xref: /dpdk/drivers/net/mlx5/mlx5_rxtx_vec_sse.h (revision 089e5ed727a15da2729cfee9b63533dd120bd04c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8 
9 #include <assert.h>
10 #include <stdint.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <smmintrin.h>
14 
15 #include <rte_mbuf.h>
16 #include <rte_mempool.h>
17 #include <rte_prefetch.h>
18 
19 #include "mlx5.h"
20 #include "mlx5_utils.h"
21 #include "mlx5_rxtx.h"
22 #include "mlx5_rxtx_vec.h"
23 #include "mlx5_autoconf.h"
24 #include "mlx5_defs.h"
25 #include "mlx5_prm.h"
26 
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
29 #endif
30 
31 /**
32  * Store free buffers to RX SW ring.
33  *
34  * @param rxq
35  *   Pointer to RX queue structure.
36  * @param pkts
37  *   Pointer to array of packets to be stored.
38  * @param pkts_n
39  *   Number of packets to be stored.
40  */
41 static inline void
42 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
43 {
44 	const uint16_t q_mask = (1 << rxq->elts_n) - 1;
45 	struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
46 	unsigned int pos;
47 	uint16_t p = n & -2;
48 
49 	for (pos = 0; pos < p; pos += 2) {
50 		__m128i mbp;
51 
52 		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
53 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
54 	}
55 	if (n & 1)
56 		pkts[pos] = elts[pos];
57 }
58 
59 /**
60  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
61  * extracted from the title completion descriptor.
62  *
63  * @param rxq
64  *   Pointer to RX queue structure.
65  * @param cq
66  *   Pointer to completion array having a compressed completion at first.
67  * @param elts
68  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
69  *   the title completion descriptor to be copied to the rest of mbufs.
70  *
71  * @return
72  *   Number of mini-CQEs successfully decompressed.
73  */
74 static inline uint16_t
75 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
76 		    struct rte_mbuf **elts)
77 {
78 	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
79 	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
80 	unsigned int pos;
81 	unsigned int i;
82 	unsigned int inv = 0;
83 	/* Mask to shuffle from extracted mini CQE to mbuf. */
84 	const __m128i shuf_mask1 =
85 		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
86 			    -1, -1,         /* skip vlan_tci */
87 			     6,  7,         /* data_len, bswap16 */
88 			    -1, -1,  6,  7, /* pkt_len, bswap16 */
89 			    -1, -1, -1, -1  /* skip packet_type */);
90 	const __m128i shuf_mask2 =
91 		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
92 			    -1, -1,         /* skip vlan_tci */
93 			    14, 15,         /* data_len, bswap16 */
94 			    -1, -1, 14, 15, /* pkt_len, bswap16 */
95 			    -1, -1, -1, -1  /* skip packet_type */);
96 	/* Restore the compressed count. Must be 16 bits. */
97 	const uint16_t mcqe_n = t_pkt->data_len +
98 				(rxq->crc_present * RTE_ETHER_CRC_LEN);
99 	const __m128i rearm =
100 		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
101 	const __m128i rxdf =
102 		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
103 	const __m128i crc_adj =
104 		_mm_set_epi16(0, 0, 0,
105 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
106 			      0,
107 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
108 			      0, 0);
109 	const uint32_t flow_tag = t_pkt->hash.fdir.hi;
110 #ifdef MLX5_PMD_SOFT_COUNTERS
111 	const __m128i zero = _mm_setzero_si128();
112 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
113 	uint32_t rcvd_byte = 0;
114 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
115 	const __m128i len_shuf_mask =
116 		_mm_set_epi8(-1, -1, -1, -1,
117 			     -1, -1, -1, -1,
118 			     14, 15,  6,  7,
119 			     10, 11,  2,  3);
120 #endif
121 
122 	/*
123 	 * A. load mCQEs into a 128bit register.
124 	 * B. store rearm data to mbuf.
125 	 * C. combine data from mCQEs with rx_descriptor_fields1.
126 	 * D. store rx_descriptor_fields1.
127 	 * E. store flow tag (rte_flow mark).
