xref: /dpdk/drivers/net/mlx5/mlx5_rxtx_vec_sse.h (revision 3cc6ecfdfe85d2577fef30e1791bb7534e3d60b3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8 
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <smmintrin.h>
13 
14 #include <rte_mbuf.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
17 
18 #include <mlx5_prm.h>
19 
20 #include "mlx5_defs.h"
21 #include "mlx5.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
26 
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
29 #endif
30 
31 /**
32  * Store free buffers to RX SW ring.
33  *
34  * @param rxq
35  *   Pointer to RX queue structure.
36  * @param pkts
37  *   Pointer to array of packets to be stored.
38  * @param pkts_n
39  *   Number of packets to be stored.
40  */
41 static inline void
42 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
43 {
44 	const uint16_t q_mask = (1 << rxq->elts_n) - 1;
45 	struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
46 	unsigned int pos;
47 	uint16_t p = n & -2;
48 
49 	for (pos = 0; pos < p; pos += 2) {
50 		__m128i mbp;
51 
52 		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
53 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
54 	}
55 	if (n & 1)
56 		pkts[pos] = elts[pos];
57 }
58 
59 /**
60  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
61  * extracted from the title completion descriptor.
62  *
63  * @param rxq
64  *   Pointer to RX queue structure.
65  * @param cq
66  *   Pointer to completion array having a compressed completion at first.
67  * @param elts
68  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
69  *   the title completion descriptor to be copied to the rest of mbufs.
70  *
71  * @return
72  *   Number of mini-CQEs successfully decompressed.
73  */
74 static inline uint16_t
75 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
76 		    struct rte_mbuf **elts)
77 {
78 	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
79 	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
80 	unsigned int pos;
81 	unsigned int i;
82 	unsigned int inv = 0;
83 	/* Mask to shuffle from extracted mini CQE to mbuf. */
84 	const __m128i shuf_mask1 =
85 		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
86 			    -1, -1,         /* skip vlan_tci */
87 			     6,  7,         /* data_len, bswap16 */
88 			    -1, -1,  6,  7, /* pkt_len, bswap16 */
89 			    -1, -1, -1, -1  /* skip packet_type */);
90 	const __m128i shuf_mask2 =
91 		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
92 			    -1, -1,         /* skip vlan_tci */
93 			    14, 15,         /* data_len, bswap16 */
94 			    -1, -1, 14, 15, /* pkt_len, bswap16 */
95 			    -1, -1, -1, -1  /* skip packet_type */);
96 	/* Restore the compressed count. Must be 16 bits. */
97 	const uint16_t mcqe_n = t_pkt->data_len +
98 				(rxq->crc_present * RTE_ETHER_CRC_LEN);
99 	const __m128i rearm =
100 		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
101 	const __m128i rxdf =
102 		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
103 	const __m128i crc_adj =
104 		_mm_set_epi16(0, 0, 0,
105 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
106 			      0,
107 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
108 			      0, 0);
109 	const uint32_t flow_tag = t_pkt->hash.fdir.hi;
110 #ifdef MLX5_PMD_SOFT_COUNTERS
111 	const __m128i zero = _mm_setzero_si128();
112 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
113 	uint32_t rcvd_byte = 0;
114 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
115 	const __m128i len_shuf_mask =
116 		_mm_set_epi8(-1, -1, -1, -1,
117 			     -1, -1, -1, -1,
118 			     14, 15,  6,  7,
119 			     10, 11,  2,  3);
120 #endif
121 	/*
122 	 * A. load mCQEs into a 128bit register.
123 	 * B. store rearm data to mbuf.
124 	 * C. combine data from mCQEs with rx_descriptor_fields1.
125 	 * D. store rx_descriptor_fields1.
126 	 * E. store flow tag (rte_flow mark).
