 1024 "minimal data inline requirements (%u) are not" 1025 " satisfied (%u) on port %u, try the smaller" 1026 " Tx queue size (%d)", 1027 txq_ctrl->txq.inlen_mode, max_inline, 1028 priv->dev_data->port_id, 1029 priv->sh->device_attr.max_qp_wr); 1030 goto error; 1031 } 1032 if (txq_ctrl->txq.inlen_send > max_inline && 1033 config->txq_inline_max != MLX5_ARG_UNSET && 1034 config->txq_inline_max > (int)max_inline) { 1035 DRV_LOG(ERR, 1036 "txq_inline_max requirements (%u) are not" 1037 " satisfied (%u) on port %u, try the smaller" 1038 " Tx queue size (%d)", 1039 txq_ctrl->txq.inlen_send, max_inline, 1040 priv->dev_data->port_id, 1041 priv->sh->device_attr.max_qp_wr); 1042 goto error; 1043 } 1044 if (txq_ctrl->txq.inlen_empw > max_inline && 1045 config->txq_inline_mpw != MLX5_ARG_UNSET && 1046 config->txq_inline_mpw > (int)max_inline) { 1047 DRV_LOG(ERR, 1048 "txq_inline_mpw requirements (%u) are not" 1049 " satisfied (%u) on port %u, try the smaller" 1050 " Tx queue size (%d)", 1051 txq_ctrl->txq.inlen_empw, max_inline, 1052 priv->dev_data->port_id, 1053 priv->sh->device_attr.max_qp_wr); 1054 goto error; 1055 } 1056 if (txq_ctrl->txq.tso_en && max_inline < MLX5_MAX_TSO_HEADER) { 1057 DRV_LOG(ERR, 1058 "tso header inline requirements (%u) are not" 1059 " satisfied (%u) on port %u, try the smaller" 1060 " Tx queue size (%d)", 1061 MLX5_MAX_TSO_HEADER, max_inline, 1062 priv->dev_data->port_id, 1063 priv->sh->device_attr.max_qp_wr); 1064 goto error; 1065 } 1066 if (txq_ctrl->txq.inlen_send > max_inline) { 1067 DRV_LOG(WARNING, 1068 "adjust txq_inline_max (%u->%u)" 1069 " due to large Tx queue on port %u", 1070 txq_ctrl->txq.inlen_send, max_inline, 1071 priv->dev_data->port_id); 1072 txq_ctrl->txq.inlen_send = max_inline; 1073 } 1074 if (txq_ctrl->txq.inlen_empw > max_inline) { 1075 DRV_LOG(WARNING, 1076 "adjust txq_inline_mpw (%u->%u)" 1077 "due to large Tx queue on port %u", 1078 txq_ctrl->txq.inlen_empw, max_inline, 1079 priv->dev_data->port_id); 1080 txq_ctrl->txq.inlen_empw = max_inline; 1081 } 1082 txq_ctrl->max_inline_data = RTE_MAX(txq_ctrl->txq.inlen_send, 1083 txq_ctrl->txq.inlen_empw); 1084 MLX5_ASSERT(txq_ctrl->max_inline_data <= max_inline); 1085 MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= max_inline); 1086 MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= txq_ctrl->txq.inlen_send); 1087 MLX5_ASSERT(txq_ctrl->txq.inlen_mode <= txq_ctrl->txq.inlen_empw || 1088 !txq_ctrl->txq.inlen_empw); 1089 return 0; 1090 error: 1091 rte_errno = ENOMEM; 1092 return -ENOMEM; 1093 } 1094 1095 /** 1096 * Create a DPDK Tx queue. 1097 * 1098 * @param dev 1099 * Pointer to Ethernet device. 1100 * @param idx 1101 * TX queue index. 1102 * @param desc 1103 * Number of descriptors to configure in queue. 1104 * @param socket 1105 * NUMA socket on which memory must be allocated. 1106 * @param[in] conf 1107 * Thresholds parameters. 