128 	 */
129 	for (pos = 0; pos < mcqe_n; ) {
130 		__m128i mcqe1, mcqe2;
131 		__m128i rxdf1, rxdf2;
132 #ifdef MLX5_PMD_SOFT_COUNTERS
133 		__m128i byte_cnt, invalid_mask;
134 #endif
135 
136 		if (!(pos & 0x7) && pos + 8 < mcqe_n)
137 			rte_prefetch0((void *)(cq + pos + 8));
138 		/* A.1 load mCQEs into a 128bit register. */
139 		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
140 		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
141 		/* B.1 store rearm data to mbuf. */
142 		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
143 		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
144 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
145 		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
146 		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
147 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
148 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
149 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
150 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
151 		/* D.1 store rx_descriptor_fields1. */
152 		_mm_storeu_si128((__m128i *)
153 				  &elts[pos]->rx_descriptor_fields1,
154 				 rxdf1);
155 		_mm_storeu_si128((__m128i *)
156 				  &elts[pos + 1]->rx_descriptor_fields1,
157 				 rxdf2);
158 		/* B.1 store rearm data to mbuf. */
159 		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
160 		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
161 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
162 		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
163 		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
164 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
165 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
166 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
167 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
168 		/* D.1 store rx_descriptor_fields1. */
169 		_mm_storeu_si128((__m128i *)
170 				  &elts[pos + 2]->rx_descriptor_fields1,
171 				 rxdf1);
172 		_mm_storeu_si128((__m128i *)
173 				  &elts[pos + 3]->rx_descriptor_fields1,
174 				 rxdf2);
175 #ifdef MLX5_PMD_SOFT_COUNTERS
176 		invalid_mask = _mm_set_epi64x(0,
177 					      (mcqe_n - pos) *
178 					      sizeof(uint16_t) * 8);
179 		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
180 		mcqe1 = _mm_srli_si128(mcqe1, 4);
181 		byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
182 		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
183 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
184 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
185 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
186 #endif
187 		if (rxq->mark) {
188 			/* E.1 store flow tag (rte_flow mark). */
189 			elts[pos]->hash.fdir.hi = flow_tag;
190 			elts[pos + 1]->hash.fdir.hi = flow_tag;
191 			elts[pos + 2]->hash.fdir.hi = flow_tag;
192 			elts[pos + 3]->hash.fdir.hi = flow_tag;
193 		}
194 		pos += MLX5_VPMD_DESCS_PER_LOOP;
195 		/* Move to next CQE and invalidate consumed CQEs. */
196 		if (!(pos & 0x7) && pos < mcqe_n) {
197 			mcq = (void *)(cq + pos);
198 			for (i = 0; i < 8; ++i)
199 				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
200 		}
201 	}
202 	/* Invalidate the rest of CQEs. */
203 	for (; inv < mcqe_n; ++inv)
204 		cq[inv].op_own = MLX5_CQE_INVALIDATE;
205 #ifdef MLX5_PMD_SOFT_COUNTERS
206 	rxq->stats.ipackets += mcqe_n;
207 	rxq->stats.ibytes += rcvd_byte;
208 #endif
209 	rxq->cq_ci += mcqe_n;
210 	return mcqe_n;
211 }
212 
213 /**
214  * Calculate packet type and offload flag for mbuf and store it.
215  *
216  * @param rxq
217  *   Pointer to RX queue structure.
218  * @param cqes[4]
219  *   Array of four 16bytes completions extracted from the original completion
220  *   descriptor.
221  * @param op_err
222  *   Opcode vector having responder error status. Each field is 4B.
223  * @param pkts
224  *   Pointer to array of packets to be filled.
