xref: /dpdk/drivers/net/mlx5/mlx5_rxtx_vec_sse.h (revision 9f3b3a96dec2f4c01cc92a132d763b8887d29e6a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8 
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <smmintrin.h>
13 
14 #include <rte_mbuf.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
17 
18 #include <mlx5_prm.h>
19 
20 #include "mlx5_defs.h"
21 #include "mlx5.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
26 
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
29 #endif
30 
31 /**
32  * Store free buffers to RX SW ring.
33  *
34  * @param elts
35  *   Pointer to SW ring to be filled.
36  * @param pkts
37  *   Pointer to array of packets to be stored.
38  * @param pkts_n
39  *   Number of packets to be stored.
40  */
41 static inline void
42 rxq_copy_mbuf_v(struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t n)
43 {
44 	unsigned int pos;
45 	uint16_t p = n & -2;
46 
47 	for (pos = 0; pos < p; pos += 2) {
48 		__m128i mbp;
49 
50 		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
51 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
52 	}
53 	if (n & 1)
54 		pkts[pos] = elts[pos];
55 }
56 
57 /**
58  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
59  * extracted from the title completion descriptor.
60  *
61  * @param rxq
62  *   Pointer to RX queue structure.
63  * @param cq
64  *   Pointer to completion array having a compressed completion at first.
65  * @param elts
66  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
67  *   the title completion descriptor to be copied to the rest of mbufs.
68  *
69  * @return
70  *   Number of mini-CQEs successfully decompressed.
71  */
72 static inline uint16_t
73 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
74 		    struct rte_mbuf **elts)
75 {
76 	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
77 	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
78 	unsigned int pos;
79 	unsigned int i;
80 	unsigned int inv = 0;
81 	/* Mask to shuffle from extracted mini CQE to mbuf. */
82 	const __m128i shuf_mask1 =
83 		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
84 			    -1, -1,         /* skip vlan_tci */
85 			     6,  7,         /* data_len, bswap16 */
86 			    -1, -1,  6,  7, /* pkt_len, bswap16 */
87 			    -1, -1, -1, -1  /* skip packet_type */);
88 	const __m128i shuf_mask2 =
89 		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
90 			    -1, -1,         /* skip vlan_tci */
91 			    14, 15,         /* data_len, bswap16 */
92 			    -1, -1, 14, 15, /* pkt_len, bswap16 */
93 			    -1, -1, -1, -1  /* skip packet_type */);
94 	/* Restore the compressed count. Must be 16 bits. */
95 	const uint16_t mcqe_n = t_pkt->data_len +
96 				(rxq->crc_present * RTE_ETHER_CRC_LEN);
97 	const __m128i rearm =
98 		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
99 	const __m128i rxdf =
100 		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
101 	const __m128i crc_adj =
102 		_mm_set_epi16(0, 0, 0,
103 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
104 			      0,
105 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
106 			      0, 0);
107 	const uint32_t flow_tag = t_pkt->hash.fdir.hi;
108 #ifdef MLX5_PMD_SOFT_COUNTERS
109 	const __m128i zero = _mm_setzero_si128();
110 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
111 	uint32_t rcvd_byte = 0;
112 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
113 	const __m128i len_shuf_mask =
114 		_mm_set_epi8(-1, -1, -1, -1,
115 			     -1, -1, -1, -1,
116 			     14, 15,  6,  7,
117 			     10, 11,  2,  3);
118 #endif
119 	/*
120 	 * A. load mCQEs into a 128bit register.
121 	 * B. store rearm data to mbuf.
122 	 * C. combine data from mCQEs with rx_descriptor_fields1.
123 	 * D. store rx_descriptor_fields1.
124 	 * E. store flow tag (rte_flow mark).
