1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2017 6WIND S.A. 3 * Copyright 2017 Mellanox Technologies, Ltd 4 */ 5 6 #include <stdint.h> 7 #include <string.h> 8 #include <stdlib.h> 9 10 #include <rte_mbuf.h> 11 #include <rte_mempool.h> 12 #include <rte_prefetch.h> 13 #include <rte_vect.h> 14 15 #include <mlx5_glue.h> 16 #include <mlx5_prm.h> 17 18 #include "mlx5_defs.h" 19 #include "mlx5.h" 20 #include "mlx5_utils.h" 21 #include "mlx5_rxtx.h" 22 #include "mlx5_rx.h" 23 #include "mlx5_rxtx_vec.h" 24 #include "mlx5_autoconf.h" 25 26 #if defined RTE_ARCH_X86_64 27 #include "mlx5_rxtx_vec_sse.h" 28 #elif defined RTE_ARCH_ARM64 29 #include "mlx5_rxtx_vec_neon.h" 30 #elif defined RTE_ARCH_PPC_64 31 #include "mlx5_rxtx_vec_altivec.h" 32 #else 33 #error "This should not be compiled if SIMD instructions are not supported." 34 #endif 35 36 /** 37 * Skip error packets. 38 * 39 * @param rxq 40 * Pointer to RX queue structure. 41 * @param[out] pkts 42 * Array to store received packets. 43 * @param pkts_n 44 * Maximum number of packets in array. 45 * 46 * @return 47 * Number of packets successfully received (<= pkts_n). 48 */ 49 static uint16_t 50 rxq_handle_pending_error(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, 51 uint16_t pkts_n) 52 { 53 uint16_t n = 0; 54 unsigned int i; 55 #ifdef MLX5_PMD_SOFT_COUNTERS 56 uint32_t err_bytes = 0; 57 #endif 58 59 for (i = 0; i < pkts_n; ++i) { 60 struct rte_mbuf *pkt = pkts[i]; 61 62 if (pkt->packet_type == RTE_PTYPE_ALL_MASK || rxq->err_state) { 63 #ifdef MLX5_PMD_SOFT_COUNTERS 64 err_bytes += PKT_LEN(pkt); 65 #endif 66 rte_pktmbuf_free_seg(pkt); 67 } else { 68 pkts[n++] = pkt; 69 } 70 } 71 rxq->stats.idropped += (pkts_n - n); 72 #ifdef MLX5_PMD_SOFT_COUNTERS 73 /* Correct counters of errored completions. */ 74 rxq->stats.ipackets -= (pkts_n - n); 75 rxq->stats.ibytes -= err_bytes; 76 #endif 77 mlx5_rx_err_handle(rxq, 1); 78 return n; 79 } 80 81 /** 82 * Replenish buffers for RX in bulk. 83 * 84 * @param rxq 85 * Pointer to RX queue structure. 86 */ 87 static inline void 88 mlx5_rx_replenish_bulk_mbuf(struct mlx5_rxq_data *rxq) 89 { 90 const uint16_t q_n = 1 << rxq->elts_n; 91 const uint16_t q_mask = q_n - 1; 92 uint16_t n = q_n - (rxq->rq_ci - rxq->rq_pi); 93 uint16_t elts_idx = rxq->rq_ci & q_mask; 94 struct rte_mbuf **elts = &(*rxq->elts)[elts_idx]; 95 volatile struct mlx5_wqe_data_seg *wq = 96 &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[elts_idx]; 97 unsigned int i; 98 99 if (n >= rxq->rq_repl_thresh) { 100 MLX5_ASSERT(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH(q_n)); 101 MLX5_ASSERT(MLX5_VPMD_RXQ_RPLNSH_THRESH(q_n) > 102 MLX5_VPMD_DESCS_PER_LOOP); 103 /* Not to cross queue end. */ 104 n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, q_n - elts_idx); 105 if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) { 106 rxq->stats.rx_nombuf += n; 107 return; 108 } 109 if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1)) { 110 for (i = 0; i < n; ++i) { 111 /* 112 * In order to support the mbufs with external attached 113 * data buffer we should use the buf_addr pointer 114 * instead of rte_mbuf_buf_addr(). It touches the mbuf 115 * itself and may impact the performance. 