225  */
226 static inline void
227 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
228 			 __m128i op_err, struct rte_mbuf **pkts)
229 {
230 	__m128i pinfo0, pinfo1;
231 	__m128i pinfo, ptype;
232 	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
233 					  rxq->hw_timestamp * PKT_RX_TIMESTAMP);
234 	__m128i cv_flags;
235 	const __m128i zero = _mm_setzero_si128();
236 	const __m128i ptype_mask =
237 		_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
238 	const __m128i ptype_ol_mask =
239 		_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
240 	const __m128i pinfo_mask =
241 		_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
242 	const __m128i cv_flag_sel =
243 		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
244 			     (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
245 					PKT_RX_L4_CKSUM_GOOD) >> 1),
246 			     0,
247 			     (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
248 			     0,
249 			     (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
250 			     (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
251 			     0);
252 	const __m128i cv_mask =
253 		_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
254 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
255 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
256 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
257 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
258 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
259 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
260 			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
261 	const __m128i mbuf_init =
262 		_mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
263 	__m128i rearm0, rearm1, rearm2, rearm3;
264 	uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
265 
266 	/* Extract pkt_info field. */
267 	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
268 	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
269 	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
270 	/* Extract hdr_type_etc field. */
271 	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
272 	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
273 	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
274 	if (rxq->mark) {
275 		const __m128i pinfo_ft_mask =
276 			_mm_set_epi32(0xffffff00, 0xffffff00,
277 				      0xffffff00, 0xffffff00);
278 		const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
279 		__m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
280 		__m128i flow_tag, invalid_mask;
281 
282 		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
283 		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
284 		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
285 		ol_flags = _mm_or_si128(ol_flags,
286 					_mm_andnot_si128(invalid_mask,
287 							 fdir_flags));
288 		/* Mask out invalid entries. */
289 		fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
290 		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
291 		ol_flags = _mm_or_si128(ol_flags,
292 					_mm_andnot_si128(
293 						_mm_cmpeq_epi32(flow_tag,
294 								pinfo_ft_mask),
295 						fdir_id_flags));
296 	}
297 	/*
298 	 * Merge the two fields to generate the following:
299 	 * bit[1]     = l3_ok
300 	 * bit[2]     = l4_ok
301 	 * bit[8]     = cv
302 	 * bit[11:10] = l3_hdr_type
303 	 * bit[14:12] = l4_hdr_type
304 	 * bit[15]    = ip_frag
305 	 * bit[16]    = tunneled
306 	 * bit[17]    = outer_l3_type
307 	 */
308 	ptype = _mm_and_si128(ptype, ptype_mask);
309 	pinfo = _mm_and_si128(pinfo, pinfo_mask);
310 	pinfo = _mm_slli_epi32(pinfo, 16);
311 	/* Make pinfo has merged fields for ol_flags calculation. */
312 	pinfo = _mm_or_si128(ptype, pinfo);
313 	ptype = _mm_srli_epi32(pinfo, 10);
314 	ptype = _mm_packs_epi32(ptype, zero);
315 	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
316 	op_err = _mm_srli_epi16(op_err, 8);
317 	ptype = _mm_or_si128(ptype, op_err);
318 	pt_idx0 = _mm_extract_epi8(ptype, 0);
319 	pt_idx1 = _mm_extract_epi8(ptype, 2);
320 	pt_idx2 = _mm_extract_epi8(ptype, 4);
321 	pt_idx3 = _mm_extract_epi8(ptype, 6);
322 	pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
323 			       !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
324 	pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
325 			       !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
326 	pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
327 			       !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
328 	pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
329 			       !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
330 	/* Fill flags for checksum and VLAN. */
331 	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
332 	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
333 	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
334 	cv_flags = _mm_slli_epi32(pinfo, 9);
335 	cv_flags = _mm_or_si128(pinfo, cv_flags);
336 	/* Move back flags to start from byte[0]. */
337 	cv_flags = _mm_srli_epi32(cv_flags, 8);
338 	/* Mask out garbage bits. */
339 	cv_flags = _mm_and_si128(cv_flags, cv_mask);
340 	/* Merge to ol_flags. */
341 	ol_flags = _mm_or_si128(ol_flags, cv_flags);
342 	/* Merge mbuf_init and ol_flags. */
343 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
344 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
345 	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
346 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
347 	/* Write 8B rearm_data and 8B ol_flags. */
348 	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
349 	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
350 	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
351 	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
352 }
353 
354 /**
355  * Receive burst of packets. An errored completion also consumes a mbuf, but the
356  * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
357  * before returning to application.
358  *
359  * @param rxq
360  *   Pointer to RX queue structure.
