1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2017 6WIND S.A. 3 * Copyright 2017 Mellanox Technologies, Ltd 4 */ 5 6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_ 7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_ 8 9 #include <assert.h> 10 #include <stdint.h> 11 #include <string.h> 12 #include <stdlib.h> 13 #include <smmintrin.h> 14 15 #include <rte_mbuf.h> 16 #include <rte_mempool.h> 17 #include <rte_prefetch.h> 18 19 #include "mlx5.h" 20 #include "mlx5_utils.h" 21 #include "mlx5_rxtx.h" 22 #include "mlx5_rxtx_vec.h" 23 #include "mlx5_autoconf.h" 24 #include "mlx5_defs.h" 25 #include "mlx5_prm.h" 26 27 #ifndef __INTEL_COMPILER 28 #pragma GCC diagnostic ignored "-Wcast-qual" 29 #endif 30 31 /** 32 * Fill in buffer descriptors in a multi-packet send descriptor. 33 * 34 * @param txq 35 * Pointer to TX queue structure. 36 * @param dseg 37 * Pointer to buffer descriptor to be written. 38 * @param pkts 39 * Pointer to array of packets to be sent. 40 * @param n 41 * Number of packets to be filled. 42 */ 43 static inline void 44 txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg, 45 struct rte_mbuf **pkts, unsigned int n) 46 { 47 unsigned int pos; 48 uintptr_t addr; 49 const __m128i shuf_mask_dseg = 50 _mm_set_epi8(8, 9, 10, 11, /* addr, bswap64 */ 51 12, 13, 14, 15, 52 7, 6, 5, 4, /* lkey */ 53 0, 1, 2, 3 /* length, bswap32 */); 54 #ifdef MLX5_PMD_SOFT_COUNTERS 55 uint32_t tx_byte = 0; 56 #endif 57 58 for (pos = 0; pos < n; ++pos, ++dseg) { 59 __m128i desc; 60 struct rte_mbuf *pkt = pkts[pos]; 61 62 addr = rte_pktmbuf_mtod(pkt, uintptr_t); 63 desc = _mm_set_epi32(addr >> 32, 64 addr, 65 mlx5_tx_mb2mr(txq, pkt), 66 DATA_LEN(pkt)); 67 desc = _mm_shuffle_epi8(desc, shuf_mask_dseg); 68 _mm_store_si128(dseg, desc); 69 #ifdef MLX5_PMD_SOFT_COUNTERS 70 tx_byte += DATA_LEN(pkt); 71 #endif 72 } 73 #ifdef MLX5_PMD_SOFT_COUNTERS 74 txq->stats.obytes += tx_byte; 75 #endif 76 } 77 78 /** 79 * Send multi-segmented packets until it encounters a single segment packet in 80 * the pkts list. 81 * 82 * @param txq 83 * Pointer to TX queue structure. 84 * @param pkts 85 * Pointer to array of packets to be sent. 86 * @param pkts_n 87 * Number of packets to be sent. 88 * 89 * @return 90 * Number of packets successfully transmitted (<= pkts_n). 91 */ 92 static uint16_t 93 txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, 94 uint16_t pkts_n) 95 { 96 uint16_t elts_head = txq->elts_head; 97 const uint16_t elts_n = 1 << txq->elts_n; 98 const uint16_t elts_m = elts_n - 1; 99 const uint16_t wq_n = 1 << txq->wqe_n; 100 const uint16_t wq_mask = wq_n - 1; 101 const unsigned int nb_dword_per_wqebb = 102 MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE; 103 const unsigned int nb_dword_in_hdr = 104 sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE; 105 unsigned int n; 106 volatile struct mlx5_wqe *wqe = NULL; 107 bool metadata_ol = 108 txq->offloads & DEV_TX_OFFLOAD_MATCH_METADATA ? true : false; 109 110 assert(elts_n > pkts_n); 111 mlx5_tx_complete(txq); 112 if (unlikely(!pkts_n)) 113 return 0; 114 for (n = 0; n < pkts_n; ++n) { 115 struct rte_mbuf *buf = pkts[n]; 116 unsigned int segs_n = buf->nb_segs; 117 unsigned int ds = nb_dword_in_hdr; 118 unsigned int len = PKT_LEN(buf); 119 uint16_t wqe_ci = txq->wqe_ci; 120 const __m128i shuf_mask_ctrl = 121 _mm_set_epi8(15, 14, 13, 12, 122 8, 9, 10, 11, /* bswap32 */ 123 4, 5, 6, 7, /* bswap32 */ 124 0, 1, 2, 3 /* bswap32 */); 125 uint8_t cs_flags; 126 uint16_t max_elts; 127 uint16_t max_wqe; 128 __m128i *t_wqe, *dseg; 129 __m128i ctrl; 130 rte_be32_t metadata = 131 metadata_ol && (buf->ol_flags & PKT_TX_METADATA) ? 132 buf->tx_metadata : 0; 133 134 assert(segs_n); 135 max_elts = elts_n - (elts_head - txq->elts_tail); 136 max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi); 137 /* 138 * A MPW session consumes 2 WQEs at most to 139 * include MLX5_MPW_DSEG_MAX pointers. 140 */ 141 if (segs_n == 1 || 142 max_elts < segs_n || max_wqe < 2) 143 break; 144 if (segs_n > MLX5_MPW_DSEG_MAX) { 145 txq->stats.oerrors++; 146 break; 147 } 148 wqe = &((volatile struct mlx5_wqe64 *) 149 txq->wqes)[wqe_ci & wq_mask].hdr; 150 cs_flags = txq_ol_cksum_to_cs(buf); 151 /* Title WQEBB pointer. */ 152 t_wqe = (__m128i *)wqe; 153 dseg = (__m128i *)(wqe + 1); 154 do { 155 if (!