xref: /dpdk/drivers/net/mlx5/mlx5_rxtx_vec_sse.h (revision f8dbaebbf1c9efcbb2e2354b341ed62175466a57)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8 
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <smmintrin.h>
13 
14 #include <rte_mbuf.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
17 
18 #include <mlx5_prm.h>
19 
20 #include "mlx5_defs.h"
21 #include "mlx5.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
26 
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
29 #endif
30 
31 /**
32  * Store free buffers to RX SW ring.
33  *
34  * @param elts
35  *   Pointer to SW ring to be filled.
36  * @param pkts
37  *   Pointer to array of packets to be stored.
38  * @param pkts_n
39  *   Number of packets to be stored.
40  */
41 static inline void
42 rxq_copy_mbuf_v(struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t n)
43 {
44 	unsigned int pos;
45 	uint16_t p = n & -2;
46 
47 	for (pos = 0; pos < p; pos += 2) {
48 		__m128i mbp;
49 
50 		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
51 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
52 	}
53 	if (n & 1)
54 		pkts[pos] = elts[pos];
55 }
56 
57 /**
58  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
59  * extracted from the title completion descriptor.
60  *
61  * @param rxq
62  *   Pointer to RX queue structure.
63  * @param cq
64  *   Pointer to completion array having a compressed completion at first.
65  * @param elts
66  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
67  *   the title completion descriptor to be copied to the rest of mbufs.
68  *
69  * @return
70  *   Number of mini-CQEs successfully decompressed.
71  */
72 static inline uint16_t
73 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
74 		    struct rte_mbuf **elts)
75 {
76 	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
77 	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
78 	unsigned int pos;
79 	unsigned int i;
80 	unsigned int inv = 0;
81 	/* Mask to shuffle from extracted mini CQE to mbuf. */
82 	const __m128i shuf_mask1 =
83 		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
84 			    -1, -1,         /* skip vlan_tci */
85 			     6,  7,         /* data_len, bswap16 */
86 			    -1, -1,  6,  7, /* pkt_len, bswap16 */
87 			    -1, -1, -1, -1  /* skip packet_type */);
88 	const __m128i shuf_mask2 =
89 		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
90 			    -1, -1,         /* skip vlan_tci */
91 			    14, 15,         /* data_len, bswap16 */
92 			    -1, -1, 14, 15, /* pkt_len, bswap16 */
93 			    -1, -1, -1, -1  /* skip packet_type */);
94 	/* Restore the compressed count. Must be 16 bits. */
95 	const uint16_t mcqe_n = t_pkt->data_len +
96 				(rxq->crc_present * RTE_ETHER_CRC_LEN);
97 	const __m128i rearm =
98 		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
99 	const __m128i rxdf =
100 		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
101 	const __m128i crc_adj =
102 		_mm_set_epi16(0, 0, 0,
103 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
104 			      0,
105 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
106 			      0, 0);
107 	__m128i ol_flags = _mm_setzero_si128();
108 	__m128i ol_flags_mask = _mm_setzero_si128();
109 #ifdef MLX5_PMD_SOFT_COUNTERS
110 	const __m128i zero = _mm_setzero_si128();
111 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
112 	uint32_t rcvd_byte = 0;
113 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
114 	const __m128i len_shuf_mask =
115 		_mm_set_epi8(-1, -1, -1, -1,
116 			     -1, -1, -1, -1,
117 			     14, 15,  6,  7,
118 			     10, 11,  2,  3);
119 #endif
120 	/*
121 	 * A. load mCQEs into a 128bit register.
122 	 * B. store rearm data to mbuf.
123 	 * C. combine data from mCQEs with rx_descriptor_fields1.
124 	 * D. store rx_descriptor_fields1.
125 	 * E. store flow tag (rte_flow mark).
