xref: /dpdk/drivers/net/mlx5/mlx5_rxtx_vec.c (revision 5bfc9fc112dd3c0f239af2488a7d8801f44ed3a3)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <assert.h>
35 #include <stdint.h>
36 #include <string.h>
37 #include <stdlib.h>
38 #include <smmintrin.h>
39 
40 /* Verbs header. */
41 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
42 #ifdef PEDANTIC
43 #pragma GCC diagnostic ignored "-Wpedantic"
44 #endif
45 #include <infiniband/verbs.h>
46 #include <infiniband/mlx5dv.h>
47 #ifdef PEDANTIC
48 #pragma GCC diagnostic error "-Wpedantic"
49 #endif
50 
51 #include <rte_mbuf.h>
52 #include <rte_mempool.h>
53 #include <rte_prefetch.h>
54 
55 #include "mlx5.h"
56 #include "mlx5_utils.h"
57 #include "mlx5_rxtx.h"
58 #include "mlx5_rxtx_vec.h"
59 #include "mlx5_autoconf.h"
60 #include "mlx5_defs.h"
61 #include "mlx5_prm.h"
62 
63 #ifndef __INTEL_COMPILER
64 #pragma GCC diagnostic ignored "-Wcast-qual"
65 #endif
66 
67 /**
68  * Fill in buffer descriptors in a multi-packet send descriptor.
69  *
70  * @param txq
71  *   Pointer to TX queue structure.
72  * @param dseg
73  *   Pointer to buffer descriptor to be writen.
74  * @param pkts
75  *   Pointer to array of packets to be sent.
76  * @param n
77  *   Number of packets to be filled.
78  */
79 static inline void
80 txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg,
81 	      struct rte_mbuf **pkts, unsigned int n)
82 {
83 	unsigned int pos;
84 	uintptr_t addr;
85 	const __m128i shuf_mask_dseg =
86 		_mm_set_epi8(8,  9, 10, 11, /* addr, bswap64 */
87 			    12, 13, 14, 15,
88 			     7,  6,  5,  4, /* lkey */
89 			     0,  1,  2,  3  /* length, bswap32 */);
90 #ifdef MLX5_PMD_SOFT_COUNTERS
91 	uint32_t tx_byte = 0;
92 #endif
93 
94 	for (pos = 0; pos < n; ++pos, ++dseg) {
95 		__m128i desc;
96 		struct rte_mbuf *pkt = pkts[pos];
97 
98 		addr = rte_pktmbuf_mtod(pkt, uintptr_t);
99 		desc = _mm_set_epi32(addr >> 32,
100 				     addr,
101 				     mlx5_tx_mb2mr(txq, pkt),
102 				     DATA_LEN(pkt));
103 		desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
104 		_mm_store_si128(dseg, desc);
105 #ifdef MLX5_PMD_SOFT_COUNTERS
106 		tx_byte += DATA_LEN(pkt);
107 #endif
108 	}
109 #ifdef MLX5_PMD_SOFT_COUNTERS
110 	txq->stats.obytes += tx_byte;
111 #endif
112 }
113 
114 /**
115  * Count the number of continuous single segment packets.
116  *
117  * @param pkts
118  *   Pointer to array of packets.
119  * @param pkts_n
120  *   Number of packets.
121  *
122  * @return
123  *   Number of continuous single segment packets.
124  */
125 static inline unsigned int
126 txq_check_multiseg(struct rte_mbuf **pkts, uint16_t pkts_n)
127 {
128 	unsigned int pos;
129 
130 	if (!pkts_n)
131 		return 0;
132 	/* Count the number of continuous single segment packets. */
133 	for (pos = 0; pos < pkts_n; ++pos)
134 		if (NB_SEGS(pkts[pos]) > 1)
135 			break;
136 	return pos;
137 }
138 
139 /**
140  * Count the number of packets having same ol_flags and calculate cs_flags.
141  *
142  * @param txq
143  *   Pointer to TX queue structure.
144  * @param pkts
145  *   Pointer to array of packets.
146  * @param pkts_n
147  *   Number of packets.
148  * @param cs_flags
149  *   Pointer of flags to be returned.
150  *
151  * @return
152  *   Number of packets having same ol_flags.
153  */
154 static inline unsigned int
155 txq_calc_offload(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
156 		 uint16_t pkts_n, uint8_t *cs_flags)
157 {
158 	unsigned int pos;
159 	const uint64_t ol_mask =
160 		PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM |
161 		PKT_TX_UDP_CKSUM | PKT_TX_TUNNEL_GRE |
162 		PKT_TX_TUNNEL_VXLAN | PKT_TX_OUTER_IP_CKSUM;
163 
164 	if (!pkts_n)
165 		return 0;
166 	/* Count the number of packets having same ol_flags. */
167 	for (pos = 1; pos < pkts_n; ++pos)
168 		if ((pkts[pos]->ol_flags ^ pkts[0]->ol_flags) & ol_mask)
169 			break;
170 	/* Should open another MPW session for the rest. */
171 	if (pkts[0]->ol_flags &
172 	    (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
173 		const uint64_t is_tunneled =
174 			pkts[0]->ol_flags &
175 			(PKT_TX_TUNNEL_GRE |
176 			 PKT_TX_TUNNEL_VXLAN);
177 
178 		if (is_tunneled && txq->tunnel_en) {
179 			*cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
180 				    MLX5_ETH_WQE_L4_INNER_CSUM;
181 			if (pkts[0]->ol_flags & PKT_TX_OUTER_IP_CKSUM)
182 				*cs_flags |= MLX5_ETH_WQE_L3_CSUM;
183 		} else {
184 			*cs_flags = MLX5_ETH_WQE_L3_CSUM |
185 				    MLX5_ETH_WQE_L4_CSUM;
186 		}
187 	}
188 	return pos;
189 }
190 
191 /**
192  * Send multi-segmented packets until it encounters a single segment packet in
193  * the pkts list.
194  *
195  * @param txq
196  *   Pointer to TX queue structure.
197  * @param pkts
198  *   Pointer to array of packets to be sent.
199  * @param pkts_n
200  *   Number of packets to be sent.
201  *
202  * @return
203  *   Number of packets successfully transmitted (<= pkts_n).
