xref: /dpdk/drivers/net/mlx5/mlx5_rxtx.c (revision c2341bb6713dcaa43113db6f8ee3dd40ae57aba7)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015-2019 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdint.h>
7 #include <string.h>
8 #include <stdlib.h>
9 
10 #include <rte_mbuf.h>
11 #include <rte_mempool.h>
12 #include <rte_prefetch.h>
13 #include <rte_common.h>
14 #include <rte_branch_prediction.h>
15 #include <rte_ether.h>
16 #include <rte_cycles.h>
17 #include <rte_flow.h>
18 
19 #include <mlx5_prm.h>
20 #include <mlx5_common.h>
21 
22 #include "mlx5_autoconf.h"
23 #include "mlx5_defs.h"
24 #include "mlx5.h"
25 #include "mlx5_mr.h"
26 #include "mlx5_utils.h"
27 #include "mlx5_rxtx.h"
28 
29 /* TX burst subroutines return codes. */
30 enum mlx5_txcmp_code {
31 	MLX5_TXCMP_CODE_EXIT = 0,
32 	MLX5_TXCMP_CODE_ERROR,
33 	MLX5_TXCMP_CODE_SINGLE,
34 	MLX5_TXCMP_CODE_MULTI,
35 	MLX5_TXCMP_CODE_TSO,
36 	MLX5_TXCMP_CODE_EMPW,
37 };
38 
39 /*
40  * These defines are used to configure Tx burst routine option set
41  * supported at compile time. The not specified options are optimized out
42  * out due to if conditions can be explicitly calculated at compile time.
43  * The offloads with bigger runtime check (require more CPU cycles to
44  * skip) overhead should have the bigger index - this is needed to
45  * select the better matching routine function if no exact match and
46  * some offloads are not actually requested.
47  */
48 #define MLX5_TXOFF_CONFIG_MULTI (1u << 0) /* Multi-segment packets.*/
49 #define MLX5_TXOFF_CONFIG_TSO (1u << 1) /* TCP send offload supported.*/
50 #define MLX5_TXOFF_CONFIG_SWP (1u << 2) /* Tunnels/SW Parser offloads.*/
51 #define MLX5_TXOFF_CONFIG_CSUM (1u << 3) /* Check Sums offloaded. */
52 #define MLX5_TXOFF_CONFIG_INLINE (1u << 4) /* Data inlining supported. */
53 #define MLX5_TXOFF_CONFIG_VLAN (1u << 5) /* VLAN insertion supported.*/
54 #define MLX5_TXOFF_CONFIG_METADATA (1u << 6) /* Flow metadata. */
55 #define MLX5_TXOFF_CONFIG_EMPW (1u << 8) /* Enhanced MPW supported.*/
56 #define MLX5_TXOFF_CONFIG_MPW (1u << 9) /* Legacy MPW supported.*/
57 #define MLX5_TXOFF_CONFIG_TXPP (1u << 10) /* Scheduling on timestamp.*/
58 
59 /* The most common offloads groups. */
60 #define MLX5_TXOFF_CONFIG_NONE 0
61 #define MLX5_TXOFF_CONFIG_FULL (MLX5_TXOFF_CONFIG_MULTI | \
62 				MLX5_TXOFF_CONFIG_TSO | \
63 				MLX5_TXOFF_CONFIG_SWP | \
64 				MLX5_TXOFF_CONFIG_CSUM | \
65 				MLX5_TXOFF_CONFIG_INLINE | \
66 				MLX5_TXOFF_CONFIG_VLAN | \
67 				MLX5_TXOFF_CONFIG_METADATA)
68 
69 #define MLX5_TXOFF_CONFIG(mask) (olx & MLX5_TXOFF_CONFIG_##mask)
70 
71 #define MLX5_TXOFF_DECL(func, olx) \
72 static uint16_t mlx5_tx_burst_##func(void *txq, \
73 				     struct rte_mbuf **pkts, \
74 				    uint16_t pkts_n) \
75 { \
76 	return mlx5_tx_burst_tmpl((struct mlx5_txq_data *)txq, \
77 		    pkts, pkts_n, (olx)); \
78 }
79 
80 #define MLX5_TXOFF_INFO(func, olx) {mlx5_tx_burst_##func, olx},
81 
82 static __rte_always_inline uint32_t
83 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
84 				   volatile struct mlx5_mini_cqe8 *mcqe);
85 
86 static __rte_always_inline int
87 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
88 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
89 
90 static __rte_always_inline uint32_t
91 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
92 
93 static __rte_always_inline void
94 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
95 	       volatile struct mlx5_cqe *cqe,
96 	       volatile struct mlx5_mini_cqe8 *mcqe);
97 
98 static int
99 mlx5_queue_state_modify(struct rte_eth_dev *dev,
100 			struct mlx5_mp_arg_queue_state_modify *sm);
101 
102 static inline void
103 mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *__rte_restrict tcp,
104 			volatile struct mlx5_cqe *__rte_restrict cqe,
105 			uint32_t phcsum, uint8_t l4_type);
106 
107 static inline void
108 mlx5_lro_update_hdr(uint8_t *__rte_restrict padd,
109 		    volatile struct mlx5_cqe *__rte_restrict cqe,
110 			volatile struct mlx5_mini_cqe8 *mcqe,
111 		    struct mlx5_rxq_data *rxq, uint32_t len);
112 
113 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
114 	[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
115 };
116 
117 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
118 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
119 
120 uint64_t rte_net_mlx5_dynf_inline_mask;
121 #define PKT_TX_DYNF_NOINLINE rte_net_mlx5_dynf_inline_mask
122 
123 /**
124  * Build a table to translate Rx completion flags to packet type.
125  *
126  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
127  */
128 void
129 mlx5_set_ptype_table(void)
130 {
131 	unsigned int i;
132 	uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
133 
134 	/* Last entry must not be overwritten, reserved for errored packet. */
135 	for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
136 		(*p)[i] = RTE_PTYPE_UNKNOWN;
137 	/*
138 	 * The index to the array should have:
139 	 * bit[1:0] = l3_hdr_type
140 	 * bit[4:2] = l4_hdr_type
141 	 * bit[5] = ip_frag
142 	 * bit[6] = tunneled
143 	 * bit[7] = outer_l3_type
144 	 */
145 	/* L2 */
146 	(*p)[0x00] = RTE_PTYPE_L2_ETHER;
147 	/* L3 */
148 	(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
149 		     RTE_PTYPE_L4_NONFRAG;
150 	(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
151 		     RTE_PTYPE_L4_NONFRAG;
152 	/* Fragmented */
153 	(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
154 		     RTE_PTYPE_L4_FRAG;
155 	(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
156 		     RTE_PTYPE_L4_FRAG;
157 	/* TCP */
158 	(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
159 		     RTE_PTYPE_L4_TCP;
160 	(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
161 		     RTE_PTYPE_L4_TCP;
162 	(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163 		     RTE_PTYPE_L4_TCP;
164 	(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
165 		     RTE_PTYPE_L4_TCP;
166 	(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
167 		     RTE_PTYPE_L4_TCP;
168 	(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
169 		     RTE_PTYPE_L4_TCP;
170 	/* UDP */
171 	(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
172 		     RTE_PTYPE_L4_UDP;
173 	(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
174 		     RTE_PTYPE_L4_UDP;
175 	/* Repeat with outer_l3_type being set. Just in case. */
176 	(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
177 		     RTE_PTYPE_L4_NONFRAG;
178 	(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179 		     RTE_PTYPE_L4_NONFRAG;
180 	(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
181 		     RTE_PTYPE_L4_FRAG;
182 	(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183 		     RTE_PTYPE_L4_FRAG;
184 	(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185 		     RTE_PTYPE_L4_TCP;
186 	(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
187 		     RTE_PTYPE_L4_TCP;
188 	(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
189 		     RTE_PTYPE_L4_TCP;
190 	(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
191 		     RTE_PTYPE_L4_TCP;
192 	(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
193 		     RTE_PTYPE_L4_TCP;
194 	(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195 		     RTE_PTYPE_L4_TCP;
196 	(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197 		     RTE_PTYPE_L4_UDP;
198 	(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
199 		     RTE_PTYPE_L4_UDP;
200 	/* Tunneled - L3 */
201 	(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
202 	(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
203 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
204 		     RTE_PTYPE_INNER_L4_NONFRAG;
205 	(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
206 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
207 		     RTE_PTYPE_INNER_L4_NONFRAG;
208 	(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
209 	(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211 		     RTE_PTYPE_INNER_L4_NONFRAG;
212 	(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214 		     RTE_PTYPE_INNER_L4_NONFRAG;
215 	/* Tunneled - Fragmented */
216 	(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
217 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
218 		     RTE_PTYPE_INNER_L4_FRAG;
219 	(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
220 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
221 		     RTE_PTYPE_INNER_L4_FRAG;
222 	(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
223 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
224 		     RTE_PTYPE_INNER_L4_FRAG;
225 	(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
226 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
227 		     RTE_PTYPE_INNER_L4_FRAG;
228 	/* Tunneled - TCP */
229 	(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
230 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
231 		     RTE_PTYPE_INNER_L4_TCP;
232 	(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
233 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
234 		     RTE_PTYPE_INNER_L4_TCP;
235 	(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
236 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
237 		     RTE_PTYPE_INNER_L4_TCP;
238 	(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
239 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
240 		     RTE_PTYPE_INNER_L4_TCP;
241 	(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
242 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
243 		     RTE_PTYPE_INNER_L4_TCP;
244 	(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
245 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
246 		     RTE_PTYPE_INNER_L4_TCP;
247 	(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
248 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
249 		     RTE_PTYPE_INNER_L4_TCP;
250 	(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
251 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
252 		     RTE_PTYPE_INNER_L4_TCP;
253 	(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
254 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
255 		     RTE_PTYPE_INNER_L4_TCP;
256 	(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
257 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
258 		     RTE_PTYPE_INNER_L4_TCP;
259 	(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
260 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
261 		     RTE_PTYPE_INNER_L4_TCP;
262 	(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
263 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
264 		     RTE_PTYPE_INNER_L4_TCP;
265 	/* Tunneled - UDP */
266 	(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
267 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
268 		     RTE_PTYPE_INNER_L4_UDP;
269 	(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
270 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
271 		     RTE_PTYPE_INNER_L4_UDP;
272 	(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
273 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
274 		     RTE_PTYPE_INNER_L4_UDP;
275 	(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
276 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
277 		     RTE_PTYPE_INNER_L4_UDP;
278 }
279 
280 /**
281  * Build a table to translate packet to checksum type of Verbs.
282  */
283 void
284 mlx5_set_cksum_table(void)
285 {
286 	unsigned int i;
287 	uint8_t v;
288 
289 	/*
290 	 * The index should have:
291 	 * bit[0] = PKT_TX_TCP_SEG
292 	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
293 	 * bit[4] = PKT_TX_IP_CKSUM
294 	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
295 	 * bit[9] = tunnel
296 	 */
297 	for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
298 		v = 0;
299 		if (i & (1 << 9)) {
300 			/* Tunneled packet. */
301 			if (i & (1 << 8)) /* Outer IP. */
302 				v |= MLX5_ETH_WQE_L3_CSUM;
303 			if (i & (1 << 4)) /* Inner IP. */
304 				v |= MLX5_ETH_WQE_L3_INNER_CSUM;
305 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
306 				v |= MLX5_ETH_WQE_L4_INNER_CSUM;
307 		} else {
308 			/* No tunnel. */
309 			if (i & (1 << 4)) /* IP. */
310 				v |= MLX5_ETH_WQE_L3_CSUM;
311 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
312 				v |= MLX5_ETH_WQE_L4_CSUM;
313 		}
314 		mlx5_cksum_table[i] = v;
315 	}
316 }
317 
318 /**
319  * Build a table to translate packet type of mbuf to SWP type of Verbs.
320  */
321 void
322 mlx5_set_swp_types_table(void)
323 {
324 	unsigned int i;
325 	uint8_t v;
326 
327 	/*
328 	 * The index should have:
329 	 * bit[0:1] = PKT_TX_L4_MASK
330 	 * bit[4] = PKT_TX_IPV6
331 	 * bit[8] = PKT_TX_OUTER_IPV6
332 	 * bit[9] = PKT_TX_OUTER_UDP
333 	 */
334 	for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
335 		v = 0;
336 		if (i & (1 << 8))
337 			v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
338 		if (i & (1 << 9))
339 			v |= MLX5_ETH_WQE_L4_OUTER_UDP;
340 		if (i & (1 << 4))
341 			v |= MLX5_ETH_WQE_L3_INNER_IPV6;
342 		if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
343 			v |= MLX5_ETH_WQE_L4_INNER_UDP;
344 		mlx5_swp_types_table[i] = v;
345 	}
346 }
347 
348 /**
349  * Set Software Parser flags and offsets in Ethernet Segment of WQE.
350  * Flags must be preliminary initialized to zero.
351  *
352  * @param loc
353  *   Pointer to burst routine local context.
354  * @param swp_flags
355  *   Pointer to store Software Parser flags
356  * @param olx
357  *   Configured Tx offloads mask. It is fully defined at
358  *   compile time and may be used for optimization.
359  *
360  * @return
361  *   Software Parser offsets packed in dword.
362  *   Software Parser flags are set by pointer.
363  */
364 static __rte_always_inline uint32_t
365 txq_mbuf_to_swp(struct mlx5_txq_local *__rte_restrict loc,
366 		uint8_t *swp_flags,
367 		unsigned int olx)
368 {
369 	uint64_t ol, tunnel;
370 	unsigned int idx, off;
371 	uint32_t set;
372 
373 	if (!MLX5_TXOFF_CONFIG(SWP))
374 		return 0;
375 	ol = loc->mbuf->ol_flags;
376 	tunnel = ol & PKT_TX_TUNNEL_MASK;
377 	/*
378 	 * Check whether Software Parser is required.
379 	 * Only customized tunnels may ask for.
380 	 */
381 	if (likely(tunnel != PKT_TX_TUNNEL_UDP && tunnel != PKT_TX_TUNNEL_IP))
382 		return 0;
383 	/*
384 	 * The index should have:
385 	 * bit[0:1] = PKT_TX_L4_MASK
386 	 * bit[4] = PKT_TX_IPV6
387 	 * bit[8] = PKT_TX_OUTER_IPV6
388 	 * bit[9] = PKT_TX_OUTER_UDP
389 	 */
390 	idx = (ol & (PKT_TX_L4_MASK | PKT_TX_IPV6 | PKT_TX_OUTER_IPV6)) >> 52;
391 	idx |= (tunnel == PKT_TX_TUNNEL_UDP) ? (1 << 9) : 0;
392 	*swp_flags = mlx5_swp_types_table[idx];
393 	/*
394 	 * Set offsets for SW parser. Since ConnectX-5, SW parser just
395 	 * complements HW parser. SW parser starts to engage only if HW parser
396 	 * can't reach a header. For the older devices, HW parser will not kick
397 	 * in if any of SWP offsets is set. Therefore, all of the L3 offsets
398 	 * should be set regardless of HW offload.
399 	 */
400 	off = loc->mbuf->outer_l2_len;
401 	if (MLX5_TXOFF_CONFIG(VLAN) && ol & PKT_TX_VLAN_PKT)
402 		off += sizeof(struct rte_vlan_hdr);
403 	set = (off >> 1) << 8; /* Outer L3 offset. */
404 	off += loc->mbuf->outer_l3_len;
405 	if (tunnel == PKT_TX_TUNNEL_UDP)
406 		set |= off >> 1; /* Outer L4 offset. */
407 	if (ol & (PKT_TX_IPV4 | PKT_TX_IPV6)) { /* Inner IP. */
408 		const uint64_t csum = ol & PKT_TX_L4_MASK;
409 			off += loc->mbuf->l2_len;
410 		set |= (off >> 1) << 24; /* Inner L3 offset. */
411 		if (csum == PKT_TX_TCP_CKSUM ||
412 		    csum == PKT_TX_UDP_CKSUM ||
413 		    (MLX5_TXOFF_CONFIG(TSO) && ol & PKT_TX_TCP_SEG)) {
414 			off += loc->mbuf->l3_len;
415 			set |= (off >> 1) << 16; /* Inner L4 offset. */
416 		}
417 	}
418 	set = rte_cpu_to_le_32(set);
419 	return set;
420 }
421 
422 /**
423  * Convert the Checksum offloads to Verbs.
424  *
425  * @param buf
426  *   Pointer to the mbuf.
427  *
428  * @return
429  *   Converted checksum flags.
430  */
431 static __rte_always_inline uint8_t
432 txq_ol_cksum_to_cs(struct rte_mbuf *buf)
433 {
434 	uint32_t idx;
435 	uint8_t is_tunnel = !!(buf->ol_flags & PKT_TX_TUNNEL_MASK);
436 	const uint64_t ol_flags_mask = PKT_TX_TCP_SEG | PKT_TX_L4_MASK |
437 				       PKT_TX_IP_CKSUM | PKT_TX_OUTER_IP_CKSUM;
438 
439 	/*
440 	 * The index should have:
441 	 * bit[0] = PKT_TX_TCP_SEG
442 	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
443 	 * bit[4] = PKT_TX_IP_CKSUM
444 	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
445 	 * bit[9] = tunnel
446 	 */
447 	idx = ((buf->ol_flags & ol_flags_mask) >> 50) | (!!is_tunnel << 9);
448 	return mlx5_cksum_table[idx];
449 }
450 
451 /**
452  * Internal function to compute the number of used descriptors in an RX queue
453  *
454  * @param rxq
455  *   The Rx queue.
456  *
457  * @return
458  *   The number of used rx descriptor.
459  */
460 static uint32_t
461 rx_queue_count(struct mlx5_rxq_data *rxq)
462 {
463 	struct rxq_zip *zip = &rxq->zip;
464 	volatile struct mlx5_cqe *cqe;
465 	unsigned int cq_ci = rxq->cq_ci;
466 	const unsigned int cqe_n = (1 << rxq->cqe_n);
467 	const unsigned int cqe_cnt = cqe_n - 1;
468 	unsigned int used = 0;
469 
470 	cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
471 	while (check_cqe(cqe, cqe_n, cq_ci) != MLX5_CQE_STATUS_HW_OWN) {
472 		int8_t op_own;
473 		unsigned int n;
474 
475 		op_own = cqe->op_own;
476 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
477 			if (unlikely(zip->ai))
478 				n = zip->cqe_cnt - zip->ai;
479 			else
480 				n = rte_be_to_cpu_32(cqe->byte_cnt);
481 		else
482 			n = 1;
483 		cq_ci += n;
484 		used += n;
485 		cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
486 	}
487 	used = RTE_MIN(used, cqe_n);
488 	return used;
489 }
490 
491 /**
492  * DPDK callback to check the status of a rx descriptor.
493  *
494  * @param rx_queue
495  *   The Rx queue.
496  * @param[in] offset
497  *   The index of the descriptor in the ring.
498  *
499  * @return
500  *   The status of the tx descriptor.
501  */
502 int
503 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
504 {
505 	struct mlx5_rxq_data *rxq = rx_queue;
506 	struct mlx5_rxq_ctrl *rxq_ctrl =
507 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
508 	struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
509 
510 	if (dev->rx_pkt_burst == NULL ||
511 	    dev->rx_pkt_burst == removed_rx_burst) {
512 		rte_errno = ENOTSUP;
513 		return -rte_errno;
514 	}
515 	if (offset >= (1 << rxq->cqe_n)) {
516 		rte_errno = EINVAL;
517 		return -rte_errno;
518 	}
519 	if (offset < rx_queue_count(rxq))
520 		return RTE_ETH_RX_DESC_DONE;
521 	return RTE_ETH_RX_DESC_AVAIL;
522 }
523 
524 /**
525  * DPDK callback to get the RX queue information
526  *
527  * @param dev
528  *   Pointer to the device structure.
529  *
530  * @param rx_queue_id
531  *   Rx queue identificator.
532  *
533  * @param qinfo
534  *   Pointer to the RX queue information structure.
535  *
536  * @return
537  *   None.
538  */
539 
540 void
541 mlx5_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
542 		  struct rte_eth_rxq_info *qinfo)
543 {
544 	struct mlx5_priv *priv = dev->data->dev_private;
545 	struct mlx5_rxq_data *rxq = (*priv->rxqs)[rx_queue_id];
546 	struct mlx5_rxq_ctrl *rxq_ctrl =
547 		container_of(rxq, struct mlx5_rxq_ctrl, rxq);
548 
549 	if (!rxq)
550 		return;
551 	qinfo->mp = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ?
552 					rxq->mprq_mp : rxq->mp;
553 	qinfo->conf.rx_thresh.pthresh = 0;
554 	qinfo->conf.rx_thresh.hthresh = 0;
555 	qinfo->conf.rx_thresh.wthresh = 0;
556 	qinfo->conf.rx_free_thresh = rxq->rq_repl_thresh;
557 	qinfo->conf.rx_drop_en = 1;
558 	qinfo->conf.rx_deferred_start = rxq_ctrl ? 0 : 1;
559 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
560 	qinfo->scattered_rx = dev->data->scattered_rx;
561 	qinfo->nb_desc = 1 << rxq->elts_n;
562 }
563 
564 /**
565  * DPDK callback to get the RX packet burst mode information
566  *
567  * @param dev
568  *   Pointer to the device structure.
569  *
570  * @param rx_queue_id
571  *   Rx queue identificatior.
572  *
573  * @param mode
574  *   Pointer to the burts mode information.
575  *
576  * @return
577  *   0 as success, -EINVAL as failure.
578  */
579 
580 int
581 mlx5_rx_burst_mode_get(struct rte_eth_dev *dev,
582 		       uint16_t rx_queue_id __rte_unused,
583 		       struct rte_eth_burst_mode *mode)
584 {
585 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
586 	struct mlx5_priv *priv = dev->data->dev_private;
587 	struct mlx5_rxq_data *rxq;
588 
589 	rxq = (*priv->rxqs)[rx_queue_id];
590 	if (!rxq) {
591 		rte_errno = EINVAL;
592 		return -rte_errno;
593 	}
594 	if (pkt_burst == mlx5_rx_burst) {
595 		snprintf(mode->info, sizeof(mode->info), "%s", "Scalar");
596 	} else if (pkt_burst == mlx5_rx_burst_mprq) {
597 		snprintf(mode->info, sizeof(mode->info), "%s", "Multi-Packet RQ");
598 	} else if (pkt_burst == mlx5_rx_burst_vec) {
599 #if defined RTE_ARCH_X86_64
600 		snprintf(mode->info, sizeof(mode->info), "%s", "Vector SSE");
601 #elif defined RTE_ARCH_ARM64
602 		snprintf(mode->info, sizeof(mode->info), "%s", "Vector Neon");
603 #elif defined RTE_ARCH_PPC_64
604 		snprintf(mode->info, sizeof(mode->info), "%s", "Vector AltiVec");
605 #else
606 		return -EINVAL;
607 #endif
608 	} else if (pkt_burst == mlx5_rx_burst_mprq_vec) {
609 #if defined RTE_ARCH_X86_64
610 		snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector SSE");
611 #elif defined RTE_ARCH_ARM64
612 		snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector Neon");
613 #elif defined RTE_ARCH_PPC_64
614 		snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector AltiVec");
615 #else
616 		return -EINVAL;
617 #endif
618 	} else {
619 		return -EINVAL;
620 	}
621 	return 0;
622 }
623 
624 /**
625  * DPDK callback to get the number of used descriptors in a RX queue
626  *
627  * @param dev
628  *   Pointer to the device structure.
629  *
630  * @param rx_queue_id
631  *   The Rx queue.
632  *
633  * @return
634  *   The number of used rx descriptor.
635  *   -EINVAL if the queue is invalid
636  */
637 uint32_t
638 mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
639 {
640 	struct mlx5_priv *priv = dev->data->dev_private;
641 	struct mlx5_rxq_data *rxq;
642 
643 	if (dev->rx_pkt_burst == NULL ||
644 	    dev->rx_pkt_burst == removed_rx_burst) {
645 		rte_errno = ENOTSUP;
646 		return -rte_errno;
647 	}
648 	rxq = (*priv->rxqs)[rx_queue_id];
649 	if (!rxq) {
650 		rte_errno = EINVAL;
651 		return -rte_errno;
652 	}
653 	return rx_queue_count(rxq);
654 }
655 
656 #define MLX5_SYSTEM_LOG_DIR "/var/log"
657 /**
658  * Dump debug information to log file.