(ds++ % nb_dword_per_wqebb)) { 156 dseg = (__m128i *) 157 &((volatile struct mlx5_wqe64 *) 158 txq->wqes)[++wqe_ci & wq_mask]; 159 } 160 txq_wr_dseg_v(txq, dseg++, &buf, 1); 161 (*txq->elts)[elts_head++ & elts_m] = buf; 162 buf = buf->next; 163 } while (--segs_n); 164 ++wqe_ci; 165 /* Fill CTRL in the header. */ 166 ctrl = _mm_set_epi32(0, 4, txq->qp_num_8s | ds, 167 MLX5_OPC_MOD_MPW << 24 | 168 txq->wqe_ci << 8 | MLX5_OPCODE_TSO); 169 ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl); 170 _mm_store_si128(t_wqe, ctrl); 171 /* Fill ESEG in the header. */ 172 _mm_store_si128(t_wqe + 1, 173 _mm_set_epi32(0, metadata, 174 (rte_cpu_to_be_16(len) << 16) | 175 cs_flags, 0)); 176 txq->wqe_ci = wqe_ci; 177 } 178 if (!n) 179 return 0; 180 txq->elts_comp += (uint16_t)(elts_head - txq->elts_head); 181 txq->elts_head = elts_head; 182 if (txq->elts_comp >= MLX5_TX_COMP_THRESH) { 183 /* A CQE slot must always be available. */ 184 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci)); 185 wqe->ctrl[2] = rte_cpu_to_be_32(MLX5_COMP_ALWAYS << 186 MLX5_COMP_MODE_OFFSET); 187 wqe->ctrl[3] = txq->elts_head; 188 txq->elts_comp = 0; 189 } 190 #ifdef MLX5_PMD_SOFT_COUNTERS 191 txq->stats.opackets += n; 192 #endif 193 mlx5_tx_dbrec(txq, wqe); 194 return n; 195 } 196 197 /** 198 * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet, 199 * it returns to make it processed by txq_scatter_v(). All the packets in 200 * the pkts list should be single segment packets having same offload flags. 201 * This must be checked by txq_count_contig_single_seg() and txq_calc_offload(). 202 * 203 * @param txq 204 * Pointer to TX queue structure. 205 * @param pkts 206 * Pointer to array of packets to be sent. 207 * @param pkts_n 208 * Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST). 209 * @param cs_flags 210 * Checksum offload flags to be written in the descriptor. 211 * @param metadata 212 * Metadata value to be written in the descriptor. 213 * 214 * @return 215 * Number of packets successfully transmitted (<= pkts_n). 216 */ 217 static inline uint16_t 218 txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n, 219 uint8_t cs_flags, rte_be32_t metadata) 220 { 221 struct rte_mbuf **elts; 222 uint16_t elts_head = txq->elts_head; 223 const uint16_t elts_n = 1 << txq->elts_n; 224 const uint16_t elts_m = elts_n - 1; 225 const unsigned int nb_dword_per_wqebb = 226 MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE; 227 const unsigned int nb_dword_in_hdr = 228 sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE; 229 unsigned int n = 0; 230 unsigned int pos; 231 uint16_t max_elts; 232 uint16_t max_wqe; 233 uint32_t comp_req; 234 const uint16_t wq_n = 1 << txq->wqe_n; 235 const uint16_t wq_mask = wq_n - 1; 236 uint16_t wq_idx = txq->wqe_ci & wq_mask; 237 volatile struct mlx5_wqe64 *wq = 238 &((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx]; 239 volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq; 240 const __m128i shuf_mask_ctrl = 241 _mm_set_epi8(15, 14, 13, 12, 242 8, 9, 10, 11, /* bswap32 */ 243 4, 5, 6, 7, /* bswap32 */ 244 0, 1, 2, 3 /* bswap32 */); 245 __m128i *t_wqe, *dseg; 246 __m128i ctrl; 247 248 /* Make sure all packets can fit into a single WQE. */ 249 assert(elts_n > pkts_n); 250 mlx5_tx_complete(txq); 251 max_elts = (elts_n - (elts_head - txq->elts_tail)); 252 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi); 253 pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts); 254 assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr); 255 if (unlikely(!pkts_n)) 256 return 0; 257 elts = &(*txq->elts)[elts_head & elts_m]; 258 /* Loop for available tailroom first. */ 259 n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n); 260 for (pos = 0; pos < (n & -2); pos += 2) 261 _mm_storeu_si128((__m128i *)&elts[pos], 262 _mm_loadu_si128((__m128i *)&pkts[pos])); 263 if (n & 1) 264 elts[pos] = pkts[pos]; 265 /* Check if it crosses the end of the queue. */ 266 if (unlikely(n < pkts_n)) { 267 elts = &(*txq->elts)[0]; 268 for (pos = 0; pos < pkts_n - n; ++pos) 269 elts[pos] = pkts[n + pos]; 270 } 271 txq->elts_head += pkts_n; 272 /* Save title WQEBB pointer. */ 273 t_wqe = (__m128i *)wqe; 274 dseg = (__m128i *)(wqe + 1); 275 /* Calculate the number of entries to the end. */ 276 n = RTE_MIN( 277 (wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr, 278 pkts_n); 279 /* Fill DSEGs. */ 280 txq_wr_dseg_v(txq, dseg, pkts, n); 281 /* Check if it crosses the end of the queue. */ 282 if (n < pkts_n) { 283 dseg = (__m128i *)txq->wqes; 284 txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n); 285 } 286 if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) { 287 txq->elts_comp += pkts_n; 288 comp_req = MLX5_COMP_ONLY_FIRST_ERR << MLX5_COMP_MODE_OFFSET; 289 } else { 290 /* A CQE slot must