204  */
205 static uint16_t
206 txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
207 	      uint16_t pkts_n)
208 {
209 	uint16_t elts_head = txq->elts_head;
210 	const uint16_t elts_n = 1 << txq->elts_n;
211 	const uint16_t elts_m = elts_n - 1;
212 	const uint16_t wq_n = 1 << txq->wqe_n;
213 	const uint16_t wq_mask = wq_n - 1;
214 	const unsigned int nb_dword_per_wqebb =
215 		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
216 	const unsigned int nb_dword_in_hdr =
217 		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
218 	unsigned int n;
219 	volatile struct mlx5_wqe *wqe = NULL;
220 
221 	assert(elts_n > pkts_n);
222 	mlx5_tx_complete(txq);
223 	if (unlikely(!pkts_n))
224 		return 0;
225 	for (n = 0; n < pkts_n; ++n) {
226 		struct rte_mbuf *buf = pkts[n];
227 		unsigned int segs_n = buf->nb_segs;
228 		unsigned int ds = nb_dword_in_hdr;
229 		unsigned int len = PKT_LEN(buf);
230 		uint16_t wqe_ci = txq->wqe_ci;
231 		const __m128i shuf_mask_ctrl =
232 			_mm_set_epi8(15, 14, 13, 12,
233 				      8,  9, 10, 11, /* bswap32 */
234 				      4,  5,  6,  7, /* bswap32 */
235 				      0,  1,  2,  3  /* bswap32 */);
236 		uint8_t cs_flags = 0;
237 		uint16_t max_elts;
238 		uint16_t max_wqe;
239 		__m128i *t_wqe, *dseg;
240 		__m128i ctrl;
241 
242 		assert(segs_n);
243 		max_elts = elts_n - (elts_head - txq->elts_tail);
244 		max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
245 		/*
246 		 * A MPW session consumes 2 WQEs at most to
247 		 * include MLX5_MPW_DSEG_MAX pointers.
248 		 */
249 		if (segs_n == 1 ||
250 		    max_elts < segs_n || max_wqe < 2)
251 			break;
252 		if (segs_n > MLX5_MPW_DSEG_MAX) {
253 			txq->stats.oerrors++;
254 			break;
255 		}
256 		wqe = &((volatile struct mlx5_wqe64 *)
257 			 txq->wqes)[wqe_ci & wq_mask].hdr;
258 		if (buf->ol_flags &
259 		     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
260 			const uint64_t is_tunneled = buf->ol_flags &
261 						      (PKT_TX_TUNNEL_GRE |
262 						       PKT_TX_TUNNEL_VXLAN);
263 
264 			if (is_tunneled && txq->tunnel_en) {
265 				cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
266 					   MLX5_ETH_WQE_L4_INNER_CSUM;
267 				if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
268 					cs_flags |= MLX5_ETH_WQE_L3_CSUM;
269 			} else {
270 				cs_flags = MLX5_ETH_WQE_L3_CSUM |
271 					   MLX5_ETH_WQE_L4_CSUM;
272 			}
273 		}
274 		/* Title WQEBB pointer. */
275 		t_wqe = (__m128i *)wqe;
276 		dseg = (__m128i *)(wqe + 1);
277 		do {
278 			if (!(ds++ % nb_dword_per_wqebb)) {
279 				dseg = (__m128i *)
280 					&((volatile struct mlx5_wqe64 *)
281 					   txq->wqes)[++wqe_ci & wq_mask];
282 			}
283 			txq_wr_dseg_v(txq, dseg++, &buf, 1);
284 			(*txq->elts)[elts_head++ & elts_m] = buf;
285 			buf = buf->next;
286 		} while (--segs_n);
287 		++wqe_ci;
288 		/* Fill CTRL in the header. */
289 		ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
290 				     MLX5_OPC_MOD_MPW << 24 |
291 				     txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
292 		ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
293 		_mm_store_si128(t_wqe, ctrl);
294 		/* Fill ESEG in the header. */
295 		_mm_store_si128(t_wqe + 1,
296 				_mm_set_epi16(0, 0, 0, 0,
297 					      rte_cpu_to_be_16(len), cs_flags,
298 					      0, 0));
299 		txq->wqe_ci = wqe_ci;
300 	}
301 	if (!n)
302 		return 0;
303 	txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
304 	txq->elts_head = elts_head;
305 	if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
306 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
307 		wqe->ctrl[3] = txq->elts_head;
308 		txq->elts_comp = 0;
309 		++txq->cq_pi;
310 	}
311 #ifdef MLX5_PMD_SOFT_COUNTERS
312 	txq->stats.opackets += n;
313 #endif
314 	mlx5_tx_dbrec(txq, wqe);
315 	return n;
316 }
317 
318 /**
319  * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
320  * it returns to make it processed by txq_scatter_v(). All the packets in
321  * the pkts list should be single segment packets having same offload flags.
322  * This must be checked by txq_check_multiseg() and txq_calc_offload().
323  *
324  * @param txq
325  *   Pointer to TX queue structure.
326  * @param pkts
327  *   Pointer to array of packets to be sent.
328  * @param pkts_n
329  *   Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
330  * @param cs_flags
331  *   Checksum offload flags to be written in the descriptor.
332  *
333  * @return
334  *   Number of packets successfully transmitted (<= pkts_n).