659  *
660  * @param fname
661  *   The file name.
662  * @param hex_title
663  *   If not NULL this string is printed as a header to the output
664  *   and the output will be in hexadecimal view.
665  * @param buf
666  *   This is the buffer address to print out.
667  * @param len
668  *   The number of bytes to dump out.
669  */
670 void
671 mlx5_dump_debug_information(const char *fname, const char *hex_title,
672 			    const void *buf, unsigned int hex_len)
673 {
674 	FILE *fd;
675 
676 	MKSTR(path, "%s/%s", MLX5_SYSTEM_LOG_DIR, fname);
677 	fd = fopen(path, "a+");
678 	if (!fd) {
679 		DRV_LOG(WARNING, "cannot open %s for debug dump", path);
680 		MKSTR(path2, "./%s", fname);
681 		fd = fopen(path2, "a+");
682 		if (!fd) {
683 			DRV_LOG(ERR, "cannot open %s for debug dump", path2);
684 			return;
685 		}
686 		DRV_LOG(INFO, "New debug dump in file %s", path2);
687 	} else {
688 		DRV_LOG(INFO, "New debug dump in file %s", path);
689 	}
690 	if (hex_title)
691 		rte_hexdump(fd, hex_title, buf, hex_len);
692 	else
693 		fprintf(fd, "%s", (const char *)buf);
694 	fprintf(fd, "\n\n\n");
695 	fclose(fd);
696 }
697 
698 /**
699  * Move QP from error state to running state and initialize indexes.
700  *
701  * @param txq_ctrl
702  *   Pointer to TX queue control structure.
703  *
704  * @return
705  *   0 on success, else -1.
706  */
707 static int
708 tx_recover_qp(struct mlx5_txq_ctrl *txq_ctrl)
709 {
710 	struct mlx5_mp_arg_queue_state_modify sm = {
711 			.is_wq = 0,
712 			.queue_id = txq_ctrl->txq.idx,
713 	};
714 
715 	if (mlx5_queue_state_modify(ETH_DEV(txq_ctrl->priv), &sm))
716 		return -1;
717 	txq_ctrl->txq.wqe_ci = 0;
718 	txq_ctrl->txq.wqe_pi = 0;
719 	txq_ctrl->txq.elts_comp = 0;
720 	return 0;
721 }
722 
723 /* Return 1 if the error CQE is signed otherwise, sign it and return 0. */
724 static int
725 check_err_cqe_seen(volatile struct mlx5_err_cqe *err_cqe)
726 {
727 	static const uint8_t magic[] = "seen";
728 	int ret = 1;
729 	unsigned int i;
730 
731 	for (i = 0; i < sizeof(magic); ++i)
732 		if (!ret || err_cqe->rsvd1[i] != magic[i]) {
733 			ret = 0;
734 			err_cqe->rsvd1[i] = magic[i];
735 		}
736 	return ret;
737 }
738 
739 /**
740  * Handle error CQE.
741  *
742  * @param txq
743  *   Pointer to TX queue structure.
744  * @param error_cqe
745  *   Pointer to the error CQE.
746  *
747  * @return
748  *   Negative value if queue recovery failed, otherwise
749  *   the error completion entry is handled successfully.
750  */
751 static int
752 mlx5_tx_error_cqe_handle(struct mlx5_txq_data *__rte_restrict txq,
753 			 volatile struct mlx5_err_cqe *err_cqe)
754 {
755 	if (err_cqe->syndrome != MLX5_CQE_SYNDROME_WR_FLUSH_ERR) {
756 		const uint16_t wqe_m = ((1 << txq->wqe_n) - 1);
757 		struct mlx5_txq_ctrl *txq_ctrl =
758 				container_of(txq, struct mlx5_txq_ctrl, txq);
759 		uint16_t new_wqe_pi = rte_be_to_cpu_16(err_cqe->wqe_counter);
760 		int seen = check_err_cqe_seen(err_cqe);
761 
762 		if (!seen && txq_ctrl->dump_file_n <
763 		    txq_ctrl->priv->config.max_dump_files_num) {
764 			MKSTR(err_str, "Unexpected CQE error syndrome "
765 			      "0x%02x CQN = %u SQN = %u wqe_counter = %u "
766 			      "wq_ci = %u cq_ci = %u", err_cqe->syndrome,
767 			      txq->cqe_s, txq->qp_num_8s >> 8,
768 			      rte_be_to_cpu_16(err_cqe->wqe_counter),
769 			      txq->wqe_ci, txq->cq_ci);
770 			MKSTR(name, "dpdk_mlx5_port_%u_txq_%u_index_%u_%u",
771 			      PORT_ID(txq_ctrl->priv), txq->idx,
772 			      txq_ctrl->dump_file_n, (uint32_t)rte_rdtsc());
773 			mlx5_dump_debug_information(name, NULL, err_str, 0);
774 			mlx5_dump_debug_information(name, "MLX5 Error CQ:",
775 						    (const void *)((uintptr_t)
776 						    txq->cqes),
777 						    sizeof(*err_cqe) *
778 						    (1 << txq->cqe_n));
779 			mlx5_dump_debug_information(name, "MLX5 Error SQ:",
780 						    (const void *)((uintptr_t)
781 						    txq->wqes),
782 						    MLX5_WQE_SIZE *
783 						    (1 << txq->wqe_n));
784 			txq_ctrl->dump_file_n++;
785 		}
786 		if (!seen)
787 			/*
788 			 * Count errors in WQEs units.
789 			 * Later it can be improved to count error packets,
790 			 * for example, by SQ parsing to find how much packets
791 			 * should be counted for each WQE.
792 			 */
793 			txq->stats.oerrors += ((txq->wqe_ci & wqe_m) -
794 						new_wqe_pi) & wqe_m;
795 		if (tx_recover_qp(txq_ctrl)) {
796 			/* Recovering failed - retry later on the same WQE. */
797 			return -1;
798 		}
799 		/* Release all the remaining buffers. */
800 		txq_free_elts(txq_ctrl);
801 	}
802 	return 0;
803 }
804 
805 /**
806  * Translate RX completion flags to packet type.
807  *
808  * @param[in] rxq
809  *   Pointer to RX queue structure.
810  * @param[in] cqe
811  *   Pointer to CQE.
812  *
813  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
814  *
815  * @return
816  *   Packet type for struct rte_mbuf.
817  */
818 static inline uint32_t
819 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
820 				   volatile struct mlx5_mini_cqe8 *mcqe)
821 {
822 	uint8_t idx;
823 	uint8_t ptype;
824 	uint8_t pinfo = (cqe->pkt_info & 0x3) << 6;
825 
826 	/* Get l3/l4 header from mini-CQE in case L3/L4 format*/
827 	if (mcqe == NULL ||
828 	    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
829 		ptype = (cqe->hdr_type_etc & 0xfc00) >> 10;
830 	else
831 		ptype = mcqe->hdr_type >> 2;
832 	/*
833 	 * The index to the array should have:
834 	 * bit[1:0] = l3_hdr_type
835 	 * bit[4:2] = l4_hdr_type
836 	 * bit[5] = ip_frag
837 	 * bit[6] = tunneled
838 	 * bit[7] = outer_l3_type
839 	 */
840 	idx = pinfo | ptype;
841 	return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
842 }
843 
844 /**
845  * Initialize Rx WQ and indexes.
846  *
847  * @param[in] rxq
848  *   Pointer to RX queue structure.
849  */
850 void
851 mlx5_rxq_initialize(struct mlx5_rxq_data *rxq)
852 {
853 	const unsigned int wqe_n = 1 << rxq->elts_n;
854 	unsigned int i;
855 
856 	for (i = 0; (i != wqe_n); ++i) {
857 		volatile struct mlx5_wqe_data_seg *scat;
858 		uintptr_t addr;
859 		uint32_t byte_count;
860 
861 		if (mlx5_rxq_mprq_enabled(rxq)) {
862 			struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[i];
863 
864 			scat = &((volatile struct mlx5_wqe_mprq *)
865 				rxq->wqes)[i].dseg;
866 			addr = (uintptr_t)mlx5_mprq_buf_addr(buf,
867 							 1 << rxq->strd_num_n);
868 			byte_count = (1 << rxq->strd_sz_n) *
869 					(1 << rxq->strd_num_n);
870 		} else {
871 			struct rte_mbuf *buf = (*rxq->elts)[i];
872 
873 			scat = &((volatile struct mlx5_wqe_data_seg *)
874 					rxq->wqes)[i];
875 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
876 			byte_count = DATA_LEN(buf);
877 		}
878 		/* scat->addr must be able to store a pointer. */
879 		MLX5_ASSERT(sizeof(scat->addr) >= sizeof(uintptr_t));
880 		*scat = (struct mlx5_wqe_data_seg){
881 			.addr = rte_cpu_to_be_64(addr),
882 			.byte_count = rte_cpu_to_be_32(byte_count),
883 			.lkey = mlx5_rx_addr2mr(rxq, addr),
884 		};
885 	}
886 	rxq->consumed_strd = 0;
887 	rxq->decompressed = 0;
888 	rxq->rq_pi = 0;
889 	rxq->zip = (struct rxq_zip){
890 		.ai = 0,
891 	};
892 	rxq->elts_ci = mlx5_rxq_mprq_enabled(rxq) ?
893 		(wqe_n >> rxq->sges_n) * (1 << rxq->strd_num_n) : 0;
894 	/* Update doorbell counter. */
895 	rxq->rq_ci = wqe_n >> rxq->sges_n;
896 	rte_io_wmb();
897 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
898 }
899 
900 /**
901  * Modify a Verbs/DevX queue state.
902  * This must be called from the primary process.
903  *
904  * @param dev
905  *   Pointer to Ethernet device.
906  * @param sm
907  *   State modify request parameters.
908  *
909  * @return
910  *   0 in case of success else non-zero value and rte_errno is set.
911  */
912 int
913 mlx5_queue_state_modify_primary(struct rte_eth_dev *dev,
914 			const struct mlx5_mp_arg_queue_state_modify *sm)
915 {
916 	int ret;
917 	struct mlx5_priv *priv = dev->data->dev_private;
918 
919 	if (sm->is_wq) {
920 		struct mlx5_rxq_data *rxq = (*priv->rxqs)[sm->queue_id];
921 		struct mlx5_rxq_ctrl *rxq_ctrl =
922 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
923 
924 		ret = priv->obj_ops.rxq_obj_modify(rxq_ctrl->obj, sm->state);
925 		if (ret) {
926 			DRV_LOG(ERR, "Cannot change Rx WQ state to %u  - %s",
927 					sm->state, strerror(errno));
928 			rte_errno = errno;
929 			return ret;
930 		}
931 	} else {
932 		struct mlx5_txq_data *txq = (*priv->txqs)[sm->queue_id];
933 		struct mlx5_txq_ctrl *txq_ctrl =
934 			container_of(txq, struct mlx5_txq_ctrl, txq);
935 
936 		ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj,
937 						   MLX5_TXQ_MOD_ERR2RDY,
938 						   (uint8_t)priv->dev_port);
939 		if (ret)
940 			return ret;
941 	}
942 	return 0;
943 }
944 
945 /**
946  * Modify a Verbs queue state.
947  *
948  * @param dev
949  *   Pointer to Ethernet device.
950  * @param sm
951  *   State modify request parameters.
952  *
953  * @return
954  *   0 in case of success else non-zero value.
955  */
956 static int
957 mlx5_queue_state_modify(struct rte_eth_dev *dev,
958 			struct mlx5_mp_arg_queue_state_modify *sm)
959 {
960 	struct mlx5_priv *priv = dev->data->dev_private;
961 	int ret = 0;
962 
963 	switch (rte_eal_process_type()) {
964 	case RTE_PROC_PRIMARY:
965 		ret = mlx5_queue_state_modify_primary(dev, sm);
966 		break;
967 	case RTE_PROC_SECONDARY:
968 		ret = mlx5_mp_req_queue_state_modify(&priv->mp_id, sm);
969 		break;
970 	default:
971 		break;
972 	}
973 	return ret;
974 }
975 
976 /**
977  * Handle a Rx error.
978  * The function inserts the RQ state to reset when the first error CQE is
979  * shown, then drains the CQ by the caller function loop. When the CQ is empty,
980  * it moves the RQ state to ready and initializes the RQ.
981  * Next CQE identification and error counting are in the caller responsibility.
982  *
983  * @param[in] rxq
984  *   Pointer to RX queue structure.
985  * @param[in] vec
986  *   1 when called from vectorized Rx burst, need to prepare mbufs for the RQ.
987  *   0 when called from non-vectorized Rx burst.
988  *
989  * @return
990  *   -1 in case of recovery error, otherwise the CQE status.
991  */
992 int
993 mlx5_rx_err_handle(struct mlx5_rxq_data *rxq, uint8_t vec)
994 {
995 	const uint16_t cqe_n = 1 << rxq->cqe_n;
996 	const uint16_t cqe_mask = cqe_n - 1;
997 	const uint16_t wqe_n = 1 << rxq->elts_n;
998 	const uint16_t strd_n = 1 << rxq->strd_num_n;
999 	struct mlx5_rxq_ctrl *rxq_ctrl =
1000 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
1001 	union {
1002 		volatile struct mlx5_cqe *cqe;
1003 		volatile struct mlx5_err_cqe *err_cqe;
1004 	} u = {
1005 		.cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask],
1006 	};
1007 	struct mlx5_mp_arg_queue_state_modify sm;
1008 	int ret;
1009 
1010 	switch (rxq->err_state) {
1011 	case MLX5_RXQ_ERR_STATE_NO_ERROR:
1012 		rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_RESET;
1013 		/* Fall-through */
1014 	case MLX5_RXQ_ERR_STATE_NEED_RESET:
1015 		sm.is_wq = 1;
1016 		sm.queue_id = rxq->idx;
1017 		sm.state = IBV_WQS_RESET;
1018 		if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv), &sm))
1019 			return -1;
1020 		if (rxq_ctrl->dump_file_n <
1021 		    rxq_ctrl->priv->config.max_dump_files_num) {
1022 			MKSTR(err_str, "Unexpected CQE error syndrome "
1023 			      "0x%02x CQN = %u RQN = %u wqe_counter = %u"
1024 			      " rq_ci = %u cq_ci = %u", u.err_cqe->syndrome,
1025 			      rxq->cqn, rxq_ctrl->wqn,
1026 			      rte_be_to_cpu_16(u.err_cqe->wqe_counter),
1027 			      rxq->rq_ci << rxq->sges_n, rxq->cq_ci);
1028 			MKSTR(name, "dpdk_mlx5_port_%u_rxq_%u_%u",
1029 			      rxq->port_id, rxq->idx, (uint32_t)rte_rdtsc());
1030 			mlx5_dump_debug_information(name, NULL, err_str, 0);
1031 			mlx5_dump_debug_information(name, "MLX5 Error CQ:",
1032 						    (const void *)((uintptr_t)
1033 								    rxq->cqes),
1034 						    sizeof(*u.cqe) * cqe_n);
1035 			mlx5_dump_debug_information(name, "MLX5 Error RQ:",
1036 						    (const void *)((uintptr_t)
1037 								    rxq->wqes),
1038 						    16 * wqe_n);
1039 			rxq_ctrl->dump_file_n++;
1040 		}
1041 		rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_READY;
1042 		/* Fall-through */
1043 	case MLX5_RXQ_ERR_STATE_NEED_READY:
1044 		ret = check_cqe(u.cqe, cqe_n, rxq->cq_ci);
1045 		if (ret == MLX5_CQE_STATUS_HW_OWN) {
1046 			rte_io_wmb();
1047 			*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1048 			rte_io_wmb();
1049 			/*
1050 			 * The RQ consumer index must be zeroed while moving
1051 			 * from RESET state to RDY state.
1052 			 */
1053 			*rxq->rq_db = rte_cpu_to_be_32(0);
1054 			rte_io_wmb();
1055 			sm.is_wq = 1;
1056 			sm.queue_id = rxq->idx;
1057 			sm.state = IBV_WQS_RDY;
1058 			if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv),
1059 						    &sm))
1060 				return -1;
1061 			if (vec) {
1062 				const uint32_t elts_n =
1063 					mlx5_rxq_mprq_enabled(rxq) ?
1064 					wqe_n * strd_n : wqe_n;
1065 				const uint32_t e_mask = elts_n - 1;
1066 				uint32_t elts_ci =
1067 					mlx5_rxq_mprq_enabled(rxq) ?
1068 					rxq->elts_ci : rxq->rq_ci;
1069 				uint32_t elt_idx;
1070 				struct rte_mbuf **elt;
1071 				int i;
1072 				unsigned int n = elts_n - (elts_ci -
1073 							  rxq->rq_pi);
1074 
1075 				for (i = 0; i < (int)n; ++i) {
1076 					elt_idx = (elts_ci + i) & e_mask;
1077 					elt = &(*rxq->elts)[elt_idx];
1078 					*elt = rte_mbuf_raw_alloc(rxq->mp);
1079 					if (!*elt) {
1080 						for (i--; i >= 0; --i) {
1081 							elt_idx = (elts_ci +
1082 								   i) & elts_n;
1083 							elt = &(*rxq->elts)
1084 								[elt_idx];
1085 							rte_pktmbuf_free_seg
1086 								(*elt);
1087 						}
1088 						return -1;
1089 					}
1090 				}
1091 				for (i = 0; i < (int)elts_n; ++i) {
1092 					elt = &(*rxq->elts)[i];
1093 					DATA_LEN(*elt) =
1094 						(uint16_t)((*elt)->buf_len -
1095 						rte_pktmbuf_headroom(*elt));
1096 				}
1097 				/* Padding with a fake mbuf for vec Rx. */
1098 				for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
1099 					(*rxq->elts)[elts_n + i] =
1100 								&rxq->fake_mbuf;
1101 			}
1102 			mlx5_rxq_initialize(rxq);
1103 			rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR;
1104 		}
1105 		return ret;
1106 	default:
1107 		return -1;
1108 	}
1109 }
1110 
1111 /**
1112  * Get size of the next packet for a given CQE. For compressed CQEs, the
1113  * consumer index is updated only once all packets of the current one have
1114  * been processed.
1115  *
1116  * @param rxq
1117  *   Pointer to RX queue.
1118  * @param cqe
1119  *   CQE to process.
1120  * @param[out] mcqe
1121  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1122  *   written.
1123  *
1124  * @return
1125  *   0 in case of empty CQE, otherwise the packet size in bytes.
1126  */
1127 static inline int
1128 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1129 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1130 {
1131 	struct rxq_zip *zip = &rxq->zip;
1132 	uint16_t cqe_n = cqe_cnt + 1;
1133 	int len;
1134 	uint16_t idx, end;
1135 
1136 	do {
1137 		len = 0;
1138 		/* Process compressed data in the CQE and mini arrays. */
1139 		if (zip->ai) {
1140 			volatile struct mlx5_mini_cqe8 (*mc)[8] =
1141 				(volatile struct mlx5_mini_cqe8 (*)[8])
1142 				(uintptr_t)(&(*rxq->cqes)[zip->ca &
1143 							  cqe_cnt].pkt_info);
1144 			len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt &
1145 					       rxq->byte_mask);
1146 			*mcqe = &(*mc)[zip->ai & 7];
1147 			if ((++zip->ai & 7) == 0) {
1148 				/* Invalidate consumed CQEs */
1149 				idx = zip->ca;
1150 				end = zip->na;
1151 				while (idx != end) {
1152 					(*rxq->cqes)[idx & cqe_cnt].op_own =
1153 						MLX5_CQE_INVALIDATE;
1154 					++idx;
1155 				}
1156 				/*
1157 				 * Increment consumer index to skip the number
1158 				 * of CQEs consumed. Hardware leaves holes in
1159 				 * the CQ ring for software use.
1160 				 */
1161 				zip->ca = zip->na;
1162 				zip->na += 8;
1163 			}
1164 			if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1165 				/* Invalidate the rest */
1166 				idx = zip->ca;
1167 				end = zip->cq_ci;
1168 
1169 				while (idx != end) {
1170 					(*rxq->cqes)[idx & cqe_cnt].op_own =
1171 						MLX5_CQE_INVALIDATE;
1172 					++idx;
1173 				}
1174 				rxq->cq_ci = zip->cq_ci;
1175 				zip->ai = 0;
1176 			}
1177 		/*
1178 		 * No compressed data, get next CQE and verify if it is
1179 		 * compressed.
1180 		 */
1181 		} else {
1182 			int ret;
1183 			int8_t op_own;
1184 
1185 			ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1186 			if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
1187 				if (unlikely(ret == MLX5_CQE_STATUS_ERR ||
1188 					     rxq->err_state)) {
1189 					ret = mlx5_rx_err_handle(rxq, 0);
1190 					if (ret == MLX5_CQE_STATUS_HW_OWN ||
1191 					    ret == -1)
1192 						return 0;
1193 				} else {
1194 					return 0;
1195 				}
1196 			}
1197 			++rxq->cq_ci;
1198 			op_own = cqe->op_own;
1199 			if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1200 				volatile struct mlx5_mini_cqe8 (*mc)[8] =
1201 					(volatile struct mlx5_mini_cqe8 (*)[8])
1202 					(uintptr_t)(&(*rxq->cqes)
1203 						[rxq->cq_ci &
1204 						 cqe_cnt].pkt_info);
1205 
1206 				/* Fix endianness. */
1207 				zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1208 				/*
1209 				 * Current mini array position is the one
1210 				 * returned by check_cqe64().
1211 				 *
1212 				 * If completion comprises several mini arrays,
1213 				 * as a special case the second one is located
1214 				 * 7 CQEs after the initial CQE instead of 8
1215 				 * for subsequent ones.
1216 				 */
1217 				zip->ca = rxq->cq_ci;
1218 				zip->na = zip->ca + 7;
1219 				/* Compute the next non compressed CQE. */
1220 				--rxq->cq_ci;
1221 				zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1222 				/* Get packet size to return. */
1223 				len = rte_be_to_cpu_32((*mc)[0].byte_cnt &
1224 						       rxq->byte_mask);
1225 				*mcqe = &(*mc)[0];
1226 				zip->ai = 1;
1227 				/* Prefetch all to be invalidated */
1228 				idx = zip->ca;
1229 				end = zip->cq_ci;
1230 				while (idx != end) {
1231 					rte_prefetch0(&(*rxq->cqes)[(idx) &
1232 								    cqe_cnt]);
1233 					++idx;
1234 				}
1235 			} else {
1236 				len = rte_be_to_cpu_32(cqe->byte_cnt);
1237 			}
1238 		}
1239 		if (unlikely(rxq->err_state)) {
1240 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1241 			++rxq->stats.idropped;
1242 		} else {
1243 			return len;
1244 		}
1245 	} while (1);
1246 }
1247 
1248 /**
1249  * Translate RX completion flags to offload flags.
1250  *
1251  * @param[in] cqe
1252  *   Pointer to CQE.
1253  *
1254  * @return
1255  *   Offload flags (ol_flags) for struct rte_mbuf.
1256  */
1257 static inline uint32_t
1258 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1259 {
1260 	uint32_t ol_flags = 0;
1261 	uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1262 
1263 	ol_flags =
1264 		TRANSPOSE(flags,
1265 			  MLX5_CQE_RX_L3_HDR_VALID,
1266 			  PKT_RX_IP_CKSUM_GOOD) |
1267 		TRANSPOSE(flags,
1268 			  MLX5_CQE_RX_L4_HDR_VALID,
1269 			  PKT_RX_L4_CKSUM_GOOD);
1270 	return ol_flags;
1271 }
1272 
1273 /**
1274  * Fill in mbuf fields from RX completion flags.
1275  * Note that pkt->ol_flags should be initialized outside of this function.
1276  *
1277  * @param rxq
1278  *   Pointer to RX queue.
1279  * @param pkt
1280  *   mbuf to fill.
1281  * @param cqe
1282  *   CQE to process.
1283  * @param rss_hash_res
1284  *   Packet RSS Hash result.