always be available. */ 291 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci)); 292 /* Request a completion. */ 293 txq->elts_comp = 0; 294 comp_req = MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET; 295 } 296 /* Fill CTRL in the header. */ 297 ctrl = _mm_set_epi32(txq->elts_head, comp_req, 298 txq->qp_num_8s | (pkts_n + 2), 299 MLX5_OPC_MOD_ENHANCED_MPSW << 24 | 300 txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW); 301 ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl); 302 _mm_store_si128(t_wqe, ctrl); 303 /* Fill ESEG in the header. */ 304 _mm_store_si128(t_wqe + 1, _mm_set_epi32(0, metadata, cs_flags, 0)); 305 #ifdef MLX5_PMD_SOFT_COUNTERS 306 txq->stats.opackets += pkts_n; 307 #endif 308 txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) / 309 nb_dword_per_wqebb; 310 /* Ring QP doorbell. */ 311 mlx5_tx_dbrec_cond_wmb(txq, wqe, pkts_n < MLX5_VPMD_TX_MAX_BURST); 312 return pkts_n; 313 } 314 315 /** 316 * Store free buffers to RX SW ring. 317 * 318 * @param rxq 319 * Pointer to RX queue structure. 320 * @param pkts 321 * Pointer to array of packets to be stored. 322 * @param pkts_n 323 * Number of packets to be stored. 324 */ 325 static inline void 326 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n) 327 { 328 const uint16_t q_mask = (1 << rxq->elts_n) - 1; 329 struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask]; 330 unsigned int pos; 331 uint16_t p = n & -2; 332 333 for (pos = 0; pos < p; pos += 2) { 334 __m128i mbp; 335 336 mbp = _mm_loadu_si128((__m128i *)&elts[pos]); 337 _mm_storeu_si128((__m128i *)&pkts[pos], mbp); 338 } 339 if (n & 1) 340 pkts[pos] = elts[pos]; 341 } 342 343 /** 344 * Decompress a compressed completion and fill in mbufs in RX SW ring with data 345 * extracted from the title completion descriptor. 346 * 347 * @param rxq 348 * Pointer to RX queue structure. 349 * @param cq 350 * Pointer to completion array having a compressed completion at first. 351 * @param elts 352 * Pointer to SW ring to be filled. The first mbuf has to be pre-built from 353 * the title completion descriptor to be copied to the rest of mbufs. 354 * 355 * @return 356 * Number of mini-CQEs successfully decompressed. 357 */ 358 static inline uint16_t 359 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq, 360 struct rte_mbuf **elts) 361 { 362 volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1); 363 struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */ 364 unsigned int pos; 365 unsigned int i; 366 unsigned int inv = 0; 367 /* Mask to shuffle from extracted mini CQE to mbuf. */ 368 const __m128i shuf_mask1 = 369 _mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */ 370 -1, -1, /* skip vlan_tci */ 371 6, 7, /* data_len, bswap16 */ 372 -1, -1, 6, 7, /* pkt_len, bswap16 */ 373 -1, -1, -1, -1 /* skip packet_type */); 374 const __m128i shuf_mask2 = 375 _mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */ 376 -1, -1, /* skip vlan_tci */ 377 14, 15, /* data_len, bswap16 */ 378 -1, -1, 14, 15, /* pkt_len, bswap16 */ 379 -1, -1, -1, -1 /* skip packet_type */); 380 /* Restore the compressed count. Must be 16 bits. */ 381 const uint16_t mcqe_n = t_pkt->data_len + 382 (rxq->crc_present * RTE_ETHER_CRC_LEN); 383 const __m128i rearm = 384 _mm_loadu_si128((__m128i *)&t_pkt->rearm_data); 385 const __m128i rxdf = 386 _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1); 387 const __m128i crc_adj = 388 _mm_set_epi16(0, 0, 0, 389 rxq->crc_present * RTE_ETHER_CRC_LEN, 390 0, 391 rxq->crc_present * RTE_ETHER_CRC_LEN, 392 0, 0); 393 const uint32_t flow_tag = t_pkt->hash.fdir.hi; 394 #ifdef MLX5_PMD_SOFT_COUNTERS 395 const __m128i zero = _mm_setzero_si128(); 396 const __m128i ones = _mm_cmpeq_epi32(zero, zero); 397 uint32_t rcvd_byte = 0; 398 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */ 399 const __m128i len_shuf_mask = 400 _mm_set_epi8(-1, -1, -1, -1, 401 -1, -1, -1, -1, 402 14, 15, 6, 7, 403 10, 11, 2, 3); 404 #endif 405 406 /* 407 * A. load mCQEs into a 128bit register. 408 * B. store rearm data to mbuf. 409 * C. combine data from mCQEs with rx_descriptor_fields1. 410 * D. store rx_descriptor_fields1. 411 * E. store flow tag (rte_flow mark). 412 */ 413 for (pos = 0; pos < mcqe_n; ) { 414 __m128i mcqe1, mcqe2; 415 __m128i rxdf1, rxdf2; 416 #ifdef MLX5_PMD_SOFT_COUNTERS 417 __m128i byte_cnt, invalid_mask; 418 #endif 419 420 if (!