335  */
336 static inline uint16_t
337 txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
338 	    uint8_t cs_flags)
339 {
340 	struct rte_mbuf **elts;
341 	uint16_t elts_head = txq->elts_head;
342 	const uint16_t elts_n = 1 << txq->elts_n;
343 	const uint16_t elts_m = elts_n - 1;
344 	const unsigned int nb_dword_per_wqebb =
345 		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
346 	const unsigned int nb_dword_in_hdr =
347 		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
348 	unsigned int n = 0;
349 	unsigned int pos;
350 	uint16_t max_elts;
351 	uint16_t max_wqe;
352 	uint32_t comp_req = 0;
353 	const uint16_t wq_n = 1 << txq->wqe_n;
354 	const uint16_t wq_mask = wq_n - 1;
355 	uint16_t wq_idx = txq->wqe_ci & wq_mask;
356 	volatile struct mlx5_wqe64 *wq =
357 		&((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
358 	volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
359 	const __m128i shuf_mask_ctrl =
360 		_mm_set_epi8(15, 14, 13, 12,
361 			      8,  9, 10, 11, /* bswap32 */
362 			      4,  5,  6,  7, /* bswap32 */
363 			      0,  1,  2,  3  /* bswap32 */);
364 	__m128i *t_wqe, *dseg;
365 	__m128i ctrl;
366 
367 	/* Make sure all packets can fit into a single WQE. */
368 	assert(elts_n > pkts_n);
369 	mlx5_tx_complete(txq);
370 	max_elts = (elts_n - (elts_head - txq->elts_tail));
371 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
372 	pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
373 	assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr);
374 	if (unlikely(!pkts_n))
375 		return 0;
376 	elts = &(*txq->elts)[elts_head & elts_m];
377 	/* Loop for available tailroom first. */
378 	n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
379 	for (pos = 0; pos < (n & -2); pos += 2)
380 		_mm_storeu_si128((__m128i *)&elts[pos],
381 				 _mm_loadu_si128((__m128i *)&pkts[pos]));
382 	if (n & 1)
383 		elts[pos] = pkts[pos];
384 	/* Check if it crosses the end of the queue. */
385 	if (unlikely(n < pkts_n)) {
386 		elts = &(*txq->elts)[0];
387 		for (pos = 0; pos < pkts_n - n; ++pos)
388 			elts[pos] = pkts[n + pos];
389 	}
390 	txq->elts_head += pkts_n;
391 	/* Save title WQEBB pointer. */
392 	t_wqe = (__m128i *)wqe;
393 	dseg = (__m128i *)(wqe + 1);
394 	/* Calculate the number of entries to the end. */
395 	n = RTE_MIN(
396 		(wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
397 		pkts_n);
398 	/* Fill DSEGs. */
399 	txq_wr_dseg_v(txq, dseg, pkts, n);
400 	/* Check if it crosses the end of the queue. */
401 	if (n < pkts_n) {
402 		dseg = (__m128i *)txq->wqes;
403 		txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
404 	}
405 	if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
406 		txq->elts_comp += pkts_n;
407 	} else {
408 		/* Request a completion. */
409 		txq->elts_comp = 0;
410 		++txq->cq_pi;
411 		comp_req = 8;
412 	}
413 	/* Fill CTRL in the header. */
414 	ctrl = _mm_set_epi32(txq->elts_head, comp_req,
415 			     txq->qp_num_8s | (pkts_n + 2),
416 			     MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
417 				txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
418 	ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
419 	_mm_store_si128(t_wqe, ctrl);
420 	/* Fill ESEG in the header. */
421 	_mm_store_si128(t_wqe + 1,
422 			_mm_set_epi8(0, 0, 0, 0,
423 				     0, 0, 0, 0,
424 				     0, 0, 0, cs_flags,
425 				     0, 0, 0, 0));
426 #ifdef MLX5_PMD_SOFT_COUNTERS
427 	txq->stats.opackets += pkts_n;
428 #endif
429 	txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
430 		       nb_dword_per_wqebb;
431 	/* Ring QP doorbell. */
432 	mlx5_tx_dbrec(txq, wqe);
433 	return pkts_n;
434 }
435 
436 /**
437  * DPDK callback for vectorized TX.
438  *
439  * @param dpdk_txq
440  *   Generic pointer to TX queue structure.
441  * @param[in] pkts
442  *   Packets to transmit.
443  * @param pkts_n
444  *   Number of packets in array.
445  *
446  * @return
447  *   Number of packets successfully transmitted (<= pkts_n).
448  */
449 uint16_t
450 mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts,
451 		      uint16_t pkts_n)
452 {
453 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
454 	uint16_t nb_tx = 0;
455 
456 	while (pkts_n > nb_tx) {
457 		uint16_t n;
458 		uint16_t ret;
459 
460 		n = RTE_MIN((uint16_t)(pkts_n - nb_tx), MLX5_VPMD_TX_MAX_BURST);
461 		ret = txq_burst_v(txq, &pkts[nb_tx], n, 0);
462 		nb_tx += ret;
463 		if (!ret)
464 			break;
465 	}
466 	return nb_tx;
467 }
468 
469 /**
470  * DPDK callback for vectorized TX with multi-seg packets and offload.
471  *
472  * @param dpdk_txq
473  *   Generic pointer to TX queue structure.
474  * @param[in] pkts
475  *   Packets to transmit.
476  * @param pkts_n
477  *   Number of packets in array.
478  *
479  * @return
480  *   Number of packets successfully transmitted (<= pkts_n).
481  */
482 uint16_t
483 mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
484 {
485 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
486 	uint16_t nb_tx = 0;
487 
488 	while (pkts_n > nb_tx) {
489 		uint8_t cs_flags = 0;
490 		uint16_t n;
491 		uint16_t ret;
492 
493 		/* Transmit multi-seg packets in the head of pkts list. */
494 		if (!(txq->flags & ETH_TXQ_FLAGS_NOMULTSEGS) &&
495 		    NB_SEGS(pkts[nb_tx]) > 1)
496 			nb_tx += txq_scatter_v(txq,
497 					       &pkts[nb_tx],
498 					       pkts_n - nb_tx);
499 		n = RTE_MIN((uint16_t)(pkts_n - nb_tx), MLX5_VPMD_TX_MAX_BURST);
500 		if (!(txq->flags & ETH_TXQ_FLAGS_NOMULTSEGS))
501 			n = txq_check_multiseg(&pkts[nb_tx], n);
502 		if (!(txq->flags & ETH_TXQ_FLAGS_NOOFFLOADS))
503 			n = txq_calc_offload(txq, &pkts[nb_tx], n, &cs_flags);
504 		ret = txq_burst_v(txq, &pkts[nb_tx], n, cs_flags);
505 		nb_tx += ret;
506 		if (!ret)
507 			break;
508 	}
509 	return nb_tx;
510 }
511 
512 /**
513  * Store free buffers to RX SW ring.
514  *
515  * @param rxq
516  *   Pointer to RX queue structure.
517  * @param pkts
518  *   Pointer to array of packets to be stored.
519  * @param pkts_n
520  *   Number of packets to be stored.