1285  */
1286 static inline void
1287 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1288 	       volatile struct mlx5_cqe *cqe,
1289 	       volatile struct mlx5_mini_cqe8 *mcqe)
1290 {
1291 	/* Update packet information. */
1292 	pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe, mcqe);
1293 
1294 	if (rxq->rss_hash) {
1295 		uint32_t rss_hash_res = 0;
1296 
1297 		/* If compressed, take hash result from mini-CQE. */
1298 		if (mcqe == NULL ||
1299 		    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_HASH)
1300 			rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
1301 		else
1302 			rss_hash_res = rte_be_to_cpu_32(mcqe->rx_hash_result);
1303 		if (rss_hash_res) {
1304 			pkt->hash.rss = rss_hash_res;
1305 			pkt->ol_flags |= PKT_RX_RSS_HASH;
1306 		}
1307 	}
1308 	if (rxq->mark) {
1309 		uint32_t mark = 0;
1310 
1311 		/* If compressed, take flow tag from mini-CQE. */
1312 		if (mcqe == NULL ||
1313 		    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_FTAG_STRIDX)
1314 			mark = cqe->sop_drop_qpn;
1315 		else
1316 			mark = ((mcqe->byte_cnt_flow & 0xff) << 8) |
1317 				(mcqe->flow_tag_high << 16);
1318 		if (MLX5_FLOW_MARK_IS_VALID(mark)) {
1319 			pkt->ol_flags |= PKT_RX_FDIR;
1320 			if (mark != RTE_BE32(MLX5_FLOW_MARK_DEFAULT)) {
1321 				pkt->ol_flags |= PKT_RX_FDIR_ID;
1322 				pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1323 			}
1324 		}
1325 	}
1326 	if (rxq->dynf_meta && cqe->flow_table_metadata) {
1327 		pkt->ol_flags |= rxq->flow_meta_mask;
1328 		*RTE_MBUF_DYNFIELD(pkt, rxq->flow_meta_offset, uint32_t *) =
1329 			cqe->flow_table_metadata;
1330 	}
1331 	if (rxq->csum)
1332 		pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1333 	if (rxq->vlan_strip) {
1334 		bool vlan_strip;
1335 
1336 		if (mcqe == NULL ||
1337 		    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
1338 			vlan_strip = cqe->hdr_type_etc &
1339 				     RTE_BE16(MLX5_CQE_VLAN_STRIPPED);
1340 		else
1341 			vlan_strip = mcqe->hdr_type &
1342 				     RTE_BE16(MLX5_CQE_VLAN_STRIPPED);
1343 		if (vlan_strip) {
1344 			pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1345 			pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1346 		}
1347 	}
1348 	if (rxq->hw_timestamp) {
1349 		uint64_t ts = rte_be_to_cpu_64(cqe->timestamp);
1350 
1351 		if (rxq->rt_timestamp)
1352 			ts = mlx5_txpp_convert_rx_ts(rxq->sh, ts);
1353 		mlx5_timestamp_set(pkt, rxq->timestamp_offset, ts);
1354 		pkt->ol_flags |= rxq->timestamp_rx_flag;
1355 	}
1356 }
1357 
1358 /**
1359  * DPDK callback for RX.
1360  *
1361  * @param dpdk_rxq
1362  *   Generic pointer to RX queue structure.
1363  * @param[out] pkts
1364  *   Array to store received packets.
1365  * @param pkts_n
1366  *   Maximum number of packets in array.
1367  *
1368  * @return
1369  *   Number of packets successfully received (<= pkts_n).
1370  */
1371 uint16_t
1372 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1373 {
1374 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1375 	const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1376 	const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1377 	const unsigned int sges_n = rxq->sges_n;
1378 	struct rte_mbuf *pkt = NULL;
1379 	struct rte_mbuf *seg = NULL;
1380 	volatile struct mlx5_cqe *cqe =
1381 		&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1382 	unsigned int i = 0;
1383 	unsigned int rq_ci = rxq->rq_ci << sges_n;
1384 	int len = 0; /* keep its value across iterations. */
1385 
1386 	while (pkts_n) {
1387 		unsigned int idx = rq_ci & wqe_cnt;
1388 		volatile struct mlx5_wqe_data_seg *wqe =
1389 			&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1390 		struct rte_mbuf *rep = (*rxq->elts)[idx];
1391 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1392 
1393 		if (pkt)
1394 			NEXT(seg) = rep;
1395 		seg = rep;
1396 		rte_prefetch0(seg);
1397 		rte_prefetch0(cqe);
1398 		rte_prefetch0(wqe);
1399 		/* Allocate the buf from the same pool. */
1400 		rep = rte_mbuf_raw_alloc(seg->pool);
1401 		if (unlikely(rep == NULL)) {
1402 			++rxq->stats.rx_nombuf;
1403 			if (!pkt) {
1404 				/*
1405 				 * no buffers before we even started,
1406 				 * bail out silently.
1407 				 */
1408 				break;
1409 			}
1410 			while (pkt != seg) {
1411 				MLX5_ASSERT(pkt != (*rxq->elts)[idx]);
1412 				rep = NEXT(pkt);
1413 				NEXT(pkt) = NULL;
1414 				NB_SEGS(pkt) = 1;
1415 				rte_mbuf_raw_free(pkt);
1416 				pkt = rep;
1417 			}
1418 			break;
1419 		}
1420 		if (!pkt) {
1421 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1422 			len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
1423 			if (!len) {
1424 				rte_mbuf_raw_free(rep);
1425 				break;
1426 			}
1427 			pkt = seg;
1428 			MLX5_ASSERT(len >= (rxq->crc_present << 2));
1429 			pkt->ol_flags &= EXT_ATTACHED_MBUF;
1430 			rxq_cq_to_mbuf(rxq, pkt, cqe, mcqe);
1431 			if (rxq->crc_present)
1432 				len -= RTE_ETHER_CRC_LEN;
1433 			PKT_LEN(pkt) = len;
1434 			if (cqe->lro_num_seg > 1) {
1435 				mlx5_lro_update_hdr
1436 					(rte_pktmbuf_mtod(pkt, uint8_t *), cqe,
1437 					 mcqe, rxq, len);
1438 				pkt->ol_flags |= PKT_RX_LRO;
1439 				pkt->tso_segsz = len / cqe->lro_num_seg;
1440 			}
1441 		}
1442 		DATA_LEN(rep) = DATA_LEN(seg);
1443 		PKT_LEN(rep) = PKT_LEN(seg);
1444 		SET_DATA_OFF(rep, DATA_OFF(seg));
1445 		PORT(rep) = PORT(seg);
1446 		(*rxq->elts)[idx] = rep;
1447 		/*
1448 		 * Fill NIC descriptor with the new buffer.  The lkey and size
1449 		 * of the buffers are already known, only the buffer address
1450 		 * changes.
1451 		 */
1452 		wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1453 		/* If there's only one MR, no need to replace LKey in WQE. */
1454 		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
1455 			wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
1456 		if (len > DATA_LEN(seg)) {
1457 			len -= DATA_LEN(seg);
1458 			++NB_SEGS(pkt);
1459 			++rq_ci;
1460 			continue;
1461 		}
1462 		DATA_LEN(seg) = len;
1463 #ifdef MLX5_PMD_SOFT_COUNTERS
1464 		/* Increment bytes counter. */
1465 		rxq->stats.ibytes += PKT_LEN(pkt);
1466 #endif
1467 		/* Return packet. */
1468 		*(pkts++) = pkt;
1469 		pkt = NULL;
1470 		--pkts_n;
1471 		++i;
1472 		/* Align consumer index to the next stride. */
1473 		rq_ci >>= sges_n;
1474 		++rq_ci;
1475 		rq_ci <<= sges_n;
1476 	}
1477 	if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1478 		return 0;
1479 	/* Update the consumer index. */
1480 	rxq->rq_ci = rq_ci >> sges_n;
1481 	rte_io_wmb();
1482 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1483 	rte_io_wmb();
1484 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1485 #ifdef MLX5_PMD_SOFT_COUNTERS
1486 	/* Increment packets counter. */
1487 	rxq->stats.ipackets += i;
1488 #endif
1489 	return i;
1490 }
1491 
1492 /**
1493  * Update LRO packet TCP header.
1494  * The HW LRO feature doesn't update the TCP header after coalescing the
1495  * TCP segments but supplies information in CQE to fill it by SW.
1496  *
1497  * @param tcp
1498  *   Pointer to the TCP header.
1499  * @param cqe
1500  *   Pointer to the completion entry..
1501  * @param phcsum
1502  *   The L3 pseudo-header checksum.
1503  */
1504 static inline void
1505 mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *__rte_restrict tcp,
1506 			volatile struct mlx5_cqe *__rte_restrict cqe,
1507 			uint32_t phcsum, uint8_t l4_type)
1508 {
1509 	/*
1510 	 * The HW calculates only the TCP payload checksum, need to complete
1511 	 * the TCP header checksum and the L3 pseudo-header checksum.
1512 	 */
1513 	uint32_t csum = phcsum + cqe->csum;
1514 
1515 	if (l4_type == MLX5_L4_HDR_TYPE_TCP_EMPTY_ACK ||
1516 	    l4_type == MLX5_L4_HDR_TYPE_TCP_WITH_ACL) {
1517 		tcp->tcp_flags |= RTE_TCP_ACK_FLAG;
1518 		tcp->recv_ack = cqe->lro_ack_seq_num;
1519 		tcp->rx_win = cqe->lro_tcp_win;
1520 	}
1521 	if (cqe->lro_tcppsh_abort_dupack & MLX5_CQE_LRO_PUSH_MASK)
1522 		tcp->tcp_flags |= RTE_TCP_PSH_FLAG;
1523 	tcp->cksum = 0;
1524 	csum += rte_raw_cksum(tcp, (tcp->data_off >> 4) * 4);
1525 	csum = ((csum & 0xffff0000) >> 16) + (csum & 0xffff);
1526 	csum = (~csum) & 0xffff;
1527 	if (csum == 0)
1528 		csum = 0xffff;
1529 	tcp->cksum = csum;
1530 }
1531 
1532 /**
1533  * Update LRO packet headers.
1534  * The HW LRO feature doesn't update the L3/TCP headers after coalescing the
1535  * TCP segments but supply information in CQE to fill it by SW.
1536  *
1537  * @param padd
1538  *   The packet address.
1539  * @param cqe
1540  *   Pointer to the completion entry..
1541  * @param len
1542  *   The packet length.
1543  */
1544 static inline void
1545 mlx5_lro_update_hdr(uint8_t *__rte_restrict padd,
1546 		    volatile struct mlx5_cqe *__rte_restrict cqe,
1547 		    volatile struct mlx5_mini_cqe8 *mcqe,
1548 		    struct mlx5_rxq_data *rxq, uint32_t len)
1549 {
1550 	union {
1551 		struct rte_ether_hdr *eth;
1552 		struct rte_vlan_hdr *vlan;
1553 		struct rte_ipv4_hdr *ipv4;
1554 		struct rte_ipv6_hdr *ipv6;
1555 		struct rte_tcp_hdr *tcp;
1556 		uint8_t *hdr;
1557 	} h = {
1558 			.hdr = padd,
1559 	};
1560 	uint16_t proto = h.eth->ether_type;
1561 	uint32_t phcsum;
1562 	uint8_t l4_type;
1563 
1564 	h.eth++;
1565 	while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) ||
1566 	       proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) {
1567 		proto = h.vlan->eth_proto;
1568 		h.vlan++;
1569 	}
1570 	if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) {
1571 		h.ipv4->time_to_live = cqe->lro_min_ttl;
1572 		h.ipv4->total_length = rte_cpu_to_be_16(len - (h.hdr - padd));
1573 		h.ipv4->hdr_checksum = 0;
1574 		h.ipv4->hdr_checksum = rte_ipv4_cksum(h.ipv4);
1575 		phcsum = rte_ipv4_phdr_cksum(h.ipv4, 0);
1576 		h.ipv4++;
1577 	} else {
1578 		h.ipv6->hop_limits = cqe->lro_min_ttl;
1579 		h.ipv6->payload_len = rte_cpu_to_be_16(len - (h.hdr - padd) -
1580 						       sizeof(*h.ipv6));
1581 		phcsum = rte_ipv6_phdr_cksum(h.ipv6, 0);
1582 		h.ipv6++;
1583 	}
1584 	if (mcqe == NULL ||
1585 	    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
1586 		l4_type = (rte_be_to_cpu_16(cqe->hdr_type_etc) &
1587 			   MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
1588 	else
1589 		l4_type = (rte_be_to_cpu_16(mcqe->hdr_type) &
1590 			   MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
1591 	mlx5_lro_update_tcp_hdr(h.tcp, cqe, phcsum, l4_type);
1592 }
1593 
1594 void
1595 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
1596 {
1597 	struct mlx5_mprq_buf *buf = opaque;
1598 
1599 	if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) {
1600 		rte_mempool_put(buf->mp, buf);
1601 	} else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1,
1602 					       __ATOMIC_RELAXED) == 0)) {
1603 		__atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED);
1604 		rte_mempool_put(buf->mp, buf);
1605 	}
1606 }
1607 
1608 void
1609 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
1610 {
1611 	mlx5_mprq_buf_free_cb(NULL, buf);
1612 }
1613 
1614 /**
1615  * DPDK callback for RX with Multi-Packet RQ support.
1616  *
1617  * @param dpdk_rxq
1618  *   Generic pointer to RX queue structure.
1619  * @param[out] pkts
1620  *   Array to store received packets.
1621  * @param pkts_n
1622  *   Maximum number of packets in array.
1623  *
1624  * @return
1625  *   Number of packets successfully received (<= pkts_n).
1626  */
1627 uint16_t
1628 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1629 {
1630 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1631 	const uint32_t strd_n = 1 << rxq->strd_num_n;
1632 	const uint32_t strd_sz = 1 << rxq->strd_sz_n;
1633 	const uint32_t cq_mask = (1 << rxq->cqe_n) - 1;
1634 	const uint32_t wq_mask = (1 << rxq->elts_n) - 1;
1635 	volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
1636 	unsigned int i = 0;
1637 	uint32_t rq_ci = rxq->rq_ci;
1638 	uint16_t consumed_strd = rxq->consumed_strd;
1639 	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
1640 
1641 	while (i < pkts_n) {
1642 		struct rte_mbuf *pkt;
1643 		int ret;
1644 		uint32_t len;
1645 		uint16_t strd_cnt;
1646 		uint16_t strd_idx;
1647 		uint32_t byte_cnt;
1648 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1649 		enum mlx5_rqx_code rxq_code;
1650 
1651 		if (consumed_strd == strd_n) {
1652 			/* Replace WQE if the buffer is still in use. */
1653 			mprq_buf_replace(rxq, rq_ci & wq_mask);
1654 			/* Advance to the next WQE. */
1655 			consumed_strd = 0;
1656 			++rq_ci;
1657 			buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
1658 		}
1659 		cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
1660 		ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
1661 		if (!ret)
1662 			break;
1663 		byte_cnt = ret;
1664 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
1665 		MLX5_ASSERT((int)len >= (rxq->crc_present << 2));
1666 		if (rxq->crc_present)
1667 			len -= RTE_ETHER_CRC_LEN;
1668 		if (mcqe &&
1669 		    rxq->mcqe_format == MLX5_CQE_RESP_FORMAT_FTAG_STRIDX)
1670 			strd_cnt = (len / strd_sz) + !!(len % strd_sz);
1671 		else
1672 			strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
1673 				   MLX5_MPRQ_STRIDE_NUM_SHIFT;
1674 		MLX5_ASSERT(strd_cnt);
1675 		consumed_strd += strd_cnt;
1676 		if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
1677 			continue;
1678 		strd_idx = rte_be_to_cpu_16(mcqe == NULL ?
1679 					cqe->wqe_counter :
1680 					mcqe->stride_idx);
1681 		MLX5_ASSERT(strd_idx < strd_n);
1682 		MLX5_ASSERT(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) &
1683 			    wq_mask));
1684 		pkt = rte_pktmbuf_alloc(rxq->mp);
1685 		if (unlikely(pkt == NULL)) {
1686 			++rxq->stats.rx_nombuf;
1687 			break;
1688 		}
1689 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
1690 		MLX5_ASSERT((int)len >= (rxq->crc_present << 2));
1691 		if (rxq->crc_present)
1692 			len -= RTE_ETHER_CRC_LEN;
1693 		rxq_code = mprq_buf_to_pkt(rxq, pkt, len, buf,
1694 					   strd_idx, strd_cnt);
1695 		if (unlikely(rxq_code != MLX5_RXQ_CODE_EXIT)) {
1696 			rte_pktmbuf_free_seg(pkt);
1697 			if (rxq_code == MLX5_RXQ_CODE_DROPPED) {
1698 				++rxq->stats.idropped;
1699 				continue;
1700 			}
1701 			if (rxq_code == MLX5_RXQ_CODE_NOMBUF) {
1702 				++rxq->stats.rx_nombuf;
1703 				break;
1704 			}
1705 		}
1706 		rxq_cq_to_mbuf(rxq, pkt, cqe, mcqe);
1707 		if (cqe->lro_num_seg > 1) {
1708 			mlx5_lro_update_hdr(rte_pktmbuf_mtod(pkt, uint8_t *),
1709 					    cqe, mcqe, rxq, len);
1710 			pkt->ol_flags |= PKT_RX_LRO;
1711 			pkt->tso_segsz = len / cqe->lro_num_seg;
1712 		}
1713 		PKT_LEN(pkt) = len;
1714 		PORT(pkt) = rxq->port_id;
1715 #ifdef MLX5_PMD_SOFT_COUNTERS
1716 		/* Increment bytes counter. */
1717 		rxq->stats.ibytes += PKT_LEN(pkt);
1718 #endif
1719 		/* Return packet. */
1720 		*(pkts++) = pkt;
1721 		++i;
1722 	}
1723 	/* Update the consumer indexes. */
1724 	rxq->consumed_strd = consumed_strd;
1725 	rte_io_wmb();
1726 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1727 	if (rq_ci != rxq->rq_ci) {
1728 		rxq->rq_ci = rq_ci;
1729 		rte_io_wmb();
1730 		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1731 	}
1732 #ifdef MLX5_PMD_SOFT_COUNTERS
1733 	/* Increment packets counter. */
1734 	rxq->stats.ipackets += i;
1735 #endif
1736 	return i;
1737 }
1738 
1739 /**
1740  * Dummy DPDK callback for TX.
1741  *
1742  * This function is used to temporarily replace the real callback during
1743  * unsafe control operations on the queue, or in case of error.
1744  *
1745  * @param dpdk_txq
1746  *   Generic pointer to TX queue structure.
1747  * @param[in] pkts
1748  *   Packets to transmit.
1749  * @param pkts_n
1750  *   Number of packets in array.
1751  *
1752  * @return
1753  *   Number of packets successfully transmitted (<= pkts_n).
1754  */
1755 uint16_t
1756 removed_tx_burst(void *dpdk_txq __rte_unused,
1757 		 struct rte_mbuf **pkts __rte_unused,
1758 		 uint16_t pkts_n __rte_unused)
1759 {
1760 	rte_mb();
1761 	return 0;
1762 }
1763 
1764 /**
1765  * Dummy DPDK callback for RX.
1766  *
1767  * This function is used to temporarily replace the real callback during
1768  * unsafe control operations on the queue, or in case of error.
1769  *
1770  * @param dpdk_rxq
1771  *   Generic pointer to RX queue structure.
1772  * @param[out] pkts
1773  *   Array to store received packets.
1774  * @param pkts_n
1775  *   Maximum number of packets in array.
1776  *
1777  * @return
1778  *   Number of packets successfully received (<= pkts_n).
1779  */
1780 uint16_t
1781 removed_rx_burst(void *dpdk_txq __rte_unused,
1782 		 struct rte_mbuf **pkts __rte_unused,
1783 		 uint16_t pkts_n __rte_unused)
1784 {
1785 	rte_mb();
1786 	return 0;
1787 }
1788 
1789 /*
1790  * Vectorized Rx/Tx routines are not compiled in when required vector
1791  * instructions are not supported on a target architecture. The following null
1792  * stubs are needed for linkage when those are not included outside of this file
1793  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1794  */
1795 
1796 __rte_weak uint16_t
1797 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
1798 		  struct rte_mbuf **pkts __rte_unused,
1799 		  uint16_t pkts_n __rte_unused)
1800 {
1801 	return 0;
1802 }
1803 
1804 __rte_weak uint16_t
1805 mlx5_rx_burst_mprq_vec(void *dpdk_txq __rte_unused,
1806 		       struct rte_mbuf **pkts __rte_unused,
1807 		       uint16_t pkts_n __rte_unused)
1808 {
1809 	return 0;
1810 }
1811 
1812 __rte_weak int
1813 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
1814 {
1815 	return -ENOTSUP;
1816 }
1817 
1818 __rte_weak int
1819 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
1820 {
1821 	return -ENOTSUP;
1822 }
1823 
1824 /**
1825  * Free the mbufs from the linear array of pointers.
1826  *
1827  * @param pkts
1828  *   Pointer to array of packets to be free.
1829  * @param pkts_n
1830  *   Number of packets to be freed.
1831  * @param olx
1832  *   Configured Tx offloads mask. It is fully defined at
1833  *   compile time and may be used for optimization.
1834  */
1835 static __rte_always_inline void
1836 mlx5_tx_free_mbuf(struct rte_mbuf **__rte_restrict pkts,
1837 		  unsigned int pkts_n,
1838 		  unsigned int olx __rte_unused)
1839 {
1840 	struct rte_mempool *pool = NULL;
1841 	struct rte_mbuf **p_free = NULL;
1842 	struct rte_mbuf *mbuf;
1843 	unsigned int n_free = 0;
1844 
1845 	/*
1846 	 * The implemented algorithm eliminates
1847 	 * copying pointers to temporary array
1848 	 * for rte_mempool_put_bulk() calls.
1849 	 */
1850 	MLX5_ASSERT(pkts);
1851 	MLX5_ASSERT(pkts_n);
1852 	for (;;) {
1853 		for (;;) {
1854 			/*
1855 			 * Decrement mbuf reference counter, detach
1856 			 * indirect and external buffers if needed.
1857 			 */
1858 			mbuf = rte_pktmbuf_prefree_seg(*pkts);
1859 			if (likely(mbuf != NULL)) {
1860 				MLX5_ASSERT(mbuf == *pkts);
1861 				if (likely(n_free != 0)) {
1862 					if (unlikely(pool != mbuf->pool))
1863 						/* From different pool. */
1864 						break;
1865 				} else {
1866 					/* Start new scan array. */
1867 					pool = mbuf->pool;
1868 					p_free = pkts;
1869 				}
1870 				++n_free;
1871 				++pkts;
1872 				--pkts_n;
1873 				if (unlikely(pkts_n == 0)) {
1874 					mbuf = NULL;
1875 					break;
1876 				}
1877 			} else {
1878 				/*
1879 				 * This happens if mbuf is still referenced.
1880 				 * We can't put it back to the pool, skip.
1881 				 */
1882 				++pkts;
1883 				--pkts_n;
1884 				if (unlikely(n_free != 0))
1885 					/* There is some array to free.*/
1886 					break;
1887 				if (unlikely(pkts_n == 0))
1888 					/* Last mbuf, nothing to free. */
1889 					return;
1890 			}
1891 		}
1892 		for (;;) {
1893 			/*
1894 			 * This loop is implemented to avoid multiple
1895 			 * inlining of rte_mempool_put_bulk().
1896 			 */
1897 			MLX5_ASSERT(pool);
1898 			MLX5_ASSERT(p_free);
1899 			MLX5_ASSERT(n_free);
1900 			/*
1901 			 * Free the array of pre-freed mbufs
1902 			 * belonging to the same memory pool.
1903 			 */
1904 			rte_mempool_put_bulk(pool, (void *)p_free, n_free);
1905 			if (unlikely(mbuf != NULL)) {
1906 				/* There is the request to start new scan. */
1907 				pool = mbuf->pool;
1908 				p_free = pkts++;
1909 				n_free = 1;
1910 				--pkts_n;
1911 				if (likely(pkts_n != 0))
1912 					break;
1913 				/*
1914 				 * This is the last mbuf to be freed.
1915 				 * Do one more loop iteration to complete.
1916 				 * This is rare case of the last unique mbuf.
1917 				 */
1918 				mbuf = NULL;
1919 				continue;
1920 			}
1921 			if (likely(pkts_n == 0))
1922 				return;
1923 			n_free = 0;
1924 			break;
1925 		}
1926 	}
1927 }
1928 
1929 /**
1930  * Free the mbuf from the elts ring buffer till new tail.
1931  *
1932  * @param txq
1933  *   Pointer to Tx queue structure.
1934  * @param tail
1935  *   Index in elts to free up to, becomes new elts tail.