126 	 */
127 	for (pos = 0; pos < mcqe_n; ) {
128 		__m128i mcqe1, mcqe2;
129 		__m128i rxdf1, rxdf2;
130 #ifdef MLX5_PMD_SOFT_COUNTERS
131 		__m128i byte_cnt, invalid_mask;
132 #endif
133 
134 		for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
135 			if (likely(pos + i < mcqe_n))
136 				rte_prefetch0((void *)(cq + pos + i));
137 		/* A.1 load mCQEs into a 128bit register. */
138 		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
139 		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
140 		/* B.1 store rearm data to mbuf. */
141 		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
142 		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
143 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
144 		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
145 		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
146 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
147 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
148 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
149 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
150 		/* D.1 store rx_descriptor_fields1. */
151 		_mm_storeu_si128((__m128i *)
152 				  &elts[pos]->rx_descriptor_fields1,
153 				 rxdf1);
154 		_mm_storeu_si128((__m128i *)
155 				  &elts[pos + 1]->rx_descriptor_fields1,
156 				 rxdf2);
157 		/* B.1 store rearm data to mbuf. */
158 		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
159 		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
160 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
161 		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
162 		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
163 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
164 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
165 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
166 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
167 		/* D.1 store rx_descriptor_fields1. */
168 		_mm_storeu_si128((__m128i *)
169 				  &elts[pos + 2]->rx_descriptor_fields1,
170 				 rxdf1);
171 		_mm_storeu_si128((__m128i *)
172 				  &elts[pos + 3]->rx_descriptor_fields1,
173 				 rxdf2);
174 #ifdef MLX5_PMD_SOFT_COUNTERS
175 		invalid_mask = _mm_set_epi64x(0,
176 					      (mcqe_n - pos) *
177 					      sizeof(uint16_t) * 8);
178 		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
179 		byte_cnt = _mm_blend_epi16(_mm_srli_si128(mcqe1, 4),
180 					   mcqe2, 0xcc);
181 		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
182 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
183 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
184 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
185 #endif
186 		if (rxq->mark) {
187 			if (rxq->mcqe_format !=
188 				MLX5_CQE_RESP_FORMAT_FTAG_STRIDX) {
189 				const uint32_t flow_tag = t_pkt->hash.fdir.hi;
190 
191 				/* E.1 store flow tag (rte_flow mark). */
192 				elts[pos]->hash.fdir.hi = flow_tag;
193 				elts[pos + 1]->hash.fdir.hi = flow_tag;
194 				elts[pos + 2]->hash.fdir.hi = flow_tag;
195 				elts[pos + 3]->hash.fdir.hi = flow_tag;
196 			} else {
197 				const __m128i flow_mark_adj =
198 					_mm_set_epi32(-1, -1, -1, -1);
199 				const __m128i flow_mark_shuf =
200 					_mm_set_epi8(-1,  9,  8, 12,
201 						     -1,  1,  0,  4,
202 						     -1, -1, -1, -1,
203 						     -1, -1, -1, -1);
204 				const __m128i ft_mask =
205 					_mm_set1_epi32(0xffffff00);
206 				const __m128i fdir_flags =
207 					_mm_set1_epi32(RTE_MBUF_F_RX_FDIR);
208 				const __m128i fdir_all_flags =
209 					_mm_set1_epi32(RTE_MBUF_F_RX_FDIR |
210 						       RTE_MBUF_F_RX_FDIR_ID);
211 				__m128i fdir_id_flags =
212 					_mm_set1_epi32(RTE_MBUF_F_RX_FDIR_ID);
213 
214 				/* Extract flow_tag field. */
215 				__m128i ftag0 =
216 					_mm_shuffle_epi8(mcqe1, flow_mark_shuf);
217 				__m128i ftag1 =
218 					_mm_shuffle_epi8(mcqe2, flow_mark_shuf);
219 				__m128i ftag =