125 	 */
126 	for (pos = 0; pos < mcqe_n; ) {
127 		__m128i mcqe1, mcqe2;
128 		__m128i rxdf1, rxdf2;
129 #ifdef MLX5_PMD_SOFT_COUNTERS
130 		__m128i byte_cnt, invalid_mask;
131 #endif
132 
133 		for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
134 			if (likely(pos + i < mcqe_n))
135 				rte_prefetch0((void *)(cq + pos + i));
136 		/* A.1 load mCQEs into a 128bit register. */
137 		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
138 		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
139 		/* B.1 store rearm data to mbuf. */
140 		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
141 		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
142 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
143 		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
144 		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
145 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
146 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
147 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
148 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
149 		/* D.1 store rx_descriptor_fields1. */
150 		_mm_storeu_si128((__m128i *)
151 				  &elts[pos]->rx_descriptor_fields1,
152 				 rxdf1);
153 		_mm_storeu_si128((__m128i *)
154 				  &elts[pos + 1]->rx_descriptor_fields1,
155 				 rxdf2);
156 		/* B.1 store rearm data to mbuf. */
157 		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
158 		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
159 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
160 		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
161 		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
162 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
163 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
164 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
165 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
166 		/* D.1 store rx_descriptor_fields1. */
167 		_mm_storeu_si128((__m128i *)
168 				  &elts[pos + 2]->rx_descriptor_fields1,
169 				 rxdf1);
170 		_mm_storeu_si128((__m128i *)
171 				  &elts[pos + 3]->rx_descriptor_fields1,
172 				 rxdf2);
173 #ifdef MLX5_PMD_SOFT_COUNTERS
174 		invalid_mask = _mm_set_epi64x(0,
175 					      (mcqe_n - pos) *
176 					      sizeof(uint16_t) * 8);
177 		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
178 		mcqe1 = _mm_srli_si128(mcqe1, 4);
179 		byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
180 		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
181 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
182 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
183 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
184 #endif
185 		if (rxq->mark) {
186 			/* E.1 store flow tag (rte_flow mark). */
187 			elts[pos]->hash.fdir.hi = flow_tag;
188 			elts[pos + 1]->hash.fdir.hi = flow_tag;
189 			elts[pos + 2]->hash.fdir.hi = flow_tag;
190 			elts[pos + 3]->hash.fdir.hi = flow_tag;
191 		}
192 		if (rxq->dynf_meta) {
193 			int32_t offs = rxq->flow_meta_offset;
194 			const uint32_t meta =
195 				*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
196 
197 			/* Check if title packet has valid metadata. */
198 			if (meta) {
199 				MLX5_ASSERT(t_pkt->ol_flags &
200 					    rxq->flow_meta_mask);
201 				*RTE_MBUF_DYNFIELD(elts[pos], offs,
202 							uint32_t *) = meta;
203 				*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
204 							uint32_t *) = meta;
205 				*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
206 							uint32_t *) = meta;
207 				*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
208 							uint32_t *) = meta;
209 			}
210 		}
211 		pos += MLX5_VPMD_DESCS_PER_LOOP;
212 		/* Move to next CQE and invalidate consumed CQEs. */
213 		if (!(pos & 0x7) && pos < mcqe_n) {
214 			if (pos + 8 < mcqe_n)
215 				rte_prefetch0((void *)(cq + pos + 8));
216 			mcq = (void *)(cq + pos);
217 			for (i = 0; i < 8; ++i)
218 				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
219 		}
220 	}
221 	/* Invalidate the rest of CQEs. */
222 	for (; inv < mcqe_n; ++inv)
223 		cq[inv].op_own = MLX5_CQE_INVALIDATE;
224 #ifdef MLX5_PMD_SOFT_COUNTERS
225 	rxq->stats.ipackets += mcqe_n;
226 	rxq->stats.ibytes += rcvd_byte;
227 #endif
228 	return mcqe_n;
229 }
230 
231 /**
232  * Calculate packet type and offload flag for mbuf and store it.
233  *
234  * @param rxq
235  *   Pointer to RX queue structure.
236  * @param cqes[4]
237  *   Array of four 16bytes completions extracted from the original completion
238  *   descriptor.
239  * @param op_err
240  *   Opcode vector having responder error status. Each field is 4B.
241  * @param pkts
242  *   Pointer to array of packets to be filled.