127 	 */
128 	for (pos = 0; pos < mcqe_n; ) {
129 		__m128i mcqe1, mcqe2;
130 		__m128i rxdf1, rxdf2;
131 #ifdef MLX5_PMD_SOFT_COUNTERS
132 		__m128i byte_cnt, invalid_mask;
133 #endif
134 
135 		for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
136 			if (likely(pos + i < mcqe_n))
137 				rte_prefetch0((void *)(cq + pos + i));
138 		/* A.1 load mCQEs into a 128bit register. */
139 		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
140 		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
141 		/* B.1 store rearm data to mbuf. */
142 		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
143 		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
144 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
145 		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
146 		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
147 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
148 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
149 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
150 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
151 		/* D.1 store rx_descriptor_fields1. */
152 		_mm_storeu_si128((__m128i *)
153 				  &elts[pos]->rx_descriptor_fields1,
154 				 rxdf1);
155 		_mm_storeu_si128((__m128i *)
156 				  &elts[pos + 1]->rx_descriptor_fields1,
157 				 rxdf2);
158 		/* B.1 store rearm data to mbuf. */
159 		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
160 		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
161 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
162 		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
163 		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
164 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
165 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
166 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
167 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
168 		/* D.1 store rx_descriptor_fields1. */
169 		_mm_storeu_si128((__m128i *)
170 				  &elts[pos + 2]->rx_descriptor_fields1,
171 				 rxdf1);
172 		_mm_storeu_si128((__m128i *)
173 				  &elts[pos + 3]->rx_descriptor_fields1,
174 				 rxdf2);
175 #ifdef MLX5_PMD_SOFT_COUNTERS
176 		invalid_mask = _mm_set_epi64x(0,
177 					      (mcqe_n - pos) *
178 					      sizeof(uint16_t) * 8);
179 		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
180 		mcqe1 = _mm_srli_si128(mcqe1, 4);
181 		byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
182 		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
183 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
184 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
185 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
186 #endif
187 		if (rxq->mark) {
188 			/* E.1 store flow tag (rte_flow mark). */
189 			elts[pos]->hash.fdir.hi = flow_tag;
190 			elts[pos + 1]->hash.fdir.hi = flow_tag;
191 			elts[pos + 2]->hash.fdir.hi = flow_tag;
192 			elts[pos + 3]->hash.fdir.hi = flow_tag;
193 		}
194 		if (rxq->dynf_meta) {
195 			int32_t offs = rxq->flow_meta_offset;
196 			const uint32_t meta =
197 				*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
198 
199 			/* Check if title packet has valid metadata. */
200 			if (meta) {
201 				MLX5_ASSERT(t_pkt->ol_flags &
202 					    rxq->flow_meta_mask);
203 				*RTE_MBUF_DYNFIELD(elts[pos], offs,
204 							uint32_t *) = meta;
205 				*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
206 							uint32_t *) = meta;
207 				*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
208 							uint32_t *) = meta;
209 				*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
210 							uint32_t *) = meta;
211 			}
212 		}
213 		pos += MLX5_VPMD_DESCS_PER_LOOP;
214 		/* Move to next CQE and invalidate consumed CQEs. */
215 		if (!(pos & 0x7) && pos < mcqe_n) {
216 			if (pos + 8 < mcqe_n)
217 				rte_prefetch0((void *)(cq + pos + 8));
218 			mcq = (void *)(cq + pos);
219 			for (i = 0; i < 8; ++i)
220 				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
221 		}
222 	}
223 	/* Invalidate the rest of CQEs. */
224 	for (; inv < mcqe_n; ++inv)
225 		cq[inv].op_own = MLX5_CQE_INVALIDATE;
226 #ifdef MLX5_PMD_SOFT_COUNTERS
227 	rxq->stats.ipackets += mcqe_n;
228 	rxq->stats.ibytes += rcvd_byte;
229 #endif
230 	rxq->cq_ci += mcqe_n;
231 	return mcqe_n;
232 }
233 
234 /**
235  * Calculate packet type and offload flag for mbuf and store it.