220 					_mm_unpackhi_epi64(ftag0, ftag1);
221 				__m128i invalid_mask =
222 					_mm_cmpeq_epi32(ftag, zero);
223 
224 				ol_flags_mask = _mm_or_si128(ol_flags_mask,
225 							     fdir_all_flags);
226 				/* Set RTE_MBUF_F_RX_FDIR if flow tag is non-zero. */
227 				ol_flags = _mm_or_si128(ol_flags,
228 					_mm_andnot_si128(invalid_mask,
229 							 fdir_flags));
230 				/* Mask out invalid entries. */
231 				fdir_id_flags = _mm_andnot_si128(invalid_mask,
232 								 fdir_id_flags);
233 				/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
234 				ol_flags = _mm_or_si128(ol_flags,
235 					_mm_andnot_si128(_mm_cmpeq_epi32(ftag,
236 							 ft_mask),
237 					fdir_id_flags));
238 				ftag = _mm_add_epi32(ftag, flow_mark_adj);
239 				elts[pos]->hash.fdir.hi =
240 						_mm_extract_epi32(ftag, 0);
241 				elts[pos + 1]->hash.fdir.hi =
242 						_mm_extract_epi32(ftag, 1);
243 				elts[pos + 2]->hash.fdir.hi =
244 						_mm_extract_epi32(ftag, 2);
245 				elts[pos + 3]->hash.fdir.hi =
246 						_mm_extract_epi32(ftag, 3);
247 			}
248 		}
249 		if (unlikely(rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_HASH)) {
250 			if (rxq->mcqe_format ==
251 			    MLX5_CQE_RESP_FORMAT_L34H_STRIDX) {
252 				const uint8_t pkt_info =
253 					(cq->pkt_info & 0x3) << 6;
254 				const uint8_t pkt_hdr0 =
255 					_mm_extract_epi8(mcqe1, 0);
256 				const uint8_t pkt_hdr1 =
257 					_mm_extract_epi8(mcqe1, 8);
258 				const uint8_t pkt_hdr2 =
259 					_mm_extract_epi8(mcqe2, 0);
260 				const uint8_t pkt_hdr3 =
261 					_mm_extract_epi8(mcqe2, 8);
262 				const __m128i vlan_mask =
263 					_mm_set1_epi32(RTE_MBUF_F_RX_VLAN |
264 						       RTE_MBUF_F_RX_VLAN_STRIPPED);
265 				const __m128i cv_mask =
266 					_mm_set1_epi32(MLX5_CQE_VLAN_STRIPPED);
267 				const __m128i pkt_cv =
268 					_mm_set_epi32(pkt_hdr0 & 0x1,
269 						      pkt_hdr1 & 0x1,
270 						      pkt_hdr2 & 0x1,
271 						      pkt_hdr3 & 0x1);
272 
273 				ol_flags_mask = _mm_or_si128(ol_flags_mask,
274 							     vlan_mask);
275 				ol_flags = _mm_or_si128(ol_flags,
276 					_mm_and_si128(_mm_cmpeq_epi32(pkt_cv,
277 					cv_mask), vlan_mask));
278 				elts[pos]->packet_type =
279 					mlx5_ptype_table[(pkt_hdr0 >> 2) |
280 							 pkt_info];
281 				elts[pos + 1]->packet_type =
282 					mlx5_ptype_table[(pkt_hdr1 >> 2) |
283 							 pkt_info];
284 				elts[pos + 2]->packet_type =
285 					mlx5_ptype_table[(pkt_hdr2 >> 2) |
286 							 pkt_info];
287 				elts[pos + 3]->packet_type =
288 					mlx5_ptype_table[(pkt_hdr3 >> 2) |
289 							 pkt_info];
290 				if (rxq->tunnel) {
291 					elts[pos]->packet_type |=
292 						!!(((pkt_hdr0 >> 2) |
293 						pkt_info) & (1 << 6));
294 					elts[pos + 1]->packet_type |=
295 						!!(((pkt_hdr1 >> 2) |
296 						pkt_info) & (1 << 6));
297 					elts[pos + 2]->packet_type |=
298 						!!(((pkt_hdr2 >> 2) |
299 						pkt_info) & (1 << 6));
300 					elts[pos + 3]->packet_type |=
301 						!!(((pkt_hdr3 >> 2) |
302 						pkt_info) & (1 << 6));
303 				}
304 			}
305 			const __m128i hash_flags =
306 				_mm_set1_epi32(RTE_MBUF_F_RX_RSS_HASH);
307 			const __m128i rearm_flags =
308 				_mm_set1_epi32((uint32_t)t_pkt->ol_flags);
309 
310 			ol_flags_mask = _mm_or_si128(ol_flags_mask, hash_flags);
311 			ol_flags = _mm_or_si128(ol_flags,
312 				_mm_andnot_si128(ol_flags_mask, rearm_flags));
313 			elts[pos]->ol_flags =
314 				_mm_extract_epi32(ol_flags, 0);
315 			elts[pos + 1]->ol_flags =
316 				_mm_extract_epi32(ol_flags, 1);
317 			elts[pos + 2]->ol_flags =
318 				_mm_extract_epi32(ol_flags, 2);
319 			elts[pos + 3]->ol_flags =
320 				_mm_extract_epi32(ol_flags, 3);
321 			elts[pos]->hash.rss = 0;
322 			elts[pos + 1]->hash.rss = 0;
323 			elts[pos + 2]->hash.rss = 0;
324 			elts[pos + 3]->hash.rss = 0;
325 		}
326 		if (rxq->dynf_meta) {
327 			int32_t offs = rxq->flow_meta_offset;
328 			const uint32_t meta =
