xref: /dpdk/drivers/net/mlx5/mlx5_rxtx_vec_sse.h (revision 5dba3b9c4c131b88a78bcecfef39db23ebc47873)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
35 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
36 
37 #include <assert.h>
38 #include <stdint.h>
39 #include <string.h>
40 #include <stdlib.h>
41 #include <smmintrin.h>
42 
43 #include <rte_mbuf.h>
44 #include <rte_mempool.h>
45 #include <rte_prefetch.h>
46 
47 #include "mlx5.h"
48 #include "mlx5_utils.h"
49 #include "mlx5_rxtx.h"
50 #include "mlx5_rxtx_vec.h"
51 #include "mlx5_autoconf.h"
52 #include "mlx5_defs.h"
53 #include "mlx5_prm.h"
54 
55 #ifndef __INTEL_COMPILER
56 #pragma GCC diagnostic ignored "-Wcast-qual"
57 #endif
58 
59 /**
60  * Fill in buffer descriptors in a multi-packet send descriptor.
61  *
62  * @param txq
63  *   Pointer to TX queue structure.
64  * @param dseg
65  *   Pointer to buffer descriptor to be written.
66  * @param pkts
67  *   Pointer to array of packets to be sent.
68  * @param n
69  *   Number of packets to be filled.
70  */
71 static inline void
72 txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg,
73 	      struct rte_mbuf **pkts, unsigned int n)
74 {
75 	unsigned int pos;
76 	uintptr_t addr;
77 	const __m128i shuf_mask_dseg =
78 		_mm_set_epi8(8,  9, 10, 11, /* addr, bswap64 */
79 			    12, 13, 14, 15,
80 			     7,  6,  5,  4, /* lkey */
81 			     0,  1,  2,  3  /* length, bswap32 */);
82 #ifdef MLX5_PMD_SOFT_COUNTERS
83 	uint32_t tx_byte = 0;
84 #endif
85 
86 	for (pos = 0; pos < n; ++pos, ++dseg) {
87 		__m128i desc;
88 		struct rte_mbuf *pkt = pkts[pos];
89 
90 		addr = rte_pktmbuf_mtod(pkt, uintptr_t);
91 		desc = _mm_set_epi32(addr >> 32,
92 				     addr,
93 				     mlx5_tx_mb2mr(txq, pkt),
94 				     DATA_LEN(pkt));
95 		desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
96 		_mm_store_si128(dseg, desc);
97 #ifdef MLX5_PMD_SOFT_COUNTERS
98 		tx_byte += DATA_LEN(pkt);
99 #endif
100 	}
101 #ifdef MLX5_PMD_SOFT_COUNTERS
102 	txq->stats.obytes += tx_byte;
103 #endif
104 }
105 
106 /**
107  * Send multi-segmented packets until it encounters a single segment packet in
108  * the pkts list.
109  *
110  * @param txq
111  *   Pointer to TX queue structure.
112  * @param pkts
113  *   Pointer to array of packets to be sent.
114  * @param pkts_n
115  *   Number of packets to be sent.
116  *
117  * @return
118  *   Number of packets successfully transmitted (<= pkts_n).
119  */
120 static uint16_t
121 txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
122 	      uint16_t pkts_n)
123 {
124 	uint16_t elts_head = txq->elts_head;
125 	const uint16_t elts_n = 1 << txq->elts_n;
126 	const uint16_t elts_m = elts_n - 1;
127 	const uint16_t wq_n = 1 << txq->wqe_n;
128 	const uint16_t wq_mask = wq_n - 1;
129 	const unsigned int nb_dword_per_wqebb =
130 		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
131 	const unsigned int nb_dword_in_hdr =
132 		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
133 	unsigned int n;
134 	volatile struct mlx5_wqe *wqe = NULL;
135 
136 	assert(elts_n > pkts_n);
137 	mlx5_tx_complete(txq);
138 	/* A CQE slot must always be available. */
139 	assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
140 	if (unlikely(!pkts_n))
141 		return 0;
142 	for (n = 0; n < pkts_n; ++n) {
143 		struct rte_mbuf *buf = pkts[n];
144 		unsigned int segs_n = buf->nb_segs;
145 		unsigned int ds = nb_dword_in_hdr;
146 		unsigned int len = PKT_LEN(buf);
147 		uint16_t wqe_ci = txq->wqe_ci;
148 		const __m128i shuf_mask_ctrl =
149 			_mm_set_epi8(15, 14, 13, 12,
150 				      8,  9, 10, 11, /* bswap32 */
151 				      4,  5,  6,  7, /* bswap32 */
152 				      0,  1,  2,  3  /* bswap32 */);
153 		uint8_t cs_flags;
154 		uint16_t max_elts;
155 		uint16_t max_wqe;
156 		__m128i *t_wqe, *dseg;
157 		__m128i ctrl;
158 
159 		assert(segs_n);
160 		max_elts = elts_n - (elts_head - txq->elts_tail);
161 		max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
162 		/*
163 		 * A MPW session consumes 2 WQEs at most to
164 		 * include MLX5_MPW_DSEG_MAX pointers.