361  * @param[out] pkts
362  *   Array to store received packets.
363  * @param pkts_n
364  *   Maximum number of packets in array.
365  * @param[out] err
366  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
367  *   packet to handle.
368  *
369  * @return
370  *   Number of packets received including errors (<= pkts_n).
371  */
372 static inline uint16_t
373 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
374 	    uint64_t *err)
375 {
376 	const uint16_t q_n = 1 << rxq->cqe_n;
377 	const uint16_t q_mask = q_n - 1;
378 	volatile struct mlx5_cqe *cq;
379 	struct rte_mbuf **elts;
380 	unsigned int pos;
381 	uint64_t n;
382 	uint16_t repl_n;
383 	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
384 	uint16_t nocmp_n = 0;
385 	uint16_t rcvd_pkt = 0;
386 	unsigned int cq_idx = rxq->cq_ci & q_mask;
387 	unsigned int elts_idx;
388 	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
389 	const __m128i owner_check =
390 		_mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
391 	const __m128i opcode_check =
392 		_mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
393 	const __m128i format_check =
394 		_mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
395 	const __m128i resp_err_check =
396 		_mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
397 #ifdef MLX5_PMD_SOFT_COUNTERS
398 	uint32_t rcvd_byte = 0;
399 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
400 	const __m128i len_shuf_mask =
401 		_mm_set_epi8(-1, -1, -1, -1,
402 			     -1, -1, -1, -1,
403 			     12, 13,  8,  9,
404 			      4,  5,  0,  1);
405 #endif
406 	/* Mask to shuffle from extracted CQE to mbuf. */
407 	const __m128i shuf_mask =
408 		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
409 			     12, 13, 14, 15, /* rss, bswap32 */
410 			     10, 11,         /* vlan_tci, bswap16 */
411 			      4,  5,         /* data_len, bswap16 */
412 			     -1, -1,         /* zero out 2nd half of pkt_len */
413 			      4,  5          /* pkt_len, bswap16 */);
414 	/* Mask to blend from the last Qword to the first DQword. */
415 	const __m128i blend_mask =
416 		_mm_set_epi8(-1, -1, -1, -1,
417 			     -1, -1, -1, -1,
418 			      0,  0,  0,  0,
419 			      0,  0,  0, -1);
420 	const __m128i zero = _mm_setzero_si128();
421 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
422 	const __m128i crc_adj =
423 		_mm_set_epi16(0, 0, 0, 0, 0,
424 			      rxq->crc_present * RTE_ETHER_CRC_LEN,
425 			      0,
426 			      rxq->crc_present * RTE_ETHER_CRC_LEN);
427 	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
428 
429 	assert(rxq->sges_n == 0);
430 	assert(rxq->cqe_n == rxq->elts_n);
431 	cq = &(*rxq->cqes)[cq_idx];
432 	rte_prefetch0(cq);
433 	rte_prefetch0(cq + 1);
434 	rte_prefetch0(cq + 2);
435 	rte_prefetch0(cq + 3);
436 	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
437 	repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
438 	if (repl_n >= rxq->rq_repl_thresh)
439 		mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
440 	/* See if there're unreturned mbufs from compressed CQE. */
441 	rcvd_pkt = rxq->decompressed;
442 	if (rcvd_pkt > 0) {
443 		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
444 		rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
445 		rxq->rq_pi += rcvd_pkt;
446 		rxq->decompressed -= rcvd_pkt;
447 		pkts += rcvd_pkt;
448 	}
449 	elts_idx = rxq->rq_pi & q_mask;
450 	elts = &(*rxq->elts)[elts_idx];
451 	/* Not to overflow pkts array. */
452 	pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
453 	/* Not to cross queue end. */
454 	pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
455 	pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
456 	if (!pkts_n)
457 		return rcvd_pkt;
458 	/* At this point, there shouldn't be any remained packets. */
459 	assert(rxq->decompressed == 0);
460 	/*
461 	 * A. load first Qword (8bytes) in one loop.
462 	 * B. copy 4 mbuf pointers from elts ring to returing pkts.
463 	 * C. load remained CQE data and extract necessary fields.