(pos & 0x7) && pos + 8 < mcqe_n) 421 rte_prefetch0((void *)(cq + pos + 8)); 422 /* A.1 load mCQEs into a 128bit register. */ 423 mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]); 424 mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]); 425 /* B.1 store rearm data to mbuf. */ 426 _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm); 427 _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm); 428 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */ 429 rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1); 430 rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2); 431 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj); 432 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj); 433 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23); 434 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23); 435 /* D.1 store rx_descriptor_fields1. */ 436 _mm_storeu_si128((__m128i *) 437 &elts[pos]->rx_descriptor_fields1, 438 rxdf1); 439 _mm_storeu_si128((__m128i *) 440 &elts[pos + 1]->rx_descriptor_fields1, 441 rxdf2); 442 /* B.1 store rearm data to mbuf. */ 443 _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm); 444 _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm); 445 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */ 446 rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1); 447 rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2); 448 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj); 449 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj); 450 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23); 451 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23); 452 /* D.1 store rx_descriptor_fields1. */ 453 _mm_storeu_si128((__m128i *) 454 &elts[pos + 2]->rx_descriptor_fields1, 455 rxdf1); 456 _mm_storeu_si128((__m128i *) 457 &elts[pos + 3]->rx_descriptor_fields1, 458 rxdf2); 459 #ifdef MLX5_PMD_SOFT_COUNTERS 460 invalid_mask = _mm_set_epi64x(0, 461 (mcqe_n - pos) * 462 sizeof(uint16_t) * 8); 463 invalid_mask = _mm_sll_epi64(ones, invalid_mask); 464 mcqe1 = _mm_srli_si128(mcqe1, 4); 465 byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc); 466 byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask); 467 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt); 468 byte_cnt = _mm_hadd_epi16(byte_cnt, zero); 469 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero)); 470 #endif 471 if (rxq->mark) { 472 /* E.1 store flow tag (rte_flow mark). */ 473 elts[pos]->hash.fdir.hi = flow_tag; 474 elts[pos + 1]->hash.fdir.hi = flow_tag; 475 elts[pos + 2]->hash.fdir.hi = flow_tag; 476 elts[pos + 3]->hash.fdir.hi = flow_tag; 477 } 478 pos += MLX5_VPMD_DESCS_PER_LOOP; 479 /* Move to next CQE and invalidate consumed CQEs. */ 480 if (!(pos & 0x7) && pos < mcqe_n) { 481 mcq = (void *)(cq + pos); 482 for (i = 0; i < 8; ++i) 483 cq[inv++].op_own = MLX5_CQE_INVALIDATE; 484 } 485 } 486 /* Invalidate the rest of CQEs. */ 487 for (; inv < mcqe_n; ++inv) 488 cq[inv].op_own = MLX5_CQE_INVALIDATE; 489 #ifdef MLX5_PMD_SOFT_COUNTERS 490 rxq->stats.ipackets += mcqe_n; 491 rxq->stats.ibytes += rcvd_byte; 492 #endif 493 rxq->cq_ci += mcqe_n; 494 return mcqe_n; 495 } 496 497 /** 498 * Calculate packet type and offload flag for mbuf and store it. 499 * 500 * @param rxq 501 * Pointer to RX queue structure. 502 * @param cqes[4] 503 * Array of four 16bytes completions extracted from the original completion 504 * descriptor. 505 * @param op_err 506 * Opcode vector having responder error status. Each field is 4B. 507 * @param pkts 508 * Pointer to array of packets to be filled. 509 */ 510 static inline void 511 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4], 512 __m128i op_err, struct rte_mbuf **pkts) 513 { 514 __m128i pinfo0, pinfo1; 515 __m128i pinfo, ptype; 516 __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH | 517 rxq->hw_timestamp * PKT_RX_TIMESTAMP); 518 __m128i cv_flags; 519 const __m128i zero = _mm_setzero_si128(); 520 const __m128i ptype_mask = 521 _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06); 522 const __m128i ptype_ol_mask = 523 _mm_set_epi32(0x106, 0x106, 0x106, 0x106); 524 const __m128i pinfo_mask = 525 _mm_set_epi32(0x3, 0x3, 0x3, 0x3); 526 const __m128i cv_flag_sel = 527 _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 528 (uint8_t)((PKT_RX_IP_CKSUM_GOOD | 529 PKT_RX_L4_CKSUM_GOOD) >> 1), 530 0, 531 (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1), 532 0, 533 (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1), 534 (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED), 535 0); 536 const __m128i cv_mask = 537 _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD | 538 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 