1936  * @param olx
1937  *   Configured Tx offloads mask. It is fully defined at
1938  *   compile time and may be used for optimization.
1939  */
1940 static __rte_always_inline void
1941 mlx5_tx_free_elts(struct mlx5_txq_data *__rte_restrict txq,
1942 		  uint16_t tail,
1943 		  unsigned int olx __rte_unused)
1944 {
1945 	uint16_t n_elts = tail - txq->elts_tail;
1946 
1947 	MLX5_ASSERT(n_elts);
1948 	MLX5_ASSERT(n_elts <= txq->elts_s);
1949 	/*
1950 	 * Implement a loop to support ring buffer wraparound
1951 	 * with single inlining of mlx5_tx_free_mbuf().
1952 	 */
1953 	do {
1954 		unsigned int part;
1955 
1956 		part = txq->elts_s - (txq->elts_tail & txq->elts_m);
1957 		part = RTE_MIN(part, n_elts);
1958 		MLX5_ASSERT(part);
1959 		MLX5_ASSERT(part <= txq->elts_s);
1960 		mlx5_tx_free_mbuf(&txq->elts[txq->elts_tail & txq->elts_m],
1961 				  part, olx);
1962 		txq->elts_tail += part;
1963 		n_elts -= part;
1964 	} while (n_elts);
1965 }
1966 
1967 /**
1968  * Store the mbuf being sent into elts ring buffer.
1969  * On Tx completion these mbufs will be freed.
1970  *
1971  * @param txq
1972  *   Pointer to Tx queue structure.
1973  * @param pkts
1974  *   Pointer to array of packets to be stored.
1975  * @param pkts_n
1976  *   Number of packets to be stored.
1977  * @param olx
1978  *   Configured Tx offloads mask. It is fully defined at
1979  *   compile time and may be used for optimization.
1980  */
1981 static __rte_always_inline void
1982 mlx5_tx_copy_elts(struct mlx5_txq_data *__rte_restrict txq,
1983 		  struct rte_mbuf **__rte_restrict pkts,
1984 		  unsigned int pkts_n,
1985 		  unsigned int olx __rte_unused)
1986 {
1987 	unsigned int part;
1988 	struct rte_mbuf **elts = (struct rte_mbuf **)txq->elts;
1989 
1990 	MLX5_ASSERT(pkts);
1991 	MLX5_ASSERT(pkts_n);
1992 	part = txq->elts_s - (txq->elts_head & txq->elts_m);
1993 	MLX5_ASSERT(part);
1994 	MLX5_ASSERT(part <= txq->elts_s);
1995 	/* This code is a good candidate for vectorizing with SIMD. */
1996 	rte_memcpy((void *)(elts + (txq->elts_head & txq->elts_m)),
1997 		   (void *)pkts,
1998 		   RTE_MIN(part, pkts_n) * sizeof(struct rte_mbuf *));
1999 	txq->elts_head += pkts_n;
2000 	if (unlikely(part < pkts_n))
2001 		/* The copy is wrapping around the elts array. */
2002 		rte_memcpy((void *)elts, (void *)(pkts + part),
2003 			   (pkts_n - part) * sizeof(struct rte_mbuf *));
2004 }
2005 
2006 /**
2007  * Update completion queue consuming index via doorbell
2008  * and flush the completed data buffers.
2009  *
2010  * @param txq
2011  *   Pointer to TX queue structure.
2012  * @param valid CQE pointer
2013  *   if not NULL update txq->wqe_pi and flush the buffers
2014  * @param olx
2015  *   Configured Tx offloads mask. It is fully defined at
2016  *   compile time and may be used for optimization.
2017  */
2018 static __rte_always_inline void
2019 mlx5_tx_comp_flush(struct mlx5_txq_data *__rte_restrict txq,
2020 		   volatile struct mlx5_cqe *last_cqe,
2021 		   unsigned int olx __rte_unused)
2022 {
2023 	if (likely(last_cqe != NULL)) {
2024 		uint16_t tail;
2025 
2026 		txq->wqe_pi = rte_be_to_cpu_16(last_cqe->wqe_counter);
2027 		tail = txq->fcqs[(txq->cq_ci - 1) & txq->cqe_m];
2028 		if (likely(tail != txq->elts_tail)) {
2029 			mlx5_tx_free_elts(txq, tail, olx);
2030 			MLX5_ASSERT(tail == txq->elts_tail);
2031 		}
2032 	}
2033 }
2034 
2035 /**
2036  * Manage TX completions. This routine checks the CQ for
2037  * arrived CQEs, deduces the last accomplished WQE in SQ,
2038  * updates SQ producing index and frees all completed mbufs.
2039  *
2040  * @param txq
2041  *   Pointer to TX queue structure.
2042  * @param olx
2043  *   Configured Tx offloads mask. It is fully defined at
2044  *   compile time and may be used for optimization.
2045  *
2046  * NOTE: not inlined intentionally, it makes tx_burst
2047  * routine smaller, simple and faster - from experiments.
2048  */
2049 static void
2050 mlx5_tx_handle_completion(struct mlx5_txq_data *__rte_restrict txq,
2051 			  unsigned int olx __rte_unused)
2052 {
2053 	unsigned int count = MLX5_TX_COMP_MAX_CQE;
2054 	volatile struct mlx5_cqe *last_cqe = NULL;
2055 	bool ring_doorbell = false;
2056 	int ret;
2057 
2058 	static_assert(MLX5_CQE_STATUS_HW_OWN < 0, "Must be negative value");
2059 	static_assert(MLX5_CQE_STATUS_SW_OWN < 0, "Must be negative value");
2060 	do {
2061 		volatile struct mlx5_cqe *cqe;
2062 
2063 		cqe = &txq->cqes[txq->cq_ci & txq->cqe_m];
2064 		ret = check_cqe(cqe, txq->cqe_s, txq->cq_ci);
2065 		if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
2066 			if (likely(ret != MLX5_CQE_STATUS_ERR)) {
2067 				/* No new CQEs in completion queue. */
2068 				MLX5_ASSERT(ret == MLX5_CQE_STATUS_HW_OWN);
2069 				break;
2070 			}
2071 			/*
2072 			 * Some error occurred, try to restart.
2073 			 * We have no barrier after WQE related Doorbell
2074 			 * written, make sure all writes are completed
2075 			 * here, before we might perform SQ reset.
2076 			 */
2077 			rte_wmb();
2078 			ret = mlx5_tx_error_cqe_handle
2079 				(txq, (volatile struct mlx5_err_cqe *)cqe);
2080 			if (unlikely(ret < 0)) {
2081 				/*
2082 				 * Some error occurred on queue error
2083 				 * handling, we do not advance the index
2084 				 * here, allowing to retry on next call.
2085 				 */
2086 				return;
2087 			}
2088 			/*
2089 			 * We are going to fetch all entries with
2090 			 * MLX5_CQE_SYNDROME_WR_FLUSH_ERR status.
2091 			 * The send queue is supposed to be empty.
2092 			 */
2093 			ring_doorbell = true;
2094 			++txq->cq_ci;
2095 			txq->cq_pi = txq->cq_ci;
2096 			last_cqe = NULL;
2097 			continue;
2098 		}
2099 		/* Normal transmit completion. */
2100 		MLX5_ASSERT(txq->cq_ci != txq->cq_pi);
2101 		MLX5_ASSERT((txq->fcqs[txq->cq_ci & txq->cqe_m] >> 16) ==
2102 			    cqe->wqe_counter);
2103 		ring_doorbell = true;
2104 		++txq->cq_ci;
2105 		last_cqe = cqe;
2106 		/*
2107 		 * We have to restrict the amount of processed CQEs
2108 		 * in one tx_burst routine call. The CQ may be large
2109 		 * and many CQEs may be updated by the NIC in one
2110 		 * transaction. Buffers freeing is time consuming,
2111 		 * multiple iterations may introduce significant
2112 		 * latency.
2113 		 */
2114 		if (likely(--count == 0))
2115 			break;
2116 	} while (true);
2117 	if (likely(ring_doorbell)) {
2118 		/* Ring doorbell to notify hardware. */
2119 		rte_compiler_barrier();
2120 		*txq->cq_db = rte_cpu_to_be_32(txq->cq_ci);
2121 		mlx5_tx_comp_flush(txq, last_cqe, olx);
2122 	}
2123 }
2124 
2125 /**
2126  * Check if the completion request flag should be set in the last WQE.
2127  * Both pushed mbufs and WQEs are monitored and the completion request
2128  * flag is set if any of thresholds is reached.
2129  *
2130  * @param txq
2131  *   Pointer to TX queue structure.
2132  * @param loc
2133  *   Pointer to burst routine local context.
2134  * @param olx
2135  *   Configured Tx offloads mask. It is fully defined at
2136  *   compile time and may be used for optimization.
2137  */
2138 static __rte_always_inline void
2139 mlx5_tx_request_completion(struct mlx5_txq_data *__rte_restrict txq,
2140 			   struct mlx5_txq_local *__rte_restrict loc,
2141 			   unsigned int olx)
2142 {
2143 	uint16_t head = txq->elts_head;
2144 	unsigned int part;
2145 
2146 	part = MLX5_TXOFF_CONFIG(INLINE) ?
2147 	       0 : loc->pkts_sent - loc->pkts_copy;
2148 	head += part;
2149 	if ((uint16_t)(head - txq->elts_comp) >= MLX5_TX_COMP_THRESH ||
2150 	     (MLX5_TXOFF_CONFIG(INLINE) &&
2151 	     (uint16_t)(txq->wqe_ci - txq->wqe_comp) >= txq->wqe_thres)) {
2152 		volatile struct mlx5_wqe *last = loc->wqe_last;
2153 
2154 		MLX5_ASSERT(last);
2155 		txq->elts_comp = head;
2156 		if (MLX5_TXOFF_CONFIG(INLINE))
2157 			txq->wqe_comp = txq->wqe_ci;
2158 		/* Request unconditional completion on last WQE. */
2159 		last->cseg.flags = RTE_BE32(MLX5_COMP_ALWAYS <<
2160 					    MLX5_COMP_MODE_OFFSET);
2161 		/* Save elts_head in dedicated free on completion queue. */
2162 #ifdef RTE_LIBRTE_MLX5_DEBUG
2163 		txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head |
2164 			  (last->cseg.opcode >> 8) << 16;
2165 #else
2166 		txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head;
2167 #endif
2168 		/* A CQE slot must always be available. */
2169 		MLX5_ASSERT((txq->cq_pi - txq->cq_ci) <= txq->cqe_s);
2170 	}
2171 }
2172 
2173 /**
2174  * DPDK callback to check the status of a tx descriptor.
2175  *
2176  * @param tx_queue
2177  *   The tx queue.
2178  * @param[in] offset
2179  *   The index of the descriptor in the ring.
2180  *
2181  * @return
2182  *   The status of the tx descriptor.
2183  */
2184 int
2185 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
2186 {
2187 	struct mlx5_txq_data *__rte_restrict txq = tx_queue;
2188 	uint16_t used;
2189 
2190 	mlx5_tx_handle_completion(txq, 0);
2191 	used = txq->elts_head - txq->elts_tail;
2192 	if (offset < used)
2193 		return RTE_ETH_TX_DESC_FULL;
2194 	return RTE_ETH_TX_DESC_DONE;
2195 }
2196 
2197 /**
2198  * Build the Control Segment with specified opcode:
2199  * - MLX5_OPCODE_SEND
2200  * - MLX5_OPCODE_ENHANCED_MPSW
2201  * - MLX5_OPCODE_TSO
2202  *
2203  * @param txq
2204  *   Pointer to TX queue structure.
2205  * @param loc
2206  *   Pointer to burst routine local context.
2207  * @param wqe
2208  *   Pointer to WQE to fill with built Control Segment.
2209  * @param ds
2210  *   Supposed length of WQE in segments.
2211  * @param opcode
2212  *   SQ WQE opcode to put into Control Segment.
2213  * @param olx
2214  *   Configured Tx offloads mask. It is fully defined at
2215  *   compile time and may be used for optimization.
2216  */
2217 static __rte_always_inline void
2218 mlx5_tx_cseg_init(struct mlx5_txq_data *__rte_restrict txq,
2219 		  struct mlx5_txq_local *__rte_restrict loc __rte_unused,
2220 		  struct mlx5_wqe *__rte_restrict wqe,
2221 		  unsigned int ds,
2222 		  unsigned int opcode,
2223 		  unsigned int olx __rte_unused)
2224 {
2225 	struct mlx5_wqe_cseg *__rte_restrict cs = &wqe->cseg;
2226 
2227 	/* For legacy MPW replace the EMPW by TSO with modifier. */
2228 	if (MLX5_TXOFF_CONFIG(MPW) && opcode == MLX5_OPCODE_ENHANCED_MPSW)
2229 		opcode = MLX5_OPCODE_TSO | MLX5_OPC_MOD_MPW << 24;
2230 	cs->opcode = rte_cpu_to_be_32((txq->wqe_ci << 8) | opcode);
2231 	cs->sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
2232 	cs->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
2233 			     MLX5_COMP_MODE_OFFSET);
2234 	cs->misc = RTE_BE32(0);
2235 }
2236 
2237 /**
2238  * Build the Synchronize Queue Segment with specified completion index.
2239  *
2240  * @param txq
2241  *   Pointer to TX queue structure.
2242  * @param loc
2243  *   Pointer to burst routine local context.
2244  * @param wqe
2245  *   Pointer to WQE to fill with built Control Segment.
2246  * @param wci
2247  *   Completion index in Clock Queue to wait.
2248  * @param olx
2249  *   Configured Tx offloads mask. It is fully defined at
2250  *   compile time and may be used for optimization.
2251  */
2252 static __rte_always_inline void
2253 mlx5_tx_wseg_init(struct mlx5_txq_data *restrict txq,
2254 		  struct mlx5_txq_local *restrict loc __rte_unused,
2255 		  struct mlx5_wqe *restrict wqe,
2256 		  unsigned int wci,
2257 		  unsigned int olx __rte_unused)
2258 {
2259 	struct mlx5_wqe_qseg *qs;
2260 
2261 	qs = RTE_PTR_ADD(wqe, MLX5_WSEG_SIZE);
2262 	qs->max_index = rte_cpu_to_be_32(wci);
2263 	qs->qpn_cqn = rte_cpu_to_be_32(txq->sh->txpp.clock_queue.cq->id);
2264 	qs->reserved0 = RTE_BE32(0);
2265 	qs->reserved1 = RTE_BE32(0);
2266 }
2267 
2268 /**
2269  * Build the Ethernet Segment without inlined data.
2270  * Supports Software Parser, Checksums and VLAN
2271  * insertion Tx offload features.
2272  *
2273  * @param txq
2274  *   Pointer to TX queue structure.
2275  * @param loc
2276  *   Pointer to burst routine local context.
2277  * @param wqe
2278  *   Pointer to WQE to fill with built Ethernet Segment.
2279  * @param olx
2280  *   Configured Tx offloads mask. It is fully defined at
2281  *   compile time and may be used for optimization.
2282  */
2283 static __rte_always_inline void
2284 mlx5_tx_eseg_none(struct mlx5_txq_data *__rte_restrict txq __rte_unused,
2285 		  struct mlx5_txq_local *__rte_restrict loc,
2286 		  struct mlx5_wqe *__rte_restrict wqe,
2287 		  unsigned int olx)
2288 {
2289 	struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
2290 	uint32_t csum;
2291 
2292 	/*
2293 	 * Calculate and set check sum flags first, dword field
2294 	 * in segment may be shared with Software Parser flags.
2295 	 */
2296 	csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
2297 	es->flags = rte_cpu_to_le_32(csum);
2298 	/*
2299 	 * Calculate and set Software Parser offsets and flags.
2300 	 * These flags a set for custom UDP and IP tunnel packets.
2301 	 */
2302 	es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
2303 	/* Fill metadata field if needed. */
2304 	es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
2305 		       loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
2306 		       *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
2307 	/* Engage VLAN tag insertion feature if requested. */
2308 	if (MLX5_TXOFF_CONFIG(VLAN) &&
2309 	    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
2310 		/*
2311 		 * We should get here only if device support
2312 		 * this feature correctly.
2313 		 */
2314 		MLX5_ASSERT(txq->vlan_en);
2315 		es->inline_hdr = rte_cpu_to_be_32(MLX5_ETH_WQE_VLAN_INSERT |
2316 						  loc->mbuf->vlan_tci);
2317 	} else {
2318 		es->inline_hdr = RTE_BE32(0);
2319 	}
2320 }
2321 
2322 /**
2323  * Build the Ethernet Segment with minimal inlined data
2324  * of MLX5_ESEG_MIN_INLINE_SIZE bytes length. This is
2325  * used to fill the gap in single WQEBB WQEs.
2326  * Supports Software Parser, Checksums and VLAN
2327  * insertion Tx offload features.
2328  *
2329  * @param txq
2330  *   Pointer to TX queue structure.
2331  * @param loc
2332  *   Pointer to burst routine local context.
2333  * @param wqe
2334  *   Pointer to WQE to fill with built Ethernet Segment.
2335  * @param vlan
2336  *   Length of VLAN tag insertion if any.
2337  * @param olx
2338  *   Configured Tx offloads mask. It is fully defined at
2339  *   compile time and may be used for optimization.
2340  */
2341 static __rte_always_inline void
2342 mlx5_tx_eseg_dmin(struct mlx5_txq_data *__rte_restrict txq __rte_unused,
2343 		  struct mlx5_txq_local *__rte_restrict loc,
2344 		  struct mlx5_wqe *__rte_restrict wqe,
2345 		  unsigned int vlan,
2346 		  unsigned int olx)
2347 {
2348 	struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
2349 	uint32_t csum;
2350 	uint8_t *psrc, *pdst;
2351 
2352 	/*
2353 	 * Calculate and set check sum flags first, dword field
2354 	 * in segment may be shared with Software Parser flags.
2355 	 */
2356 	csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
2357 	es->flags = rte_cpu_to_le_32(csum);
2358 	/*
2359 	 * Calculate and set Software Parser offsets and flags.
2360 	 * These flags a set for custom UDP and IP tunnel packets.
2361 	 */
2362 	es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
2363 	/* Fill metadata field if needed. */
2364 	es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
2365 		       loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
2366 		       *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
2367 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2368 				(sizeof(uint16_t) +
2369 				 sizeof(rte_v128u32_t)),
2370 		      "invalid Ethernet Segment data size");
2371 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2372 				(sizeof(uint16_t) +
2373 				 sizeof(struct rte_vlan_hdr) +
2374 				 2 * RTE_ETHER_ADDR_LEN),
2375 		      "invalid Ethernet Segment data size");
2376 	psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
2377 	es->inline_hdr_sz = RTE_BE16(MLX5_ESEG_MIN_INLINE_SIZE);
2378 	es->inline_data = *(unaligned_uint16_t *)psrc;
2379 	psrc +=	sizeof(uint16_t);
2380 	pdst = (uint8_t *)(es + 1);
2381 	if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
2382 		/* Implement VLAN tag insertion as part inline data. */
2383 		memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
2384 		pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
2385 		psrc +=	2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
2386 		/* Insert VLAN ethertype + VLAN tag. */
2387 		*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
2388 						((RTE_ETHER_TYPE_VLAN << 16) |
2389 						 loc->mbuf->vlan_tci);
2390 		pdst += sizeof(struct rte_vlan_hdr);
2391 		/* Copy the rest two bytes from packet data. */
2392 		MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
2393 		*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
2394 	} else {
2395 		/* Fill the gap in the title WQEBB with inline data. */
2396 		rte_mov16(pdst, psrc);
2397 	}
2398 }
2399 
2400 /**
2401  * Build the Ethernet Segment with entire packet
2402  * data inlining. Checks the boundary of WQEBB and
2403  * ring buffer wrapping, supports Software Parser,
2404  * Checksums and VLAN insertion Tx offload features.
2405  *
2406  * @param txq
2407  *   Pointer to TX queue structure.
2408  * @param loc
2409  *   Pointer to burst routine local context.
2410  * @param wqe
2411  *   Pointer to WQE to fill with built Ethernet Segment.
2412  * @param vlan
2413  *   Length of VLAN tag insertion if any.
2414  * @param inlen
2415  *   Length of data to inline (VLAN included, if any).
2416  * @param tso
2417  *   TSO flag, set mss field from the packet.
2418  * @param olx
2419  *   Configured Tx offloads mask. It is fully defined at
2420  *   compile time and may be used for optimization.
2421  *
2422  * @return
2423  *   Pointer to the next Data Segment (aligned and wrapped around).
2424  */
2425 static __rte_always_inline struct mlx5_wqe_dseg *
2426 mlx5_tx_eseg_data(struct mlx5_txq_data *__rte_restrict txq,
2427 		  struct mlx5_txq_local *__rte_restrict loc,
2428 		  struct mlx5_wqe *__rte_restrict wqe,
2429 		  unsigned int vlan,
2430 		  unsigned int inlen,
2431 		  unsigned int tso,
2432 		  unsigned int olx)
2433 {
2434 	struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
2435 	uint32_t csum;
2436 	uint8_t *psrc, *pdst;
2437 	unsigned int part;
2438 
2439 	/*
2440 	 * Calculate and set check sum flags first, dword field
2441 	 * in segment may be shared with Software Parser flags.
2442 	 */
2443 	csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
2444 	if (tso) {
2445 		csum <<= 24;
2446 		csum |= loc->mbuf->tso_segsz;
2447 		es->flags = rte_cpu_to_be_32(csum);
2448 	} else {
2449 		es->flags = rte_cpu_to_le_32(csum);
2450 	}
2451 	/*
2452 	 * Calculate and set Software Parser offsets and flags.
2453 	 * These flags a set for custom UDP and IP tunnel packets.
2454 	 */
2455 	es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
2456 	/* Fill metadata field if needed. */
2457 	es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
2458 		       loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
2459 		       *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
2460 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2461 				(sizeof(uint16_t) +
2462 				 sizeof(rte_v128u32_t)),
2463 		      "invalid Ethernet Segment data size");
2464 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2465 				(sizeof(uint16_t) +
2466 				 sizeof(struct rte_vlan_hdr) +
2467 				 2 * RTE_ETHER_ADDR_LEN),
2468 		      "invalid Ethernet Segment data size");
2469 	psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
2470 	es->inline_hdr_sz = rte_cpu_to_be_16(inlen);
2471 	es->inline_data = *(unaligned_uint16_t *)psrc;
2472 	psrc +=	sizeof(uint16_t);
2473 	pdst = (uint8_t *)(es + 1);
2474 	if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
2475 		/* Implement VLAN tag insertion as part inline data. */
2476 		memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
2477 		pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
2478 		psrc +=	2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
2479 		/* Insert VLAN ethertype + VLAN tag. */
2480 		*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
2481 						((RTE_ETHER_TYPE_VLAN << 16) |
2482 						 loc->mbuf->vlan_tci);
2483 		pdst += sizeof(struct rte_vlan_hdr);
2484 		/* Copy the rest two bytes from packet data. */
2485 		MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
2486 		*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
2487 		psrc += sizeof(uint16_t);
2488 	} else {
2489 		/* Fill the gap in the title WQEBB with inline data. */
2490 		rte_mov16(pdst, psrc);
2491 		psrc += sizeof(rte_v128u32_t);
2492 	}
2493 	pdst = (uint8_t *)(es + 2);
2494 	MLX5_ASSERT(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
2495 	MLX5_ASSERT(pdst < (uint8_t *)txq->wqes_end);
2496 	inlen -= MLX5_ESEG_MIN_INLINE_SIZE;
2497 	if (!inlen) {
2498 		MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
2499 		return (struct mlx5_wqe_dseg *)pdst;
2500 	}
2501 	/*
2502 	 * The WQEBB space availability is checked by caller.
2503 	 * Here we should be aware of WQE ring buffer wraparound only.
2504 	 */
2505 	part = (uint8_t *)txq->wqes_end - pdst;
2506 	part = RTE_MIN(part, inlen);
2507 	do {
2508 		rte_memcpy(pdst, psrc, part);
2509 		inlen -= part;
2510 		if (likely(!inlen)) {
2511 			/*
2512 			 * If return value is not used by the caller
2513 			 * the code below will be optimized out.