165 		 */
166 		if (segs_n == 1 ||
167 		    max_elts < segs_n || max_wqe < 2)
168 			break;
169 		if (segs_n > MLX5_MPW_DSEG_MAX) {
170 			txq->stats.oerrors++;
171 			break;
172 		}
173 		wqe = &((volatile struct mlx5_wqe64 *)
174 			 txq->wqes)[wqe_ci & wq_mask].hdr;
175 		cs_flags = txq_ol_cksum_to_cs(txq, buf);
176 		/* Title WQEBB pointer. */
177 		t_wqe = (__m128i *)wqe;
178 		dseg = (__m128i *)(wqe + 1);
179 		do {
180 			if (!(ds++ % nb_dword_per_wqebb)) {
181 				dseg = (__m128i *)
182 					&((volatile struct mlx5_wqe64 *)
183 					   txq->wqes)[++wqe_ci & wq_mask];
184 			}
185 			txq_wr_dseg_v(txq, dseg++, &buf, 1);
186 			(*txq->elts)[elts_head++ & elts_m] = buf;
187 			buf = buf->next;
188 		} while (--segs_n);
189 		++wqe_ci;
190 		/* Fill CTRL in the header. */
191 		ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
192 				     MLX5_OPC_MOD_MPW << 24 |
193 				     txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
194 		ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
195 		_mm_store_si128(t_wqe, ctrl);
196 		/* Fill ESEG in the header. */
197 		_mm_store_si128(t_wqe + 1,
198 				_mm_set_epi16(0, 0, 0, 0,
199 					      rte_cpu_to_be_16(len), cs_flags,
200 					      0, 0));
201 		txq->wqe_ci = wqe_ci;
202 	}
203 	if (!n)
204 		return 0;
205 	txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
206 	txq->elts_head = elts_head;
207 	if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
208 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
209 		wqe->ctrl[3] = txq->elts_head;
210 		txq->elts_comp = 0;
211 #ifndef NDEBUG
212 		++txq->cq_pi;
213 #endif
214 	}
215 #ifdef MLX5_PMD_SOFT_COUNTERS
216 	txq->stats.opackets += n;
217 #endif
218 	mlx5_tx_dbrec(txq, wqe);
219 	return n;
220 }
221 
222 /**
223  * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
224  * it returns to make it processed by txq_scatter_v(). All the packets in
225  * the pkts list should be single segment packets having same offload flags.
226  * This must be checked by txq_count_contig_single_seg() and txq_calc_offload().
227  *
228  * @param txq
229  *   Pointer to TX queue structure.
230  * @param pkts
231  *   Pointer to array of packets to be sent.
232  * @param pkts_n
233  *   Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
234  * @param cs_flags
235  *   Checksum offload flags to be written in the descriptor.
236  *
237  * @return
238  *   Number of packets successfully transmitted (<= pkts_n).