539 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD | 540 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 541 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD | 542 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 543 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD | 544 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED); 545 const __m128i mbuf_init = 546 _mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer); 547 __m128i rearm0, rearm1, rearm2, rearm3; 548 uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3; 549 550 /* Extract pkt_info field. */ 551 pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]); 552 pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]); 553 pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1); 554 /* Extract hdr_type_etc field. */ 555 pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]); 556 pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]); 557 ptype = _mm_unpacklo_epi64(pinfo0, pinfo1); 558 if (rxq->mark) { 559 const __m128i pinfo_ft_mask = 560 _mm_set_epi32(0xffffff00, 0xffffff00, 561 0xffffff00, 0xffffff00); 562 const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR); 563 __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID); 564 __m128i flow_tag, invalid_mask; 565 566 flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask); 567 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */ 568 invalid_mask = _mm_cmpeq_epi32(flow_tag, zero); 569 ol_flags = _mm_or_si128(ol_flags, 570 _mm_andnot_si128(invalid_mask, 571 fdir_flags)); 572 /* Mask out invalid entries. */ 573 fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags); 574 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */ 575 ol_flags = _mm_or_si128(ol_flags, 576 _mm_andnot_si128( 577 _mm_cmpeq_epi32(flow_tag, 578 pinfo_ft_mask), 579 fdir_id_flags)); 580 } 581 /* 582 * Merge the two fields to generate the following: 583 * bit[1] = l3_ok 584 * bit[2] = l4_ok 585 * bit[8] = cv 586 * bit[11:10] = l3_hdr_type 587 * bit[14:12] = l4_hdr_type 588 * bit[15] = ip_frag 589 * bit[16] = tunneled 590 * bit[17] = outer_l3_type 591 */ 592 ptype = _mm_and_si128(ptype, ptype_mask); 593 pinfo = _mm_and_si128(pinfo, pinfo_mask); 594 pinfo = _mm_slli_epi32(pinfo, 16); 595 /* Make pinfo has merged fields for ol_flags calculation. */ 596 pinfo = _mm_or_si128(ptype, pinfo); 597 ptype = _mm_srli_epi32(pinfo, 10); 598 ptype = _mm_packs_epi32(ptype, zero); 599 /* Errored packets will have RTE_PTYPE_ALL_MASK. */ 600 op_err = _mm_srli_epi16(op_err, 8); 601 ptype = _mm_or_si128(ptype, op_err); 602 pt_idx0 = _mm_extract_epi8(ptype, 0); 603 pt_idx1 = _mm_extract_epi8(ptype, 2); 604 pt_idx2 = _mm_extract_epi8(ptype, 4); 605 pt_idx3 = _mm_extract_epi8(ptype, 6); 606 pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] | 607 !!(pt_idx0 & (1 << 6)) * rxq->tunnel; 608 pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] | 609 !!(pt_idx1 & (1 << 6)) * rxq->tunnel; 610 pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] | 611 !!(pt_idx2 & (1 << 6)) * rxq->tunnel; 612 pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] | 613 !!(pt_idx3 & (1 << 6)) * rxq->tunnel; 614 /* Fill flags for checksum and VLAN. */ 615 pinfo = _mm_and_si128(pinfo, ptype_ol_mask); 616 pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo); 617 /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */ 618 cv_flags = _mm_slli_epi32(pinfo, 9); 619 cv_flags = _mm_or_si128(pinfo, cv_flags); 620 /* Move back flags to start from byte[0]. */ 621 cv_flags = _mm_srli_epi32(cv_flags, 8); 622 /* Mask out garbage bits. */ 623 cv_flags = _mm_and_si128(cv_flags, cv_mask); 624 /* Merge to ol_flags. */ 625 ol_flags = _mm_or_si128(ol_flags, cv_flags); 626 /* Merge mbuf_init and ol_flags. */ 627 rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30); 628 rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30); 629 rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30); 630 rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30); 631 /* Write 8B rearm_data and 8B ol_flags. */ 632 _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0); 633 _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1); 634 _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2); 635 _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3); 636 } 637 638 /** 639 * Receive burst of packets. An errored completion also consumes a mbuf, but the 640 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed 641 * before returning to application. 