464 	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
465 	 *    following structure:
466 	 *        struct {
467 	 *          uint8_t  pkt_info;
468 	 *          uint8_t  flow_tag[3];
469 	 *          uint16_t byte_cnt;
470 	 *          uint8_t  rsvd4;
471 	 *          uint8_t  op_own;
472 	 *          uint16_t hdr_type_etc;
473 	 *          uint16_t vlan_info;
474 	 *          uint32_t rx_has_res;
475 	 *        } c;
476 	 * D. fill in mbuf.
477 	 * E. get valid CQEs.
478 	 * F. find compressed CQE.
479 	 */
480 	for (pos = 0;
481 	     pos < pkts_n;
482 	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
483 		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
484 		__m128i cqe_tmp1, cqe_tmp2;
485 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
486 		__m128i op_own, op_own_tmp1, op_own_tmp2;
487 		__m128i opcode, owner_mask, invalid_mask;
488 		__m128i comp_mask;
489 		__m128i mask;
490 #ifdef MLX5_PMD_SOFT_COUNTERS
491 		__m128i byte_cnt;
492 #endif
493 		__m128i mbp1, mbp2;
494 		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
495 		unsigned int p1, p2, p3;
496 
497 		/* Prefetch next 4 CQEs. */
498 		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
499 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
500 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
501 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
502 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
503 		}
504 		/* A.0 do not cross the end of CQ. */
505 		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
506 		mask = _mm_sll_epi64(ones, mask);
507 		p = _mm_andnot_si128(mask, p);
508 		/* A.1 load cqes. */
509 		p3 = _mm_extract_epi16(p, 3);
510 		cqes[3] = _mm_loadl_epi64((__m128i *)
511 					   &cq[pos + p3].sop_drop_qpn);
512 		rte_compiler_barrier();
513 		p2 = _mm_extract_epi16(p, 2);
514 		cqes[2] = _mm_loadl_epi64((__m128i *)
515 					   &cq[pos + p2].sop_drop_qpn);
516 		rte_compiler_barrier();
517 		/* B.1 load mbuf pointers. */
518 		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
519 		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
520 		/* A.1 load a block having op_own. */
521 		p1 = _mm_extract_epi16(p, 1);
522 		cqes[1] = _mm_loadl_epi64((__m128i *)
523 					   &cq[pos + p1].sop_drop_qpn);
524 		rte_compiler_barrier();
525 		cqes[0] = _mm_loadl_epi64((__m128i *)
526 					   &cq[pos].sop_drop_qpn);
527 		/* B.2 copy mbuf pointers. */
528 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
529 		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
530 		rte_cio_rmb();
531 		/* C.1 load remained CQE data and extract necessary fields. */
532 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
533 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
534 		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
535 		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
536 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
537 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
538 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
539 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
540 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd3[9]);
541 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd3[9]);
542 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
543 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
544 		/* C.2 generate final structure for mbuf with swapping bytes. */
545 		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
546 		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
547 		/* C.3 adjust CRC length. */
548 		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
549 		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
550 		/* C.4 adjust flow mark. */
551 		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
552 		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
553 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
554 		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
555 		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
556 		/* E.1 extract op_own field. */
557 		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
558 		/* C.1 load remained CQE data and extract necessary fields. */
559 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
560 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
561 		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
562 		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
563 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
564 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
565 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
566 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
567 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd3[9]);
568 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd3[9]);
569 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
570 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
571 		/* C.2 generate final structure for mbuf with swapping bytes. */
572 		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
573 		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
574 		/* C.3 adjust CRC length. */
575 		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
576 		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
577 		/* C.4 adjust flow mark. */
578 		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
579 		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
580 		/* E.1 extract op_own byte. */
581 		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
582 		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
583 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
584 		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
585 		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
586 		/* E.2 flip owner bit to mark CQEs from last round. */
587 		owner_mask = _mm_and_si128(op_own, owner_check);
588 		if (ownership)
589 			owner_mask = _mm_xor_si128(owner_mask, owner_check);
590 		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
591 		owner_mask = _mm_packs_epi32(owner_mask, zero);
592 		/* E.3 get mask for invalidated CQEs. */
593 		opcode = _mm_and_si128(op_own, opcode_check);
594 		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
595 		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
596 		/* E.4 mask out beyond boundary. */
597 		invalid_mask = _mm_or_si128(invalid_mask, mask);
598 		/* E.5 merge invalid_mask with invalid owner. */
599 		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
600 		/* F.1 find compressed CQE format. */
601 		comp_mask = _mm_and_si128(op_own, format_check);
602 		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
603 		comp_mask = _mm_packs_epi32(comp_mask, zero);
604 		/* F.2 mask out invalid entries. */
605 		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
606 		comp_idx = _mm_cvtsi128_si64(comp_mask);
607 		/* F.3 get the first compressed CQE. */
608 		comp_idx = comp_idx ?