329 				*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
330 
331 			/* Check if title packet has valid metadata. */
332 			if (meta) {
333 				MLX5_ASSERT(t_pkt->ol_flags &
334 					    rxq->flow_meta_mask);
335 				*RTE_MBUF_DYNFIELD(elts[pos], offs,
336 							uint32_t *) = meta;
337 				*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
338 							uint32_t *) = meta;
339 				*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
340 							uint32_t *) = meta;
341 				*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
342 							uint32_t *) = meta;
343 			}
344 		}
345 		pos += MLX5_VPMD_DESCS_PER_LOOP;
346 		/* Move to next CQE and invalidate consumed CQEs. */
347 		if (!(pos & 0x7) && pos < mcqe_n) {
348 			if (pos + 8 < mcqe_n)
349 				rte_prefetch0((void *)(cq + pos + 8));
350 			mcq = (void *)(cq + pos);
351 			for (i = 0; i < 8; ++i)
352 				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
353 		}
354 	}
355 	/* Invalidate the rest of CQEs. */
356 	for (; inv < mcqe_n; ++inv)
357 		cq[inv].op_own = MLX5_CQE_INVALIDATE;
358 #ifdef MLX5_PMD_SOFT_COUNTERS
359 	rxq->stats.ipackets += mcqe_n;
360 	rxq->stats.ibytes += rcvd_byte;
361 #endif
362 	return mcqe_n;
363 }
364 
365 /**
366  * Calculate packet type and offload flag for mbuf and store it.
367  *
368  * @param rxq
369  *   Pointer to RX queue structure.
370  * @param cqes[4]
371  *   Array of four 16bytes completions extracted from the original completion
372  *   descriptor.
373  * @param op_err
374  *   Opcode vector having responder error status. Each field is 4B.
375  * @param pkts
376  *   Pointer to array of packets to be filled.
377  */
378 static inline void
379 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
380 			 __m128i op_err, struct rte_mbuf **pkts)
381 {
382 	__m128i pinfo0, pinfo1;
383 	__m128i pinfo, ptype;
384 	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * RTE_MBUF_F_RX_RSS_HASH |
385 					  rxq->hw_timestamp * rxq->timestamp_rx_flag);
386 	__m128i cv_flags;
387 	const __m128i zero = _mm_setzero_si128();
388 	const __m128i ptype_mask = _mm_set1_epi32(0xfd06);
389 	const __m128i ptype_ol_mask = _mm_set1_epi32(0x106);
390 	const __m128i pinfo_mask = _mm_set1_epi32(0x3);
391 	const __m128i cv_flag_sel =
392 		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
393 			     (uint8_t)((RTE_MBUF_F_RX_IP_CKSUM_GOOD |
394 					RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
395 			     0,
396 			     (uint8_t)(RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1),
397 			     0,
398 			     (uint8_t)(RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1),
399 			     (uint8_t)(RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED),
400 			     0);
401 	const __m128i cv_mask =
402 		_mm_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
403 			       RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED);
404 	const __m128i mbuf_init =
405 		_mm_load_si128((__m128i *)&rxq->mbuf_initializer);
406 	__m128i rearm0, rearm1, rearm2, rearm3;
407 	uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
408 
409 	/* Extract pkt_info field. */
410 	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
411 	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
412 	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
413 	/* Extract hdr_type_etc field. */
414 	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
415 	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
416 	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
417 	if (rxq->mark) {
418 		const __m128i pinfo_ft_mask = _mm_set1_epi32(0xffffff00);
419 		const __m128i fdir_flags = _mm_set1_epi32(RTE_MBUF_F_RX_FDIR);
420 		__m128i fdir_id_flags = _mm_set1_epi32(RTE_MBUF_F_RX_FDIR_ID);
421 		__m128i flow_tag, invalid_mask;
422 
423 		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
424 		/* Check if flow tag is non-zero then set RTE_MBUF_F_RX_FDIR. */