521  */
522 static inline void
523 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
524 {
525 	const uint16_t q_mask = (1 << rxq->elts_n) - 1;
526 	struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
527 	unsigned int pos;
528 	uint16_t p = n & -2;
529 
530 	for (pos = 0; pos < p; pos += 2) {
531 		__m128i mbp;
532 
533 		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
534 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
535 	}
536 	if (n & 1)
537 		pkts[pos] = elts[pos];
538 }
539 
540 /**
541  * Replenish buffers for RX in bulk.
542  *
543  * @param rxq
544  *   Pointer to RX queue structure.
545  * @param n
546  *   Number of buffers to be replenished.
547  */
548 static inline void
549 rxq_replenish_bulk_mbuf(struct mlx5_rxq_data *rxq, uint16_t n)
550 {
551 	const uint16_t q_n = 1 << rxq->elts_n;
552 	const uint16_t q_mask = q_n - 1;
553 	const uint16_t elts_idx = rxq->rq_ci & q_mask;
554 	struct rte_mbuf **elts = &(*rxq->elts)[elts_idx];
555 	volatile struct mlx5_wqe_data_seg *wq = &(*rxq->wqes)[elts_idx];
556 	unsigned int i;
557 
558 	assert(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH);
559 	assert(n <= (uint16_t)(q_n - (rxq->rq_ci - rxq->rq_pi)));
560 	assert(MLX5_VPMD_RXQ_RPLNSH_THRESH > MLX5_VPMD_DESCS_PER_LOOP);
561 	/* Not to cross queue end. */
562 	n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, q_n - elts_idx);
563 	if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) {
564 		rxq->stats.rx_nombuf += n;
565 		return;
566 	}
567 	for (i = 0; i < n; ++i)
568 		wq[i].addr = rte_cpu_to_be_64((uintptr_t)elts[i]->buf_addr +
569 					      RTE_PKTMBUF_HEADROOM);
570 	rxq->rq_ci += n;
571 	rte_io_wmb();
572 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
573 }
574 
575 /**
576  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
577  * extracted from the title completion descriptor.
578  *
579  * @param rxq
580  *   Pointer to RX queue structure.
581  * @param cq
582  *   Pointer to completion array having a compressed completion at first.
583  * @param elts
584  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
585  *   the title completion descriptor to be copied to the rest of mbufs.
586  */
587 static inline void
588 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq,
589 		    volatile struct mlx5_cqe *cq,
590 		    struct rte_mbuf **elts)
591 {
592 	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
593 	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
594 	unsigned int pos;
595 	unsigned int i;
596 	unsigned int inv = 0;
597 	/* Mask to shuffle from extracted mini CQE to mbuf. */
598 	const __m128i shuf_mask1 =
599 		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
600 			    -1, -1,         /* skip vlan_tci */
601 			     6,  7,         /* data_len, bswap16 */
602 			    -1, -1,  6,  7, /* pkt_len, bswap16 */
603 			    -1, -1, -1, -1  /* skip packet_type */);
604 	const __m128i shuf_mask2 =
605 		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
606 			    -1, -1,         /* skip vlan_tci */
607 			    14, 15,         /* data_len, bswap16 */
608 			    -1, -1, 14, 15, /* pkt_len, bswap16 */
609 			    -1, -1, -1, -1  /* skip packet_type */);
610 	/* Restore the compressed count. Must be 16 bits. */
611 	const uint16_t mcqe_n = t_pkt->data_len +
612 				(rxq->crc_present * ETHER_CRC_LEN);
613 	const __m128i rearm =
614 		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
615 	const __m128i rxdf =
616 		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
617 	const __m128i crc_adj =
618 		_mm_set_epi16(0, 0, 0,
619 			      rxq->crc_present * ETHER_CRC_LEN,
620 			      0,
621 			      rxq->crc_present * ETHER_CRC_LEN,
622 			      0, 0);
623 	const uint32_t flow_tag = t_pkt->hash.fdir.hi;
624 #ifdef MLX5_PMD_SOFT_COUNTERS
625 	const __m128i zero = _mm_setzero_si128();
626 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
627 	uint32_t rcvd_byte = 0;
628 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
629 	const __m128i len_shuf_mask =
630 		_mm_set_epi8(-1, -1, -1, -1,
631 			     -1, -1, -1, -1,
632 			     14, 15,  6,  7,
633 			     10, 11,  2,  3);
634 #endif
635 
636 	/*
637 	 * Not to overflow elts array. Decompress next time after mbuf
638 	 * replenishment.
639 	 */
640 	if (unlikely(mcqe_n + MLX5_VPMD_DESCS_PER_LOOP >
641 		     (uint16_t)(rxq->rq_ci - rxq->cq_ci)))
642 		return;
643 	/*
644 	 * A. load mCQEs into a 128bit register.
645 	 * B. store rearm data to mbuf.
646 	 * C. combine data from mCQEs with rx_descriptor_fields1.
647 	 * D. store rx_descriptor_fields1.
648 	 * E. store flow tag (rte_flow mark).