642 * 643 * @param rxq 644 * Pointer to RX queue structure. 645 * @param[out] pkts 646 * Array to store received packets. 647 * @param pkts_n 648 * Maximum number of packets in array. 649 * @param[out] err 650 * Pointer to a flag. Set non-zero value if pkts array has at least one error 651 * packet to handle. 652 * 653 * @return 654 * Number of packets received including errors (<= pkts_n). 655 */ 656 static inline uint16_t 657 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n, 658 uint64_t *err) 659 { 660 const uint16_t q_n = 1 << rxq->cqe_n; 661 const uint16_t q_mask = q_n - 1; 662 volatile struct mlx5_cqe *cq; 663 struct rte_mbuf **elts; 664 unsigned int pos; 665 uint64_t n; 666 uint16_t repl_n; 667 uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP; 668 uint16_t nocmp_n = 0; 669 uint16_t rcvd_pkt = 0; 670 unsigned int cq_idx = rxq->cq_ci & q_mask; 671 unsigned int elts_idx; 672 unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1)); 673 const __m128i owner_check = 674 _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL); 675 const __m128i opcode_check = 676 _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL); 677 const __m128i format_check = 678 _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL); 679 const __m128i resp_err_check = 680 _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL); 681 #ifdef MLX5_PMD_SOFT_COUNTERS 682 uint32_t rcvd_byte = 0; 683 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */ 684 const __m128i len_shuf_mask = 685 _mm_set_epi8(-1, -1, -1, -1, 686 -1, -1, -1, -1, 687 12, 13, 8, 9, 688 4, 5, 0, 1); 689 #endif 690 /* Mask to shuffle from extracted CQE to mbuf. */ 691 const __m128i shuf_mask = 692 _mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */ 693 12, 13, 14, 15, /* rss, bswap32 */ 694 10, 11, /* vlan_tci, bswap16 */ 695 4, 5, /* data_len, bswap16 */ 696 -1, -1, /* zero out 2nd half of pkt_len */ 697 4, 5 /* pkt_len, bswap16 */); 698 /* Mask to blend from the last Qword to the first DQword. */ 699 const __m128i blend_mask = 700 _mm_set_epi8(-1, -1, -1, -1, 701 -1, -1, -1, -1, 702 0, 0, 0, 0, 703 0, 0, 0, -1); 704 const __m128i zero = _mm_setzero_si128(); 705 const __m128i ones = _mm_cmpeq_epi32(zero, zero); 706 const __m128i crc_adj = 707 _mm_set_epi16(0, 0, 0, 0, 0, 708 rxq->crc_present * RTE_ETHER_CRC_LEN, 709 0, 710 rxq->crc_present * RTE_ETHER_CRC_LEN); 711 const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0); 712 713 assert(rxq->sges_n == 0); 714 assert(rxq->cqe_n == rxq->elts_n); 715 cq = &(*rxq->cqes)[cq_idx]; 716 rte_prefetch0(cq); 717 rte_prefetch0(cq + 1); 718 rte_prefetch0(cq + 2); 719 rte_prefetch0(cq + 3); 720 pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST); 721 repl_n = q_n - (rxq->rq_ci - rxq->rq_pi); 722 if (repl_n >= rxq->rq_repl_thresh) 723 mlx5_rx_replenish_bulk_mbuf(rxq, repl_n); 724 /* See if there're unreturned mbufs from compressed CQE. */ 725 rcvd_pkt = rxq->decompressed; 726 if (rcvd_pkt > 0) { 727 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n); 728 rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt); 729 rxq->rq_pi += rcvd_pkt; 730 rxq->decompressed -= rcvd_pkt; 731 pkts += rcvd_pkt; 732 } 733 elts_idx = rxq->rq_pi & q_mask; 734 elts = &(*rxq->elts)[elts_idx]; 735 /* Not to overflow pkts array. */ 736 pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP); 737 /* Not to cross queue end. */ 738 pkts_n = RTE_MIN(pkts_n, q_n - elts_idx); 739 pkts_n = RTE_MIN(pkts_n, q_n - cq_idx); 740 if (!pkts_n) 741 return rcvd_pkt; 742 /* At this point, there shouldn't be any remained packets. */ 743 assert(rxq->decompressed == 0); 744 /* 745 * A. load first Qword (8bytes) in one loop. 746 * B. copy 4 mbuf pointers from elts ring to returing pkts. 747 * C. load remained CQE data and extract necessary fields. 748 * Final 16bytes cqes[] extracted from original 64bytes CQE has the 749 * following structure: 750 * struct { 751 * uint8_t pkt_info; 752 * uint8_t flow_tag[3]; 753 * uint16_t byte_cnt; 754 * uint8_t rsvd4; 755 * uint8_t op_own; 756 * uint16_t hdr_type_etc; 757 * uint16_t vlan_info; 758 * uint32_t rx_has_res; 759 * } c; 760 * D. fill in mbuf. 761 * E. get valid CQEs. 762 * F. find compressed CQE. 763 */ 764 for (pos = 0; 765 pos < pkts_n; 766 pos += MLX5_VPMD_DESCS_PER_LOOP) { 767 __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP]; 768 __m128i cqe_tmp1, cqe_tmp2; 769 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3; 770 __m128i op_own, op_own_tmp1, op_own_tmp2; 771 __m128i opcode, owner_mask, invalid_mask; 772 __m128i