425 		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
426 		ol_flags = _mm_or_si128(ol_flags,
427 					_mm_andnot_si128(invalid_mask,
428 							 fdir_flags));
429 		/* Mask out invalid entries. */
430 		fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
431 		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
432 		ol_flags = _mm_or_si128(ol_flags,
433 					_mm_andnot_si128(
434 						_mm_cmpeq_epi32(flow_tag,
435 								pinfo_ft_mask),
436 						fdir_id_flags));
437 	}
438 	/*
439 	 * Merge the two fields to generate the following:
440 	 * bit[1]     = l3_ok
441 	 * bit[2]     = l4_ok
442 	 * bit[8]     = cv
443 	 * bit[11:10] = l3_hdr_type
444 	 * bit[14:12] = l4_hdr_type
445 	 * bit[15]    = ip_frag
446 	 * bit[16]    = tunneled
447 	 * bit[17]    = outer_l3_type
448 	 */
449 	ptype = _mm_and_si128(ptype, ptype_mask);
450 	pinfo = _mm_and_si128(pinfo, pinfo_mask);
451 	pinfo = _mm_slli_epi32(pinfo, 16);
452 	/* Make pinfo has merged fields for ol_flags calculation. */
453 	pinfo = _mm_or_si128(ptype, pinfo);
454 	ptype = _mm_srli_epi32(pinfo, 10);
455 	ptype = _mm_packs_epi32(ptype, zero);
456 	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
457 	op_err = _mm_srli_epi16(op_err, 8);
458 	ptype = _mm_or_si128(ptype, op_err);
459 	pt_idx0 = _mm_extract_epi8(ptype, 0);
460 	pt_idx1 = _mm_extract_epi8(ptype, 2);
461 	pt_idx2 = _mm_extract_epi8(ptype, 4);
462 	pt_idx3 = _mm_extract_epi8(ptype, 6);
463 	pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
464 			       !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
465 	pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
466 			       !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
467 	pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
468 			       !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
469 	pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
470 			       !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
471 	/* Fill flags for checksum and VLAN. */
472 	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
473 	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
474 	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
475 	cv_flags = _mm_slli_epi32(pinfo, 9);
476 	cv_flags = _mm_or_si128(pinfo, cv_flags);
477 	/* Move back flags to start from byte[0]. */
478 	cv_flags = _mm_srli_epi32(cv_flags, 8);
479 	/* Mask out garbage bits. */
480 	cv_flags = _mm_and_si128(cv_flags, cv_mask);
481 	/* Merge to ol_flags. */
482 	ol_flags = _mm_or_si128(ol_flags, cv_flags);
483 	/* Merge mbuf_init and ol_flags. */
484 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
485 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
486 	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
487 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
488 	/* Write 8B rearm_data and 8B ol_flags. */
489 	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
490 	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
491 	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
492 	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
493 }
494 
495 /**
496  * Process a non-compressed completion and fill in mbufs in RX SW ring
497  * with data extracted from the title completion descriptor.
498  *
499  * @param rxq
500  *   Pointer to RX queue structure.
501  * @param cq
502  *   Pointer to completion array having a non-compressed completion at first.
503  * @param elts
504  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
505  *   the title completion descriptor to be copied to the rest of mbufs.
506  * @param[out] pkts
507  *   Array to store received packets.
508  * @param pkts_n
509  *   Maximum number of packets in array.
510  * @param[out] err
511  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
512  *   packet to handle.
513  * @param[out] comp
514  *   Pointer to a index. Set it to the first compressed completion if any.