236  *
237  * @param rxq
238  *   Pointer to RX queue structure.
239  * @param cqes[4]
240  *   Array of four 16bytes completions extracted from the original completion
241  *   descriptor.
242  * @param op_err
243  *   Opcode vector having responder error status. Each field is 4B.
244  * @param pkts
245  *   Pointer to array of packets to be filled.
246  */
247 static inline void
248 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
249 			 __m128i op_err, struct rte_mbuf **pkts)
250 {
251 	__m128i pinfo0, pinfo1;
252 	__m128i pinfo, ptype;
253 	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
254 					  rxq->hw_timestamp * PKT_RX_TIMESTAMP);
255 	__m128i cv_flags;
256 	const __m128i zero = _mm_setzero_si128();
257 	const __m128i ptype_mask =
258 		_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
259 	const __m128i ptype_ol_mask =
260 		_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
261 	const __m128i pinfo_mask =
262 		_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
263 	const __m128i cv_flag_sel =
264 		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
265 			     (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
266 					PKT_RX_L4_CKSUM_GOOD) >> 1),
267 			     0,
268 			     (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
269 			     0,
270 			     (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
271 			     (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
272 			     0);
273 	const __m128i cv_mask =
274 		_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
275 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
276 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
277 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
278 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
279 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
280 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
281 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
282 	const __m128i mbuf_init =
283 		_mm_load_si128((__m128i *)&rxq->mbuf_initializer);
284 	__m128i rearm0, rearm1, rearm2, rearm3;
285 	uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
286 
287 	/* Extract pkt_info field. */
288 	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
289 	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
290 	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
291 	/* Extract hdr_type_etc field. */
292 	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
293 	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
294 	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
295 	if (rxq->mark) {
296 		const __m128i pinfo_ft_mask =
297 			_mm_set_epi32(0xffffff00, 0xffffff00,
298 				      0xffffff00, 0xffffff00);
299 		const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
300 		__m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
301 		__m128i flow_tag, invalid_mask;
302 
303 		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
304 		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
305 		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
306 		ol_flags = _mm_or_si128(ol_flags,
307 					_mm_andnot_si128(invalid_mask,
308 							 fdir_flags));
309 		/* Mask out invalid entries. */
310 		fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
311 		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
312 		ol_flags = _mm_or_si128(ol_flags,
313 					_mm_andnot_si128(
314 						_mm_cmpeq_epi32(flow_tag,
315 								pinfo_ft_mask),
316 						fdir_id_flags));
317 	}
318 	/*
319 	 * Merge the two fields to generate the following:
320 	 * bit[1]     = l3_ok
321 	 * bit[2]     = l4_ok
322 	 * bit[8]     = cv
323 	 * bit[11:10] = l3_hdr_type
324 	 * bit[14:12] = l4_hdr_type
325 	 * bit[15]    = ip_frag
326 	 * bit[16]    = tunneled
327 	 * bit[17]    = outer_l3_type
328 	 */
329 	ptype = _mm_and_si128(ptype, ptype_mask);
330 	pinfo = _mm_and_si128(pinfo, pinfo_mask);
331 	pinfo = _mm_slli_epi32(pinfo, 16);
332 	/* Make pinfo has merged fields for ol_flags calculation. */
333 	pinfo = _mm_or_si128(ptype, pinfo);
334 	ptype = _mm_srli_epi32(pinfo, 10);
335 	ptype = _mm_packs_epi32(ptype, zero);
336 	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
337 	op_err = _mm_srli_epi16(op_err, 8);
338 	ptype = _mm_or_si128(ptype, op_err);
339 	pt_idx0 = _mm_extract_epi8(ptype, 0);
340 	pt_idx1 = _mm_extract_epi8(ptype, 2);
341 	pt_idx2 = _mm_extract_epi8(ptype, 4);
342 	pt_idx3 = _mm_extract_epi8(ptype, 6);
343 	pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
344 			       !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
345 	pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
346 			       !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
347 	pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
348 			       !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
349 	pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
350 			       !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
351 	/* Fill flags for checksum and VLAN. */
352 	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
353 	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
354 	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
355 	cv_flags = _mm_slli_epi32(pinfo, 9);
356 	cv_flags = _mm_or_si128(pinfo, cv_flags);
357 	/* Move back flags to start from byte[0]. */
358 	cv_flags = _mm_srli_epi32(cv_flags, 8);
359 	/* Mask out garbage bits. */
360 	cv_flags = _mm_and_si128(cv_flags, cv_mask);
361 	/* Merge to ol_flags. */
362 	ol_flags = _mm_or_si128(ol_flags, cv_flags);
363 	/* Merge mbuf_init and ol_flags. */
364 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
365 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
366 	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
367 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
368 	/* Write 8B rearm_data and 8B ol_flags. */
369 	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
370 	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
371 	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
372 	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
373 }
374 
375 /**
376  * Receive burst of packets. An errored completion also consumes a mbuf, but the
377  * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
378  * before returning to application.