comp_mask; 773 __m128i mask; 774 #ifdef MLX5_PMD_SOFT_COUNTERS 775 __m128i byte_cnt; 776 #endif 777 __m128i mbp1, mbp2; 778 __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0); 779 unsigned int p1, p2, p3; 780 781 /* Prefetch next 4 CQEs. */ 782 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) { 783 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]); 784 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]); 785 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]); 786 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]); 787 } 788 /* A.0 do not cross the end of CQ. */ 789 mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8); 790 mask = _mm_sll_epi64(ones, mask); 791 p = _mm_andnot_si128(mask, p); 792 /* A.1 load cqes. */ 793 p3 = _mm_extract_epi16(p, 3); 794 cqes[3] = _mm_loadl_epi64((__m128i *) 795 &cq[pos + p3].sop_drop_qpn); 796 rte_compiler_barrier(); 797 p2 = _mm_extract_epi16(p, 2); 798 cqes[2] = _mm_loadl_epi64((__m128i *) 799 &cq[pos + p2].sop_drop_qpn); 800 rte_compiler_barrier(); 801 /* B.1 load mbuf pointers. */ 802 mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]); 803 mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]); 804 /* A.1 load a block having op_own. */ 805 p1 = _mm_extract_epi16(p, 1); 806 cqes[1] = _mm_loadl_epi64((__m128i *) 807 &cq[pos + p1].sop_drop_qpn); 808 rte_compiler_barrier(); 809 cqes[0] = _mm_loadl_epi64((__m128i *) 810 &cq[pos].sop_drop_qpn); 811 /* B.2 copy mbuf pointers. */ 812 _mm_storeu_si128((__m128i *)&pkts[pos], mbp1); 813 _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2); 814 rte_cio_rmb(); 815 /* C.1 load remained CQE data and extract necessary fields. */ 816 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]); 817 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]); 818 cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask); 819 cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask); 820 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]); 821 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]); 822 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30); 823 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30); 824 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]); 825 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]); 826 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04); 827 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04); 828 /* C.2 generate final structure for mbuf with swapping bytes. */ 829 pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask); 830 pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask); 831 /* C.3 adjust CRC length. */ 832 pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj); 833 pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj); 834 /* C.4 adjust flow mark. */ 835 pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj); 836 pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj); 837 /* D.1 fill in mbuf - rx_descriptor_fields1. */ 838 _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3); 839 _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2); 840 /* E.1 extract op_own field. */ 841 op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]); 842 /* C.1 load remained CQE data and extract necessary fields. */ 843 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]); 844 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]); 845 cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask); 846 cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask); 847 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]); 848 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]); 849 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30); 850 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30); 851 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]); 852 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]); 853 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04); 854 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04); 855 /* C.2 generate final structure for mbuf with swapping bytes. */ 856 pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask); 857 pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask); 858 /* C.3 adjust CRC length. */ 859 pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj); 860 pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj); 861 /* C.4 adjust flow mark. */ 862 pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj); 863 pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj); 864 /* E.1 extract