649 	 */
650 	for (pos = 0; pos < mcqe_n; ) {
651 		__m128i mcqe1, mcqe2;
652 		__m128i rxdf1, rxdf2;
653 #ifdef MLX5_PMD_SOFT_COUNTERS
654 		__m128i byte_cnt, invalid_mask;
655 #endif
656 
657 		if (!(pos & 0x7) && pos + 8 < mcqe_n)
658 			rte_prefetch0((void *)(cq + pos + 8));
659 		/* A.1 load mCQEs into a 128bit register. */
660 		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
661 		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
662 		/* B.1 store rearm data to mbuf. */
663 		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
664 		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
665 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
666 		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
667 		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
668 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
669 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
670 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
671 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
672 		/* D.1 store rx_descriptor_fields1. */
673 		_mm_storeu_si128((__m128i *)
674 				  &elts[pos]->rx_descriptor_fields1,
675 				 rxdf1);
676 		_mm_storeu_si128((__m128i *)
677 				  &elts[pos + 1]->rx_descriptor_fields1,
678 				 rxdf2);
679 		/* B.1 store rearm data to mbuf. */
680 		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
681 		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
682 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
683 		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
684 		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
685 		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
686 		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
687 		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
688 		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
689 		/* D.1 store rx_descriptor_fields1. */
690 		_mm_storeu_si128((__m128i *)
691 				  &elts[pos + 2]->rx_descriptor_fields1,
692 				 rxdf1);
693 		_mm_storeu_si128((__m128i *)
694 				  &elts[pos + 3]->rx_descriptor_fields1,
695 				 rxdf2);
696 #ifdef MLX5_PMD_SOFT_COUNTERS
697 		invalid_mask = _mm_set_epi64x(0,
698 					      (mcqe_n - pos) *
699 					      sizeof(uint16_t) * 8);
700 		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
701 		mcqe1 = _mm_srli_si128(mcqe1, 4);
702 		byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
703 		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
704 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
705 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
706 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
707 #endif
708 		if (rxq->mark) {
709 			/* E.1 store flow tag (rte_flow mark). */
710 			elts[pos]->hash.fdir.hi = flow_tag;
711 			elts[pos + 1]->hash.fdir.hi = flow_tag;
712 			elts[pos + 2]->hash.fdir.hi = flow_tag;
713 			elts[pos + 3]->hash.fdir.hi = flow_tag;
714 		}
715 		pos += MLX5_VPMD_DESCS_PER_LOOP;
716 		/* Move to next CQE and invalidate consumed CQEs. */
717 		if (!(pos & 0x7) && pos < mcqe_n) {
718 			mcq = (void *)(cq + pos);
719 			for (i = 0; i < 8; ++i)
720 				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
721 		}
722 	}
723 	/* Invalidate the rest of CQEs. */
724 	for (; inv < mcqe_n; ++inv)
725 		cq[inv].op_own = MLX5_CQE_INVALIDATE;
726 #ifdef MLX5_PMD_SOFT_COUNTERS
727 	rxq->stats.ipackets += mcqe_n;
728 	rxq->stats.ibytes += rcvd_byte;
729 #endif
730 	rxq->cq_ci += mcqe_n;
731 }
732 
733 /**
734  * Calculate packet type and offload flag for mbuf and store it.
735  *
736  * @param rxq
737  *   Pointer to RX queue structure.
738  * @param cqes[4]
739  *   Array of four 16bytes completions extracted from the original completion
740  *   descriptor.
741  * @param op_err
742  *   Opcode vector having responder error status. Each field is 4B.
743  * @param pkts
744  *   Pointer to array of packets to be filled.
745  */
746 static inline void
747 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
748 			 __m128i op_err, struct rte_mbuf **pkts)
749 {
750 	__m128i pinfo0, pinfo1;
751 	__m128i pinfo, ptype;
752 	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH);
753 	__m128i cv_flags;
754 	const __m128i zero = _mm_setzero_si128();
755 	const __m128i ptype_mask =
756 		_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
757 	const __m128i ptype_ol_mask =
758 		_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
759 	const __m128i pinfo_mask =
760 		_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
761 	const __m128i cv_flag_sel =
762 		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
763 			     (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
764 					PKT_RX_L4_CKSUM_GOOD) >> 1),
765 			     0,
766 			     (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
767 			     0,
768 			     (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
769 			     (uint8_t)(PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED),
770 			     0);
771 	const __m128i cv_mask =
772 		_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
773 			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
774 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
775 			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
776 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
777 			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
778 			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
779 			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED);
780 	const __m128i mbuf_init =
781 		_mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
782 	__m128i rearm0, rearm1, rearm2, rearm3;
783 
784 	/* Extract pkt_info field. */
785 	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
786 	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
787 	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
788 	/* Extract hdr_type_etc field. */
789 	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
790 	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
791 	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
792 	if (rxq->mark) {
793 		const __m128i pinfo_ft_mask =
794 			_mm_set_epi32(0xffffff00, 0xffffff00,
795 				      0xffffff00, 0xffffff00);
796 		const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
797 		const __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
798 		__m128i flow_tag, invalid_mask;
799 
800 		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
801 		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
802 		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
803 		ol_flags = _mm_or_si128(ol_flags,
804 					_mm_andnot_si128(invalid_mask,
805 							 fdir_flags));
806 		/* Mask out invalid entries. */
807 		flow_tag = _mm_andnot_si128(invalid_mask, flow_tag);
808 		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
809 		ol_flags = _mm_or_si128(ol_flags,
810 					_mm_andnot_si128(
811 						_mm_cmpeq_epi32(flow_tag,
812 								pinfo_ft_mask),
813 						fdir_id_flags));
814 	}
815 	/*
816 	 * Merge the two fields to generate the following:
817 	 * bit[1]     = l3_ok
818 	 * bit[2]     = l4_ok
819 	 * bit[8]     = cv
820 	 * bit[11:10] = l3_hdr_type
821 	 * bit[14:12] = l4_hdr_type
822 	 * bit[15]    = ip_frag
823 	 * bit[16]    = tunneled
824 	 * bit[17]    = outer_l3_type
825 	 */
826 	ptype = _mm_and_si128(ptype, ptype_mask);
827 	pinfo = _mm_and_si128(pinfo, pinfo_mask);
828 	pinfo = _mm_slli_epi32(pinfo, 16);
829 	/* Make pinfo has merged fields for ol_flags calculation. */
830 	pinfo = _mm_or_si128(ptype, pinfo);
831 	ptype = _mm_srli_epi32(pinfo, 10);
832 	ptype = _mm_packs_epi32(ptype, zero);
833 	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
834 	op_err = _mm_srli_epi16(op_err, 8);
835 	ptype = _mm_or_si128(ptype, op_err);
836 	pkts[0]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 0)];
837 	pkts[1]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 2)];
838 	pkts[2]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 4)];
839 	pkts[3]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 6)];
840 	/* Fill flags for checksum and VLAN. */
841 	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
842 	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
843 	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
844 	cv_flags = _mm_slli_epi32(pinfo, 9);
845 	cv_flags = _mm_or_si128(pinfo, cv_flags);
846 	/* Move back flags to start from byte[0]. */
847 	cv_flags = _mm_srli_epi32(cv_flags, 8);
848 	/* Mask out garbage bits. */
849 	cv_flags = _mm_and_si128(cv_flags, cv_mask);
850 	/* Merge to ol_flags. */
851 	ol_flags = _mm_or_si128(ol_flags, cv_flags);
852 	/* Merge mbuf_init and ol_flags. */
853 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
854 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
855 	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
856 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
857 	/* Write 8B rearm_data and 8B ol_flags. */
858 	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
859 	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
860 	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
861 	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
862 }
863 
864 /**
865  * Skip error packets.