1108 * 1109 * @return 1110 * A DPDK queue object on success, NULL otherwise and rte_errno is set. 1111 */ 1112 struct mlx5_txq_ctrl * 1113 mlx5_txq_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, 1114 unsigned int socket, const struct rte_eth_txconf *conf) 1115 { 1116 struct mlx5_priv *priv = dev->data->dev_private; 1117 struct mlx5_txq_ctrl *tmpl; 1118 1119 tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl) + 1120 desc * sizeof(struct rte_mbuf *), 0, socket); 1121 if (!tmpl) { 1122 rte_errno = ENOMEM; 1123 return NULL; 1124 } 1125 if (mlx5_mr_btree_init(&tmpl->txq.mr_ctrl.cache_bh, 1126 MLX5_MR_BTREE_CACHE_N, socket)) { 1127 /* rte_errno is already set. */ 1128 goto error; 1129 } 1130 /* Save pointer of global generation number to check memory event. */ 1131 tmpl->txq.mr_ctrl.dev_gen_ptr = &priv->sh->share_cache.dev_gen; 1132 MLX5_ASSERT(desc > MLX5_TX_COMP_THRESH); 1133 tmpl->txq.offloads = conf->offloads | 1134 dev->data->dev_conf.txmode.offloads; 1135 tmpl->priv = priv; 1136 tmpl->socket = socket; 1137 tmpl->txq.elts_n = log2above(desc); 1138 tmpl->txq.elts_s = desc; 1139 tmpl->txq.elts_m = desc - 1; 1140 tmpl->txq.port_id = dev->data->port_id; 1141 tmpl->txq.idx = idx; 1142 txq_set_params(tmpl); 1143 if (txq_adjust_params(tmpl)) 1144 goto error; 1145 if (txq_calc_wqebb_cnt(tmpl) > 1146 priv->sh->device_attr.max_qp_wr) { 1147 DRV_LOG(ERR, 1148 "port %u Tx WQEBB count (%d) exceeds the limit (%d)," 1149 " try smaller queue size", 1150 dev->data->port_id, txq_calc_wqebb_cnt(tmpl), 1151 priv->sh->device_attr.max_qp_wr); 1152 rte_errno = ENOMEM; 1153 goto error; 1154 } 1155 __atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED); 1156 tmpl->type = MLX5_TXQ_TYPE_STANDARD; 1157 LIST_INSERT_HEAD(&priv->txqsctrl, tmpl, next); 1158 return tmpl; 1159 error: 1160 mlx5_mr_btree_free(&tmpl->txq.mr_ctrl.cache_bh); 1161 mlx5_free(tmpl); 1162 return NULL; 1163 } 1164 1165 /** 1166 * Create a DPDK Tx hairpin queue. 1167 * 1168 * @param dev 1169 * Pointer to Ethernet device. 1170 * @param idx 1171 * TX queue index. 1172 * @param desc 1173 * Number of descriptors to configure in queue. 1174 * @param hairpin_conf 1175 * The hairpin configuration. 1176 * 1177 * @return 1178 * A DPDK queue object on success, NULL otherwise and rte_errno is set. 1179 */ 1180 struct mlx5_txq_ctrl * 1181 mlx5_txq_hairpin_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, 1182 const struct rte_eth_hairpin_conf *hairpin_conf) 1183 { 1184 struct mlx5_priv *priv = dev->data->dev_private; 1185 struct mlx5_txq_ctrl *tmpl; 1186 1187 tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl), 0, 1188 SOCKET_ID_ANY); 1189 if (!tmpl) { 1190 rte_errno = ENOMEM; 1191 return NULL; 1192 } 1193 tmpl->priv = priv; 1194 tmpl->socket = SOCKET_ID_ANY; 1195 tmpl->txq.elts_n = log2above(desc); 1196 tmpl->txq.port_id = dev->data->port_id; 1197 tmpl->txq.idx = idx; 1198 tmpl->hairpin_conf = *hairpin_conf; 1199 tmpl->type = MLX5_TXQ_TYPE_HAIRPIN; 1200 __atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED); 1201 LIST_INSERT_HEAD(&priv->txqsctrl, tmpl, next); 1202 return tmpl; 1203 } 1204 1205 /** 1206 * Get a Tx queue. 1207 * 1208 * @param dev 1209 * Pointer to Ethernet device. 1210 * @param idx 1211 * TX queue index. 1212 * 1213 * @return 1214 * A pointer to the queue if it exists. 1215 */ 1216 struct mlx5_txq_ctrl * 1217 mlx5_txq_get(struct rte_eth_dev *dev, uint16_t idx) 1218 { 1219 struct mlx5_priv *priv = dev->data->dev_private; 1220 struct mlx5_txq_data *txq_data = (*priv->txqs)[idx]; 1221 struct mlx5_txq_ctrl *ctrl = NULL; 1222 1223 if (txq_data) { 1224 ctrl = container_of(txq_data, struct mlx5_txq_ctrl, txq); 1225 __atomic_fetch_add(&ctrl->refcnt, 1, __ATOMIC_RELAXED); 1226 } 1227 return ctrl; 1228 } 1229 1230 /** 1231 * Release a Tx queue. 1232 * 1233 * @param dev 1234 * Pointer to Ethernet device. 