515  *
516  * @return
517  *   Number of CQEs successfully processed.
518  */
519 static inline uint16_t
520 rxq_cq_process_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
521 		 struct rte_mbuf **elts, struct rte_mbuf **pkts,
522 		 uint16_t pkts_n, uint64_t *err, uint64_t *comp)
523 {
524 	const uint16_t q_n = 1 << rxq->cqe_n;
525 	const uint16_t q_mask = q_n - 1;
526 	unsigned int pos;
527 	uint64_t n = 0;
528 	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
529 	uint16_t nocmp_n = 0;
530 	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
531 	const __m128i owner_check =	_mm_set1_epi64x(0x0100000001000000LL);
532 	const __m128i opcode_check = _mm_set1_epi64x(0xf0000000f0000000LL);
533 	const __m128i format_check = _mm_set1_epi64x(0x0c0000000c000000LL);
534 	const __m128i resp_err_check = _mm_set1_epi64x(0xe0000000e0000000LL);
535 #ifdef MLX5_PMD_SOFT_COUNTERS
536 	uint32_t rcvd_byte = 0;
537 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
538 	const __m128i len_shuf_mask =
539 		_mm_set_epi8(-1, -1, -1, -1,
540 			     -1, -1, -1, -1,
541 			     12, 13,  8,  9,
542 			      4,  5,  0,  1);
543 #endif
544 	/* Mask to shuffle from extracted CQE to mbuf. */
545 	const __m128i shuf_mask =
546 		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
547 			     12, 13, 14, 15, /* rss, bswap32 */
548 			     10, 11,         /* vlan_tci, bswap16 */
549 			      4,  5,         /* data_len, bswap16 */
550 			     -1, -1,         /* zero out 2nd half of pkt_len */
551 			      4,  5          /* pkt_len, bswap16 */);
552 	/* Mask to blend from the last Qword to the first DQword. */
553 	const __m128i blend_mask =
554 		_mm_set_epi8(-1, -1, -1, -1,
555 			     -1, -1, -1, -1,
556 			      0,  0,  0,  0,
557 			      0,  0,  0, -1);
558 	const __m128i zero = _mm_setzero_si128();
559 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
560 	const __m128i crc_adj =
561 		_mm_set_epi16(0, 0, 0, 0, 0,
562 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
563 			      0,
564 			      rxq->crc_present * RTE_ETHER_CRC_LEN);
565 	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
566 	/*
567 	 * A. load first Qword (8bytes) in one loop.
568 	 * B. copy 4 mbuf pointers from elts ring to returning pkts.
569 	 * C. load remained CQE data and extract necessary fields.
570 	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
571 	 *    following structure:
572 	 *        struct {
573 	 *          uint8_t  pkt_info;
574 	 *          uint8_t  flow_tag[3];
575 	 *          uint16_t byte_cnt;
576 	 *          uint8_t  rsvd4;
577 	 *          uint8_t  op_own;
578 	 *          uint16_t hdr_type_etc;
579 	 *          uint16_t vlan_info;
580 	 *          uint32_t rx_has_res;
581 	 *        } c;
582 	 * D. fill in mbuf.
583 	 * E. get valid CQEs.
584 	 * F. find compressed CQE.