866  *
867  * @param rxq
868  *   Pointer to RX queue structure.
869  * @param[out] pkts
870  *   Array to store received packets.
871  * @param pkts_n
872  *   Maximum number of packets in array.
873  *
874  * @return
875  *   Number of packets successfully received (<= pkts_n).
876  */
877 static uint16_t
878 rxq_handle_pending_error(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts,
879 			 uint16_t pkts_n)
880 {
881 	uint16_t n = 0;
882 	unsigned int i;
883 #ifdef MLX5_PMD_SOFT_COUNTERS
884 	uint32_t err_bytes = 0;
885 #endif
886 
887 	for (i = 0; i < pkts_n; ++i) {
888 		struct rte_mbuf *pkt = pkts[i];
889 
890 		if (pkt->packet_type == RTE_PTYPE_ALL_MASK) {
891 #ifdef MLX5_PMD_SOFT_COUNTERS
892 			err_bytes += PKT_LEN(pkt);
893 #endif
894 			rte_pktmbuf_free_seg(pkt);
895 		} else {
896 			pkts[n++] = pkt;
897 		}
898 	}
899 	rxq->stats.idropped += (pkts_n - n);
900 #ifdef MLX5_PMD_SOFT_COUNTERS
901 	/* Correct counters of errored completions. */
902 	rxq->stats.ipackets -= (pkts_n - n);
903 	rxq->stats.ibytes -= err_bytes;
904 #endif
905 	rxq->pending_err = 0;
906 	return n;
907 }
908 
909 /**
910  * Receive burst of packets. An errored completion also consumes a mbuf, but the
911  * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
912  * before returning to application.
913  *
914  * @param rxq
915  *   Pointer to RX queue structure.
916  * @param[out] pkts
917  *   Array to store received packets.
918  * @param pkts_n
919  *   Maximum number of packets in array.
920  *
921  * @return
922  *   Number of packets received including errors (<= pkts_n).
923  */
924 static inline uint16_t
925 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
926 {
927 	const uint16_t q_n = 1 << rxq->cqe_n;
928 	const uint16_t q_mask = q_n - 1;
929 	volatile struct mlx5_cqe *cq;
930 	struct rte_mbuf **elts;
931 	unsigned int pos;
932 	uint64_t n;
933 	uint16_t repl_n;
934 	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
935 	uint16_t nocmp_n = 0;
936 	uint16_t rcvd_pkt = 0;
937 	unsigned int cq_idx = rxq->cq_ci & q_mask;
938 	unsigned int elts_idx;
939 	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
940 	const __m128i owner_check =
941 		_mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
942 	const __m128i opcode_check =
943 		_mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
944 	const __m128i format_check =
945 		_mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
946 	const __m128i resp_err_check =
947 		_mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
948 #ifdef MLX5_PMD_SOFT_COUNTERS
949 	uint32_t rcvd_byte = 0;
950 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
951 	const __m128i len_shuf_mask =
952 		_mm_set_epi8(-1, -1, -1, -1,
953 			     -1, -1, -1, -1,
954 			     12, 13,  8,  9,
955 			      4,  5,  0,  1);
956 #endif
957 	/* Mask to shuffle from extracted CQE to mbuf. */
958 	const __m128i shuf_mask =
959 		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
960 			     12, 13, 14, 15, /* rss, bswap32 */
961 			     10, 11,         /* vlan_tci, bswap16 */
962 			      4,  5,         /* data_len, bswap16 */
963 			     -1, -1,         /* zero out 2nd half of pkt_len */
964 			      4,  5          /* pkt_len, bswap16 */);
965 	/* Mask to blend from the last Qword to the first DQword. */
966 	const __m128i blend_mask =
967 		_mm_set_epi8(-1, -1, -1, -1,
968 			     -1, -1, -1, -1,
969 			      0,  0,  0,  0,
970 			      0,  0,  0, -1);
971 	const __m128i zero = _mm_setzero_si128();
972 	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
973 	const __m128i crc_adj =
974 		_mm_set_epi16(0, 0, 0, 0, 0,
975 			      rxq->crc_present * ETHER_CRC_LEN,
976 			      0,
977 			      rxq->crc_present * ETHER_CRC_LEN);
978 	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
979 
980 	assert(rxq->sges_n == 0);
981 	assert(rxq->cqe_n == rxq->elts_n);
982 	cq = &(*rxq->cqes)[cq_idx];
983 	rte_prefetch0(cq);
984 	rte_prefetch0(cq + 1);
985 	rte_prefetch0(cq + 2);
986 	rte_prefetch0(cq + 3);
987 	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
988 	/*
989 	 * Order of indexes:
990 	 *   rq_ci >= cq_ci >= rq_pi
991 	 * Definition of indexes:
992 	 *   rq_ci - cq_ci := # of buffers owned by HW (posted).
993 	 *   cq_ci - rq_pi := # of buffers not returned to app (decompressed).
994 	 *   N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
995 	 */
996 	repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
997 	if (repl_n >= MLX5_VPMD_RXQ_RPLNSH_THRESH)
998 		rxq_replenish_bulk_mbuf(rxq, repl_n);
999 	/* See if there're unreturned mbufs from compressed CQE. */
1000 	rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
1001 	if (rcvd_pkt > 0) {
1002 		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
1003 		rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
1004 		rxq->rq_pi += rcvd_pkt;
1005 		pkts += rcvd_pkt;
1006 	}
1007 	elts_idx = rxq->rq_pi & q_mask;
1008 	elts = &(*rxq->elts)[elts_idx];
1009 	pkts_n = RTE_MIN(pkts_n - rcvd_pkt,
1010 			 (uint16_t)(rxq->rq_ci - rxq->cq_ci));
1011 	/* Not to overflow pkts/elts array. */
1012 	pkts_n = RTE_ALIGN_FLOOR(pkts_n, MLX5_VPMD_DESCS_PER_LOOP);
1013 	/* Not to cross queue end. */
1014 	pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
1015 	if (!pkts_n)
1016 		return rcvd_pkt;
1017 	/* At this point, there shouldn't be any remained packets. */
1018 	assert(rxq->rq_pi == rxq->cq_ci);
1019 	/*
1020 	 * A. load first Qword (8bytes) in one loop.