379  *
380  * @param rxq
381  *   Pointer to RX queue structure.
382  * @param[out] pkts
383  *   Array to store received packets.
384  * @param pkts_n
385  *   Maximum number of packets in array.
386  * @param[out] err
387  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
388  *   packet to handle.
389  * @param[out] no_cq
390  *   Pointer to a boolean. Set true if no new CQE seen.
391  *
392  * @return
393  *   Number of packets received including errors (<= pkts_n).
394  */
395 static inline uint16_t
396 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
397 	    uint64_t *err, bool *no_cq)
398 {
399 	const uint16_t q_n = 1 << rxq->cqe_n;
400 	const uint16_t q_mask = q_n - 1;
401 	volatile struct mlx5_cqe *cq;
402 	struct rte_mbuf **elts;
403 	unsigned int pos;
404 	uint64_t n;
405 	uint16_t repl_n;
406 	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
407 	uint16_t nocmp_n = 0;
408 	uint16_t rcvd_pkt = 0;
409 	unsigned int cq_idx = rxq->cq_ci & q_mask;
410 	unsigned int elts_idx;
411 	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
412 	const __m128i owner_check =
413 		_mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
414 	const __m128i opcode_check =
415 		_mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
416 	const __m128i format_check =
417 		_mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
418 	const __m128i resp_err_check =
419 		_mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
420 #ifdef MLX5_PMD_SOFT_COUNTERS
421 	uint32_t rcvd_byte = 0;
422 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
423 	const __m128i len_shuf_mask =
424 		_mm_set_epi8(-1, -1, -1, -1,
425 			     -1, -1, -1, -1,
426 			     12, 13,  8,  9,
427 			      4,  5,  0,  1);
428 #endif
429 	/* Mask to shuffle from extracted CQE to mbuf. */
430 	const __m128i shuf_mask =
431 		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
432 			     12, 13, 14, 15, /* rss, bswap32 */
433 			     10, 11,         /* vlan_tci, bswap16 */
434 			      4,  5,         /* data_len, bswap16 */
435 			     -1, -1,         /* zero out 2nd half of pkt_len */
436 			      4,  5          /* pkt_len, bswap16 */);
437 	/* Mask to blend from the last Qword to the first DQword. */
438 	const __m128i blend_mask =
439 		_mm_set_epi8(-1, -1, -1, -1,
440 			     -1, -1, -1, -1,
441 			      0,  0,  0,  0,
442 			      0,  0,  0, -1);
443 	const __m128i zero = _mm_setzero_si128();
444 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
445 	const __m128i crc_adj =
446 		_mm_set_epi16(0, 0, 0, 0, 0,
447 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
448 			      0,
449 			      rxq->crc_present * RTE_ETHER_CRC_LEN);
450 	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
451 
452 	MLX5_ASSERT(rxq->sges_n == 0);
453 	MLX5_ASSERT(rxq->cqe_n == rxq->elts_n);
454 	cq = &(*rxq->cqes)[cq_idx];
455 	rte_prefetch0(cq);
456 	rte_prefetch0(cq + 1);
457 	rte_prefetch0(cq + 2);
458 	rte_prefetch0(cq + 3);
459 	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
460 	repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
461 	if (repl_n >= rxq->rq_repl_thresh)
462 		mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
463 	/* See if there're unreturned mbufs from compressed CQE. */
464 	rcvd_pkt = rxq->decompressed;
465 	if (rcvd_pkt > 0) {
466 		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
467 		rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
468 		rxq->rq_pi += rcvd_pkt;
469 		rxq->decompressed -= rcvd_pkt;
470 		pkts += rcvd_pkt;
471 	}
472 	elts_idx = rxq->rq_pi & q_mask;
473 	elts = &(*rxq->elts)[elts_idx];
474 	/* Not to overflow pkts array. */
475 	pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
476 	/* Not to cross queue end. */
477 	pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
478 	pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
479 	if (!pkts_n) {
480 		*no_cq = !rcvd_pkt;
481 		return rcvd_pkt;
482 	}
483 	/* At this point, there shouldn't be any remained packets. */