116 */ 117 void *buf_addr = elts[i]->buf_addr; 118 119 wq[i].addr = rte_cpu_to_be_64((uintptr_t)buf_addr + 120 RTE_PKTMBUF_HEADROOM); 121 wq[i].lkey = mlx5_rx_mb2mr(rxq, elts[i]); 122 } 123 } else { 124 for (i = 0; i < n; ++i) { 125 void *buf_addr = elts[i]->buf_addr; 126 127 wq[i].addr = rte_cpu_to_be_64((uintptr_t)buf_addr + 128 RTE_PKTMBUF_HEADROOM); 129 } 130 } 131 rxq->rq_ci += n; 132 /* Prevent overflowing into consumed mbufs. */ 133 elts_idx = rxq->rq_ci & q_mask; 134 for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i) 135 (*rxq->elts)[elts_idx + i] = &rxq->fake_mbuf; 136 rte_io_wmb(); 137 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci); 138 } 139 } 140 141 /** 142 * Replenish buffers for MPRQ RX in bulk. 143 * 144 * @param rxq 145 * Pointer to RX queue structure. 146 */ 147 static inline void 148 mlx5_rx_mprq_replenish_bulk_mbuf(struct mlx5_rxq_data *rxq) 149 { 150 const uint16_t wqe_n = 1 << rxq->elts_n; 151 const uint32_t strd_n = 1 << rxq->strd_num_n; 152 const uint32_t elts_n = wqe_n * strd_n; 153 const uint32_t wqe_mask = elts_n - 1; 154 uint32_t n = elts_n - (rxq->elts_ci - rxq->rq_pi); 155 uint32_t elts_idx = rxq->elts_ci & wqe_mask; 156 struct rte_mbuf **elts = &(*rxq->elts)[elts_idx]; 157 unsigned int i; 158 159 if (n >= rxq->rq_repl_thresh && 160 rxq->elts_ci - rxq->rq_pi <= rxq->rq_repl_thresh) { 161 MLX5_ASSERT(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH(elts_n)); 162 MLX5_ASSERT(MLX5_VPMD_RXQ_RPLNSH_THRESH(elts_n) > 163 MLX5_VPMD_DESCS_PER_LOOP); 164 /* Not to cross queue end. */ 165 n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, elts_n - elts_idx); 166 /* Limit replenish number to threshold value. */ 167 n = RTE_MIN(n, rxq->rq_repl_thresh); 168 if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) { 169 rxq->stats.rx_nombuf += n; 170 return; 171 } 172 rxq->elts_ci += n; 173 /* Prevent overflowing into consumed mbufs. */ 174 elts_idx = rxq->elts_ci & wqe_mask; 175 for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i) 176 (*rxq->elts)[elts_idx + i] = &rxq->fake_mbuf; 177 } 178 } 179 180 /** 181 * Copy or attach MPRQ buffers to RX SW ring. 182 * 183 * @param rxq 184 * Pointer to RX queue structure. 185 * @param pkts 186 * Pointer to array of packets to be stored. 187 * @param pkts_n 188 * Number of packets to be stored. 189 * 190 * @return 191 * Number of packets successfully copied/attached (<= pkts_n). 