239  */
240 static inline uint16_t
241 txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
242 	    uint8_t cs_flags)
243 {
244 	struct rte_mbuf **elts;
245 	uint16_t elts_head = txq->elts_head;
246 	const uint16_t elts_n = 1 << txq->elts_n;
247 	const uint16_t elts_m = elts_n - 1;
248 	const unsigned int nb_dword_per_wqebb =
249 		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
250 	const unsigned int nb_dword_in_hdr =
251 		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
252 	unsigned int n = 0;
253 	unsigned int pos;
254 	uint16_t max_elts;
255 	uint16_t max_wqe;
256 	uint32_t comp_req = 0;
257 	const uint16_t wq_n = 1 << txq->wqe_n;
258 	const uint16_t wq_mask = wq_n - 1;
259 	uint16_t wq_idx = txq->wqe_ci & wq_mask;
260 	volatile struct mlx5_wqe64 *wq =
261 		&((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
262 	volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
263 	const __m128i shuf_mask_ctrl =
264 		_mm_set_epi8(15, 14, 13, 12,
265 			      8,  9, 10, 11, /* bswap32 */
266 			      4,  5,  6,  7, /* bswap32 */
267 			      0,  1,  2,  3  /* bswap32 */);
268 	__m128i *t_wqe, *dseg;
269 	__m128i ctrl;
270 
271 	/* Make sure all packets can fit into a single WQE. */
272 	assert(elts_n > pkts_n);
273 	mlx5_tx_complete(txq);
274 	max_elts = (elts_n - (elts_head - txq->elts_tail));
275 	/* A CQE slot must always be available. */
276 	assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
277 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
278 	pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
279 	assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr);
280 	if (unlikely(!pkts_n))
281 		return 0;
282 	elts = &(*txq->elts)[elts_head & elts_m];
283 	/* Loop for available tailroom first. */
284 	n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
285 	for (pos = 0; pos < (n & -2); pos += 2)
286 		_mm_storeu_si128((__m128i *)&elts[pos],
287 				 _mm_loadu_si128((__m128i *)&pkts[pos]));
288 	if (n & 1)
289 		elts[pos] = pkts[pos];
290 	/* Check if it crosses the end of the queue. */
291 	if (unlikely(n < pkts_n)) {
292 		elts = &(*txq->elts)[0];
293 		for (pos = 0; pos < pkts_n - n; ++pos)
294 			elts[pos] = pkts[n + pos];
295 	}
296 	txq->elts_head += pkts_n;
297 	/* Save title WQEBB pointer. */
298 	t_wqe = (__m128i *)wqe;
299 	dseg = (__m128i *)(wqe + 1);
300 	/* Calculate the number of entries to the end. */
301 	n = RTE_MIN(
302 		(wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
303 		pkts_n);
304 	/* Fill DSEGs. */
305 	txq_wr_dseg_v(txq, dseg, pkts, n);
306 	/* Check if it crosses the end of the queue. */
307 	if (n < pkts_n) {
308 		dseg = (__m128i *)txq->wqes;
309 		txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
310 	}
311 	if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
312 		txq->elts_comp += pkts_n;
313 	} else {
314 		/* Request a completion. */
315 		txq->elts_comp = 0;
316 #ifndef NDEBUG
317 		++txq->cq_pi;
318 #endif
319 		comp_req = 8;
320 	}
321 	/* Fill CTRL in the header. */
322 	ctrl = _mm_set_epi32(txq->elts_head, comp_req,
323 			     txq->qp_num_8s | (pkts_n + 2),
324 			     MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
325 				txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
326 	ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
327 	_mm_store_si128(t_wqe, ctrl);
328 	/* Fill ESEG in the header. */
329 	_mm_store_si128(t_wqe + 1,
330 			_mm_set_epi8(0, 0, 0, 0,
331 				     0, 0, 0, 0,
332 				     0, 0, 0, cs_flags,
333 				     0, 0, 0, 0));
334 #ifdef MLX5_PMD_SOFT_COUNTERS
335 	txq->stats.opackets += pkts_n;
336 #endif
337 	txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
338 		       nb_dword_per_wqebb;
339 	/* Ring QP doorbell. */
340 	mlx5_tx_dbrec_cond_wmb(txq, wqe, pkts_n < MLX5_VPMD_TX_MAX_BURST);
341 	return pkts_n;
342 }
343 
344 /**
345  * Store free buffers to RX SW ring.
346  *
347  * @param rxq
348  *   Pointer to RX queue structure.
349  * @param pkts
350  *   Pointer to array of packets to be stored.
351  * @param pkts_n
352  *   Number of packets to be stored.
353  */
354 static inline void
355 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
356 {
357 	const uint16_t q_mask = (1 << rxq->elts_n) - 1;
358 	struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
359 	unsigned int pos;
360 	uint16_t p = n & -2;
361 
362 	for (pos = 0; pos < p; pos += 2) {
363 		__m128i mbp;
364 
365 		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
366 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
367 	}
368 	if (n & 1)
369 		pkts[pos] = elts[pos];
370 }
371 
372 /**
373  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
374  * extracted from the title completion descriptor.
375  *
376  * @param rxq
377  *   Pointer to RX queue structure.
378  * @param cq
379  *   Pointer to completion array having a compressed completion at first.
380  * @param elts
381  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
382  *   the title completion descriptor to be copied to the rest of mbufs.