484 	MLX5_ASSERT(rxq->decompressed == 0);
485 	/*
486 	 * A. load first Qword (8bytes) in one loop.
487 	 * B. copy 4 mbuf pointers from elts ring to returing pkts.
488 	 * C. load remained CQE data and extract necessary fields.
489 	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
490 	 *    following structure:
491 	 *        struct {
492 	 *          uint8_t  pkt_info;
493 	 *          uint8_t  flow_tag[3];
494 	 *          uint16_t byte_cnt;
495 	 *          uint8_t  rsvd4;
496 	 *          uint8_t  op_own;
497 	 *          uint16_t hdr_type_etc;
498 	 *          uint16_t vlan_info;
499 	 *          uint32_t rx_has_res;
500 	 *        } c;
501 	 * D. fill in mbuf.
502 	 * E. get valid CQEs.
503 	 * F. find compressed CQE.
504 	 */
505 	for (pos = 0;
506 	     pos < pkts_n;
507 	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
508 		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
509 		__m128i cqe_tmp1, cqe_tmp2;
510 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
511 		__m128i op_own, op_own_tmp1, op_own_tmp2;
512 		__m128i opcode, owner_mask, invalid_mask;
513 		__m128i comp_mask;
514 		__m128i mask;
515 #ifdef MLX5_PMD_SOFT_COUNTERS
516 		__m128i byte_cnt;
517 #endif
518 		__m128i mbp1, mbp2;
519 		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
520 		unsigned int p1, p2, p3;
521 
522 		/* Prefetch next 4 CQEs. */
523 		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
524 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
525 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
526 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
527 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
528 		}
529 		/* A.0 do not cross the end of CQ. */
530 		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
531 		mask = _mm_sll_epi64(ones, mask);
532 		p = _mm_andnot_si128(mask, p);
533 		/* A.1 load cqes. */
534 		p3 = _mm_extract_epi16(p, 3);
535 		cqes[3] = _mm_loadl_epi64((__m128i *)
536 					   &cq[pos + p3].sop_drop_qpn);
537 		rte_compiler_barrier();
538 		p2 = _mm_extract_epi16(p, 2);
539 		cqes[2] = _mm_loadl_epi64((__m128i *)
540 					   &cq[pos + p2].sop_drop_qpn);
541 		rte_compiler_barrier();
542 		/* B.1 load mbuf pointers. */
543 		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
544 		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
545 		/* A.1 load a block having op_own. */
546 		p1 = _mm_extract_epi16(p, 1);
547 		cqes[1] = _mm_loadl_epi64((__m128i *)
548 					   &cq[pos + p1].sop_drop_qpn);
549 		rte_compiler_barrier();
550 		cqes[0] = _mm_loadl_epi64((__m128i *)
551 					   &cq[pos].sop_drop_qpn);
552 		/* B.2 copy mbuf pointers. */
553 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
554 		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
555 		rte_cio_rmb();
556 		/* C.1 load remained CQE data and extract necessary fields. */
557 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
558 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
559 		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
560 		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
561 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
562 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
563 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
564 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
565 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
566 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
567 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
568 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
569 		/* C.2 generate final structure for mbuf with swapping bytes. */
570 		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
571 		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
572 		/* C.3 adjust CRC length. */
573 		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
574 		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
575 		/* C.4 adjust flow mark. */
576 		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
577 		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