2514 			 */
2515 			pdst += part;
2516 			pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
2517 			if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
2518 				pdst = (uint8_t *)txq->wqes;
2519 			return (struct mlx5_wqe_dseg *)pdst;
2520 		}
2521 		pdst = (uint8_t *)txq->wqes;
2522 		psrc += part;
2523 		part = inlen;
2524 	} while (true);
2525 }
2526 
2527 /**
2528  * Copy data from chain of mbuf to the specified linear buffer.
2529  * Checksums and VLAN insertion Tx offload features. If data
2530  * from some mbuf copied completely this mbuf is freed. Local
2531  * structure is used to keep the byte stream state.
2532  *
2533  * @param pdst
2534  *   Pointer to the destination linear buffer.
2535  * @param loc
2536  *   Pointer to burst routine local context.
2537  * @param len
2538  *   Length of data to be copied.
2539  * @param must
2540  *   Length of data to be copied ignoring no inline hint.
2541  * @param olx
2542  *   Configured Tx offloads mask. It is fully defined at
2543  *   compile time and may be used for optimization.
2544  *
2545  * @return
2546  *   Number of actual copied data bytes. This is always greater than or
2547  *   equal to must parameter and might be lesser than len in no inline
2548  *   hint flag is encountered.
2549  */
2550 static __rte_always_inline unsigned int
2551 mlx5_tx_mseg_memcpy(uint8_t *pdst,
2552 		    struct mlx5_txq_local *__rte_restrict loc,
2553 		    unsigned int len,
2554 		    unsigned int must,
2555 		    unsigned int olx __rte_unused)
2556 {
2557 	struct rte_mbuf *mbuf;
2558 	unsigned int part, dlen, copy = 0;
2559 	uint8_t *psrc;
2560 
2561 	MLX5_ASSERT(len);
2562 	MLX5_ASSERT(must <= len);
2563 	do {
2564 		/* Allow zero length packets, must check first. */
2565 		dlen = rte_pktmbuf_data_len(loc->mbuf);
2566 		if (dlen <= loc->mbuf_off) {
2567 			/* Exhausted packet, just free. */
2568 			mbuf = loc->mbuf;
2569 			loc->mbuf = mbuf->next;
2570 			rte_pktmbuf_free_seg(mbuf);
2571 			loc->mbuf_off = 0;
2572 			MLX5_ASSERT(loc->mbuf_nseg > 1);
2573 			MLX5_ASSERT(loc->mbuf);
2574 			--loc->mbuf_nseg;
2575 			if (loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE) {
2576 				unsigned int diff;
2577 
2578 				if (copy >= must) {
2579 					/*
2580 					 * We already copied the minimal
2581 					 * requested amount of data.
2582 					 */
2583 					return copy;
2584 				}
2585 				diff = must - copy;
2586 				if (diff <= rte_pktmbuf_data_len(loc->mbuf)) {
2587 					/*
2588 					 * Copy only the minimal required
2589 					 * part of the data buffer.
2590 					 */
2591 					len = diff;
2592 				}
2593 			}
2594 			continue;
2595 		}
2596 		dlen -= loc->mbuf_off;
2597 		psrc = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
2598 					       loc->mbuf_off);
2599 		part = RTE_MIN(len, dlen);
2600 		rte_memcpy(pdst, psrc, part);
2601 		copy += part;
2602 		loc->mbuf_off += part;
2603 		len -= part;
2604 		if (!len) {
2605 			if (loc->mbuf_off >= rte_pktmbuf_data_len(loc->mbuf)) {
2606 				loc->mbuf_off = 0;
2607 				/* Exhausted packet, just free. */
2608 				mbuf = loc->mbuf;
2609 				loc->mbuf = mbuf->next;
2610 				rte_pktmbuf_free_seg(mbuf);
2611 				loc->mbuf_off = 0;
2612 				MLX5_ASSERT(loc->mbuf_nseg >= 1);
2613 				--loc->mbuf_nseg;
2614 			}
2615 			return copy;
2616 		}
2617 		pdst += part;
2618 	} while (true);
2619 }
2620 
2621 /**
2622  * Build the Ethernet Segment with inlined data from
2623  * multi-segment packet. Checks the boundary of WQEBB
2624  * and ring buffer wrapping, supports Software Parser,
2625  * Checksums and VLAN insertion Tx offload features.
2626  *
2627  * @param txq
2628  *   Pointer to TX queue structure.
2629  * @param loc
2630  *   Pointer to burst routine local context.
2631  * @param wqe
2632  *   Pointer to WQE to fill with built Ethernet Segment.
2633  * @param vlan
2634  *   Length of VLAN tag insertion if any.
2635  * @param inlen
2636  *   Length of data to inline (VLAN included, if any).
2637  * @param tso
2638  *   TSO flag, set mss field from the packet.
2639  * @param olx
2640  *   Configured Tx offloads mask. It is fully defined at
2641  *   compile time and may be used for optimization.
2642  *
2643  * @return
2644  *   Pointer to the next Data Segment (aligned and
2645  *   possible NOT wrapped around - caller should do
2646  *   wrapping check on its own).
2647  */
2648 static __rte_always_inline struct mlx5_wqe_dseg *
2649 mlx5_tx_eseg_mdat(struct mlx5_txq_data *__rte_restrict txq,
2650 		  struct mlx5_txq_local *__rte_restrict loc,
2651 		  struct mlx5_wqe *__rte_restrict wqe,
2652 		  unsigned int vlan,
2653 		  unsigned int inlen,
2654 		  unsigned int tso,
2655 		  unsigned int olx)
2656 {
2657 	struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
2658 	uint32_t csum;
2659 	uint8_t *pdst;
2660 	unsigned int part, tlen = 0;
2661 
2662 	/*
2663 	 * Calculate and set check sum flags first, uint32_t field
2664 	 * in segment may be shared with Software Parser flags.
2665 	 */
2666 	csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
2667 	if (tso) {
2668 		csum <<= 24;
2669 		csum |= loc->mbuf->tso_segsz;
2670 		es->flags = rte_cpu_to_be_32(csum);
2671 	} else {
2672 		es->flags = rte_cpu_to_le_32(csum);
2673 	}
2674 	/*
2675 	 * Calculate and set Software Parser offsets and flags.
2676 	 * These flags a set for custom UDP and IP tunnel packets.
2677 	 */
2678 	es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
2679 	/* Fill metadata field if needed. */
2680 	es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
2681 		       loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
2682 		       *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
2683 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2684 				(sizeof(uint16_t) +
2685 				 sizeof(rte_v128u32_t)),
2686 		      "invalid Ethernet Segment data size");
2687 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2688 				(sizeof(uint16_t) +
2689 				 sizeof(struct rte_vlan_hdr) +
2690 				 2 * RTE_ETHER_ADDR_LEN),
2691 		      "invalid Ethernet Segment data size");
2692 	MLX5_ASSERT(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
2693 	pdst = (uint8_t *)&es->inline_data;
2694 	if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
2695 		/* Implement VLAN tag insertion as part inline data. */
2696 		mlx5_tx_mseg_memcpy(pdst, loc,
2697 				    2 * RTE_ETHER_ADDR_LEN,
2698 				    2 * RTE_ETHER_ADDR_LEN, olx);
2699 		pdst += 2 * RTE_ETHER_ADDR_LEN;
2700 		*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
2701 						((RTE_ETHER_TYPE_VLAN << 16) |
2702 						 loc->mbuf->vlan_tci);
2703 		pdst += sizeof(struct rte_vlan_hdr);
2704 		tlen += 2 * RTE_ETHER_ADDR_LEN + sizeof(struct rte_vlan_hdr);
2705 	}
2706 	MLX5_ASSERT(pdst < (uint8_t *)txq->wqes_end);
2707 	/*
2708 	 * The WQEBB space availability is checked by caller.
2709 	 * Here we should be aware of WQE ring buffer wraparound only.
2710 	 */
2711 	part = (uint8_t *)txq->wqes_end - pdst;
2712 	part = RTE_MIN(part, inlen - tlen);
2713 	MLX5_ASSERT(part);
2714 	do {
2715 		unsigned int copy;
2716 
2717 		/*
2718 		 * Copying may be interrupted inside the routine
2719 		 * if run into no inline hint flag.
2720 		 */
2721 		copy = tlen >= txq->inlen_mode ? 0 : (txq->inlen_mode - tlen);
2722 		copy = mlx5_tx_mseg_memcpy(pdst, loc, part, copy, olx);
2723 		tlen += copy;
2724 		if (likely(inlen <= tlen) || copy < part) {
2725 			es->inline_hdr_sz = rte_cpu_to_be_16(tlen);
2726 			pdst += copy;
2727 			pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
2728 			return (struct mlx5_wqe_dseg *)pdst;
2729 		}
2730 		pdst = (uint8_t *)txq->wqes;
2731 		part = inlen - tlen;
2732 	} while (true);
2733 }
2734 
2735 /**
2736  * Build the Data Segment of pointer type.
2737  *
2738  * @param txq
2739  *   Pointer to TX queue structure.
2740  * @param loc
2741  *   Pointer to burst routine local context.
2742  * @param dseg
2743  *   Pointer to WQE to fill with built Data Segment.
2744  * @param buf
2745  *   Data buffer to point.
2746  * @param len
2747  *   Data buffer length.
2748  * @param olx
2749  *   Configured Tx offloads mask. It is fully defined at
2750  *   compile time and may be used for optimization.
2751  */
2752 static __rte_always_inline void
2753 mlx5_tx_dseg_ptr(struct mlx5_txq_data *__rte_restrict txq,
2754 		 struct mlx5_txq_local *__rte_restrict loc,
2755 		 struct mlx5_wqe_dseg *__rte_restrict dseg,
2756 		 uint8_t *buf,
2757 		 unsigned int len,
2758 		 unsigned int olx __rte_unused)
2759 
2760 {
2761 	MLX5_ASSERT(len);
2762 	dseg->bcount = rte_cpu_to_be_32(len);
2763 	dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
2764 	dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
2765 }
2766 
2767 /**
2768  * Build the Data Segment of pointer type or inline
2769  * if data length is less than buffer in minimal
2770  * Data Segment size.
2771  *
2772  * @param txq
2773  *   Pointer to TX queue structure.
2774  * @param loc
2775  *   Pointer to burst routine local context.
2776  * @param dseg
2777  *   Pointer to WQE to fill with built Data Segment.
2778  * @param buf
2779  *   Data buffer to point.
2780  * @param len
2781  *   Data buffer length.
2782  * @param olx
2783  *   Configured Tx offloads mask. It is fully defined at
2784  *   compile time and may be used for optimization.
2785  */
2786 static __rte_always_inline void
2787 mlx5_tx_dseg_iptr(struct mlx5_txq_data *__rte_restrict txq,
2788 		  struct mlx5_txq_local *__rte_restrict loc,
2789 		  struct mlx5_wqe_dseg *__rte_restrict dseg,
2790 		  uint8_t *buf,
2791 		  unsigned int len,
2792 		  unsigned int olx __rte_unused)
2793 
2794 {
2795 	uintptr_t dst, src;
2796 
2797 	MLX5_ASSERT(len);
2798 	if (len > MLX5_DSEG_MIN_INLINE_SIZE) {
2799 		dseg->bcount = rte_cpu_to_be_32(len);
2800 		dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
2801 		dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
2802 
2803 		return;
2804 	}
2805 	dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
2806 	/* Unrolled implementation of generic rte_memcpy. */
2807 	dst = (uintptr_t)&dseg->inline_data[0];
2808 	src = (uintptr_t)buf;
2809 	if (len & 0x08) {
2810 #ifdef RTE_ARCH_STRICT_ALIGN
2811 		MLX5_ASSERT(dst == RTE_PTR_ALIGN(dst, sizeof(uint32_t)));
2812 		*(uint32_t *)dst = *(unaligned_uint32_t *)src;
2813 		dst += sizeof(uint32_t);
2814 		src += sizeof(uint32_t);
2815 		*(uint32_t *)dst = *(unaligned_uint32_t *)src;
2816 		dst += sizeof(uint32_t);
2817 		src += sizeof(uint32_t);
2818 #else
2819 		*(uint64_t *)dst = *(unaligned_uint64_t *)src;
2820 		dst += sizeof(uint64_t);
2821 		src += sizeof(uint64_t);
2822 #endif
2823 	}
2824 	if (len & 0x04) {
2825 		*(uint32_t *)dst = *(unaligned_uint32_t *)src;
2826 		dst += sizeof(uint32_t);
2827 		src += sizeof(uint32_t);
2828 	}
2829 	if (len & 0x02) {
2830 		*(uint16_t *)dst = *(unaligned_uint16_t *)src;
2831 		dst += sizeof(uint16_t);
2832 		src += sizeof(uint16_t);
2833 	}
2834 	if (len & 0x01)
2835 		*(uint8_t *)dst = *(uint8_t *)src;
2836 }
2837 
2838 /**
2839  * Build the Data Segment of inlined data from single
2840  * segment packet, no VLAN insertion.
2841  *
2842  * @param txq
2843  *   Pointer to TX queue structure.
2844  * @param loc
2845  *   Pointer to burst routine local context.
2846  * @param dseg
2847  *   Pointer to WQE to fill with built Data Segment.
2848  * @param buf
2849  *   Data buffer to point.
2850  * @param len
2851  *   Data buffer length.
2852  * @param olx
2853  *   Configured Tx offloads mask. It is fully defined at
2854  *   compile time and may be used for optimization.
2855  *
2856  * @return
2857  *   Pointer to the next Data Segment after inlined data.
2858  *   Ring buffer wraparound check is needed. We do not
2859  *   do it here because it may not be needed for the
2860  *   last packet in the eMPW session.
2861  */
2862 static __rte_always_inline struct mlx5_wqe_dseg *
2863 mlx5_tx_dseg_empw(struct mlx5_txq_data *__rte_restrict txq,
2864 		  struct mlx5_txq_local *__rte_restrict loc __rte_unused,
2865 		  struct mlx5_wqe_dseg *__rte_restrict dseg,
2866 		  uint8_t *buf,
2867 		  unsigned int len,
2868 		  unsigned int olx __rte_unused)
2869 {
2870 	unsigned int part;
2871 	uint8_t *pdst;
2872 
2873 	if (!MLX5_TXOFF_CONFIG(MPW)) {
2874 		/* Store the descriptor byte counter for eMPW sessions. */
2875 		dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
2876 		pdst = &dseg->inline_data[0];
2877 	} else {
2878 		/* The entire legacy MPW session counter is stored on close. */
2879 		pdst = (uint8_t *)dseg;
2880 	}
2881 	/*
2882 	 * The WQEBB space availability is checked by caller.
2883 	 * Here we should be aware of WQE ring buffer wraparound only.
2884 	 */
2885 	part = (uint8_t *)txq->wqes_end - pdst;
2886 	part = RTE_MIN(part, len);
2887 	do {
2888 		rte_memcpy(pdst, buf, part);
2889 		len -= part;
2890 		if (likely(!len)) {
2891 			pdst += part;
2892 			if (!MLX5_TXOFF_CONFIG(MPW))
2893 				pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
2894 			/* Note: no final wraparound check here. */
2895 			return (struct mlx5_wqe_dseg *)pdst;
2896 		}
2897 		pdst = (uint8_t *)txq->wqes;
2898 		buf += part;
2899 		part = len;
2900 	} while (true);
2901 }
2902 
2903 /**
2904  * Build the Data Segment of inlined data from single
2905  * segment packet with VLAN insertion.
2906  *
2907  * @param txq
2908  *   Pointer to TX queue structure.
2909  * @param loc
2910  *   Pointer to burst routine local context.
2911  * @param dseg
2912  *   Pointer to the dseg fill with built Data Segment.
2913  * @param buf
2914  *   Data buffer to point.
2915  * @param len
2916  *   Data buffer length.
2917  * @param olx
2918  *   Configured Tx offloads mask. It is fully defined at
2919  *   compile time and may be used for optimization.
2920  *
2921  * @return
2922  *   Pointer to the next Data Segment after inlined data.
2923  *   Ring buffer wraparound check is needed.
2924  */
2925 static __rte_always_inline struct mlx5_wqe_dseg *
2926 mlx5_tx_dseg_vlan(struct mlx5_txq_data *__rte_restrict txq,
2927 		  struct mlx5_txq_local *__rte_restrict loc __rte_unused,
2928 		  struct mlx5_wqe_dseg *__rte_restrict dseg,
2929 		  uint8_t *buf,
2930 		  unsigned int len,
2931 		  unsigned int olx __rte_unused)
2932 
2933 {
2934 	unsigned int part;
2935 	uint8_t *pdst;
2936 
2937 	MLX5_ASSERT(len > MLX5_ESEG_MIN_INLINE_SIZE);
2938 	static_assert(MLX5_DSEG_MIN_INLINE_SIZE ==
2939 				 (2 * RTE_ETHER_ADDR_LEN),
2940 		      "invalid Data Segment data size");
2941 	if (!MLX5_TXOFF_CONFIG(MPW)) {
2942 		/* Store the descriptor byte counter for eMPW sessions. */
2943 		dseg->bcount = rte_cpu_to_be_32
2944 				((len + sizeof(struct rte_vlan_hdr)) |
2945 				 MLX5_ETH_WQE_DATA_INLINE);
2946 		pdst = &dseg->inline_data[0];
2947 	} else {
2948 		/* The entire legacy MPW session counter is stored on close. */
2949 		pdst = (uint8_t *)dseg;
2950 	}
2951 	memcpy(pdst, buf, MLX5_DSEG_MIN_INLINE_SIZE);
2952 	buf += MLX5_DSEG_MIN_INLINE_SIZE;
2953 	pdst += MLX5_DSEG_MIN_INLINE_SIZE;
2954 	len -= MLX5_DSEG_MIN_INLINE_SIZE;
2955 	/* Insert VLAN ethertype + VLAN tag. Pointer is aligned. */
2956 	MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
2957 	if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
2958 		pdst = (uint8_t *)txq->wqes;
2959 	*(uint32_t *)pdst = rte_cpu_to_be_32((RTE_ETHER_TYPE_VLAN << 16) |
2960 					      loc->mbuf->vlan_tci);
2961 	pdst += sizeof(struct rte_vlan_hdr);
2962 	/*
2963 	 * The WQEBB space availability is checked by caller.
2964 	 * Here we should be aware of WQE ring buffer wraparound only.
2965 	 */
2966 	part = (uint8_t *)txq->wqes_end - pdst;
2967 	part = RTE_MIN(part, len);
2968 	do {
2969 		rte_memcpy(pdst, buf, part);
2970 		len -= part;
2971 		if (likely(!len)) {
2972 			pdst += part;
2973 			if (!MLX5_TXOFF_CONFIG(MPW))
2974 				pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
2975 			/* Note: no final wraparound check here. */
2976 			return (struct mlx5_wqe_dseg *)pdst;
2977 		}
2978 		pdst = (uint8_t *)txq->wqes;
2979 		buf += part;
2980 		part = len;
2981 	} while (true);
2982 }
2983 
2984 /**
2985  * Build the Ethernet Segment with optionally inlined data with
2986  * VLAN insertion and following Data Segments (if any) from
2987  * multi-segment packet. Used by ordinary send and TSO.
2988  *
2989  * @param txq
2990  *   Pointer to TX queue structure.
2991  * @param loc
2992  *   Pointer to burst routine local context.
2993  * @param wqe
2994  *   Pointer to WQE to fill with built Ethernet/Data Segments.
2995  * @param vlan
2996  *   Length of VLAN header to insert, 0 means no VLAN insertion.
2997  * @param inlen
2998  *   Data length to inline. For TSO this parameter specifies
2999  *   exact value, for ordinary send routine can be aligned by
3000  *   caller to provide better WQE space saving and data buffer
3001  *   start address alignment. This length includes VLAN header
3002  *   being inserted.
3003  * @param tso
3004  *   Zero means ordinary send, inlined data can be extended,
3005  *   otherwise this is TSO, inlined data length is fixed.
3006  * @param olx
3007  *   Configured Tx offloads mask. It is fully defined at
3008  *   compile time and may be used for optimization.
3009  *
3010  * @return
3011  *   Actual size of built WQE in segments.
3012  */
3013 static __rte_always_inline unsigned int
3014 mlx5_tx_mseg_build(struct mlx5_txq_data *__rte_restrict txq,
3015 		   struct mlx5_txq_local *__rte_restrict loc,
3016 		   struct mlx5_wqe *__rte_restrict wqe,
3017 		   unsigned int vlan,
3018 		   unsigned int inlen,
3019 		   unsigned int tso,
3020 		   unsigned int olx __rte_unused)
3021 {
3022 	struct mlx5_wqe_dseg *__rte_restrict dseg;
3023 	unsigned int ds;
3024 
3025 	MLX5_ASSERT((rte_pktmbuf_pkt_len(loc->mbuf) + vlan) >= inlen);
3026 	loc->mbuf_nseg = NB_SEGS(loc->mbuf);
3027 	loc->mbuf_off = 0;
3028 
3029 	dseg = mlx5_tx_eseg_mdat(txq, loc, wqe, vlan, inlen, tso, olx);
3030 	if (!loc->mbuf_nseg)
3031 		goto dseg_done;
3032 	/*
3033 	 * There are still some mbuf remaining, not inlined.
3034 	 * The first mbuf may be partially inlined and we
3035 	 * must process the possible non-zero data offset.
3036 	 */
3037 	if (loc->mbuf_off) {
3038 		unsigned int dlen;
3039 		uint8_t *dptr;
3040 
3041 		/*
3042 		 * Exhausted packets must be dropped before.
3043 		 * Non-zero offset means there are some data
3044 		 * remained in the packet.
3045 		 */
3046 		MLX5_ASSERT(loc->mbuf_off < rte_pktmbuf_data_len(loc->mbuf));
3047 		MLX5_ASSERT(rte_pktmbuf_data_len(loc->mbuf));
3048 		dptr = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
3049 					       loc->mbuf_off);
3050 		dlen = rte_pktmbuf_data_len(loc->mbuf) - loc->mbuf_off;
3051 		/*
3052 		 * Build the pointer/minimal data Data Segment.
3053 		 * Do ring buffer wrapping check in advance.
3054 		 */
3055 		if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
3056 			dseg = (struct mlx5_wqe_dseg *)txq->wqes;
3057 		mlx5_tx_dseg_iptr(txq, loc, dseg, dptr, dlen, olx);
3058 		/* Store the mbuf to be freed on completion. */
3059 		MLX5_ASSERT(loc->elts_free);
3060 		txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
3061 		--loc->elts_free;
3062 		++dseg;
3063 		if (--loc->mbuf_nseg == 0)
3064 			goto dseg_done;
3065 		loc->mbuf = loc->mbuf->next;
3066 		loc->mbuf_off = 0;
3067 	}
3068 	do {
3069 		if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
3070 			struct rte_mbuf *mbuf;
3071 
3072 			/* Zero length segment found, just skip. */
3073 			mbuf = loc->mbuf;
3074 			loc->mbuf = loc->mbuf->next;
3075 			rte_pktmbuf_free_seg(mbuf);
3076 			if (--loc->mbuf_nseg == 0)
3077 				break;
3078 		} else {
3079 			if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
3080 				dseg = (struct mlx5_wqe_dseg *)txq->wqes;
3081 			mlx5_tx_dseg_iptr
3082 				(txq, loc, dseg,
3083 				 rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
3084 				 rte_pktmbuf_data_len(loc->mbuf), olx);
3085 			MLX5_ASSERT(loc->elts_free);
3086 			txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
3087 			--loc->elts_free;
3088 			++dseg;
3089 			if (--loc->mbuf_nseg == 0)
3090 				break;
3091 			loc->mbuf = loc->mbuf->next;
3092 		}
3093 	} while (true);
3094 
3095 dseg_done:
3096 	/* Calculate actual segments used from the dseg pointer. */
3097 	if ((uintptr_t)wqe < (uintptr_t)dseg)
3098 		ds = ((uintptr_t)dseg - (uintptr_t)wqe) / MLX5_WSEG_SIZE;
3099 	else
3100 		ds = (((uintptr_t)dseg - (uintptr_t)wqe) +
3101 		      txq->wqe_s * MLX5_WQE_SIZE) / MLX5_WSEG_SIZE;
3102 	return ds;
3103 }
3104 
3105 /**
3106  * The routine checks timestamp flag in the current packet,
3107  * and push WAIT WQE into the queue if scheduling is required.
3108  *
3109  * @param txq
3110  *   Pointer to TX queue structure.