192 */ 193 static inline uint16_t 194 rxq_copy_mprq_mbuf_v(struct mlx5_rxq_data *rxq, 195 struct rte_mbuf **pkts, uint16_t pkts_n) 196 { 197 const uint16_t wqe_n = 1 << rxq->elts_n; 198 const uint16_t wqe_mask = wqe_n - 1; 199 const uint16_t strd_sz = 1 << rxq->strd_sz_n; 200 const uint32_t strd_n = 1 << rxq->strd_num_n; 201 const uint32_t elts_n = wqe_n * strd_n; 202 const uint32_t elts_mask = elts_n - 1; 203 uint32_t elts_idx = rxq->rq_pi & elts_mask; 204 struct rte_mbuf **elts = &(*rxq->elts)[elts_idx]; 205 uint32_t rq_ci = rxq->rq_ci; 206 struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wqe_mask]; 207 uint16_t copied = 0; 208 uint16_t i = 0; 209 210 for (i = 0; i < pkts_n; ++i) { 211 uint16_t strd_cnt; 212 enum mlx5_rqx_code rxq_code; 213 214 if (rxq->consumed_strd == strd_n) { 215 /* Replace WQE if the buffer is still in use. */ 216 mprq_buf_replace(rxq, rq_ci & wqe_mask); 217 /* Advance to the next WQE. */ 218 rxq->consumed_strd = 0; 219 rq_ci++; 220 buf = (*rxq->mprq_bufs)[rq_ci & wqe_mask]; 221 } 222 223 if (!elts[i]->pkt_len) { 224 rxq->consumed_strd = strd_n; 225 rte_pktmbuf_free_seg(elts[i]); 226 #ifdef MLX5_PMD_SOFT_COUNTERS 227 rxq->stats.ipackets -= 1; 228 #endif 229 continue; 230 } 231 strd_cnt = (elts[i]->pkt_len / strd_sz) + 232 ((elts[i]->pkt_len % strd_sz) ? 1 : 0); 233 rxq_code = mprq_buf_to_pkt(rxq, elts[i], elts[i]->pkt_len, 234 buf, rxq->consumed_strd, strd_cnt); 235 rxq->consumed_strd += strd_cnt; 236 if (unlikely(rxq_code != MLX5_RXQ_CODE_EXIT)) { 237 rte_pktmbuf_free_seg(elts[i]); 238 #ifdef MLX5_PMD_SOFT_COUNTERS 239 rxq->stats.ipackets -= 1; 240 rxq->stats.ibytes -= elts[i]->pkt_len; 241 #endif 242 if (rxq_code == MLX5_RXQ_CODE_NOMBUF) { 243 ++rxq->stats.rx_nombuf; 244 break; 245 } 246 if (rxq_code == MLX5_RXQ_CODE_DROPPED) { 247 ++rxq->stats.idropped; 248 continue; 249 } 250 } 251 pkts[copied++] = elts[i]; 252 } 253 rxq->rq_pi += i; 254 rxq->cq_ci += i; 255 rte_io_wmb(); 256 *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci); 257 if (rq_ci != rxq->rq_ci) { 258 rxq->rq_ci = rq_ci; 259 rte_io_wmb(); 260 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci); 261 } 262 return copied; 263 } 264 265 /** 266 * Receive burst of packets. An errored completion also consumes a mbuf, but the 267 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed 268 * before returning to application. 269 * 270 * @param rxq 271 * Pointer to RX queue structure. 272 * @param[out] pkts 273 * Array to store received packets. 274 * @param pkts_n 275 * Maximum number of packets in array. 276 * @param[out] err 277 * Pointer to a flag. Set non-zero value if pkts array has at least one error 278 * packet to handle. 279 * @param[out] no_cq 280 * Pointer to a boolean. Set true if no new CQE seen. 281 * 282 * @return 283 * Number of packets received including errors (<= pkts_n). 284 */ 285 static inline uint16_t 286 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, 287 uint16_t pkts_n, uint64_t *err, bool *no_cq) 288 { 289 const uint16_t q_n = 1 << rxq->cqe_n; 290 const uint16_t q_mask = q_n - 1; 291 const uint16_t e_n = 1 << rxq->elts_n; 292 const uint16_t e_mask = e_n - 1; 293 volatile struct mlx5_cqe *cq; 294 struct rte_mbuf **elts; 295 uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP; 296 uint16_t nocmp_n = 0; 297 uint16_t rcvd_pkt = 0; 298 unsigned int