578 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
579 		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
580 		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
581 		/* E.1 extract op_own field. */
582 		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
583 		/* C.1 load remained CQE data and extract necessary fields. */
584 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
585 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
586 		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
587 		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
588 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
589 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
590 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
591 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
592 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
593 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
594 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
595 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
596 		/* C.2 generate final structure for mbuf with swapping bytes. */
597 		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
598 		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
599 		/* C.3 adjust CRC length. */
600 		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
601 		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
602 		/* C.4 adjust flow mark. */
603 		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
604 		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
605 		/* E.1 extract op_own byte. */
606 		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
607 		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
608 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
609 		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
610 		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
611 		/* E.2 flip owner bit to mark CQEs from last round. */
612 		owner_mask = _mm_and_si128(op_own, owner_check);
613 		if (ownership)
614 			owner_mask = _mm_xor_si128(owner_mask, owner_check);
615 		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
616 		owner_mask = _mm_packs_epi32(owner_mask, zero);
617 		/* E.3 get mask for invalidated CQEs. */
618 		opcode = _mm_and_si128(op_own, opcode_check);
619 		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
620 		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
621 		/* E.4 mask out beyond boundary. */
622 		invalid_mask = _mm_or_si128(invalid_mask, mask);
623 		/* E.5 merge invalid_mask with invalid owner. */
624 		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
625 		/* F.1 find compressed CQE format. */
626 		comp_mask = _mm_and_si128(op_own, format_check);
627 		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
628 		comp_mask = _mm_packs_epi32(comp_mask, zero);
629 		/* F.2 mask out invalid entries. */
630 		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
631 		comp_idx = _mm_cvtsi128_si64(comp_mask);
632 		/* F.3 get the first compressed CQE. */
633 		comp_idx = comp_idx ?
634 				__builtin_ctzll(comp_idx) /
635 					(sizeof(uint16_t) * 8) :
636 				MLX5_VPMD_DESCS_PER_LOOP;
637 		/* E.6 mask out entries after the compressed CQE. */
638 		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
639 		mask = _mm_sll_epi64(ones, mask);
640 		invalid_mask = _mm_or_si128(invalid_mask, mask);
641 		/* E.7 count non-compressed valid CQEs. */
642 		n = _mm_cvtsi128_si64(invalid_mask);
643 		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
644 			MLX5_VPMD_DESCS_PER_LOOP;
645 		nocmp_n += n;
646 		/* D.2 get the final invalid mask. */
647 		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
648 		mask = _mm_sll_epi64(ones, mask);
649 		invalid_mask = _mm_or_si128(invalid_mask, mask);
650 		/* D.3 check error in opcode. */
651 		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
652 		opcode = _mm_packs_epi32(opcode, zero);
653 		opcode = _mm_andnot_si128(invalid_mask, opcode);