585 	 */
586 	for (pos = 0;
587 	     pos < pkts_n;
588 	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
589 		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
590 		__m128i cqe_tmp1, cqe_tmp2;
591 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
592 		__m128i op_own, op_own_tmp1, op_own_tmp2;
593 		__m128i opcode, owner_mask, invalid_mask;
594 		__m128i comp_mask;
595 		__m128i mask;
596 #ifdef MLX5_PMD_SOFT_COUNTERS
597 		__m128i byte_cnt;
598 #endif
599 		__m128i mbp1, mbp2;
600 		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
601 		unsigned int p1, p2, p3;
602 
603 		/* Prefetch next 4 CQEs. */
604 		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
605 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
606 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
607 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
608 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
609 		}
610 		/* A.0 do not cross the end of CQ. */
611 		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
612 		mask = _mm_sll_epi64(ones, mask);
613 		p = _mm_andnot_si128(mask, p);
614 		/* A.1 load cqes. */
615 		p3 = _mm_extract_epi16(p, 3);
616 		cqes[3] = _mm_loadl_epi64((__m128i *)
617 					   &cq[pos + p3].sop_drop_qpn);
618 		rte_compiler_barrier();
619 		p2 = _mm_extract_epi16(p, 2);
620 		cqes[2] = _mm_loadl_epi64((__m128i *)
621 					   &cq[pos + p2].sop_drop_qpn);
622 		rte_compiler_barrier();
623 		/* B.1 load mbuf pointers. */
624 		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
625 		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
626 		/* A.1 load a block having op_own. */
627 		p1 = _mm_extract_epi16(p, 1);
628 		cqes[1] = _mm_loadl_epi64((__m128i *)
629 					   &cq[pos + p1].sop_drop_qpn);
630 		rte_compiler_barrier();
631 		cqes[0] = _mm_loadl_epi64((__m128i *)
632 					   &cq[pos].sop_drop_qpn);
633 		/* B.2 copy mbuf pointers. */
634 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
635 		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
636 		rte_io_rmb();
637 		/* C.1 load remained CQE data and extract necessary fields. */
638 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
639 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
640 		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
641 		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
642 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
643 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
644 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
645 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
646 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
647 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
648 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
649 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
650 		/* C.2 generate final structure for mbuf with swapping bytes. */
651 		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
652 		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
653 		/* C.3 adjust CRC length. */
654 		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
655 		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
656 		/* C.4 adjust flow mark. */
657 		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
658 		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
659 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
660 		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
661 		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
662 		/* E.1 extract op_own field. */
663 		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
664 		/* C.1 load remained CQE data and extract necessary fields. */
665 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
666 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
667 		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
668 		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
669 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
670 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
671 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
672 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
673 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
674 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
675 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
676 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
677 		/* C.2 generate final structure for mbuf with swapping bytes. */
678 		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
679 		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
680 		/* C.3 adjust CRC length. */
681 		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
682 		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
683 		/* C.4 adjust flow mark. */
684 		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
685 		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
686 		/* E.1 extract op_own byte. */
687 		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
688 		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
689 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
690 		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
691 		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
692 		/* E.2 flip owner bit to mark CQEs from last round. */
693 		owner_mask = _mm_and_si128(op_own, owner_check);
694 		if (ownership)
695 			owner_mask = _mm_xor_si128(owner_mask, owner_check);
696 		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
697 		owner_mask = _mm_packs_epi32(owner_mask, zero);
698 		/* E.3 get mask for invalidated CQEs. */
699 		opcode = _mm_and_si128(op_own, opcode_check);
700 		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
701 		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
702 		/* E.4 mask out beyond boundary. */
703 		invalid_mask = _mm_or_si128(invalid_mask, mask);
704 		/* E.5 merge invalid_mask with invalid owner. */
705 		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
706 		/* F.1 find compressed CQE format. */
707 		comp_mask = _mm_and_si128(op_own, format_check);
708 		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
709 		comp_mask = _mm_packs_epi32(comp_mask, zero);
710 		/* F.2 mask out invalid entries. */
711 		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
712 		comp_idx = _mm_cvtsi128_si64(comp_mask);
713 		/* F.3 get the first compressed CQE. */
714 		comp_idx = comp_idx ?