cq_idx = rxq->cq_ci & q_mask; 299 unsigned int elts_idx; 300 301 MLX5_ASSERT(rxq->sges_n == 0); 302 MLX5_ASSERT(rxq->cqe_n == rxq->elts_n); 303 cq = &(*rxq->cqes)[cq_idx]; 304 rte_prefetch0(cq); 305 rte_prefetch0(cq + 1); 306 rte_prefetch0(cq + 2); 307 rte_prefetch0(cq + 3); 308 pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST); 309 mlx5_rx_replenish_bulk_mbuf(rxq); 310 /* See if there're unreturned mbufs from compressed CQE. */ 311 rcvd_pkt = rxq->decompressed; 312 if (rcvd_pkt > 0) { 313 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n); 314 rxq_copy_mbuf_v(&(*rxq->elts)[rxq->rq_pi & e_mask], 315 pkts, rcvd_pkt); 316 rxq->rq_pi += rcvd_pkt; 317 rxq->decompressed -= rcvd_pkt; 318 pkts += rcvd_pkt; 319 } 320 elts_idx = rxq->rq_pi & e_mask; 321 elts = &(*rxq->elts)[elts_idx]; 322 /* Not to overflow pkts array. */ 323 pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP); 324 /* Not to cross queue end. */ 325 pkts_n = RTE_MIN(pkts_n, q_n - elts_idx); 326 pkts_n = RTE_MIN(pkts_n, q_n - cq_idx); 327 if (!pkts_n) { 328 *no_cq = !rcvd_pkt; 329 return rcvd_pkt; 330 } 331 /* At this point, there shouldn't be any remaining packets. */ 332 MLX5_ASSERT(rxq->decompressed == 0); 333 /* Process all the CQEs */ 334 nocmp_n = rxq_cq_process_v(rxq, cq, elts, pkts, pkts_n, err, &comp_idx); 335 /* If no new CQE seen, return without updating cq_db. */ 336 if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) { 337 *no_cq = true; 338 return rcvd_pkt; 339 } 340 /* Update the consumer indexes for non-compressed CQEs. */ 341 MLX5_ASSERT(nocmp_n <= pkts_n); 342 rxq->cq_ci += nocmp_n; 343 rxq->rq_pi += nocmp_n; 344 rcvd_pkt += nocmp_n; 345 /* Decompress the last CQE if compressed. */ 346 if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP) { 347 MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP)); 348 rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n], 349 &elts[nocmp_n]); 350 rxq->cq_ci += rxq->decompressed; 351 /* Return more packets if needed. */ 352 if (nocmp_n < pkts_n) { 353 uint16_t n = rxq->decompressed; 354 355 n = RTE_MIN(n, pkts_n - nocmp_n); 356 rxq_copy_mbuf_v(&(*rxq->elts)[rxq->rq_pi & e_mask], 357 &pkts[nocmp_n], n); 358 rxq->rq_pi += n; 359 rcvd_pkt += n; 360 rxq->decompressed -= n; 361 } 362 } 363 rte_io_wmb(); 364 *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci); 365 *no_cq = !rcvd_pkt; 366 return rcvd_pkt; 367 } 368 369 /** 370 * DPDK callback for vectorized RX. 371 * 372 * @param dpdk_rxq 373 * Generic pointer to RX queue structure. 374 * @param[out] pkts 375 * Array to store received packets. 376 * @param pkts_n 377 * Maximum number of packets in array. 378 * 379 * @return 380 * Number of packets successfully received (<= pkts_n). 