3111  * @param loc
3112  *   Pointer to burst routine local context.
3113  * @param olx
3114  *   Configured Tx offloads mask. It is fully defined at
3115  *   compile time and may be used for optimization.
3116  *
3117  * @return
3118  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3119  *   MLX5_TXCMP_CODE_SINGLE - continue processing with the packet.
3120  *   MLX5_TXCMP_CODE_MULTI - the WAIT inserted, continue processing.
3121  * Local context variables partially updated.
3122  */
3123 static __rte_always_inline enum mlx5_txcmp_code
3124 mlx5_tx_schedule_send(struct mlx5_txq_data *restrict txq,
3125 		      struct mlx5_txq_local *restrict loc,
3126 		      unsigned int olx)
3127 {
3128 	if (MLX5_TXOFF_CONFIG(TXPP) &&
3129 	    loc->mbuf->ol_flags & txq->ts_mask) {
3130 		struct mlx5_wqe *wqe;
3131 		uint64_t ts;
3132 		int32_t wci;
3133 
3134 		/*
3135 		 * Estimate the required space quickly and roughly.
3136 		 * We would like to ensure the packet can be pushed
3137 		 * to the queue and we won't get the orphan WAIT WQE.
3138 		 */
3139 		if (loc->wqe_free <= MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE ||
3140 		    loc->elts_free < NB_SEGS(loc->mbuf))
3141 			return MLX5_TXCMP_CODE_EXIT;
3142 		/* Convert the timestamp into completion to wait. */
3143 		ts = *RTE_MBUF_DYNFIELD(loc->mbuf, txq->ts_offset, uint64_t *);
3144 		wci = mlx5_txpp_convert_tx_ts(txq->sh, ts);
3145 		if (unlikely(wci < 0))
3146 			return MLX5_TXCMP_CODE_SINGLE;
3147 		/* Build the WAIT WQE with specified completion. */
3148 		wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3149 		mlx5_tx_cseg_init(txq, loc, wqe, 2, MLX5_OPCODE_WAIT, olx);
3150 		mlx5_tx_wseg_init(txq, loc, wqe, wci, olx);
3151 		++txq->wqe_ci;
3152 		--loc->wqe_free;
3153 		return MLX5_TXCMP_CODE_MULTI;
3154 	}
3155 	return MLX5_TXCMP_CODE_SINGLE;
3156 }
3157 
3158 /**
3159  * Tx one packet function for multi-segment TSO. Supports all
3160  * types of Tx offloads, uses MLX5_OPCODE_TSO to build WQEs,
3161  * sends one packet per WQE.
3162  *
3163  * This routine is responsible for storing processed mbuf
3164  * into elts ring buffer and update elts_head.
3165  *
3166  * @param txq
3167  *   Pointer to TX queue structure.
3168  * @param loc
3169  *   Pointer to burst routine local context.
3170  * @param olx
3171  *   Configured Tx offloads mask. It is fully defined at
3172  *   compile time and may be used for optimization.
3173  *
3174  * @return
3175  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3176  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3177  * Local context variables partially updated.
3178  */
3179 static __rte_always_inline enum mlx5_txcmp_code
3180 mlx5_tx_packet_multi_tso(struct mlx5_txq_data *__rte_restrict txq,
3181 			struct mlx5_txq_local *__rte_restrict loc,
3182 			unsigned int olx)
3183 {
3184 	struct mlx5_wqe *__rte_restrict wqe;
3185 	unsigned int ds, dlen, inlen, ntcp, vlan = 0;
3186 
3187 	if (MLX5_TXOFF_CONFIG(TXPP)) {
3188 		enum mlx5_txcmp_code wret;
3189 
3190 		/* Generate WAIT for scheduling if requested. */
3191 		wret = mlx5_tx_schedule_send(txq, loc, olx);
3192 		if (wret == MLX5_TXCMP_CODE_EXIT)
3193 			return MLX5_TXCMP_CODE_EXIT;
3194 		if (wret == MLX5_TXCMP_CODE_ERROR)
3195 			return MLX5_TXCMP_CODE_ERROR;
3196 	}
3197 	/*
3198 	 * Calculate data length to be inlined to estimate
3199 	 * the required space in WQE ring buffer.
3200 	 */
3201 	dlen = rte_pktmbuf_pkt_len(loc->mbuf);
3202 	if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
3203 		vlan = sizeof(struct rte_vlan_hdr);
3204 	inlen = loc->mbuf->l2_len + vlan +
3205 		loc->mbuf->l3_len + loc->mbuf->l4_len;
3206 	if (unlikely((!inlen || !loc->mbuf->tso_segsz)))
3207 		return MLX5_TXCMP_CODE_ERROR;
3208 	if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
3209 		inlen += loc->mbuf->outer_l2_len + loc->mbuf->outer_l3_len;
3210 	/* Packet must contain all TSO headers. */
3211 	if (unlikely(inlen > MLX5_MAX_TSO_HEADER ||
3212 		     inlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
3213 		     inlen > (dlen + vlan)))
3214 		return MLX5_TXCMP_CODE_ERROR;
3215 	MLX5_ASSERT(inlen >= txq->inlen_mode);
3216 	/*
3217 	 * Check whether there are enough free WQEBBs:
3218 	 * - Control Segment
3219 	 * - Ethernet Segment
3220 	 * - First Segment of inlined Ethernet data
3221 	 * - ... data continued ...
3222 	 * - Data Segments of pointer/min inline type
3223 	 */
3224 	ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
3225 				       MLX5_ESEG_MIN_INLINE_SIZE +
3226 				       MLX5_WSEG_SIZE +
3227 				       MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
3228 	if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
3229 		return MLX5_TXCMP_CODE_EXIT;
3230 	/* Check for maximal WQE size. */
3231 	if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
3232 		return MLX5_TXCMP_CODE_ERROR;
3233 #ifdef MLX5_PMD_SOFT_COUNTERS
3234 	/* Update sent data bytes/packets counters. */
3235 	ntcp = (dlen - (inlen - vlan) + loc->mbuf->tso_segsz - 1) /
3236 		loc->mbuf->tso_segsz;
3237 	/*
3238 	 * One will be added for mbuf itself
3239 	 * at the end of the mlx5_tx_burst from
3240 	 * loc->pkts_sent field.
3241 	 */
3242 	--ntcp;
3243 	txq->stats.opackets += ntcp;
3244 	txq->stats.obytes += dlen + vlan + ntcp * inlen;
3245 #endif
3246 	wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3247 	loc->wqe_last = wqe;
3248 	mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_TSO, olx);
3249 	ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 1, olx);
3250 	wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
3251 	txq->wqe_ci += (ds + 3) / 4;
3252 	loc->wqe_free -= (ds + 3) / 4;
3253 	return MLX5_TXCMP_CODE_MULTI;
3254 }
3255 
3256 /**
3257  * Tx one packet function for multi-segment SEND. Supports all
3258  * types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
3259  * sends one packet per WQE, without any data inlining in
3260  * Ethernet Segment.
3261  *
3262  * This routine is responsible for storing processed mbuf
3263  * into elts ring buffer and update elts_head.
3264  *
3265  * @param txq
3266  *   Pointer to TX queue structure.
3267  * @param loc
3268  *   Pointer to burst routine local context.
3269  * @param olx
3270  *   Configured Tx offloads mask. It is fully defined at
3271  *   compile time and may be used for optimization.
3272  *
3273  * @return
3274  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3275  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3276  * Local context variables partially updated.
3277  */
3278 static __rte_always_inline enum mlx5_txcmp_code
3279 mlx5_tx_packet_multi_send(struct mlx5_txq_data *__rte_restrict txq,
3280 			  struct mlx5_txq_local *__rte_restrict loc,
3281 			  unsigned int olx)
3282 {
3283 	struct mlx5_wqe_dseg *__rte_restrict dseg;
3284 	struct mlx5_wqe *__rte_restrict wqe;
3285 	unsigned int ds, nseg;
3286 
3287 	MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
3288 	if (MLX5_TXOFF_CONFIG(TXPP)) {
3289 		enum mlx5_txcmp_code wret;
3290 
3291 		/* Generate WAIT for scheduling if requested. */
3292 		wret = mlx5_tx_schedule_send(txq, loc, olx);
3293 		if (wret == MLX5_TXCMP_CODE_EXIT)
3294 			return MLX5_TXCMP_CODE_EXIT;
3295 		if (wret == MLX5_TXCMP_CODE_ERROR)
3296 			return MLX5_TXCMP_CODE_ERROR;
3297 	}
3298 	/*
3299 	 * No inline at all, it means the CPU cycles saving
3300 	 * is prioritized at configuration, we should not
3301 	 * copy any packet data to WQE.
3302 	 */
3303 	nseg = NB_SEGS(loc->mbuf);
3304 	ds = 2 + nseg;
3305 	if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
3306 		return MLX5_TXCMP_CODE_EXIT;
3307 	/* Check for maximal WQE size. */
3308 	if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
3309 		return MLX5_TXCMP_CODE_ERROR;
3310 	/*
3311 	 * Some Tx offloads may cause an error if
3312 	 * packet is not long enough, check against
3313 	 * assumed minimal length.
3314 	 */
3315 	if (rte_pktmbuf_pkt_len(loc->mbuf) <= MLX5_ESEG_MIN_INLINE_SIZE)
3316 		return MLX5_TXCMP_CODE_ERROR;
3317 #ifdef MLX5_PMD_SOFT_COUNTERS
3318 	/* Update sent data bytes counter. */
3319 	txq->stats.obytes += rte_pktmbuf_pkt_len(loc->mbuf);
3320 	if (MLX5_TXOFF_CONFIG(VLAN) &&
3321 	    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
3322 		txq->stats.obytes += sizeof(struct rte_vlan_hdr);
3323 #endif
3324 	/*
3325 	 * SEND WQE, one WQEBB:
3326 	 * - Control Segment, SEND opcode
3327 	 * - Ethernet Segment, optional VLAN, no inline
3328 	 * - Data Segments, pointer only type
3329 	 */
3330 	wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3331 	loc->wqe_last = wqe;
3332 	mlx5_tx_cseg_init(txq, loc, wqe, ds, MLX5_OPCODE_SEND, olx);
3333 	mlx5_tx_eseg_none(txq, loc, wqe, olx);
3334 	dseg = &wqe->dseg[0];
3335 	do {
3336 		if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
3337 			struct rte_mbuf *mbuf;
3338 
3339 			/*
3340 			 * Zero length segment found, have to
3341 			 * correct total size of WQE in segments.
3342 			 * It is supposed to be rare occasion, so
3343 			 * in normal case (no zero length segments)
3344 			 * we avoid extra writing to the Control
3345 			 * Segment.
3346 			 */
3347 			--ds;
3348 			wqe->cseg.sq_ds -= RTE_BE32(1);
3349 			mbuf = loc->mbuf;
3350 			loc->mbuf = mbuf->next;
3351 			rte_pktmbuf_free_seg(mbuf);
3352 			if (--nseg == 0)
3353 				break;
3354 		} else {
3355 			mlx5_tx_dseg_ptr
3356 				(txq, loc, dseg,
3357 				 rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
3358 				 rte_pktmbuf_data_len(loc->mbuf), olx);
3359 			txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
3360 			--loc->elts_free;
3361 			if (--nseg == 0)
3362 				break;
3363 			++dseg;
3364 			if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
3365 				dseg = (struct mlx5_wqe_dseg *)txq->wqes;
3366 			loc->mbuf = loc->mbuf->next;
3367 		}
3368 	} while (true);
3369 	txq->wqe_ci += (ds + 3) / 4;
3370 	loc->wqe_free -= (ds + 3) / 4;
3371 	return MLX5_TXCMP_CODE_MULTI;
3372 }
3373 
3374 /**
3375  * Tx one packet function for multi-segment SEND. Supports all
3376  * types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
3377  * sends one packet per WQE, with data inlining in
3378  * Ethernet Segment and minimal Data Segments.
3379  *
3380  * This routine is responsible for storing processed mbuf
3381  * into elts ring buffer and update elts_head.
3382  *
3383  * @param txq
3384  *   Pointer to TX queue structure.
3385  * @param loc
3386  *   Pointer to burst routine local context.
3387  * @param olx
3388  *   Configured Tx offloads mask. It is fully defined at
3389  *   compile time and may be used for optimization.
3390  *
3391  * @return
3392  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3393  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3394  * Local context variables partially updated.
3395  */
3396 static __rte_always_inline enum mlx5_txcmp_code
3397 mlx5_tx_packet_multi_inline(struct mlx5_txq_data *__rte_restrict txq,
3398 			    struct mlx5_txq_local *__rte_restrict loc,
3399 			    unsigned int olx)
3400 {
3401 	struct mlx5_wqe *__rte_restrict wqe;
3402 	unsigned int ds, inlen, dlen, vlan = 0;
3403 
3404 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
3405 	MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
3406 	if (MLX5_TXOFF_CONFIG(TXPP)) {
3407 		enum mlx5_txcmp_code wret;
3408 
3409 		/* Generate WAIT for scheduling if requested. */
3410 		wret = mlx5_tx_schedule_send(txq, loc, olx);
3411 		if (wret == MLX5_TXCMP_CODE_EXIT)
3412 			return MLX5_TXCMP_CODE_EXIT;
3413 		if (wret == MLX5_TXCMP_CODE_ERROR)
3414 			return MLX5_TXCMP_CODE_ERROR;
3415 	}
3416 	/*
3417 	 * First calculate data length to be inlined
3418 	 * to estimate the required space for WQE.
3419 	 */
3420 	dlen = rte_pktmbuf_pkt_len(loc->mbuf);
3421 	if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
3422 		vlan = sizeof(struct rte_vlan_hdr);
3423 	inlen = dlen + vlan;
3424 	/* Check against minimal length. */
3425 	if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
3426 		return MLX5_TXCMP_CODE_ERROR;
3427 	MLX5_ASSERT(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
3428 	if (inlen > txq->inlen_send ||
3429 	    loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE) {
3430 		struct rte_mbuf *mbuf;
3431 		unsigned int nxlen;
3432 		uintptr_t start;
3433 
3434 		/*
3435 		 * Packet length exceeds the allowed inline
3436 		 * data length, check whether the minimal
3437 		 * inlining is required.
3438 		 */
3439 		if (txq->inlen_mode) {
3440 			MLX5_ASSERT(txq->inlen_mode >=
3441 				    MLX5_ESEG_MIN_INLINE_SIZE);
3442 			MLX5_ASSERT(txq->inlen_mode <= txq->inlen_send);
3443 			inlen = txq->inlen_mode;
3444 		} else {
3445 			if (loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE ||
3446 			    !vlan || txq->vlan_en) {
3447 				/*
3448 				 * VLAN insertion will be done inside by HW.
3449 				 * It is not utmost effective - VLAN flag is
3450 				 * checked twice, but we should proceed the
3451 				 * inlining length correctly and take into
3452 				 * account the VLAN header being inserted.
3453 				 */
3454 				return mlx5_tx_packet_multi_send
3455 							(txq, loc, olx);
3456 			}
3457 			inlen = MLX5_ESEG_MIN_INLINE_SIZE;
3458 		}
3459 		/*
3460 		 * Now we know the minimal amount of data is requested
3461 		 * to inline. Check whether we should inline the buffers
3462 		 * from the chain beginning to eliminate some mbufs.
3463 		 */
3464 		mbuf = loc->mbuf;
3465 		nxlen = rte_pktmbuf_data_len(mbuf);
3466 		if (unlikely(nxlen <= txq->inlen_send)) {
3467 			/* We can inline first mbuf at least. */
3468 			if (nxlen < inlen) {
3469 				unsigned int smlen;
3470 
3471 				/* Scan mbufs till inlen filled. */
3472 				do {
3473 					smlen = nxlen;
3474 					mbuf = NEXT(mbuf);
3475 					MLX5_ASSERT(mbuf);
3476 					nxlen = rte_pktmbuf_data_len(mbuf);
3477 					nxlen += smlen;
3478 				} while (unlikely(nxlen < inlen));
3479 				if (unlikely(nxlen > txq->inlen_send)) {
3480 					/* We cannot inline entire mbuf. */
3481 					smlen = inlen - smlen;
3482 					start = rte_pktmbuf_mtod_offset
3483 						    (mbuf, uintptr_t, smlen);
3484 					goto do_align;
3485 				}
3486 			}
3487 			do {
3488 				inlen = nxlen;
3489 				mbuf = NEXT(mbuf);
3490 				/* There should be not end of packet. */
3491 				MLX5_ASSERT(mbuf);
3492 				nxlen = inlen + rte_pktmbuf_data_len(mbuf);
3493 			} while (unlikely(nxlen < txq->inlen_send));
3494 		}
3495 		start = rte_pktmbuf_mtod(mbuf, uintptr_t);
3496 		/*
3497 		 * Check whether we can do inline to align start
3498 		 * address of data buffer to cacheline.
3499 		 */
3500 do_align:
3501 		start = (~start + 1) & (RTE_CACHE_LINE_SIZE - 1);
3502 		if (unlikely(start)) {
3503 			start += inlen;
3504 			if (start <= txq->inlen_send)
3505 				inlen = start;
3506 		}
3507 	}
3508 	/*
3509 	 * Check whether there are enough free WQEBBs:
3510 	 * - Control Segment
3511 	 * - Ethernet Segment
3512 	 * - First Segment of inlined Ethernet data
3513 	 * - ... data continued ...
3514 	 * - Data Segments of pointer/min inline type
3515 	 *
3516 	 * Estimate the number of Data Segments conservatively,
3517 	 * supposing no any mbufs is being freed during inlining.
3518 	 */
3519 	MLX5_ASSERT(inlen <= txq->inlen_send);
3520 	ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
3521 				       MLX5_ESEG_MIN_INLINE_SIZE +
3522 				       MLX5_WSEG_SIZE +
3523 				       MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
3524 	if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
3525 		return MLX5_TXCMP_CODE_EXIT;
3526 	/* Check for maximal WQE size. */
3527 	if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
3528 		return MLX5_TXCMP_CODE_ERROR;
3529 #ifdef MLX5_PMD_SOFT_COUNTERS
3530 	/* Update sent data bytes/packets counters. */
3531 	txq->stats.obytes += dlen + vlan;
3532 #endif
3533 	wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3534 	loc->wqe_last = wqe;
3535 	mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_SEND, olx);
3536 	ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 0, olx);
3537 	wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
3538 	txq->wqe_ci += (ds + 3) / 4;
3539 	loc->wqe_free -= (ds + 3) / 4;
3540 	return MLX5_TXCMP_CODE_MULTI;
3541 }
3542 
3543 /**
3544  * Tx burst function for multi-segment packets. Supports all
3545  * types of Tx offloads, uses MLX5_OPCODE_SEND/TSO to build WQEs,
3546  * sends one packet per WQE. Function stops sending if it
3547  * encounters the single-segment packet.
3548  *
3549  * This routine is responsible for storing processed mbuf
3550  * into elts ring buffer and update elts_head.
3551  *
3552  * @param txq
3553  *   Pointer to TX queue structure.
3554  * @param[in] pkts
3555  *   Packets to transmit.
3556  * @param pkts_n
3557  *   Number of packets in array.
3558  * @param loc
3559  *   Pointer to burst routine local context.
3560  * @param olx
3561  *   Configured Tx offloads mask. It is fully defined at
3562  *   compile time and may be used for optimization.
3563  *
3564  * @return
3565  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3566  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3567  *   MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
3568  *   MLX5_TXCMP_CODE_TSO - TSO single-segment packet encountered.
3569  * Local context variables updated.
3570  */
3571 static __rte_always_inline enum mlx5_txcmp_code
3572 mlx5_tx_burst_mseg(struct mlx5_txq_data *__rte_restrict txq,
3573 		   struct rte_mbuf **__rte_restrict pkts,
3574 		   unsigned int pkts_n,
3575 		   struct mlx5_txq_local *__rte_restrict loc,
3576 		   unsigned int olx)
3577 {
3578 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
3579 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
3580 	pkts += loc->pkts_sent + 1;
3581 	pkts_n -= loc->pkts_sent;
3582 	for (;;) {
3583 		enum mlx5_txcmp_code ret;
3584 
3585 		MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
3586 		/*
3587 		 * Estimate the number of free elts quickly but
3588 		 * conservatively. Some segment may be fully inlined
3589 		 * and freed, ignore this here - precise estimation
3590 		 * is costly.
3591 		 */
3592 		if (loc->elts_free < NB_SEGS(loc->mbuf))
3593 			return MLX5_TXCMP_CODE_EXIT;
3594 		if (MLX5_TXOFF_CONFIG(TSO) &&
3595 		    unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)) {
3596 			/* Proceed with multi-segment TSO. */
3597 			ret = mlx5_tx_packet_multi_tso(txq, loc, olx);
3598 		} else if (MLX5_TXOFF_CONFIG(INLINE)) {
3599 			/* Proceed with multi-segment SEND with inlining. */
3600 			ret = mlx5_tx_packet_multi_inline(txq, loc, olx);
3601 		} else {
3602 			/* Proceed with multi-segment SEND w/o inlining. */
3603 			ret = mlx5_tx_packet_multi_send(txq, loc, olx);
3604 		}
3605 		if (ret == MLX5_TXCMP_CODE_EXIT)
3606 			return MLX5_TXCMP_CODE_EXIT;
3607 		if (ret == MLX5_TXCMP_CODE_ERROR)
3608 			return MLX5_TXCMP_CODE_ERROR;
3609 		/* WQE is built, go to the next packet. */
3610 		++loc->pkts_sent;
3611 		--pkts_n;
3612 		if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
3613 			return MLX5_TXCMP_CODE_EXIT;
3614 		loc->mbuf = *pkts++;
3615 		if (pkts_n > 1)
3616 			rte_prefetch0(*pkts);
3617 		if (likely(NB_SEGS(loc->mbuf) > 1))
3618 			continue;
3619 		/* Here ends the series of multi-segment packets. */
3620 		if (MLX5_TXOFF_CONFIG(TSO) &&
3621 		    unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
3622 			return MLX5_TXCMP_CODE_TSO;
3623 		return MLX5_TXCMP_CODE_SINGLE;
3624 	}
3625 	MLX5_ASSERT(false);
3626 }
3627 
3628 /**
3629  * Tx burst function for single-segment packets with TSO.
3630  * Supports all types of Tx offloads, except multi-packets.
3631  * Uses MLX5_OPCODE_TSO to build WQEs, sends one packet per WQE.
3632  * Function stops sending if it encounters the multi-segment
3633  * packet or packet without TSO requested.
3634  *
3635  * The routine is responsible for storing processed mbuf
3636  * into elts ring buffer and update elts_head if inline
3637  * offloads is requested due to possible early freeing
3638  * of the inlined mbufs (can not store pkts array in elts
3639  * as a batch).
3640  *
3641  * @param txq
3642  *   Pointer to TX queue structure.
3643  * @param[in] pkts
3644  *   Packets to transmit.
3645  * @param pkts_n
3646  *   Number of packets in array.
3647  * @param loc
3648  *   Pointer to burst routine local context.
3649  * @param olx
3650  *   Configured Tx offloads mask. It is fully defined at
3651  *   compile time and may be used for optimization.
3652  *
3653  * @return
3654  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3655  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3656  *   MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
3657  *   MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
3658  * Local context variables updated.
3659  */
3660 static __rte_always_inline enum mlx5_txcmp_code
3661 mlx5_tx_burst_tso(struct mlx5_txq_data *__rte_restrict txq,
3662 		  struct rte_mbuf **__rte_restrict pkts,
3663 		  unsigned int pkts_n,
3664 		  struct mlx5_txq_local *__rte_restrict loc,
3665 		  unsigned int olx)
3666 {
3667 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
3668 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
3669 	pkts += loc->pkts_sent + 1;
3670 	pkts_n -= loc->pkts_sent;
3671 	for (;;) {
3672 		struct mlx5_wqe_dseg *__rte_restrict dseg;
3673 		struct mlx5_wqe *__rte_restrict wqe;
3674 		unsigned int ds, dlen, hlen, ntcp, vlan = 0;
3675 		uint8_t *dptr;
3676 
3677 		MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
3678 		if (MLX5_TXOFF_CONFIG(TXPP)) {
3679 			enum mlx5_txcmp_code wret;
3680 
3681 			/* Generate WAIT for scheduling if requested. */
3682 			wret = mlx5_tx_schedule_send(txq, loc, olx);
3683 			if (wret == MLX5_TXCMP_CODE_EXIT)
3684 				return MLX5_TXCMP_CODE_EXIT;
3685 			if (wret == MLX5_TXCMP_CODE_ERROR)
3686 				return MLX5_TXCMP_CODE_ERROR;
3687 		}
3688 		dlen = rte_pktmbuf_data_len(loc->mbuf);
3689 		if (MLX5_TXOFF_CONFIG(VLAN) &&
3690 		    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
3691 			vlan = sizeof(struct rte_vlan_hdr);
3692 		}
3693 		/*
3694 		 * First calculate the WQE size to check
3695 		 * whether we have enough space in ring buffer.