1021 	 * B. copy 4 mbuf pointers from elts ring to returing pkts.
1022 	 * C. load remained CQE data and extract necessary fields.
1023 	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
1024 	 *    following structure:
1025 	 *        struct {
1026 	 *          uint8_t  pkt_info;
1027 	 *          uint8_t  flow_tag[3];
1028 	 *          uint16_t byte_cnt;
1029 	 *          uint8_t  rsvd4;
1030 	 *          uint8_t  op_own;
1031 	 *          uint16_t hdr_type_etc;
1032 	 *          uint16_t vlan_info;
1033 	 *          uint32_t rx_has_res;
1034 	 *        } c;
1035 	 * D. fill in mbuf.
1036 	 * E. get valid CQEs.
1037 	 * F. find compressed CQE.
1038 	 */
1039 	for (pos = 0;
1040 	     pos < pkts_n;
1041 	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
1042 		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
1043 		__m128i cqe_tmp1, cqe_tmp2;
1044 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
1045 		__m128i op_own, op_own_tmp1, op_own_tmp2;
1046 		__m128i opcode, owner_mask, invalid_mask;
1047 		__m128i comp_mask;
1048 		__m128i mask;
1049 #ifdef MLX5_PMD_SOFT_COUNTERS
1050 		__m128i byte_cnt;
1051 #endif
1052 		__m128i mbp1, mbp2;
1053 		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
1054 		unsigned int p1, p2, p3;
1055 
1056 		/* Prefetch next 4 CQEs. */
1057 		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
1058 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
1059 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
1060 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
1061 			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
1062 		}
1063 		/* A.0 do not cross the end of CQ. */
1064 		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
1065 		mask = _mm_sll_epi64(ones, mask);
1066 		p = _mm_andnot_si128(mask, p);
1067 		/* A.1 load cqes. */
1068 		p3 = _mm_extract_epi16(p, 3);
1069 		cqes[3] = _mm_loadl_epi64((__m128i *)
1070 					   &cq[pos + p3].sop_drop_qpn);
1071 		rte_compiler_barrier();
1072 		p2 = _mm_extract_epi16(p, 2);
1073 		cqes[2] = _mm_loadl_epi64((__m128i *)
1074 					   &cq[pos + p2].sop_drop_qpn);
1075 		rte_compiler_barrier();
1076 		/* B.1 load mbuf pointers. */
1077 		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
1078 		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
1079 		/* A.1 load a block having op_own. */
1080 		p1 = _mm_extract_epi16(p, 1);
1081 		cqes[1] = _mm_loadl_epi64((__m128i *)
1082 					   &cq[pos + p1].sop_drop_qpn);
1083 		rte_compiler_barrier();
1084 		cqes[0] = _mm_loadl_epi64((__m128i *)
1085 					   &cq[pos].sop_drop_qpn);
1086 		/* B.2 copy mbuf pointers. */
1087 		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
1088 		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
1089 		rte_compiler_barrier();
1090 		/* C.1 load remained CQE data and extract necessary fields. */
1091 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
1092 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
1093 		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
1094 		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
1095 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
1096 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
1097 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
1098 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
1099 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
1100 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
1101 		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
1102 		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
1103 		/* C.2 generate final structure for mbuf with swapping bytes. */
1104 		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
1105 		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
1106 		/* C.3 adjust CRC length. */
1107 		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
1108 		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
1109 		/* C.4 adjust flow mark. */
1110 		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
1111 		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
1112 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
1113 		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
1114 		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
1115 		/* E.1 extract op_own field. */
1116 		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
1117 		/* C.1 load remained CQE data and extract necessary fields. */
1118 		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
1119 		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
1120 		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
1121 		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
1122 		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
1123 		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
1124 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
1125 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
1126 		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
1127 		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
1128 		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
1129 		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
1130 		/* C.2 generate final structure for mbuf with swapping bytes. */
1131 		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
1132 		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
1133 		/* C.3 adjust CRC length. */
1134 		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
1135 		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
1136 		/* C.4 adjust flow mark. */
1137 		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
1138 		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
1139 		/* E.1 extract op_own byte. */
1140 		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
1141 		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
1142 		/* D.1 fill in mbuf - rx_descriptor_fields1. */
1143 		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
1144 		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
1145 		/* E.2 flip owner bit to mark CQEs from last round. */
1146 		owner_mask = _mm_and_si128(op_own, owner_check);
1147 		if (ownership)
1148 			owner_mask = _mm_xor_si128(owner_mask, owner_check);
1149 		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
1150 		owner_mask = _mm_packs_epi32(owner_mask, zero);
1151 		/* E.3 get mask for invalidated CQEs. */
1152 		opcode = _mm_and_si128(op_own, opcode_check);
1153 		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
1154 		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
1155 		/* E.4 mask out beyond boundary. */
1156 		invalid_mask = _mm_or_si128(invalid_mask, mask);
1157 		/* E.5 merge invalid_mask with invalid owner. */
1158 		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
1159 		/* F.1 find compressed CQE format. */
1160 		comp_mask = _mm_and_si128(op_own, format_check);
1161 		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
1162 		comp_mask = _mm_packs_epi32(comp_mask, zero);
1163 		/* F.2 mask out invalid entries. */
1164 		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
1165 		comp_idx = _mm_cvtsi128_si64(comp_mask);
1166 		/* F.3 get the first compressed CQE. */
1167 		comp_idx = comp_idx ?