243  */
244 static inline void
245 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
246 			 __m128i op_err, struct rte_mbuf **pkts)
247 {
248 	__m128i pinfo0, pinfo1;
249 	__m128i pinfo, ptype;
250 	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
251 					  rxq->hw_timestamp * rxq->timestamp_rx_flag);
252 	__m128i cv_flags;
253 	const __m128i zero = _mm_setzero_si128();
254 	const __m128i ptype_mask =
255 		_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
256 	const __m128i ptype_ol_mask =
257 		_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
258 	const __m128i pinfo_mask =
259 		_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
260 	const __m128i cv_flag_sel =
261 		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
262 			     (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
263 					PKT_RX_L4_CKSUM_GOOD) >> 1),
264 			     0,
265 			     (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
266 			     0,
267 			     (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
268 			     (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
269 			     0);
270 	const __m128i cv_mask =
271 		_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
272 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
273 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
274 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
275 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
276 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
277 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
278 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
279 	const __m128i mbuf_init =
280 		_mm_load_si128((__m128i *)&rxq->mbuf_initializer);
281 	__m128i rearm0, rearm1, rearm2, rearm3;
282 	uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
283 
284 	/* Extract pkt_info field. */
285 	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
286 	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
287 	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
288 	/* Extract hdr_type_etc field. */
289 	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
290 	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
291 	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
292 	if (rxq->mark) {
293 		const __m128i pinfo_ft_mask = _mm_set1_epi32(0xffffff00);
294 		const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
295 		__m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
296 		__m128i flow_tag, invalid_mask;
297 
298 		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
299 		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
300 		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
301 		ol_flags = _mm_or_si128(ol_flags,
302 					_mm_andnot_si128(invalid_mask,
303 							 fdir_flags));
304 		/* Mask out invalid entries. */
305 		fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
306 		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
307 		ol_flags = _mm_or_si128(ol_flags,
308 					_mm_andnot_si128(
309 						_mm_cmpeq_epi32(flow_tag,
310 								pinfo_ft_mask),
311 						fdir_id_flags));
312 	}
313 	/*
314 	 * Merge the two fields to generate the following:
315 	 * bit[1]     = l3_ok
316 	 * bit[2]     = l4_ok
317 	 * bit[8]     = cv
318 	 * bit[11:10] = l3_hdr_type
319 	 * bit[14:12] = l4_hdr_type
320 	 * bit[15]    = ip_frag
321 	 * bit[16]    = tunneled
322 	 * bit[17]    = outer_l3_type
323 	 */
324 	ptype = _mm_and_si128(ptype, ptype_mask);
325 	pinfo = _mm_and_si128(pinfo, pinfo_mask);
326 	pinfo = _mm_slli_epi32(pinfo, 16);
327 	/* Make pinfo has merged fields for ol_flags calculation. */
328 	pinfo = _mm_or_si128(ptype, pinfo);
329 	ptype = _mm_srli_epi32(pinfo, 10);
330 	ptype = _mm_packs_epi32(ptype, zero);
331 	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
332 	op_err = _mm_srli_epi16(op_err, 8);
333 	ptype = _mm_or_si128(ptype, op_err);
334 	pt_idx0 = _mm_extract_epi8(ptype, 0);
335 	pt_idx1 = _mm_extract_epi8(ptype, 2);
336 	pt_idx2 = _mm_extract_epi8(ptype, 4);
337 	pt_idx3 = _mm_extract_epi8(ptype, 6);
338 	pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
339 			       !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
340 	pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
341 			       !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
342 	pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
343 			       !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
344 	pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
345 			       !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
346 	/* Fill flags for checksum and VLAN. */
347 	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
348 	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
349 	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
350 	cv_flags = _mm_slli_epi32(pinfo, 9);
351 	cv_flags = _mm_or_si128(pinfo, cv_flags);
352 	/* Move back flags to start from byte[0]. */
353 	cv_flags = _mm_srli_epi32(cv_flags, 8);
354 	/* Mask out garbage bits. */
355 	cv_flags = _mm_and_si128(cv_flags, cv_mask);
356 	/* Merge to ol_flags. */
357 	ol_flags = _mm_or_si128(ol_flags, cv_flags);
358 	/* Merge mbuf_init and ol_flags. */
359 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
360 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
361 	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
362 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
363 	/* Write 8B rearm_data and 8B ol_flags. */
364 	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
365 	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
366 	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
367 	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
368 }
369 
370 /**
371  * Process a non-compressed completion and fill in mbufs in RX SW ring
372  * with data extracted from the title completion descriptor.