383  */
384 static inline void
385 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
386 		    struct rte_mbuf **elts)
387 {
388 	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
389 	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
390 	unsigned int pos;
391 	unsigned int i;
392 	unsigned int inv = 0;
393 	/* Mask to shuffle from extracted mini CQE to mbuf. */
394 	const __m128i shuf_mask1 =
395 		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
396 			    -1, -1,         /* skip vlan_tci */
397 			     6,  7,         /* data_len, bswap16 */
398 			    -1, -1,  6,  7, /* pkt_len, bswap16 */
399 			    -1, -1, -1, -1  /* skip packet_type */);
400 	const __m128i shuf_mask2 =
401 		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
402 			    -1, -1,         /* skip vlan_tci */
403 			    14, 15,         /* data_len, bswap16 */
404 			    -1, -1, 14, 15, /* pkt_len, bswap16 */
405 			    -1, -1, -1, -1  /* skip packet_type */);
406 	/* Restore the compressed count. Must be 16 bits. */
407 	const uint16_t mcqe_n = t_pkt->data_len +
408 				(rxq->crc_present * ETHER_CRC_LEN);
409 	const __m128i rearm =
410 		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
411 	const __m128i rxdf =
412 		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
413 	const __m128i crc_adj =
414 		_mm_set_epi16(0, 0, 0,
415 			      rxq->crc_present * ETHER_CRC_LEN,
416 			      0,
417 			      rxq->crc_present * ETHER_CRC_LEN,
418 			      0, 0);
419 	const uint32_t flow_tag = t_pkt->hash.fdir.hi;
420 #ifdef MLX5_PMD_SOFT_COUNTERS
421 	const __m128i zero = _mm_setzero_si128();
422 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
423 	uint32_t rcvd_byte = 0;
424 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
425 	const __m128i len_shuf_mask =
426 		_mm_set_epi8(-1, -1, -1, -1,
427 			     -1, -1, -1, -1,
428 			     14, 15,  6,  7,
429 			     10, 11,  2,  3);
430 #endif
431 
432 	/*
433 	 * A. load mCQEs into a 128bit register.
434 	 * B. store rearm data to mbuf.
435 	 * C. combine data from mCQEs with rx_descriptor_fields1.
436 	 * D. store rx_descriptor_fields1.
437 	 * E. store flow tag (rte_flow mark).
438 	 */
439 	for (pos = 0; pos < mcqe_n; ) {
440 		__m128i mcqe1, mcqe2;
441 		__m128i rxdf1, rxdf2;
442 #ifdef MLX5_PMD_SOFT_COUNTERS
443 		__m128i byte_cnt, invalid_mask;
444 #endif
445 
446 		if (!(pos & 0x7) && pos + 8 < mcqe_n)
447 			rte_prefetch0((void *)(cq + pos + 8));
448 		/* A.1 load mCQEs into a 128bit register. */
449 		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
450 		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
451 		/* B.1 store rearm data to mbuf. */
452 		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
453 		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
454 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
455 		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
456 		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
457 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
458 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
459 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
460 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
461 		/* D.1 store rx_descriptor_fields1. */
462 		_mm_storeu_si128((__m128i *)
463 				  &elts[pos]->rx_descriptor_fields1,
464 				 rxdf1);
465 		_mm_storeu_si128((__m128i *)
466 				  &elts[pos + 1]->rx_descriptor_fields1,
467 				 rxdf2);
468 		/* B.1 store rearm data to mbuf. */
469 		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
470 		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
471 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
472 		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
473 		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
474 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
475 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
476 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
477 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
478 		/* D.1 store rx_descriptor_fields1. */
479 		_mm_storeu_si128((__m128i *)
480 				  &elts[pos + 2]->rx_descriptor_fields1,
481 				 rxdf1);
482 		_mm_storeu_si128((__m128i *)
483 				  &elts[pos + 3]->rx_descriptor_fields1,
484 				 rxdf2);
485 #ifdef MLX5_PMD_SOFT_COUNTERS
486 		invalid_mask = _mm_set_epi64x(0,
487 					      (mcqe_n - pos) *
488 					      sizeof(uint16_t) * 8);
489 		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
490 		mcqe1 = _mm_srli_si128(mcqe1, 4);
491 		byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
492 		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
493 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
494 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
495 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
496 #endif
497 		if (rxq->mark) {
498 			/* E.1 store flow tag (rte_flow mark). */
499 			elts[pos]->hash.fdir.hi = flow_tag;
500 			elts[pos + 1]->hash.fdir.hi = flow_tag;
501 			elts[pos + 2]->hash.fdir.hi = flow_tag;
502 			elts[pos + 3]->hash.fdir.hi = flow_tag;
503 		}
504 		pos += MLX5_VPMD_DESCS_PER_LOOP;
505 		/* Move to next CQE and invalidate consumed CQEs. */
506 		if (!(pos & 0x7) && pos < mcqe_n) {
507 			mcq = (void *)(cq + pos);
508 			for (i = 0; i < 8; ++i)
509 				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
510 		}
511 	}
512 	/* Invalidate the rest of CQEs. */
513 	for (; inv < mcqe_n; ++inv)
514 		cq[inv].op_own = MLX5_CQE_INVALIDATE;
515 #ifdef MLX5_PMD_SOFT_COUNTERS
516 	rxq->stats.ipackets += mcqe_n;
517 	rxq->stats.ibytes += rcvd_byte;
518 #endif
519 	rxq->cq_ci += mcqe_n;
520 }
521 
522 /**
523  * Calculate packet type and offload flag for mbuf and store it.