1235 * @param idx 1236 * TX queue index. 1237 * 1238 * @return 1239 * 1 while a reference on it exists, 0 when freed. 1240 */ 1241 int 1242 mlx5_txq_release(struct rte_eth_dev *dev, uint16_t idx) 1243 { 1244 struct mlx5_priv *priv = dev->data->dev_private; 1245 struct mlx5_txq_ctrl *txq_ctrl; 1246 1247 if (!(*priv->txqs)[idx]) 1248 return 0; 1249 txq_ctrl = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq); 1250 if (__atomic_sub_fetch(&txq_ctrl->refcnt, 1, __ATOMIC_RELAXED) > 1) 1251 return 1; 1252 if (txq_ctrl->obj) { 1253 priv->obj_ops.txq_obj_release(txq_ctrl->obj); 1254 LIST_REMOVE(txq_ctrl->obj, next); 1255 mlx5_free(txq_ctrl->obj); 1256 txq_ctrl->obj = NULL; 1257 } 1258 if (txq_ctrl->type == MLX5_TXQ_TYPE_STANDARD) { 1259 if (txq_ctrl->txq.fcqs) { 1260 mlx5_free(txq_ctrl->txq.fcqs); 1261 txq_ctrl->txq.fcqs = NULL; 1262 } 1263 txq_free_elts(txq_ctrl); 1264 dev->data->tx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED; 1265 } 1266 if (!__atomic_load_n(&txq_ctrl->refcnt, __ATOMIC_RELAXED)) { 1267 if (txq_ctrl->type == MLX5_TXQ_TYPE_STANDARD) 1268 mlx5_mr_btree_free(&txq_ctrl->txq.mr_ctrl.cache_bh); 1269 LIST_REMOVE(txq_ctrl, next); 1270 mlx5_free(txq_ctrl); 1271 (*priv->txqs)[idx] = NULL; 1272 } 1273 return 0; 1274 } 1275 1276 /** 1277 * Verify if the queue can be released. 1278 * 1279 * @param dev 1280 * Pointer to Ethernet device. 1281 * @param idx 1282 * TX queue index. 1283 * 1284 * @return 1285 * 1 if the queue can be released. 1286 */ 1287 int 1288 mlx5_txq_releasable(struct rte_eth_dev *dev, uint16_t idx) 1289 { 1290 struct mlx5_priv *priv = dev->data->dev_private; 1291 struct mlx5_txq_ctrl *txq; 1292 1293 if (!(*priv->txqs)[idx]) 1294 return -1; 1295 txq = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq); 1296 return (__atomic_load_n(&txq->refcnt, __ATOMIC_RELAXED) == 1); 1297 } 1298 1299 /** 1300 * Verify the Tx Queue list is empty 1301 * 1302 * @param dev 1303 * Pointer to Ethernet device. 1304 * 1305 * @return 1306 * The number of object not released. 1307 */ 1308 int 1309 mlx5_txq_verify(struct rte_eth_dev *dev) 1310 { 1311 struct mlx5_priv *priv = dev->data->dev_private; 1312 struct mlx5_txq_ctrl *txq_ctrl; 1313 int ret = 0; 1314 1315 LIST_FOREACH(txq_ctrl, &priv->txqsctrl, next) { 1316 DRV_LOG(DEBUG, "port %u Tx queue %u still referenced", 1317 dev->data->port_id, txq_ctrl->txq.idx); 1318 ++ret; 1319 } 1320 return ret; 1321 } 1322 1323 /** 1324 * Set the Tx queue dynamic timestamp (mask and offset) 1325 * 1326 * @param[in] dev 1327 * Pointer to the Ethernet device structure. 1328 */ 1329 void 1330 mlx5_txq_dynf_timestamp_set(struct rte_eth_dev *dev) 1331 { 1332 struct mlx5_priv *priv = dev->data->dev_private; 1333 struct mlx5_dev_ctx_shared *sh = priv->sh; 1334 struct mlx5_txq_data *data; 1335 int off, nbit; 1336 unsigned int i; 1337 uint64_t mask = 0; 1338 1339 nbit = rte_mbuf_dynflag_lookup 1340 (RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL); 1341 off = rte_mbuf_dynfield_lookup 1342 (RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL); 1343 if (nbit >= 0 && off >= 0 && sh->txpp.refcnt) 1344 mask = 1ULL << nbit; 1345 for (i = 0; i != priv->txqs_n; ++i) { 1346 data = (*priv->txqs)[i]; 1347 if (!data) 1348 continue; 1349 data->sh = sh; 1350 data->ts_mask = mask; 1351 data->ts_offset = off; 1352 } 1353 } 1354