609 				__builtin_ctzll(comp_idx) /
610 					(sizeof(uint16_t) * 8) :
611 				MLX5_VPMD_DESCS_PER_LOOP;
612 		/* E.6 mask out entries after the compressed CQE. */
613 		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
614 		mask = _mm_sll_epi64(ones, mask);
615 		invalid_mask = _mm_or_si128(invalid_mask, mask);
616 		/* E.7 count non-compressed valid CQEs. */
617 		n = _mm_cvtsi128_si64(invalid_mask);
618 		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
619 			MLX5_VPMD_DESCS_PER_LOOP;
620 		nocmp_n += n;
621 		/* D.2 get the final invalid mask. */
622 		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
623 		mask = _mm_sll_epi64(ones, mask);
624 		invalid_mask = _mm_or_si128(invalid_mask, mask);
625 		/* D.3 check error in opcode. */
626 		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
627 		opcode = _mm_packs_epi32(opcode, zero);
628 		opcode = _mm_andnot_si128(invalid_mask, opcode);
629 		/* D.4 mark if any error is set */
630 		*err |= _mm_cvtsi128_si64(opcode);
631 		/* D.5 fill in mbuf - rearm_data and packet_type. */
632 		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
633 		if (rxq->hw_timestamp) {
634 			pkts[pos]->timestamp =
635 				rte_be_to_cpu_64(cq[pos].timestamp);
636 			pkts[pos + 1]->timestamp =
637 				rte_be_to_cpu_64(cq[pos + p1].timestamp);
638 			pkts[pos + 2]->timestamp =
639 				rte_be_to_cpu_64(cq[pos + p2].timestamp);
640 			pkts[pos + 3]->timestamp =
641 				rte_be_to_cpu_64(cq[pos + p3].timestamp);
642 		}
643 #ifdef MLX5_PMD_SOFT_COUNTERS
644 		/* Add up received bytes count. */
645 		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
646 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
647 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
648 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
649 #endif
650 		/*
651 		 * Break the loop unless more valid CQE is expected, or if
652 		 * there's a compressed CQE.
653 		 */
654 		if (n != MLX5_VPMD_DESCS_PER_LOOP)
655 			break;
656 	}
657 	/* If no new CQE seen, return without updating cq_db. */
658 	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
659 		return rcvd_pkt;
660 	/* Update the consumer indexes for non-compressed CQEs. */
661 	assert(nocmp_n <= pkts_n);
662 	rxq->cq_ci += nocmp_n;
663 	rxq->rq_pi += nocmp_n;
664 	rcvd_pkt += nocmp_n;
665 #ifdef MLX5_PMD_SOFT_COUNTERS
666 	rxq->stats.ipackets += nocmp_n;
667 	rxq->stats.ibytes += rcvd_byte;
668 #endif
669 	/* Decompress the last CQE if compressed. */
670 	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
671 		assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
672 		rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
673 							&elts[nocmp_n]);
674 		/* Return more packets if needed. */
675 		if (nocmp_n < pkts_n) {
676 			uint16_t n = rxq->decompressed;
677 
678 			n = RTE_MIN(n, pkts_n - nocmp_n);
679 			rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
680 			rxq->rq_pi += n;
681 			rcvd_pkt += n;
682 			rxq->decompressed -= n;
683 		}
684 	}
685 	rte_compiler_barrier();
686 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
687 	return rcvd_pkt;
688 }
689 
690 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */
691