524  *
525  * @param rxq
526  *   Pointer to RX queue structure.
527  * @param cqes[4]
528  *   Array of four 16bytes completions extracted from the original completion
529  *   descriptor.
530  * @param op_err
531  *   Opcode vector having responder error status. Each field is 4B.
532  * @param pkts
533  *   Pointer to array of packets to be filled.
534  */
535 static inline void
536 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
537 			 __m128i op_err, struct rte_mbuf **pkts)
538 {
539 	__m128i pinfo0, pinfo1;
540 	__m128i pinfo, ptype;
541 	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
542 					  rxq->hw_timestamp * PKT_RX_TIMESTAMP);
543 	__m128i cv_flags;
544 	const __m128i zero = _mm_setzero_si128();
545 	const __m128i ptype_mask =
546 		_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
547 	const __m128i ptype_ol_mask =
548 		_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
549 	const __m128i pinfo_mask =
550 		_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
551 	const __m128i cv_flag_sel =
552 		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
553 			     (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
554 					PKT_RX_L4_CKSUM_GOOD) >> 1),
555 			     0,
556 			     (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
557 			     0,
558 			     (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
559 			     (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
560 			     0);
561 	const __m128i cv_mask =
562 		_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
563 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
564 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
565 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
566 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
567 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
568 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
569 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
570 	const __m128i mbuf_init =
571 		_mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
572 	__m128i rearm0, rearm1, rearm2, rearm3;
573 
574 	/* Extract pkt_info field. */
575 	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
576 	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
577 	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
578 	/* Extract hdr_type_etc field. */
579 	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
580 	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
581 	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
582 	if (rxq->mark) {
583 		const __m128i pinfo_ft_mask =
584 			_mm_set_epi32(0xffffff00, 0xffffff00,
585 				      0xffffff00, 0xffffff00);
586 		const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
587 		const __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
588 		__m128i flow_tag, invalid_mask;
589 
590 		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
591 		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
592 		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
593 		ol_flags = _mm_or_si128(ol_flags,
594 					_mm_andnot_si128(invalid_mask,
595 							 fdir_flags));
596 		/* Mask out invalid entries. */
597 		flow_tag = _mm_andnot_si128(invalid_mask, flow_tag);
598 		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
599 		ol_flags = _mm_or_si128(ol_flags,
600 					_mm_andnot_si128(
601 						_mm_cmpeq_epi32(flow_tag,
602 								pinfo_ft_mask),
603 						fdir_id_flags));
604 	}
605 	/*
606 	 * Merge the two fields to generate the following:
607 	 * bit[1]     = l3_ok
608 	 * bit[2]     = l4_ok
609 	 * bit[8]     = cv
610 	 * bit[11:10] = l3_hdr_type
611 	 * bit[14:12] = l4_hdr_type
612 	 * bit[15]    = ip_frag
613 	 * bit[16]    = tunneled
614 	 * bit[17]    = outer_l3_type
615 	 */
616 	ptype = _mm_and_si128(ptype, ptype_mask);
617 	pinfo = _mm_and_si128(pinfo, pinfo_mask);
618 	pinfo = _mm_slli_epi32(pinfo, 16);
619 	/* Make pinfo has merged fields for ol_flags calculation. */
620 	pinfo = _mm_or_si128(ptype, pinfo);
621 	ptype = _mm_srli_epi32(pinfo, 10);
622 	ptype = _mm_packs_epi32(ptype, zero);
623 	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
624 	op_err = _mm_srli_epi16(op_err, 8);
625 	ptype = _mm_or_si128(ptype, op_err);
626 	pkts[0]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 0)];
627 	pkts[1]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 2)];
628 	pkts[2]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 4)];
629 	pkts[3]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 6)];
630 	/* Fill flags for checksum and VLAN. */
631 	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
632 	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
633 	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
634 	cv_flags = _mm_slli_epi32(pinfo, 9);
635 	cv_flags = _mm_or_si128(pinfo, cv_flags);
636 	/* Move back flags to start from byte[0]. */
637 	cv_flags = _mm_srli_epi32(cv_flags, 8);
638 	/* Mask out garbage bits. */
639 	cv_flags = _mm_and_si128(cv_flags, cv_mask);
640 	/* Merge to ol_flags. */
641 	ol_flags = _mm_or_si128(ol_flags, cv_flags);
642 	/* Merge mbuf_init and ol_flags. */
643 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
644 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
645 	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
646 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
647 	/* Write 8B rearm_data and 8B ol_flags. */
648 	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
649 	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
650 	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
651 	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
652 }
653 
654 /**
655  * Receive burst of packets. An errored completion also consumes a mbuf, but the
656  * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
657  * before returning to application.