715 				__builtin_ctzll(comp_idx) /
716 					(sizeof(uint16_t) * 8) :
717 				MLX5_VPMD_DESCS_PER_LOOP;
718 		/* E.6 mask out entries after the compressed CQE. */
719 		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
720 		mask = _mm_sll_epi64(ones, mask);
721 		invalid_mask = _mm_or_si128(invalid_mask, mask);
722 		/* E.7 count non-compressed valid CQEs. */
723 		n = _mm_cvtsi128_si64(invalid_mask);
724 		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
725 			MLX5_VPMD_DESCS_PER_LOOP;
726 		nocmp_n += n;
727 		/* D.2 get the final invalid mask. */
728 		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
729 		mask = _mm_sll_epi64(ones, mask);
730 		invalid_mask = _mm_or_si128(invalid_mask, mask);
731 		/* D.3 check error in opcode. */
732 		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
733 		opcode = _mm_packs_epi32(opcode, zero);
734 		opcode = _mm_andnot_si128(invalid_mask, opcode);
735 		/* D.4 mark if any error is set */
736 		*err |= _mm_cvtsi128_si64(opcode);
737 		/* D.5 fill in mbuf - rearm_data and packet_type. */
738 		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
739 		if (unlikely(rxq->shared)) {
740 			pkts[pos]->port = cq[pos].user_index_low;
741 			pkts[pos + p1]->port = cq[pos + p1].user_index_low;
742 			pkts[pos + p2]->port = cq[pos + p2].user_index_low;
743 			pkts[pos + p3]->port = cq[pos + p3].user_index_low;
744 		}
745 		if (unlikely(rxq->hw_timestamp)) {
746 			int offset = rxq->timestamp_offset;
747 			if (rxq->rt_timestamp) {
748 				struct mlx5_dev_ctx_shared *sh = rxq->sh;
749 				uint64_t ts;
750 
751 				ts = rte_be_to_cpu_64(cq[pos].timestamp);
752 				mlx5_timestamp_set(pkts[pos], offset,
753 					mlx5_txpp_convert_rx_ts(sh, ts));
754 				ts = rte_be_to_cpu_64(cq[pos + p1].timestamp);
755 				mlx5_timestamp_set(pkts[pos + 1], offset,
756 					mlx5_txpp_convert_rx_ts(sh, ts));
757 				ts = rte_be_to_cpu_64(cq[pos + p2].timestamp);
758 				mlx5_timestamp_set(pkts[pos + 2], offset,
759 					mlx5_txpp_convert_rx_ts(sh, ts));
760 				ts = rte_be_to_cpu_64(cq[pos + p3].timestamp);
761 				mlx5_timestamp_set(pkts[pos + 3], offset,
762 					mlx5_txpp_convert_rx_ts(sh, ts));
763 			} else {
764 				mlx5_timestamp_set(pkts[pos], offset,
765 					rte_be_to_cpu_64(cq[pos].timestamp));
766 				mlx5_timestamp_set(pkts[pos + 1], offset,
767 					rte_be_to_cpu_64(cq[pos + p1].timestamp));
768 				mlx5_timestamp_set(pkts[pos + 2], offset,
769 					rte_be_to_cpu_64(cq[pos + p2].timestamp));
770 				mlx5_timestamp_set(pkts[pos + 3], offset,
771 					rte_be_to_cpu_64(cq[pos + p3].timestamp));
772 			}
773 		}
774 		if (rxq->dynf_meta) {
775 			/* This code is subject for futher optimization. */
776 			int32_t offs = rxq->flow_meta_offset;
777 			uint32_t mask = rxq->flow_meta_port_mask;
778 
779 			*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
780 				rte_be_to_cpu_32
781 				(cq[pos].flow_table_metadata) &	mask;
782 			*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
783 				rte_be_to_cpu_32
784 				(cq[pos + p1].flow_table_metadata) & mask;
785 			*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
786 				rte_be_to_cpu_32
787 				(cq[pos + p2].flow_table_metadata) & mask;
788 			*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
789 				rte_be_to_cpu_32
790 				(cq[pos + p3].flow_table_metadata) & mask;
791 			if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
792 				pkts[pos]->ol_flags |= rxq->flow_meta_mask;
793 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
794 				pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
795 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
796 				pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
797 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
798 				pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
799 		}
800 #ifdef MLX5_PMD_SOFT_COUNTERS
801 		/* Add up received bytes count. */
802 		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
803 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
804 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
805 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
806 #endif
807 		/*
808 		 * Break the loop unless more valid CQE is expected, or if
809 		 * there's a compressed CQE.
810 		 */
811 		if (n != MLX5_VPMD_DESCS_PER_LOOP)
812 			break;
813 	}
814 #ifdef MLX5_PMD_SOFT_COUNTERS
815 	rxq->stats.ipackets += nocmp_n;
816 	rxq->stats.ibytes += rcvd_byte;
817 #endif
818 	if (comp_idx == n)
819 		*comp = comp_idx;
820 	return nocmp_n;
821 }
822 
823 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */
824