1168 				__builtin_ctzll(comp_idx) /
1169 					(sizeof(uint16_t) * 8) :
1170 				MLX5_VPMD_DESCS_PER_LOOP;
1171 		/* E.6 mask out entries after the compressed CQE. */
1172 		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
1173 		mask = _mm_sll_epi64(ones, mask);
1174 		invalid_mask = _mm_or_si128(invalid_mask, mask);
1175 		/* E.7 count non-compressed valid CQEs. */
1176 		n = _mm_cvtsi128_si64(invalid_mask);
1177 		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
1178 			MLX5_VPMD_DESCS_PER_LOOP;
1179 		nocmp_n += n;
1180 		/* D.2 get the final invalid mask. */
1181 		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
1182 		mask = _mm_sll_epi64(ones, mask);
1183 		invalid_mask = _mm_or_si128(invalid_mask, mask);
1184 		/* D.3 check error in opcode. */
1185 		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
1186 		opcode = _mm_packs_epi32(opcode, zero);
1187 		opcode = _mm_andnot_si128(invalid_mask, opcode);
1188 		/* D.4 mark if any error is set */
1189 		rxq->pending_err |= !!_mm_cvtsi128_si64(opcode);
1190 		/* D.5 fill in mbuf - rearm_data and packet_type. */
1191 		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
1192 #ifdef MLX5_PMD_SOFT_COUNTERS
1193 		/* Add up received bytes count. */
1194 		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
1195 		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
1196 		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
1197 		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
1198 #endif
1199 		/*
1200 		 * Break the loop unless more valid CQE is expected, or if
1201 		 * there's a compressed CQE.
1202 		 */
1203 		if (n != MLX5_VPMD_DESCS_PER_LOOP)
1204 			break;
1205 	}
1206 	/* If no new CQE seen, return without updating cq_db. */
1207 	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
1208 		return rcvd_pkt;
1209 	/* Update the consumer indexes for non-compressed CQEs. */
1210 	assert(nocmp_n <= pkts_n);
1211 	rxq->cq_ci += nocmp_n;
1212 	rxq->rq_pi += nocmp_n;
1213 	rcvd_pkt += nocmp_n;
1214 #ifdef MLX5_PMD_SOFT_COUNTERS
1215 	rxq->stats.ipackets += nocmp_n;
1216 	rxq->stats.ibytes += rcvd_byte;
1217 #endif
1218 	/* Decompress the last CQE if compressed. */
1219 	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
1220 		assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
1221 		rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
1222 		/* Return more packets if needed. */
1223 		if (nocmp_n < pkts_n) {
1224 			uint16_t n = rxq->cq_ci - rxq->rq_pi;
1225 
1226 			n = RTE_MIN(n, pkts_n - nocmp_n);
1227 			rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
1228 			rxq->rq_pi += n;
1229 			rcvd_pkt += n;
1230 		}
1231 	}
1232 	rte_compiler_barrier();
1233 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1234 	return rcvd_pkt;
1235 }
1236 
1237 /**
1238  * DPDK callback for vectorized RX.
1239  *
1240  * @param dpdk_rxq
1241  *   Generic pointer to RX queue structure.
1242  * @param[out] pkts
1243  *   Array to store received packets.
1244  * @param pkts_n
1245  *   Maximum number of packets in array.
1246  *
1247  * @return
1248  *   Number of packets successfully received (<= pkts_n).
1249  */
1250 uint16_t
1251 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1252 {
1253 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1254 	uint16_t nb_rx;
1255 
1256 	nb_rx = rxq_burst_v(rxq, pkts, pkts_n);
1257 	if (unlikely(rxq->pending_err))
1258 		nb_rx = rxq_handle_pending_error(rxq, pkts, nb_rx);
1259 	return nb_rx;
1260 }
1261 
1262 /**
1263  * Check Tx queue flags are set for raw vectorized Tx.
1264  *
1265  * @param priv
1266  *   Pointer to private structure.
1267  *
1268  * @return
1269  *   1 if supported, negative errno value if not.
1270  */
1271 int __attribute__((cold))
1272 priv_check_raw_vec_tx_support(struct priv *priv)
1273 {
1274 	uint16_t i;
1275 
1276 	/* All the configured queues should support. */
1277 	for (i = 0; i < priv->txqs_n; ++i) {
1278 		struct mlx5_txq_data *txq = (*priv->txqs)[i];
1279 
1280 		if (!(txq->flags & ETH_TXQ_FLAGS_NOMULTSEGS) ||
1281 		    !(txq->flags & ETH_TXQ_FLAGS_NOOFFLOADS))
1282 			break;
1283 	}
1284 	if (i != priv->txqs_n)
1285 		return -ENOTSUP;
1286 	return 1;
1287 }
1288 
1289 /**
1290  * Check a device can support vectorized TX.
1291  *
1292  * @param priv
1293  *   Pointer to private structure.
1294  *
1295  * @return
1296  *   1 if supported, negative errno value if not.
1297  */
1298 int __attribute__((cold))
1299 priv_check_vec_tx_support(struct priv *priv)
1300 {
1301 	if (!priv->tx_vec_en ||
1302 	    priv->txqs_n > MLX5_VPMD_MIN_TXQS ||
1303 	    priv->mps != MLX5_MPW_ENHANCED ||
1304 	    priv->tso)
1305 		return -ENOTSUP;
1306 	return 1;
1307 }
1308 
1309 /**
1310  * Check a RX queue can support vectorized RX.
1311  *
1312  * @param rxq
1313  *   Pointer to RX queue.
1314  *
1315  * @return
1316  *   1 if supported, negative errno value if not.
1317  */
1318 int __attribute__((cold))
1319 rxq_check_vec_support(struct mlx5_rxq_data *rxq)
1320 {
1321 	struct mlx5_rxq_ctrl *ctrl =
1322 		container_of(rxq, struct mlx5_rxq_ctrl, rxq);
1323 
1324 	if (!ctrl->priv->rx_vec_en || rxq->sges_n != 0)
1325 		return -ENOTSUP;
1326 	return 1;
1327 }
1328 
1329 /**
1330  * Check a device can support vectorized RX.
1331  *
1332  * @param priv
1333  *   Pointer to private structure.
1334  *
1335  * @return
1336  *   1 if supported, negative errno value if not.
1337  */
1338 int __attribute__((cold))
1339 priv_check_vec_rx_support(struct priv *priv)
1340 {
1341 	uint16_t i;
1342 
1343 	if (!priv->rx_vec_en)
1344 		return -ENOTSUP;
1345 	/* All the configured queues should support. */
1346 	for (i = 0; i < priv->rxqs_n; ++i) {
1347 		struct mlx5_rxq_data *rxq = (*priv->rxqs)[i];
1348 
1349 		if (!rxq)
1350 			continue;
1351 		if (rxq_check_vec_support(rxq) < 0)
1352 			break;
1353 	}
1354 	if (i != priv->rxqs_n)
1355 		return -ENOTSUP;
1356 	return 1;
1357 }
1358