658  *
659  * @param rxq
660  *   Pointer to RX queue structure.
661  * @param[out] pkts
662  *   Array to store received packets.
663  * @param pkts_n
664  *   Maximum number of packets in array.
665  *
666  * @return
667  *   Number of packets received including errors (<= pkts_n).
668  */
669 static inline uint16_t
670 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
671 {
672 	const uint16_t q_n = 1 << rxq->cqe_n;
673 	const uint16_t q_mask = q_n - 1;
674 	volatile struct mlx5_cqe *cq;
675 	struct rte_mbuf **elts;
676 	unsigned int pos;
677 	uint64_t n;
678 	uint16_t repl_n;
679 	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
680 	uint16_t nocmp_n = 0;
681 	uint16_t rcvd_pkt = 0;
682 	unsigned int cq_idx = rxq->cq_ci & q_mask;
683 	unsigned int elts_idx;
684 	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
685 	const __m128i owner_check =
686 		_mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
687 	const __m128i opcode_check =
688 		_mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
689 	const __m128i format_check =
690 		_mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
691 	const __m128i resp_err_check =
692 		_mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
693 #ifdef MLX5_PMD_SOFT_COUNTERS
694 	uint32_t rcvd_byte = 0;
695 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
696 	const __m128i len_shuf_mask =
697 		_mm_set_epi8(-1, -1, -1, -1,
698 			     -1, -1, -1, -1,
699 			     12, 13,  8,  9,
700 			      4,  5,  0,  1);
701 #endif
702 	/* Mask to shuffle from extracted CQE to mbuf. */
703 	const __m128i shuf_mask =
704 		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
705 			     12, 13, 14, 15, /* rss, bswap32 */
706 			     10, 11,         /* vlan_tci, bswap16 */
707 			      4,  5,         /* data_len, bswap16 */
708 			     -1, -1,         /* zero out 2nd half of pkt_len */
709 			      4,  5          /* pkt_len, bswap16 */);
710 	/* Mask to blend from the last Qword to the first DQword. */
711 	const __m128i blend_mask =
712 		_mm_set_epi8(-1, -1, -1, -1,
713 			     -1, -1, -1, -1,
714 			      0,  0,  0,  0,
715 			      0,  0,  0, -1);
716 	const __m128i zero = _mm_setzero_si128();
717 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
718 	const __m128i crc_adj =
719 		_mm_set_epi16(0, 0, 0, 0, 0,
720 			      rxq->crc_present * ETHER_CRC_LEN,
721 			      0,
722 			      rxq->crc_present * ETHER_CRC_LEN);
723 	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
724 
725 	assert(rxq->sges_n == 0);
726 	assert(rxq->cqe_n == rxq->elts_n);
727 	cq = &(*rxq->cqes)[cq_idx];
728 	rte_prefetch0(cq);
729 	rte_prefetch0(cq + 1);
730 	rte_prefetch0(cq + 2);
731 	rte_prefetch0(cq + 3);
732 	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
733 	/*
734 	 * Order of indexes:
735 	 *   rq_ci >= cq_ci >= rq_pi
736 	 * Definition of indexes:
737 	 *   rq_ci - cq_ci := # of buffers owned by HW (posted).
738 	 *   cq_ci - rq_pi := # of buffers not returned to app (decompressed).