373  *
374  * @param rxq
375  *   Pointer to RX queue structure.
376  * @param cq
377  *   Pointer to completion array having a non-compressed completion at first.
378  * @param elts
379  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
380  *   the title completion descriptor to be copied to the rest of mbufs.
381  * @param[out] pkts
382  *   Array to store received packets.
383  * @param pkts_n
384  *   Maximum number of packets in array.
385  * @param[out] err
386  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
387  *   packet to handle.
388  * @param[out] comp
389  *   Pointer to a index. Set it to the first compressed completion if any.
390  *
391  * @return
392  *   Number of CQEs successfully processed.
393  */
394 static inline uint16_t
395 rxq_cq_process_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
396 		 struct rte_mbuf **elts, struct rte_mbuf **pkts,
397 		 uint16_t pkts_n, uint64_t *err, uint64_t *comp)
398 {
399 	const uint16_t q_n = 1 << rxq->cqe_n;
400 	const uint16_t q_mask = q_n - 1;
401 	unsigned int pos;
402 	uint64_t n = 0;
403 	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
404 	uint16_t nocmp_n = 0;
405 	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
406 	const __m128i owner_check =	_mm_set1_epi64x(0x0100000001000000LL);
407 	const __m128i opcode_check = _mm_set1_epi64x(0xf0000000f0000000LL);
408 	const __m128i format_check = _mm_set1_epi64x(0x0c0000000c000000LL);
409 	const __m128i resp_err_check = _mm_set1_epi64x(0xe0000000e0000000LL);
410 #ifdef MLX5_PMD_SOFT_COUNTERS
411 	uint32_t rcvd_byte = 0;
412 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
413 	const __m128i len_shuf_mask =
414 		_mm_set_epi8(-1, -1, -1, -1,
415 			     -1, -1, -1, -1,
416 			     12, 13,  8,  9,
417 			      4,  5,  0,  1);
418 #endif
419 	/* Mask to shuffle from extracted CQE to mbuf. */
420 	const __m128i shuf_mask =
421 		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
422 			     12, 13, 14, 15, /* rss, bswap32 */
423 			     10, 11,         /* vlan_tci, bswap16 */
424 			      4,  5,         /* data_len, bswap16 */
425 			     -1, -1,         /* zero out 2nd half of pkt_len */
426 			      4,  5          /* pkt_len, bswap16 */);
427 	/* Mask to blend from the last Qword to the first DQword. */
428 	const __m128i blend_mask =
429 		_mm_set_epi8(-1, -1, -1, -1,
430 			     -1, -1, -1, -1,
431 			      0,  0,  0,  0,
432 			      0,  0,  0, -1);
433 	const __m128i zero = _mm_setzero_si128();
434 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
435 	const __m128i crc_adj =
436 		_mm_set_epi16(0, 0, 0, 0, 0,
437 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
438 			      0,
439 			      rxq->crc_present * RTE_ETHER_CRC_LEN);
440 	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
441 	/*
442 	 * A. load first Qword (8bytes) in one loop.
443 	 * B. copy 4 mbuf pointers from elts ring to returing pkts.
444 	 * C. load remained CQE data and extract necessary fields.
445 	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
446 	 *    following structure:
447 	 *        struct {
448 	 *          uint8_t  pkt_info;
449 	 *          uint8_t  flow_tag[3];
450 	 *          uint16_t byte_cnt;
451 	 *          uint8_t  rsvd4;
452 	 *          uint8_t  op_own;
453 	 *          uint16_t hdr_type_etc;
454 	 *          uint16_t vlan_info;
455 	 *          uint32_t rx_has_res;
456 	 *        } c;
457 	 * D. fill in mbuf.
458 	 * E. get valid CQEs.
459 	 * F. find compressed CQE.