3696 		 */
3697 		hlen = loc->mbuf->l2_len + vlan +
3698 		       loc->mbuf->l3_len + loc->mbuf->l4_len;
3699 		if (unlikely((!hlen || !loc->mbuf->tso_segsz)))
3700 			return MLX5_TXCMP_CODE_ERROR;
3701 		if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
3702 			hlen += loc->mbuf->outer_l2_len +
3703 				loc->mbuf->outer_l3_len;
3704 		/* Segment must contain all TSO headers. */
3705 		if (unlikely(hlen > MLX5_MAX_TSO_HEADER ||
3706 			     hlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
3707 			     hlen > (dlen + vlan)))
3708 			return MLX5_TXCMP_CODE_ERROR;
3709 		/*
3710 		 * Check whether there are enough free WQEBBs:
3711 		 * - Control Segment
3712 		 * - Ethernet Segment
3713 		 * - First Segment of inlined Ethernet data
3714 		 * - ... data continued ...
3715 		 * - Finishing Data Segment of pointer type
3716 		 */
3717 		ds = 4 + (hlen - MLX5_ESEG_MIN_INLINE_SIZE +
3718 			  MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
3719 		if (loc->wqe_free < ((ds + 3) / 4))
3720 			return MLX5_TXCMP_CODE_EXIT;
3721 #ifdef MLX5_PMD_SOFT_COUNTERS
3722 		/* Update sent data bytes/packets counters. */
3723 		ntcp = (dlen + vlan - hlen +
3724 			loc->mbuf->tso_segsz - 1) /
3725 			loc->mbuf->tso_segsz;
3726 		/*
3727 		 * One will be added for mbuf itself at the end
3728 		 * of the mlx5_tx_burst from loc->pkts_sent field.
3729 		 */
3730 		--ntcp;
3731 		txq->stats.opackets += ntcp;
3732 		txq->stats.obytes += dlen + vlan + ntcp * hlen;
3733 #endif
3734 		/*
3735 		 * Build the TSO WQE:
3736 		 * - Control Segment
3737 		 * - Ethernet Segment with hlen bytes inlined
3738 		 * - Data Segment of pointer type
3739 		 */
3740 		wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3741 		loc->wqe_last = wqe;
3742 		mlx5_tx_cseg_init(txq, loc, wqe, ds,
3743 				  MLX5_OPCODE_TSO, olx);
3744 		dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan, hlen, 1, olx);
3745 		dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) + hlen - vlan;
3746 		dlen -= hlen - vlan;
3747 		mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
3748 		/*
3749 		 * WQE is built, update the loop parameters
3750 		 * and go to the next packet.
3751 		 */
3752 		txq->wqe_ci += (ds + 3) / 4;
3753 		loc->wqe_free -= (ds + 3) / 4;
3754 		if (MLX5_TXOFF_CONFIG(INLINE))
3755 			txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
3756 		--loc->elts_free;
3757 		++loc->pkts_sent;
3758 		--pkts_n;
3759 		if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
3760 			return MLX5_TXCMP_CODE_EXIT;
3761 		loc->mbuf = *pkts++;
3762 		if (pkts_n > 1)
3763 			rte_prefetch0(*pkts);
3764 		if (MLX5_TXOFF_CONFIG(MULTI) &&
3765 		    unlikely(NB_SEGS(loc->mbuf) > 1))
3766 			return MLX5_TXCMP_CODE_MULTI;
3767 		if (likely(!(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)))
3768 			return MLX5_TXCMP_CODE_SINGLE;
3769 		/* Continue with the next TSO packet. */
3770 	}
3771 	MLX5_ASSERT(false);
3772 }
3773 
3774 /**
3775  * Analyze the packet and select the best method to send.
3776  *
3777  * @param txq
3778  *   Pointer to TX queue structure.
3779  * @param loc
3780  *   Pointer to burst routine local context.
3781  * @param olx
3782  *   Configured Tx offloads mask. It is fully defined at
3783  *   compile time and may be used for optimization.
3784  * @param newp
3785  *   The predefined flag whether do complete check for
3786  *   multi-segment packets and TSO.
3787  *
3788  * @return
3789  *  MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
3790  *  MLX5_TXCMP_CODE_TSO - TSO required, use TSO/LSO.
3791  *  MLX5_TXCMP_CODE_SINGLE - single-segment packet, use SEND.
3792  *  MLX5_TXCMP_CODE_EMPW - single-segment packet, use MPW.
3793  */
3794 static __rte_always_inline enum mlx5_txcmp_code
3795 mlx5_tx_able_to_empw(struct mlx5_txq_data *__rte_restrict txq,
3796 		     struct mlx5_txq_local *__rte_restrict loc,
3797 		     unsigned int olx,
3798 		     bool newp)
3799 {
3800 	/* Check for multi-segment packet. */
3801 	if (newp &&
3802 	    MLX5_TXOFF_CONFIG(MULTI) &&
3803 	    unlikely(NB_SEGS(loc->mbuf) > 1))
3804 		return MLX5_TXCMP_CODE_MULTI;
3805 	/* Check for TSO packet. */
3806 	if (newp &&
3807 	    MLX5_TXOFF_CONFIG(TSO) &&
3808 	    unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
3809 		return MLX5_TXCMP_CODE_TSO;
3810 	/* Check if eMPW is enabled at all. */
3811 	if (!MLX5_TXOFF_CONFIG(EMPW))
3812 		return MLX5_TXCMP_CODE_SINGLE;
3813 	/* Check if eMPW can be engaged. */
3814 	if (MLX5_TXOFF_CONFIG(VLAN) &&
3815 	    unlikely(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) &&
3816 		(!MLX5_TXOFF_CONFIG(INLINE) ||
3817 		 unlikely((rte_pktmbuf_data_len(loc->mbuf) +
3818 			   sizeof(struct rte_vlan_hdr)) > txq->inlen_empw))) {
3819 		/*
3820 		 * eMPW does not support VLAN insertion offload,
3821 		 * we have to inline the entire packet but
3822 		 * packet is too long for inlining.
3823 		 */
3824 		return MLX5_TXCMP_CODE_SINGLE;
3825 	}
3826 	return MLX5_TXCMP_CODE_EMPW;
3827 }
3828 
3829 /**
3830  * Check the next packet attributes to match with the eMPW batch ones.
3831  * In addition, for legacy MPW the packet length is checked either.
3832  *
3833  * @param txq
3834  *   Pointer to TX queue structure.
3835  * @param es
3836  *   Pointer to Ethernet Segment of eMPW batch.
3837  * @param loc
3838  *   Pointer to burst routine local context.
3839  * @param dlen
3840  *   Length of previous packet in MPW descriptor.
3841  * @param olx
3842  *   Configured Tx offloads mask. It is fully defined at
3843  *   compile time and may be used for optimization.
3844  *
3845  * @return
3846  *  true - packet match with eMPW batch attributes.
3847  *  false - no match, eMPW should be restarted.
3848  */
3849 static __rte_always_inline bool
3850 mlx5_tx_match_empw(struct mlx5_txq_data *__rte_restrict txq,
3851 		   struct mlx5_wqe_eseg *__rte_restrict es,
3852 		   struct mlx5_txq_local *__rte_restrict loc,
3853 		   uint32_t dlen,
3854 		   unsigned int olx)
3855 {
3856 	uint8_t swp_flags = 0;
3857 
3858 	/* Compare the checksum flags, if any. */
3859 	if (MLX5_TXOFF_CONFIG(CSUM) &&
3860 	    txq_ol_cksum_to_cs(loc->mbuf) != es->cs_flags)
3861 		return false;
3862 	/* Compare the Software Parser offsets and flags. */
3863 	if (MLX5_TXOFF_CONFIG(SWP) &&
3864 	    (es->swp_offs != txq_mbuf_to_swp(loc, &swp_flags, olx) ||
3865 	     es->swp_flags != swp_flags))
3866 		return false;
3867 	/* Fill metadata field if needed. */
3868 	if (MLX5_TXOFF_CONFIG(METADATA) &&
3869 		es->metadata != (loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
3870 				 *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0))
3871 		return false;
3872 	/* Legacy MPW can send packets with the same lengt only. */
3873 	if (MLX5_TXOFF_CONFIG(MPW) &&
3874 	    dlen != rte_pktmbuf_data_len(loc->mbuf))
3875 		return false;
3876 	/* There must be no VLAN packets in eMPW loop. */
3877 	if (MLX5_TXOFF_CONFIG(VLAN))
3878 		MLX5_ASSERT(!(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT));
3879 	/* Check if the scheduling is requested. */
3880 	if (MLX5_TXOFF_CONFIG(TXPP) &&
3881 	    loc->mbuf->ol_flags & txq->ts_mask)
3882 		return false;
3883 	return true;
3884 }
3885 
3886 /*
3887  * Update send loop variables and WQE for eMPW loop
3888  * without data inlining. Number of Data Segments is
3889  * equal to the number of sent packets.
3890  *
3891  * @param txq
3892  *   Pointer to TX queue structure.
3893  * @param loc
3894  *   Pointer to burst routine local context.
3895  * @param ds
3896  *   Number of packets/Data Segments/Packets.
3897  * @param slen
3898  *   Accumulated statistics, bytes sent
3899  * @param olx
3900  *   Configured Tx offloads mask. It is fully defined at
3901  *   compile time and may be used for optimization.
3902  *
3903  * @return
3904  *  true - packet match with eMPW batch attributes.
3905  *  false - no match, eMPW should be restarted.
3906  */
3907 static __rte_always_inline void
3908 mlx5_tx_sdone_empw(struct mlx5_txq_data *__rte_restrict txq,
3909 		   struct mlx5_txq_local *__rte_restrict loc,
3910 		   unsigned int ds,
3911 		   unsigned int slen,
3912 		   unsigned int olx __rte_unused)
3913 {
3914 	MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
3915 #ifdef MLX5_PMD_SOFT_COUNTERS
3916 	/* Update sent data bytes counter. */
3917 	 txq->stats.obytes += slen;
3918 #else
3919 	(void)slen;
3920 #endif
3921 	loc->elts_free -= ds;
3922 	loc->pkts_sent += ds;
3923 	ds += 2;
3924 	loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
3925 	txq->wqe_ci += (ds + 3) / 4;
3926 	loc->wqe_free -= (ds + 3) / 4;
3927 }
3928 
3929 /*
3930  * Update send loop variables and WQE for eMPW loop
3931  * with data inlining. Gets the size of pushed descriptors
3932  * and data to the WQE.
3933  *
3934  * @param txq
3935  *   Pointer to TX queue structure.
3936  * @param loc
3937  *   Pointer to burst routine local context.
3938  * @param len
3939  *   Total size of descriptor/data in bytes.
3940  * @param slen
3941  *   Accumulated statistics, data bytes sent.
3942  * @param wqem
3943  *   The base WQE for the eMPW/MPW descriptor.
3944  * @param olx
3945  *   Configured Tx offloads mask. It is fully defined at
3946  *   compile time and may be used for optimization.
3947  *
3948  * @return
3949  *  true - packet match with eMPW batch attributes.
3950  *  false - no match, eMPW should be restarted.
3951  */
3952 static __rte_always_inline void
3953 mlx5_tx_idone_empw(struct mlx5_txq_data *__rte_restrict txq,
3954 		   struct mlx5_txq_local *__rte_restrict loc,
3955 		   unsigned int len,
3956 		   unsigned int slen,
3957 		   struct mlx5_wqe *__rte_restrict wqem,
3958 		   unsigned int olx __rte_unused)
3959 {
3960 	struct mlx5_wqe_dseg *dseg = &wqem->dseg[0];
3961 
3962 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
3963 #ifdef MLX5_PMD_SOFT_COUNTERS
3964 	/* Update sent data bytes counter. */
3965 	 txq->stats.obytes += slen;
3966 #else
3967 	(void)slen;
3968 #endif
3969 	if (MLX5_TXOFF_CONFIG(MPW) && dseg->bcount == RTE_BE32(0)) {
3970 		/*
3971 		 * If the legacy MPW session contains the inline packets
3972 		 * we should set the only inline data segment length
3973 		 * and align the total length to the segment size.
3974 		 */
3975 		MLX5_ASSERT(len > sizeof(dseg->bcount));
3976 		dseg->bcount = rte_cpu_to_be_32((len - sizeof(dseg->bcount)) |
3977 						MLX5_ETH_WQE_DATA_INLINE);
3978 		len = (len + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE + 2;
3979 	} else {
3980 		/*
3981 		 * The session is not legacy MPW or contains the
3982 		 * data buffer pointer segments.
3983 		 */
3984 		MLX5_ASSERT((len % MLX5_WSEG_SIZE) == 0);
3985 		len = len / MLX5_WSEG_SIZE + 2;
3986 	}
3987 	wqem->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | len);
3988 	txq->wqe_ci += (len + 3) / 4;
3989 	loc->wqe_free -= (len + 3) / 4;
3990 	loc->wqe_last = wqem;
3991 }
3992 
3993 /**
3994  * The set of Tx burst functions for single-segment packets
3995  * without TSO and with Multi-Packet Writing feature support.
3996  * Supports all types of Tx offloads, except multi-packets
3997  * and TSO.
3998  *
3999  * Uses MLX5_OPCODE_EMPW to build WQEs if possible and sends
4000  * as many packet per WQE as it can. If eMPW is not configured
4001  * or packet can not be sent with eMPW (VLAN insertion) the
4002  * ordinary SEND opcode is used and only one packet placed
4003  * in WQE.
4004  *
4005  * Functions stop sending if it encounters the multi-segment
4006  * packet or packet with TSO requested.
4007  *
4008  * The routines are responsible for storing processed mbuf
4009  * into elts ring buffer and update elts_head if inlining
4010  * offload is requested. Otherwise the copying mbufs to elts
4011  * can be postponed and completed at the end of burst routine.
4012  *
4013  * @param txq
4014  *   Pointer to TX queue structure.
4015  * @param[in] pkts
4016  *   Packets to transmit.
4017  * @param pkts_n
4018  *   Number of packets in array.
4019  * @param loc
4020  *   Pointer to burst routine local context.
4021  * @param olx
4022  *   Configured Tx offloads mask. It is fully defined at
4023  *   compile time and may be used for optimization.
4024  *
4025  * @return
4026  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
4027  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
4028  *   MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
4029  *   MLX5_TXCMP_CODE_TSO - TSO packet encountered.
4030  *   MLX5_TXCMP_CODE_SINGLE - used inside functions set.
4031  *   MLX5_TXCMP_CODE_EMPW - used inside functions set.
4032  *
4033  * Local context variables updated.
4034  *
4035  *
4036  * The routine sends packets with MLX5_OPCODE_EMPW
4037  * without inlining, this is dedicated optimized branch.
4038  * No VLAN insertion is supported.
4039  */
4040 static __rte_always_inline enum mlx5_txcmp_code
4041 mlx5_tx_burst_empw_simple(struct mlx5_txq_data *__rte_restrict txq,
4042 			  struct rte_mbuf **__rte_restrict pkts,
4043 			  unsigned int pkts_n,
4044 			  struct mlx5_txq_local *__rte_restrict loc,
4045 			  unsigned int olx)
4046 {
4047 	/*
4048 	 * Subroutine is the part of mlx5_tx_burst_single()
4049 	 * and sends single-segment packet with eMPW opcode
4050 	 * without data inlining.
4051 	 */
4052 	MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
4053 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(EMPW));
4054 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4055 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
4056 	static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
4057 	pkts += loc->pkts_sent + 1;
4058 	pkts_n -= loc->pkts_sent;
4059 	for (;;) {
4060 		struct mlx5_wqe_dseg *__rte_restrict dseg;
4061 		struct mlx5_wqe_eseg *__rte_restrict eseg;
4062 		enum mlx5_txcmp_code ret;
4063 		unsigned int part, loop;
4064 		unsigned int slen = 0;
4065 
4066 next_empw:
4067 		MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4068 		if (MLX5_TXOFF_CONFIG(TXPP)) {
4069 			enum mlx5_txcmp_code wret;
4070 
4071 			/* Generate WAIT for scheduling if requested. */
4072 			wret = mlx5_tx_schedule_send(txq, loc, olx);
4073 			if (wret == MLX5_TXCMP_CODE_EXIT)
4074 				return MLX5_TXCMP_CODE_EXIT;
4075 			if (wret == MLX5_TXCMP_CODE_ERROR)
4076 				return MLX5_TXCMP_CODE_ERROR;
4077 		}
4078 		part = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ?
4079 				       MLX5_MPW_MAX_PACKETS :
4080 				       MLX5_EMPW_MAX_PACKETS);
4081 		if (unlikely(loc->elts_free < part)) {
4082 			/* We have no enough elts to save all mbufs. */
4083 			if (unlikely(loc->elts_free < MLX5_EMPW_MIN_PACKETS))
4084 				return MLX5_TXCMP_CODE_EXIT;
4085 			/* But we still able to send at least minimal eMPW. */
4086 			part = loc->elts_free;
4087 		}
4088 		/* Check whether we have enough WQEs */
4089 		if (unlikely(loc->wqe_free < ((2 + part + 3) / 4))) {
4090 			if (unlikely(loc->wqe_free <
4091 				((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
4092 				return MLX5_TXCMP_CODE_EXIT;
4093 			part = (loc->wqe_free * 4) - 2;
4094 		}
4095 		if (likely(part > 1))
4096 			rte_prefetch0(*pkts);
4097 		loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4098 		/*
4099 		 * Build eMPW title WQEBB:
4100 		 * - Control Segment, eMPW opcode
4101 		 * - Ethernet Segment, no inline
4102 		 */
4103 		mlx5_tx_cseg_init(txq, loc, loc->wqe_last, part + 2,
4104 				  MLX5_OPCODE_ENHANCED_MPSW, olx);
4105 		mlx5_tx_eseg_none(txq, loc, loc->wqe_last,
4106 				  olx & ~MLX5_TXOFF_CONFIG_VLAN);
4107 		eseg = &loc->wqe_last->eseg;
4108 		dseg = &loc->wqe_last->dseg[0];
4109 		loop = part;
4110 		/* Store the packet length for legacy MPW. */
4111 		if (MLX5_TXOFF_CONFIG(MPW))
4112 			eseg->mss = rte_cpu_to_be_16
4113 					(rte_pktmbuf_data_len(loc->mbuf));
4114 		for (;;) {
4115 			uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
4116 #ifdef MLX5_PMD_SOFT_COUNTERS
4117 			/* Update sent data bytes counter. */
4118 			slen += dlen;
4119 #endif
4120 			mlx5_tx_dseg_ptr
4121 				(txq, loc, dseg,
4122 				 rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
4123 				 dlen, olx);
4124 			if (unlikely(--loop == 0))
4125 				break;
4126 			loc->mbuf = *pkts++;
4127 			if (likely(loop > 1))
4128 				rte_prefetch0(*pkts);
4129 			ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
4130 			/*
4131 			 * Unroll the completion code to avoid
4132 			 * returning variable value - it results in
4133 			 * unoptimized sequent checking in caller.
4134 			 */
4135 			if (ret == MLX5_TXCMP_CODE_MULTI) {
4136 				part -= loop;
4137 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4138 				if (unlikely(!loc->elts_free ||
4139 					     !loc->wqe_free))
4140 					return MLX5_TXCMP_CODE_EXIT;
4141 				return MLX5_TXCMP_CODE_MULTI;
4142 			}
4143 			MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4144 			if (ret == MLX5_TXCMP_CODE_TSO) {
4145 				part -= loop;
4146 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4147 				if (unlikely(!loc->elts_free ||
4148 					     !loc->wqe_free))
4149 					return MLX5_TXCMP_CODE_EXIT;
4150 				return MLX5_TXCMP_CODE_TSO;
4151 			}
4152 			if (ret == MLX5_TXCMP_CODE_SINGLE) {
4153 				part -= loop;
4154 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4155 				if (unlikely(!loc->elts_free ||
4156 					     !loc->wqe_free))
4157 					return MLX5_TXCMP_CODE_EXIT;
4158 				return MLX5_TXCMP_CODE_SINGLE;
4159 			}
4160 			if (ret != MLX5_TXCMP_CODE_EMPW) {
4161 				MLX5_ASSERT(false);
4162 				part -= loop;
4163 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4164 				return MLX5_TXCMP_CODE_ERROR;
4165 			}
4166 			/*
4167 			 * Check whether packet parameters coincide
4168 			 * within assumed eMPW batch:
4169 			 * - check sum settings
4170 			 * - metadata value
4171 			 * - software parser settings
4172 			 * - packets length (legacy MPW only)
4173 			 * - scheduling is not required
4174 			 */
4175 			if (!mlx5_tx_match_empw(txq, eseg, loc, dlen, olx)) {
4176 				MLX5_ASSERT(loop);
4177 				part -= loop;
4178 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4179 				if (unlikely(!loc->elts_free ||
4180 					     !loc->wqe_free))
4181 					return MLX5_TXCMP_CODE_EXIT;
4182 				pkts_n -= part;
4183 				goto next_empw;
4184 			}
4185 			/* Packet attributes match, continue the same eMPW. */
4186 			++dseg;
4187 			if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
4188 				dseg = (struct mlx5_wqe_dseg *)txq->wqes;
4189 		}
4190 		/* eMPW is built successfully, update loop parameters. */
4191 		MLX5_ASSERT(!loop);
4192 		MLX5_ASSERT(pkts_n >= part);
4193 #ifdef MLX5_PMD_SOFT_COUNTERS
4194 		/* Update sent data bytes counter. */
4195 		txq->stats.obytes += slen;
4196 #endif
4197 		loc->elts_free -= part;
4198 		loc->pkts_sent += part;
4199 		txq->wqe_ci += (2 + part + 3) / 4;
4200 		loc->wqe_free -= (2 + part + 3) / 4;
4201 		pkts_n -= part;
4202 		if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
4203 			return MLX5_TXCMP_CODE_EXIT;
4204 		loc->mbuf = *pkts++;
4205 		ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
4206 		if (unlikely(ret != MLX5_TXCMP_CODE_EMPW))
4207 			return ret;
4208 		/* Continue sending eMPW batches. */
4209 	}
4210 	MLX5_ASSERT(false);
4211 }
4212 
4213 /**
4214  * The routine sends packets with MLX5_OPCODE_EMPW
4215  * with inlining, optionally supports VLAN insertion.
4216  */
4217 static __rte_always_inline enum mlx5_txcmp_code
4218 mlx5_tx_burst_empw_inline(struct mlx5_txq_data *__rte_restrict txq,
4219 			  struct rte_mbuf **__rte_restrict pkts,
4220 			  unsigned int pkts_n,
4221 			  struct mlx5_txq_local *__rte_restrict loc,
4222 			  unsigned int olx)
4223 {
4224 	/*
4225 	 * Subroutine is the part of mlx5_tx_burst_single()
4226 	 * and sends single-segment packet with eMPW opcode
4227 	 * with data inlining.
4228 	 */
4229 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
4230 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(EMPW));
4231 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4232 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
4233 	static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
4234 	pkts += loc->pkts_sent + 1;
4235 	pkts_n -= loc->pkts_sent;
4236 	for (;;) {
4237 		struct mlx5_wqe_dseg *__rte_restrict dseg;
4238 		struct mlx5_wqe *__rte_restrict wqem;
4239 		enum mlx5_txcmp_code ret;
4240 		unsigned int room, part, nlim;
4241 		unsigned int slen = 0;
4242 
4243 		MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4244 		if (MLX5_TXOFF_CONFIG(TXPP)) {
4245 			enum mlx5_txcmp_code wret;
4246 
4247 			/* Generate WAIT for scheduling if requested. */
4248 			wret = mlx5_tx_schedule_send(txq, loc, olx);
4249 			if (wret == MLX5_TXCMP_CODE_EXIT)
4250 				return MLX5_TXCMP_CODE_EXIT;
4251 			if (wret == MLX5_TXCMP_CODE_ERROR)
4252 				return MLX5_TXCMP_CODE_ERROR;
4253 		}
4254 		/*
4255 		 * Limits the amount of packets in one WQE
4256 		 * to improve CQE latency generation.