739 	 *   N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
740 	 */
741 	repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
742 	if (repl_n >= MLX5_VPMD_RXQ_RPLNSH_THRESH)
743 		mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
744 	/* See if there're unreturned mbufs from compressed CQE. */
745 	rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
746 	if (rcvd_pkt > 0) {
747 		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
748 		rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
749 		rxq->rq_pi += rcvd_pkt;
750 		pkts += rcvd_pkt;
751 	}
752 	elts_idx = rxq->rq_pi & q_mask;
753 	elts = &(*rxq->elts)[elts_idx];
754 	/* Not to overflow pkts array. */
755 	pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
756 	/* Not to cross queue end. */
757 	pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
758 	if (!pkts_n)
759 		return rcvd_pkt;
760 	/* At this point, there shouldn't be any remained packets. */
761 	assert(rxq->rq_pi == rxq->cq_ci);
762 	/*
763 	 * A. load first Qword (8bytes) in one loop.
764 	 * B. copy 4 mbuf pointers from elts ring to returing pkts.
765 	 * C. load remained CQE data and extract necessary fields.
766 	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
767 	 *    following structure:
768 	 *        struct {
769 	 *          uint8_t  pkt_info;
770 	 *          uint8_t  flow_tag[3];
771 	 *          uint16_t byte_cnt;
772 	 *          uint8_t  rsvd4;
773 	 *          uint8_t  op_own;
774 	 *          uint16_t hdr_type_etc;
775 	 *          uint16_t vlan_info;
776 	 *          uint32_t rx_has_res;
777 	 *        } c;
778 	 * D. fill in mbuf.
779 	 * E. get valid CQEs.
780 	 * F. find compressed CQE.
781 	 */
782 	for (pos = 0;
783 	     pos < pkts_n;
784 	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
785 		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
786 		__m128i cqe_tmp1, cqe_tmp2;
787 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
788 		__m128i op_own, op_own_tmp1, op_own_tmp2;
789 		__m128i opcode, owner_mask, invalid_mask;
790 		__m128i comp_mask;
791 		__m128i mask;
792 #ifdef MLX5_PMD_SOFT_COUNTERS
793 		__m128i byte_cnt;
794 #endif
795 		__m128i mbp1, mbp2;
796 		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
797 		unsigned int p1, p2, p3;
798 
799 		/* Prefetch next 4 CQEs. */
800 		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
801 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
802 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
803 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
804 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
805 		}
806 		/* A.0 do not cross the end of CQ. */
807 		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
808 		mask = _mm_sll_epi64(ones, mask);
809 		p = _mm_andnot_si128(mask, p);
810 		/* A.1 load cqes. */
811 		p3 = _mm_extract_epi16(p, 3);
812 		cqes[3] = _mm_loadl_epi64((__m128i *)
813 					   &cq[pos + p3].sop_drop_qpn);
814 		rte_compiler_barrier();
815 		p2 = _mm_extract_epi16(p, 2);
816 		cqes[2] = _mm_loadl_epi64((__m128i *)
817 					   &cq[pos + p2].sop_drop_qpn);
818 		rte_compiler_barrier();
819 		/* B.1 load mbuf pointers. */
820 		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
821 		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
822 		/* A.1 load a block having op_own. */
823 		p1 = _mm_extract_epi16(p, 1);
824 		cqes[1] = _mm_loadl_epi64((__m128i *)
825 					   &cq[pos + p1].sop_drop_qpn);
826 		rte_compiler_barrier();
827 		cqes[0] = _mm_loadl_epi64((__m128i *)
828 					   &cq[pos].sop_drop_qpn);
829 		/* B.2 copy mbuf pointers. */
830 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
831 		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
832 		rte_compiler_barrier();
833 		/* C.1 load remained CQE data and extract necessary fields. */
834 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
835 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
836 		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
837 		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
838 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
839 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
840 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
841 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
842 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
843 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
844 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
845 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
846 		/* C.2 generate final structure for mbuf with swapping bytes. */
847 		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
848 		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
849 		/* C.3 adjust CRC length. */
850 		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
851 		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
852 		/* C.4 adjust flow mark. */
853 		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
854 		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
855 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
856 		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
857 		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
858 		/* E.1 extract op_own field. */
859 		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
860 		/* C.1 load remained CQE data and extract necessary fields. */
861 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
862 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
863 		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
864 		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
865 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
866 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
867 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
868 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
869 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
870 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
871 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
872 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
873 		/* C.2 generate final structure for mbuf with swapping bytes. */
874 		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
875 		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
876 		/* C.3 adjust CRC length. */
877 		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
878 		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
879 		/* C.4 adjust flow mark. */
880 		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
881 		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
882 		/* E.1 extract op_own byte. */
883 		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
884 		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
885 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
886 		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
887 		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
888 		/* E.2 flip owner bit to mark CQEs from last round. */
889 		owner_mask = _mm_and_si128(op_own, owner_check);
890 		if (ownership)
891 			owner_mask = _mm_xor_si128(owner_mask, owner_check);
892 		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
893 		owner_mask = _mm_packs_epi32(owner_mask, zero);
894 		/* E.3 get mask for invalidated CQEs. */
895 		opcode = _mm_and_si128(op_own, opcode_check);
896 		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
897 		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
898 		/* E.4 mask out beyond boundary. */
899 		invalid_mask = _mm_or_si128(invalid_mask, mask);
900 		/* E.5 merge invalid_mask with invalid owner. */
901 		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
902 		/* F.1 find compressed CQE format. */
903 		comp_mask = _mm_and_si128(op_own, format_check);
904 		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
905 		comp_mask = _mm_packs_epi32(comp_mask, zero);
906 		/* F.2 mask out invalid entries. */
907 		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
908 		comp_idx = _mm_cvtsi128_si64(comp_mask);
909 		/* F.3 get the first compressed CQE. */
910 		comp_idx = comp_idx ?