460 	 */
461 	for (pos = 0;
462 	     pos < pkts_n;
463 	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
464 		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
465 		__m128i cqe_tmp1, cqe_tmp2;
466 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
467 		__m128i op_own, op_own_tmp1, op_own_tmp2;
468 		__m128i opcode, owner_mask, invalid_mask;
469 		__m128i comp_mask;
470 		__m128i mask;
471 #ifdef MLX5_PMD_SOFT_COUNTERS
472 		__m128i byte_cnt;
473 #endif
474 		__m128i mbp1, mbp2;
475 		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
476 		unsigned int p1, p2, p3;
477 
478 		/* Prefetch next 4 CQEs. */
479 		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
480 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
481 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
482 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
483 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
484 		}
485 		/* A.0 do not cross the end of CQ. */
486 		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
487 		mask = _mm_sll_epi64(ones, mask);
488 		p = _mm_andnot_si128(mask, p);
489 		/* A.1 load cqes. */
490 		p3 = _mm_extract_epi16(p, 3);
491 		cqes[3] = _mm_loadl_epi64((__m128i *)
492 					   &cq[pos + p3].sop_drop_qpn);
493 		rte_compiler_barrier();
494 		p2 = _mm_extract_epi16(p, 2);
495 		cqes[2] = _mm_loadl_epi64((__m128i *)
496 					   &cq[pos + p2].sop_drop_qpn);
497 		rte_compiler_barrier();
498 		/* B.1 load mbuf pointers. */
499 		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
500 		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
501 		/* A.1 load a block having op_own. */
502 		p1 = _mm_extract_epi16(p, 1);
503 		cqes[1] = _mm_loadl_epi64((__m128i *)
504 					   &cq[pos + p1].sop_drop_qpn);
505 		rte_compiler_barrier();
506 		cqes[0] = _mm_loadl_epi64((__m128i *)
507 					   &cq[pos].sop_drop_qpn);
508 		/* B.2 copy mbuf pointers. */
509 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
510 		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
511 		rte_io_rmb();
512 		/* C.1 load remained CQE data and extract necessary fields. */
513 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
514 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
515 		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
516 		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
517 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
518 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
519 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
520 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
521 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
522 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
523 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
524 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
525 		/* C.2 generate final structure for mbuf with swapping bytes. */
526 		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
527 		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
528 		/* C.3 adjust CRC length. */
529 		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
530 		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
531 		/* C.4 adjust flow mark. */
532 		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
533 		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
534 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
535 		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
536 		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
537 		/* E.1 extract op_own field. */
538 		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
539 		/* C.1 load remained CQE data and extract necessary fields. */
540 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
541 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
542 		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
543 		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
544 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
545 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
546 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
547 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
548 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
549 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
550 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
551 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
552 		/* C.2 generate final structure for mbuf with swapping bytes. */
553 		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
554 		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
555 		/* C.3 adjust CRC length. */
556 		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
557 		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
558 		/* C.4 adjust flow mark. */
559 		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
560 		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
561 		/* E.1 extract op_own byte. */
562 		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
563 		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
564 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
565 		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
566 		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
567 		/* E.2 flip owner bit to mark CQEs from last round. */
568 		owner_mask = _mm_and_si128(op_own, owner_check);
569 		if (ownership)
570 			owner_mask = _mm_xor_si128(owner_mask, owner_check);
571 		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
572 		owner_mask = _mm_packs_epi32(owner_mask, zero);
573 		/* E.3 get mask for invalidated CQEs. */
574 		opcode = _mm_and_si128(op_own, opcode_check);
575 		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
576 		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
577 		/* E.4 mask out beyond boundary. */
578 		invalid_mask = _mm_or_si128(invalid_mask, mask);
579 		/* E.5 merge invalid_mask with invalid owner. */
580 		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
581 		/* F.1 find compressed CQE format. */
582 		comp_mask = _mm_and_si128(op_own, format_check);
583 		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
584 		comp_mask = _mm_packs_epi32(comp_mask, zero);
585 		/* F.2 mask out invalid entries. */
586 		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
587 		comp_idx = _mm_cvtsi128_si64(comp_mask);
588 		/* F.3 get the first compressed CQE. */
589 		comp_idx = comp_idx ?