op_own byte. */ 865 op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]); 866 op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2); 867 /* D.1 fill in mbuf - rx_descriptor_fields1. */ 868 _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1); 869 _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0); 870 /* E.2 flip owner bit to mark CQEs from last round. */ 871 owner_mask = _mm_and_si128(op_own, owner_check); 872 if (ownership) 873 owner_mask = _mm_xor_si128(owner_mask, owner_check); 874 owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check); 875 owner_mask = _mm_packs_epi32(owner_mask, zero); 876 /* E.3 get mask for invalidated CQEs. */ 877 opcode = _mm_and_si128(op_own, opcode_check); 878 invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode); 879 invalid_mask = _mm_packs_epi32(invalid_mask, zero); 880 /* E.4 mask out beyond boundary. */ 881 invalid_mask = _mm_or_si128(invalid_mask, mask); 882 /* E.5 merge invalid_mask with invalid owner. */ 883 invalid_mask = _mm_or_si128(invalid_mask, owner_mask); 884 /* F.1 find compressed CQE format. */ 885 comp_mask = _mm_and_si128(op_own, format_check); 886 comp_mask = _mm_cmpeq_epi32(comp_mask, format_check); 887 comp_mask = _mm_packs_epi32(comp_mask, zero); 888 /* F.2 mask out invalid entries. */ 889 comp_mask = _mm_andnot_si128(invalid_mask, comp_mask); 890 comp_idx = _mm_cvtsi128_si64(comp_mask); 891 /* F.3 get the first compressed CQE. */ 892 comp_idx = comp_idx ? 893 __builtin_ctzll(comp_idx) / 894 (sizeof(uint16_t) * 8) : 895 MLX5_VPMD_DESCS_PER_LOOP; 896 /* E.6 mask out entries after the compressed CQE. */ 897 mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8); 898 mask = _mm_sll_epi64(ones, mask); 899 invalid_mask = _mm_or_si128(invalid_mask, mask); 900 /* E.7 count non-compressed valid CQEs. */ 901 n = _mm_cvtsi128_si64(invalid_mask); 902 n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) : 903 MLX5_VPMD_DESCS_PER_LOOP; 904 nocmp_n += n; 905 /* D.2 get the final invalid mask. */ 906 mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8); 907 mask = _mm_sll_epi64(ones, mask); 908 invalid_mask = _mm_or_si128(invalid_mask, mask); 909 /* D.3 check error in opcode. */ 910 opcode = _mm_cmpeq_epi32(resp_err_check, opcode); 911 opcode = _mm_packs_epi32(opcode, zero); 912 opcode = _mm_andnot_si128(invalid_mask, opcode); 913 /* D.4 mark if any error is set */ 914 *err |= _mm_cvtsi128_si64(opcode); 915 /* D.5 fill in mbuf - rearm_data and packet_type. */ 916 rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]); 917 if (rxq->hw_timestamp) { 918 pkts[pos]->timestamp = 919 rte_be_to_cpu_64(cq[pos].timestamp); 920 pkts[pos + 1]->timestamp = 921 rte_be_to_cpu_64(cq[pos + p1].timestamp); 922 pkts[pos + 2]->timestamp = 923 rte_be_to_cpu_64(cq[pos + p2].timestamp); 924 pkts[pos + 3]->timestamp = 925 rte_be_to_cpu_64(cq[pos + p3].timestamp); 926 } 927 #ifdef MLX5_PMD_SOFT_COUNTERS 928 /* Add up received bytes count. */ 929 byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask); 930 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt); 931 byte_cnt = _mm_hadd_epi16(byte_cnt, zero); 932 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero)); 933 #endif 934 /* 935 * Break the loop unless more valid CQE is expected, or if 936 * there's a compressed CQE. 937 */ 938 if (n != MLX5_VPMD_DESCS_PER_LOOP) 939 break; 940 } 941 /* If no new CQE seen, return without updating cq_db. */ 942 if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) 943 return rcvd_pkt; 944 /* Update the consumer indexes for non-compressed CQEs. */ 945 assert(nocmp_n <= pkts_n); 946 rxq->cq_ci += nocmp_n; 947 rxq->rq_pi += nocmp_n; 948 rcvd_pkt += nocmp_n; 949 #ifdef MLX5_PMD_SOFT_COUNTERS 950 rxq->stats.ipackets += nocmp_n; 951 rxq->stats.ibytes += rcvd_byte; 952 #endif 953 /* Decompress the last CQE if compressed. */ 954 if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) { 955 assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP)); 956 rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n], 957 &elts[nocmp_n]); 958 /* Return more packets if needed. */ 959 if (nocmp_n < pkts_n) { 960 uint16_t n = rxq->decompressed; 961 962 n = RTE_MIN(n, pkts_n - nocmp_n); 963 rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n); 964 rxq->rq_pi += n; 965 rcvd_pkt += n; 966 rxq->decompressed -= n; 967 } 968 } 969 rte_compiler_barrier(); 970 *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci); 971 return rcvd_pkt; 972 } 973 974 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */ 975