654 		/* D.4 mark if any error is set */
655 		*err |= _mm_cvtsi128_si64(opcode);
656 		/* D.5 fill in mbuf - rearm_data and packet_type. */
657 		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
658 		if (rxq->hw_timestamp) {
659 			if (rxq->rt_timestamp) {
660 				struct mlx5_dev_ctx_shared *sh = rxq->sh;
661 				uint64_t ts;
662 
663 				ts = rte_be_to_cpu_64(cq[pos].timestamp);
664 				pkts[pos]->timestamp =
665 					mlx5_txpp_convert_rx_ts(sh, ts);
666 				ts = rte_be_to_cpu_64(cq[pos + p1].timestamp);
667 				pkts[pos + 1]->timestamp =
668 					mlx5_txpp_convert_rx_ts(sh, ts);
669 				ts = rte_be_to_cpu_64(cq[pos + p2].timestamp);
670 				pkts[pos + 2]->timestamp =
671 					mlx5_txpp_convert_rx_ts(sh, ts);
672 				ts = rte_be_to_cpu_64(cq[pos + p3].timestamp);
673 				pkts[pos + 3]->timestamp =
674 					mlx5_txpp_convert_rx_ts(sh, ts);
675 			} else {
676 				pkts[pos]->timestamp = rte_be_to_cpu_64
677 						(cq[pos].timestamp);
678 				pkts[pos + 1]->timestamp = rte_be_to_cpu_64
679 						(cq[pos + p1].timestamp);
680 				pkts[pos + 2]->timestamp = rte_be_to_cpu_64
681 						(cq[pos + p2].timestamp);
682 				pkts[pos + 3]->timestamp = rte_be_to_cpu_64
683 						(cq[pos + p3].timestamp);
684 			}
685 		}
686 		if (rxq->dynf_meta) {
687 			/* This code is subject for futher optimization. */
688 			int32_t offs = rxq->flow_meta_offset;
689 
690 			*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
691 				cq[pos].flow_table_metadata;
692 			*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
693 				cq[pos + p1].flow_table_metadata;
694 			*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
695 				cq[pos + p2].flow_table_metadata;
696 			*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
697 				cq[pos + p3].flow_table_metadata;
698 			if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
699 				pkts[pos]->ol_flags |= rxq->flow_meta_mask;
700 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
701 				pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
702 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
703 				pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
704 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
705 				pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
706 		}
707 #ifdef MLX5_PMD_SOFT_COUNTERS
708 		/* Add up received bytes count. */
709 		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
710 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
711 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
712 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
713 #endif
714 		/*
715 		 * Break the loop unless more valid CQE is expected, or if
716 		 * there's a compressed CQE.
717 		 */
718 		if (n != MLX5_VPMD_DESCS_PER_LOOP)
719 			break;
720 	}
721 	/* If no new CQE seen, return without updating cq_db. */
722 	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) {
723 		*no_cq = true;
724 		return rcvd_pkt;
725 	}
726 	/* Update the consumer indexes for non-compressed CQEs. */
727 	MLX5_ASSERT(nocmp_n <= pkts_n);
728 	rxq->cq_ci += nocmp_n;
729 	rxq->rq_pi += nocmp_n;
730 	rcvd_pkt += nocmp_n;
731 #ifdef MLX5_PMD_SOFT_COUNTERS
732 	rxq->stats.ipackets += nocmp_n;
733 	rxq->stats.ibytes += rcvd_byte;
734 #endif
735 	/* Decompress the last CQE if compressed. */
736 	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
737 		MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
738 		rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
739 							&elts[nocmp_n]);
740 		/* Return more packets if needed. */
741 		if (nocmp_n < pkts_n) {
742 			uint16_t n = rxq->decompressed;
743 
744 			n = RTE_MIN(n, pkts_n - nocmp_n);
745 			rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
746 			rxq->rq_pi += n;
747 			rcvd_pkt += n;
748 			rxq->decompressed -= n;
749 		}
750 	}
751 	rte_compiler_barrier();
752 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
753 	*no_cq = !rcvd_pkt;
754 	return rcvd_pkt;
755 }
756 
757 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */
758