381 */ 382 uint16_t 383 mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) 384 { 385 struct mlx5_rxq_data *rxq = dpdk_rxq; 386 uint16_t nb_rx = 0; 387 uint16_t tn = 0; 388 uint64_t err = 0; 389 bool no_cq = false; 390 391 do { 392 nb_rx = rxq_burst_v(rxq, pkts + tn, pkts_n - tn, 393 &err, &no_cq); 394 if (unlikely(err | rxq->err_state)) 395 nb_rx = rxq_handle_pending_error(rxq, pkts + tn, nb_rx); 396 tn += nb_rx; 397 if (unlikely(no_cq)) 398 break; 399 } while (tn != pkts_n); 400 return tn; 401 } 402 403 /** 404 * Receive burst of packets. An errored completion also consumes a mbuf, but the 405 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed 406 * before returning to application. 407 * 408 * @param rxq 409 * Pointer to RX queue structure. 410 * @param[out] pkts 411 * Array to store received packets. 412 * @param pkts_n 413 * Maximum number of packets in array. 414 * @param[out] err 415 * Pointer to a flag. Set non-zero value if pkts array has at least one error 416 * packet to handle. 417 * @param[out] no_cq 418 * Pointer to a boolean. Set true if no new CQE seen. 419 * 420 * @return 421 * Number of packets received including errors (<= pkts_n). 422 */ 423 static inline uint16_t 424 rxq_burst_mprq_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, 425 uint16_t pkts_n, uint64_t *err, bool *no_cq) 426 { 427 const uint16_t q_n = 1 << rxq->cqe_n; 428 const uint16_t q_mask = q_n - 1; 429 const uint16_t wqe_n = 1 << rxq->elts_n; 430 const uint32_t strd_n = 1 << rxq->strd_num_n; 431 const uint32_t elts_n = wqe_n * strd_n; 432 const uint32_t elts_mask = elts_n - 1; 433 volatile struct mlx5_cqe *cq; 434 struct rte_mbuf **elts; 435 uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP; 436 uint16_t nocmp_n = 0; 437 uint16_t rcvd_pkt = 0; 438 uint16_t cp_pkt = 0; 439 unsigned int cq_idx = rxq->cq_ci & q_mask; 440 unsigned int elts_idx; 441 442 MLX5_ASSERT(rxq->sges_n == 0); 443 cq = &(*rxq->cqes)[cq_idx]; 444 rte_prefetch0(cq); 445 rte_prefetch0(cq + 1); 446 rte_prefetch0(cq + 2); 447 rte_prefetch0(cq + 3); 448 pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST); 449 mlx5_rx_mprq_replenish_bulk_mbuf(rxq); 450 /* See if there're unreturned mbufs from compressed CQE. */ 451 rcvd_pkt = rxq->decompressed; 452 if (rcvd_pkt > 0) { 453 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n); 454 cp_pkt = rxq_copy_mprq_mbuf_v(rxq, pkts, rcvd_pkt); 455 rxq->decompressed -= rcvd_pkt; 456 pkts += cp_pkt; 457 } 458 elts_idx = rxq->rq_pi & elts_mask; 459 elts = &(*rxq->elts)[elts_idx]; 460 /* Not to overflow pkts array. */ 461 pkts_n = RTE_ALIGN_FLOOR(pkts_n - cp_pkt, MLX5_VPMD_DESCS_PER_LOOP); 462 /* Not to cross queue end. */ 463 pkts_n = RTE_MIN(pkts_n, elts_n - elts_idx); 464 pkts_n = RTE_MIN(pkts_n, q_n - cq_idx); 465 /* Not to move past the allocated mbufs. */ 466 pkts_n = RTE_MIN(pkts_n, rxq->elts_ci - rxq->rq_pi); 467 if (!pkts_n) { 468 *no_cq = !cp_pkt; 469 return cp_pkt; 470 } 471 /* At this point, there shouldn't be any remaining packets. */ 472 MLX5_ASSERT(rxq->decompressed == 0); 473 /* Process all the CQEs */ 474 nocmp_n = rxq_cq_process_v(rxq, cq, elts, pkts, pkts_n, err, &comp_idx); 475 /* If no new CQE seen, return without updating cq_db. */ 476 if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) { 