911 				__builtin_ctzll(comp_idx) /
912 					(sizeof(uint16_t) * 8) :
913 				MLX5_VPMD_DESCS_PER_LOOP;
914 		/* E.6 mask out entries after the compressed CQE. */
915 		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
916 		mask = _mm_sll_epi64(ones, mask);
917 		invalid_mask = _mm_or_si128(invalid_mask, mask);
918 		/* E.7 count non-compressed valid CQEs. */
919 		n = _mm_cvtsi128_si64(invalid_mask);
920 		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
921 			MLX5_VPMD_DESCS_PER_LOOP;
922 		nocmp_n += n;
923 		/* D.2 get the final invalid mask. */
924 		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
925 		mask = _mm_sll_epi64(ones, mask);
926 		invalid_mask = _mm_or_si128(invalid_mask, mask);
927 		/* D.3 check error in opcode. */
928 		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
929 		opcode = _mm_packs_epi32(opcode, zero);
930 		opcode = _mm_andnot_si128(invalid_mask, opcode);
931 		/* D.4 mark if any error is set */
932 		rxq->pending_err |= !!_mm_cvtsi128_si64(opcode);
933 		/* D.5 fill in mbuf - rearm_data and packet_type. */
934 		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
935 		if (rxq->hw_timestamp) {
936 			pkts[pos]->timestamp =
937 				rte_be_to_cpu_64(cq[pos].timestamp);
938 			pkts[pos + 1]->timestamp =
939 				rte_be_to_cpu_64(cq[pos + p1].timestamp);
940 			pkts[pos + 2]->timestamp =
941 				rte_be_to_cpu_64(cq[pos + p2].timestamp);
942 			pkts[pos + 3]->timestamp =
943 				rte_be_to_cpu_64(cq[pos + p3].timestamp);
944 		}
945 #ifdef MLX5_PMD_SOFT_COUNTERS
946 		/* Add up received bytes count. */
947 		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
948 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
949 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
950 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
951 #endif
952 		/*
953 		 * Break the loop unless more valid CQE is expected, or if
954 		 * there's a compressed CQE.
955 		 */
956 		if (n != MLX5_VPMD_DESCS_PER_LOOP)
957 			break;
958 	}
959 	/* If no new CQE seen, return without updating cq_db. */
960 	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
961 		return rcvd_pkt;
962 	/* Update the consumer indexes for non-compressed CQEs. */
963 	assert(nocmp_n <= pkts_n);
964 	rxq->cq_ci += nocmp_n;
965 	rxq->rq_pi += nocmp_n;
966 	rcvd_pkt += nocmp_n;
967 #ifdef MLX5_PMD_SOFT_COUNTERS
968 	rxq->stats.ipackets += nocmp_n;
969 	rxq->stats.ibytes += rcvd_byte;
970 #endif
971 	/* Decompress the last CQE if compressed. */
972 	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
973 		assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
974 		rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
975 		/* Return more packets if needed. */
976 		if (nocmp_n < pkts_n) {
977 			uint16_t n = rxq->cq_ci - rxq->rq_pi;
978 
979 			n = RTE_MIN(n, pkts_n - nocmp_n);
980 			rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
981 			rxq->rq_pi += n;
982 			rcvd_pkt += n;
983 		}
984 	}
985 	rte_compiler_barrier();
986 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
987 	return rcvd_pkt;
988 }
989 
990 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */
991