590 				__builtin_ctzll(comp_idx) /
591 					(sizeof(uint16_t) * 8) :
592 				MLX5_VPMD_DESCS_PER_LOOP;
593 		/* E.6 mask out entries after the compressed CQE. */
594 		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
595 		mask = _mm_sll_epi64(ones, mask);
596 		invalid_mask = _mm_or_si128(invalid_mask, mask);
597 		/* E.7 count non-compressed valid CQEs. */
598 		n = _mm_cvtsi128_si64(invalid_mask);
599 		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
600 			MLX5_VPMD_DESCS_PER_LOOP;
601 		nocmp_n += n;
602 		/* D.2 get the final invalid mask. */
603 		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
604 		mask = _mm_sll_epi64(ones, mask);
605 		invalid_mask = _mm_or_si128(invalid_mask, mask);
606 		/* D.3 check error in opcode. */
607 		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
608 		opcode = _mm_packs_epi32(opcode, zero);
609 		opcode = _mm_andnot_si128(invalid_mask, opcode);
610 		/* D.4 mark if any error is set */
611 		*err |= _mm_cvtsi128_si64(opcode);
612 		/* D.5 fill in mbuf - rearm_data and packet_type. */
613 		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
614 		if (rxq->hw_timestamp) {
615 			int offset = rxq->timestamp_offset;
616 			if (rxq->rt_timestamp) {
617 				struct mlx5_dev_ctx_shared *sh = rxq->sh;
618 				uint64_t ts;
619 
620 				ts = rte_be_to_cpu_64(cq[pos].timestamp);
621 				mlx5_timestamp_set(pkts[pos], offset,
622 					mlx5_txpp_convert_rx_ts(sh, ts));
623 				ts = rte_be_to_cpu_64(cq[pos + p1].timestamp);
624 				mlx5_timestamp_set(pkts[pos + 1], offset,
625 					mlx5_txpp_convert_rx_ts(sh, ts));
626 				ts = rte_be_to_cpu_64(cq[pos + p2].timestamp);
627 				mlx5_timestamp_set(pkts[pos + 2], offset,
628 					mlx5_txpp_convert_rx_ts(sh, ts));
629 				ts = rte_be_to_cpu_64(cq[pos + p3].timestamp);
630 				mlx5_timestamp_set(pkts[pos + 3], offset,
631 					mlx5_txpp_convert_rx_ts(sh, ts));
632 			} else {
633 				mlx5_timestamp_set(pkts[pos], offset,
634 					rte_be_to_cpu_64(cq[pos].timestamp));
635 				mlx5_timestamp_set(pkts[pos + 1], offset,
636 					rte_be_to_cpu_64(cq[pos + p1].timestamp));
637 				mlx5_timestamp_set(pkts[pos + 2], offset,
638 					rte_be_to_cpu_64(cq[pos + p2].timestamp));
639 				mlx5_timestamp_set(pkts[pos + 3], offset,
640 					rte_be_to_cpu_64(cq[pos + p3].timestamp));
641 			}
642 		}
643 		if (rxq->dynf_meta) {
644 			/* This code is subject for futher optimization. */
645 			int32_t offs = rxq->flow_meta_offset;
646 
647 			*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
648 				cq[pos].flow_table_metadata;
649 			*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
650 				cq[pos + p1].flow_table_metadata;
651 			*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
652 				cq[pos + p2].flow_table_metadata;
653 			*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
654 				cq[pos + p3].flow_table_metadata;
655 			if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
656 				pkts[pos]->ol_flags |= rxq->flow_meta_mask;
657 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
658 				pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
659 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
660 				pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
661 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
662 				pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
663 		}
664 #ifdef MLX5_PMD_SOFT_COUNTERS
665 		/* Add up received bytes count. */
666 		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
667 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
668 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
669 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
670 #endif
671 		/*
672 		 * Break the loop unless more valid CQE is expected, or if
673 		 * there's a compressed CQE.
674 		 */
675 		if (n != MLX5_VPMD_DESCS_PER_LOOP)
676 			break;
677 	}
678 #ifdef MLX5_PMD_SOFT_COUNTERS
679 	rxq->stats.ipackets += nocmp_n;
680 	rxq->stats.ibytes += rcvd_byte;
681 #endif
682 	if (comp_idx == n)
683 		*comp = comp_idx;
684 	return nocmp_n;
685 }
686 
687 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */
688