477 *no_cq = true; 478 return cp_pkt; 479 } 480 /* Update the consumer indexes for non-compressed CQEs. */ 481 MLX5_ASSERT(nocmp_n <= pkts_n); 482 cp_pkt = rxq_copy_mprq_mbuf_v(rxq, pkts, nocmp_n); 483 rcvd_pkt += cp_pkt; 484 /* Decompress the last CQE if compressed. */ 485 if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP) { 486 MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP)); 487 rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n], 488 &elts[nocmp_n]); 489 /* Return more packets if needed. */ 490 if (nocmp_n < pkts_n) { 491 uint16_t n = rxq->decompressed; 492 493 n = RTE_MIN(n, pkts_n - nocmp_n); 494 cp_pkt = rxq_copy_mprq_mbuf_v(rxq, &pkts[cp_pkt], n); 495 rcvd_pkt += cp_pkt; 496 rxq->decompressed -= n; 497 } 498 } 499 *no_cq = !rcvd_pkt; 500 return rcvd_pkt; 501 } 502 503 /** 504 * DPDK callback for vectorized MPRQ RX. 505 * 506 * @param dpdk_rxq 507 * Generic pointer to RX queue structure. 508 * @param[out] pkts 509 * Array to store received packets. 510 * @param pkts_n 511 * Maximum number of packets in array. 512 * 513 * @return 514 * Number of packets successfully received (<= pkts_n). 515 */ 516 uint16_t 517 mlx5_rx_burst_mprq_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) 518 { 519 struct mlx5_rxq_data *rxq = dpdk_rxq; 520 uint16_t nb_rx = 0; 521 uint16_t tn = 0; 522 uint64_t err = 0; 523 bool no_cq = false; 524 525 do { 526 nb_rx = rxq_burst_mprq_v(rxq, pkts + tn, pkts_n - tn, 527 &err, &no_cq); 528 if (unlikely(err | rxq->err_state)) 529 nb_rx = rxq_handle_pending_error(rxq, pkts + tn, nb_rx); 530 tn += nb_rx; 531 if (unlikely(no_cq)) 532 break; 533 } while (tn != pkts_n); 534 return tn; 535 } 536 537 /** 538 * Check a RX queue can support vectorized RX. 539 * 540 * @param rxq 541 * Pointer to RX queue. 542 * 543 * @return 544 * 1 if supported, negative errno value if not. 545 */ 546 int __rte_cold 547 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq) 548 { 549 struct mlx5_rxq_ctrl *ctrl = 550 container_of(rxq, struct mlx5_rxq_ctrl, rxq); 551 552 if (!ctrl->priv->config.rx_vec_en || rxq->sges_n != 0) 553 return -ENOTSUP; 554 if (rxq->lro) 555 return -ENOTSUP; 556 return 1; 557 } 558 559 /** 560 * Check a device can support vectorized RX. 561 * 562 * @param dev 563 * Pointer to Ethernet device. 564 * 565 * @return 566 * 1 if supported, negative errno value if not. 567 */ 568 int __rte_cold 569 mlx5_check_vec_rx_support(struct rte_eth_dev *dev) 570 { 571 struct mlx5_priv *priv = dev->data->dev_private; 572 uint32_t i; 573 574 if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_128) 575 return -ENOTSUP; 576 if (!priv->config.rx_vec_en) 577 return -ENOTSUP; 578 /* All the configured queues should support. */ 579 for (i = 0; i < priv->rxqs_n; ++i) { 580 struct mlx5_rxq_data *rxq = (*priv->rxqs)[i]; 581 582 if (!rxq) 583 continue; 584 if (mlx5_rxq_check_vec_support(rxq) < 0) 585 break; 586 } 587 if (i != priv->rxqs_n) 588 return -ENOTSUP; 589 return 1; 590 } 591