4257 		 */
4258 		nlim = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ?
4259 				       MLX5_MPW_INLINE_MAX_PACKETS :
4260 				       MLX5_EMPW_MAX_PACKETS);
4261 		/* Check whether we have minimal amount WQEs */
4262 		if (unlikely(loc->wqe_free <
4263 			    ((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
4264 			return MLX5_TXCMP_CODE_EXIT;
4265 		if (likely(pkts_n > 1))
4266 			rte_prefetch0(*pkts);
4267 		wqem = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4268 		/*
4269 		 * Build eMPW title WQEBB:
4270 		 * - Control Segment, eMPW opcode, zero DS
4271 		 * - Ethernet Segment, no inline
4272 		 */
4273 		mlx5_tx_cseg_init(txq, loc, wqem, 0,
4274 				  MLX5_OPCODE_ENHANCED_MPSW, olx);
4275 		mlx5_tx_eseg_none(txq, loc, wqem,
4276 				  olx & ~MLX5_TXOFF_CONFIG_VLAN);
4277 		dseg = &wqem->dseg[0];
4278 		/* Store the packet length for legacy MPW. */
4279 		if (MLX5_TXOFF_CONFIG(MPW))
4280 			wqem->eseg.mss = rte_cpu_to_be_16
4281 					 (rte_pktmbuf_data_len(loc->mbuf));
4282 		room = RTE_MIN(MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE,
4283 			       loc->wqe_free) * MLX5_WQE_SIZE -
4284 					MLX5_WQE_CSEG_SIZE -
4285 					MLX5_WQE_ESEG_SIZE;
4286 		/* Limit the room for legacy MPW sessions for performance. */
4287 		if (MLX5_TXOFF_CONFIG(MPW))
4288 			room = RTE_MIN(room,
4289 				       RTE_MAX(txq->inlen_empw +
4290 					       sizeof(dseg->bcount) +
4291 					       (MLX5_TXOFF_CONFIG(VLAN) ?
4292 					       sizeof(struct rte_vlan_hdr) : 0),
4293 					       MLX5_MPW_INLINE_MAX_PACKETS *
4294 					       MLX5_WQE_DSEG_SIZE));
4295 		/* Build WQE till we have space, packets and resources. */
4296 		part = room;
4297 		for (;;) {
4298 			uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
4299 			uint8_t *dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
4300 			unsigned int tlen;
4301 
4302 			MLX5_ASSERT(room >= MLX5_WQE_DSEG_SIZE);
4303 			MLX5_ASSERT((room % MLX5_WQE_DSEG_SIZE) == 0);
4304 			MLX5_ASSERT((uintptr_t)dseg < (uintptr_t)txq->wqes_end);
4305 			/*
4306 			 * Some Tx offloads may cause an error if
4307 			 * packet is not long enough, check against
4308 			 * assumed minimal length.
4309 			 */
4310 			if (unlikely(dlen <= MLX5_ESEG_MIN_INLINE_SIZE)) {
4311 				part -= room;
4312 				if (unlikely(!part))
4313 					return MLX5_TXCMP_CODE_ERROR;
4314 				/*
4315 				 * We have some successfully built
4316 				 * packet Data Segments to send.
4317 				 */
4318 				mlx5_tx_idone_empw(txq, loc, part,
4319 						   slen, wqem, olx);
4320 				return MLX5_TXCMP_CODE_ERROR;
4321 			}
4322 			/* Inline or not inline - that's the Question. */
4323 			if (dlen > txq->inlen_empw ||
4324 			    loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE)
4325 				goto pointer_empw;
4326 			if (MLX5_TXOFF_CONFIG(MPW)) {
4327 				if (dlen > txq->inlen_send)
4328 					goto pointer_empw;
4329 				tlen = dlen;
4330 				if (part == room) {
4331 					/* Open new inline MPW session. */
4332 					tlen += sizeof(dseg->bcount);
4333 					dseg->bcount = RTE_BE32(0);
4334 					dseg = RTE_PTR_ADD
4335 						(dseg, sizeof(dseg->bcount));
4336 				} else {
4337 					/*
4338 					 * No pointer and inline descriptor
4339 					 * intermix for legacy MPW sessions.
4340 					 */
4341 					if (wqem->dseg[0].bcount)
4342 						break;
4343 				}
4344 			} else {
4345 				tlen = sizeof(dseg->bcount) + dlen;
4346 			}
4347 			/* Inline entire packet, optional VLAN insertion. */
4348 			if (MLX5_TXOFF_CONFIG(VLAN) &&
4349 			    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
4350 				/*
4351 				 * The packet length must be checked in
4352 				 * mlx5_tx_able_to_empw() and packet
4353 				 * fits into inline length guaranteed.
4354 				 */
4355 				MLX5_ASSERT((dlen +
4356 					     sizeof(struct rte_vlan_hdr)) <=
4357 					    txq->inlen_empw);
4358 				tlen += sizeof(struct rte_vlan_hdr);
4359 				if (room < tlen)
4360 					break;
4361 				dseg = mlx5_tx_dseg_vlan(txq, loc, dseg,
4362 							 dptr, dlen, olx);
4363 #ifdef MLX5_PMD_SOFT_COUNTERS
4364 				/* Update sent data bytes counter. */
4365 				slen +=	sizeof(struct rte_vlan_hdr);
4366 #endif
4367 			} else {
4368 				if (room < tlen)
4369 					break;
4370 				dseg = mlx5_tx_dseg_empw(txq, loc, dseg,
4371 							 dptr, dlen, olx);
4372 			}
4373 			if (!MLX5_TXOFF_CONFIG(MPW))
4374 				tlen = RTE_ALIGN(tlen, MLX5_WSEG_SIZE);
4375 			MLX5_ASSERT(room >= tlen);
4376 			room -= tlen;
4377 			/*
4378 			 * Packet data are completely inlined,
4379 			 * free the packet immediately.
4380 			 */
4381 			rte_pktmbuf_free_seg(loc->mbuf);
4382 			goto next_mbuf;
4383 pointer_empw:
4384 			/*
4385 			 * No pointer and inline descriptor
4386 			 * intermix for legacy MPW sessions.
4387 			 */
4388 			if (MLX5_TXOFF_CONFIG(MPW) &&
4389 			    part != room &&
4390 			    wqem->dseg[0].bcount == RTE_BE32(0))
4391 				break;
4392 			/*
4393 			 * Not inlinable VLAN packets are
4394 			 * proceeded outside of this routine.
4395 			 */
4396 			MLX5_ASSERT(room >= MLX5_WQE_DSEG_SIZE);
4397 			if (MLX5_TXOFF_CONFIG(VLAN))
4398 				MLX5_ASSERT(!(loc->mbuf->ol_flags &
4399 					    PKT_TX_VLAN_PKT));
4400 			mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
4401 			/* We have to store mbuf in elts.*/
4402 			txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
4403 			room -= MLX5_WQE_DSEG_SIZE;
4404 			/* Ring buffer wraparound is checked at the loop end.*/
4405 			++dseg;
4406 next_mbuf:
4407 #ifdef MLX5_PMD_SOFT_COUNTERS
4408 			/* Update sent data bytes counter. */
4409 			slen += dlen;
4410 #endif
4411 			loc->pkts_sent++;
4412 			loc->elts_free--;
4413 			pkts_n--;
4414 			if (unlikely(!pkts_n || !loc->elts_free)) {
4415 				/*
4416 				 * We have no resources/packets to
4417 				 * continue build descriptors.
4418 				 */
4419 				part -= room;
4420 				mlx5_tx_idone_empw(txq, loc, part,
4421 						   slen, wqem, olx);
4422 				return MLX5_TXCMP_CODE_EXIT;
4423 			}
4424 			loc->mbuf = *pkts++;
4425 			if (likely(pkts_n > 1))
4426 				rte_prefetch0(*pkts);
4427 			ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
4428 			/*
4429 			 * Unroll the completion code to avoid
4430 			 * returning variable value - it results in
4431 			 * unoptimized sequent checking in caller.
4432 			 */
4433 			if (ret == MLX5_TXCMP_CODE_MULTI) {
4434 				part -= room;
4435 				mlx5_tx_idone_empw(txq, loc, part,
4436 						   slen, wqem, olx);
4437 				if (unlikely(!loc->elts_free ||
4438 					     !loc->wqe_free))
4439 					return MLX5_TXCMP_CODE_EXIT;
4440 				return MLX5_TXCMP_CODE_MULTI;
4441 			}
4442 			MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4443 			if (ret == MLX5_TXCMP_CODE_TSO) {
4444 				part -= room;
4445 				mlx5_tx_idone_empw(txq, loc, part,
4446 						   slen, wqem, olx);
4447 				if (unlikely(!loc->elts_free ||
4448 					     !loc->wqe_free))
4449 					return MLX5_TXCMP_CODE_EXIT;
4450 				return MLX5_TXCMP_CODE_TSO;
4451 			}
4452 			if (ret == MLX5_TXCMP_CODE_SINGLE) {
4453 				part -= room;
4454 				mlx5_tx_idone_empw(txq, loc, part,
4455 						   slen, wqem, olx);
4456 				if (unlikely(!loc->elts_free ||
4457 					     !loc->wqe_free))
4458 					return MLX5_TXCMP_CODE_EXIT;
4459 				return MLX5_TXCMP_CODE_SINGLE;
4460 			}
4461 			if (ret != MLX5_TXCMP_CODE_EMPW) {
4462 				MLX5_ASSERT(false);
4463 				part -= room;
4464 				mlx5_tx_idone_empw(txq, loc, part,
4465 						   slen, wqem, olx);
4466 				return MLX5_TXCMP_CODE_ERROR;
4467 			}
4468 			/* Check if we have minimal room left. */
4469 			nlim--;
4470 			if (unlikely(!nlim || room < MLX5_WQE_DSEG_SIZE))
4471 				break;
4472 			/*
4473 			 * Check whether packet parameters coincide
4474 			 * within assumed eMPW batch:
4475 			 * - check sum settings
4476 			 * - metadata value
4477 			 * - software parser settings
4478 			 * - packets length (legacy MPW only)
4479 			 * - scheduling is not required
4480 			 */
4481 			if (!mlx5_tx_match_empw(txq, &wqem->eseg,
4482 						loc, dlen, olx))
4483 				break;
4484 			/* Packet attributes match, continue the same eMPW. */
4485 			if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
4486 				dseg = (struct mlx5_wqe_dseg *)txq->wqes;
4487 		}
4488 		/*
4489 		 * We get here to close an existing eMPW
4490 		 * session and start the new one.
4491 		 */
4492 		MLX5_ASSERT(pkts_n);
4493 		part -= room;
4494 		if (unlikely(!part))
4495 			return MLX5_TXCMP_CODE_EXIT;
4496 		mlx5_tx_idone_empw(txq, loc, part, slen, wqem, olx);
4497 		if (unlikely(!loc->elts_free ||
4498 			     !loc->wqe_free))
4499 			return MLX5_TXCMP_CODE_EXIT;
4500 		/* Continue the loop with new eMPW session. */
4501 	}
4502 	MLX5_ASSERT(false);
4503 }
4504 
4505 /**
4506  * The routine sends packets with ordinary MLX5_OPCODE_SEND.
4507  * Data inlining and VLAN insertion are supported.
4508  */
4509 static __rte_always_inline enum mlx5_txcmp_code
4510 mlx5_tx_burst_single_send(struct mlx5_txq_data *__rte_restrict txq,
4511 			  struct rte_mbuf **__rte_restrict pkts,
4512 			  unsigned int pkts_n,
4513 			  struct mlx5_txq_local *__rte_restrict loc,
4514 			  unsigned int olx)
4515 {
4516 	/*
4517 	 * Subroutine is the part of mlx5_tx_burst_single()
4518 	 * and sends single-segment packet with SEND opcode.
4519 	 */
4520 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4521 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
4522 	pkts += loc->pkts_sent + 1;
4523 	pkts_n -= loc->pkts_sent;
4524 	for (;;) {
4525 		struct mlx5_wqe *__rte_restrict wqe;
4526 		enum mlx5_txcmp_code ret;
4527 
4528 		MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4529 		if (MLX5_TXOFF_CONFIG(TXPP)) {
4530 			enum mlx5_txcmp_code wret;
4531 
4532 			/* Generate WAIT for scheduling if requested. */
4533 			wret = mlx5_tx_schedule_send(txq, loc, olx);
4534 			if (wret == MLX5_TXCMP_CODE_EXIT)
4535 				return MLX5_TXCMP_CODE_EXIT;
4536 			if (wret == MLX5_TXCMP_CODE_ERROR)
4537 				return MLX5_TXCMP_CODE_ERROR;
4538 		}
4539 		if (MLX5_TXOFF_CONFIG(INLINE)) {
4540 			unsigned int inlen, vlan = 0;
4541 
4542 			inlen = rte_pktmbuf_data_len(loc->mbuf);
4543 			if (MLX5_TXOFF_CONFIG(VLAN) &&
4544 			    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
4545 				vlan = sizeof(struct rte_vlan_hdr);
4546 				inlen += vlan;
4547 				static_assert((sizeof(struct rte_vlan_hdr) +
4548 					       sizeof(struct rte_ether_hdr)) ==
4549 					       MLX5_ESEG_MIN_INLINE_SIZE,
4550 					       "invalid min inline data size");
4551 			}
4552 			/*
4553 			 * If inlining is enabled at configuration time
4554 			 * the limit must be not less than minimal size.
4555 			 * Otherwise we would do extra check for data
4556 			 * size to avoid crashes due to length overflow.
4557 			 */
4558 			MLX5_ASSERT(txq->inlen_send >=
4559 				    MLX5_ESEG_MIN_INLINE_SIZE);
4560 			if (inlen <= txq->inlen_send) {
4561 				unsigned int seg_n, wqe_n;
4562 
4563 				rte_prefetch0(rte_pktmbuf_mtod
4564 						(loc->mbuf, uint8_t *));
4565 				/* Check against minimal length. */
4566 				if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
4567 					return MLX5_TXCMP_CODE_ERROR;
4568 				if (loc->mbuf->ol_flags &
4569 				    PKT_TX_DYNF_NOINLINE) {
4570 					/*
4571 					 * The hint flag not to inline packet
4572 					 * data is set. Check whether we can
4573 					 * follow the hint.
4574 					 */
4575 					if ((!MLX5_TXOFF_CONFIG(EMPW) &&
4576 					      txq->inlen_mode) ||
4577 					    (MLX5_TXOFF_CONFIG(MPW) &&
4578 					     txq->inlen_mode)) {
4579 						if (inlen <= txq->inlen_send)
4580 							goto single_inline;
4581 						/*
4582 						 * The hardware requires the
4583 						 * minimal inline data header.
4584 						 */
4585 						goto single_min_inline;
4586 					}
4587 					if (MLX5_TXOFF_CONFIG(VLAN) &&
4588 					    vlan && !txq->vlan_en) {
4589 						/*
4590 						 * We must insert VLAN tag
4591 						 * by software means.
4592 						 */
4593 						goto single_part_inline;
4594 					}
4595 					goto single_no_inline;
4596 				}
4597 single_inline:
4598 				/*
4599 				 * Completely inlined packet data WQE:
4600 				 * - Control Segment, SEND opcode
4601 				 * - Ethernet Segment, no VLAN insertion
4602 				 * - Data inlined, VLAN optionally inserted
4603 				 * - Alignment to MLX5_WSEG_SIZE
4604 				 * Have to estimate amount of WQEBBs
4605 				 */
4606 				seg_n = (inlen + 3 * MLX5_WSEG_SIZE -
4607 					 MLX5_ESEG_MIN_INLINE_SIZE +
4608 					 MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
4609 				/* Check if there are enough WQEBBs. */
4610 				wqe_n = (seg_n + 3) / 4;
4611 				if (wqe_n > loc->wqe_free)
4612 					return MLX5_TXCMP_CODE_EXIT;
4613 				wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4614 				loc->wqe_last = wqe;
4615 				mlx5_tx_cseg_init(txq, loc, wqe, seg_n,
4616 						  MLX5_OPCODE_SEND, olx);
4617 				mlx5_tx_eseg_data(txq, loc, wqe,
4618 						  vlan, inlen, 0, olx);
4619 				txq->wqe_ci += wqe_n;
4620 				loc->wqe_free -= wqe_n;
4621 				/*
4622 				 * Packet data are completely inlined,
4623 				 * free the packet immediately.
4624 				 */
4625 				rte_pktmbuf_free_seg(loc->mbuf);
4626 			} else if ((!MLX5_TXOFF_CONFIG(EMPW) ||
4627 				     MLX5_TXOFF_CONFIG(MPW)) &&
4628 					txq->inlen_mode) {
4629 				/*
4630 				 * If minimal inlining is requested the eMPW
4631 				 * feature should be disabled due to data is
4632 				 * inlined into Ethernet Segment, which can
4633 				 * not contain inlined data for eMPW due to
4634 				 * segment shared for all packets.
4635 				 */
4636 				struct mlx5_wqe_dseg *__rte_restrict dseg;
4637 				unsigned int ds;
4638 				uint8_t *dptr;
4639 
4640 				/*
4641 				 * The inline-mode settings require
4642 				 * to inline the specified amount of
4643 				 * data bytes to the Ethernet Segment.
4644 				 * We should check the free space in
4645 				 * WQE ring buffer to inline partially.
4646 				 */
4647 single_min_inline:
4648 				MLX5_ASSERT(txq->inlen_send >= txq->inlen_mode);
4649 				MLX5_ASSERT(inlen > txq->inlen_mode);
4650 				MLX5_ASSERT(txq->inlen_mode >=
4651 					    MLX5_ESEG_MIN_INLINE_SIZE);
4652 				/*
4653 				 * Check whether there are enough free WQEBBs:
4654 				 * - Control Segment
4655 				 * - Ethernet Segment
4656 				 * - First Segment of inlined Ethernet data
4657 				 * - ... data continued ...
4658 				 * - Finishing Data Segment of pointer type
4659 				 */
4660 				ds = (MLX5_WQE_CSEG_SIZE +
4661 				      MLX5_WQE_ESEG_SIZE +
4662 				      MLX5_WQE_DSEG_SIZE +
4663 				      txq->inlen_mode -
4664 				      MLX5_ESEG_MIN_INLINE_SIZE +
4665 				      MLX5_WQE_DSEG_SIZE +
4666 				      MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
4667 				if (loc->wqe_free < ((ds + 3) / 4))
4668 					return MLX5_TXCMP_CODE_EXIT;
4669 				/*
4670 				 * Build the ordinary SEND WQE:
4671 				 * - Control Segment
4672 				 * - Ethernet Segment, inline inlen_mode bytes
4673 				 * - Data Segment of pointer type
4674 				 */
4675 				wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4676 				loc->wqe_last = wqe;
4677 				mlx5_tx_cseg_init(txq, loc, wqe, ds,
4678 						  MLX5_OPCODE_SEND, olx);
4679 				dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan,
4680 							 txq->inlen_mode,
4681 							 0, olx);
4682 				dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
4683 				       txq->inlen_mode - vlan;
4684 				inlen -= txq->inlen_mode;
4685 				mlx5_tx_dseg_ptr(txq, loc, dseg,
4686 						 dptr, inlen, olx);
4687 				/*
4688 				 * WQE is built, update the loop parameters
4689 				 * and got to the next packet.
4690 				 */
4691 				txq->wqe_ci += (ds + 3) / 4;
4692 				loc->wqe_free -= (ds + 3) / 4;
4693 				/* We have to store mbuf in elts.*/
4694 				MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
4695 				txq->elts[txq->elts_head++ & txq->elts_m] =
4696 						loc->mbuf;
4697 				--loc->elts_free;
4698 			} else {
4699 				uint8_t *dptr;
4700 				unsigned int dlen;
4701 
4702 				/*
4703 				 * Partially inlined packet data WQE, we have
4704 				 * some space in title WQEBB, we can fill it
4705 				 * with some packet data. It takes one WQEBB,
4706 				 * it is available, no extra space check:
4707 				 * - Control Segment, SEND opcode
4708 				 * - Ethernet Segment, no VLAN insertion
4709 				 * - MLX5_ESEG_MIN_INLINE_SIZE bytes of Data
4710 				 * - Data Segment, pointer type
4711 				 *
4712 				 * We also get here if VLAN insertion is not
4713 				 * supported by HW, the inline is enabled.
4714 				 */
4715 single_part_inline:
4716 				wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4717 				loc->wqe_last = wqe;
4718 				mlx5_tx_cseg_init(txq, loc, wqe, 4,
4719 						  MLX5_OPCODE_SEND, olx);
4720 				mlx5_tx_eseg_dmin(txq, loc, wqe, vlan, olx);
4721 				dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
4722 				       MLX5_ESEG_MIN_INLINE_SIZE - vlan;
4723 				/*
4724 				 * The length check is performed above, by
4725 				 * comparing with txq->inlen_send. We should
4726 				 * not get overflow here.
4727 				 */
4728 				MLX5_ASSERT(inlen > MLX5_ESEG_MIN_INLINE_SIZE);
4729 				dlen = inlen - MLX5_ESEG_MIN_INLINE_SIZE;
4730 				mlx5_tx_dseg_ptr(txq, loc, &wqe->dseg[1],
4731 						 dptr, dlen, olx);
4732 				++txq->wqe_ci;
4733 				--loc->wqe_free;
4734 				/* We have to store mbuf in elts.*/
4735 				MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
4736 				txq->elts[txq->elts_head++ & txq->elts_m] =
4737 						loc->mbuf;
4738 				--loc->elts_free;
4739 			}
4740 #ifdef MLX5_PMD_SOFT_COUNTERS
4741 			/* Update sent data bytes counter. */
4742 			txq->stats.obytes += vlan +
4743 					rte_pktmbuf_data_len(loc->mbuf);
4744 #endif
4745 		} else {
4746 			/*
4747 			 * No inline at all, it means the CPU cycles saving
4748 			 * is prioritized at configuration, we should not
4749 			 * copy any packet data to WQE.
4750 			 *
4751 			 * SEND WQE, one WQEBB:
4752 			 * - Control Segment, SEND opcode
4753 			 * - Ethernet Segment, optional VLAN, no inline
4754 			 * - Data Segment, pointer type
4755 			 */
4756 single_no_inline:
4757 			wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4758 			loc->wqe_last = wqe;
4759 			mlx5_tx_cseg_init(txq, loc, wqe, 3,
4760 					  MLX5_OPCODE_SEND, olx);
4761 			mlx5_tx_eseg_none(txq, loc, wqe, olx);
4762 			mlx5_tx_dseg_ptr
4763 				(txq, loc, &wqe->dseg[0],
4764 				 rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
4765 				 rte_pktmbuf_data_len(loc->mbuf), olx);
4766 			++txq->wqe_ci;
4767 			--loc->wqe_free;
4768 			/*
4769 			 * We should not store mbuf pointer in elts
4770 			 * if no inlining is configured, this is done
4771 			 * by calling routine in a batch copy.
4772 			 */
4773 			MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
4774 			--loc->elts_free;
4775 #ifdef MLX5_PMD_SOFT_COUNTERS
4776 			/* Update sent data bytes counter. */
4777 			txq->stats.obytes += rte_pktmbuf_data_len(loc->mbuf);
4778 			if (MLX5_TXOFF_CONFIG(VLAN) &&
4779 			    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
4780 				txq->stats.obytes +=
4781 					sizeof(struct rte_vlan_hdr);
4782 #endif
4783 		}
4784 		++loc->pkts_sent;
4785 		--pkts_n;
4786 		if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
4787 			return MLX5_TXCMP_CODE_EXIT;
4788 		loc->mbuf = *pkts++;
4789 		if (pkts_n > 1)
4790 			rte_prefetch0(*pkts);
4791 		ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
4792 		if (unlikely(ret != MLX5_TXCMP_CODE_SINGLE))
4793 			return ret;
4794 	}
4795 	MLX5_ASSERT(false);
4796 }
4797 
4798 static __rte_always_inline enum mlx5_txcmp_code
4799 mlx5_tx_burst_single(struct mlx5_txq_data *__rte_restrict txq,
4800 		     struct rte_mbuf **__rte_restrict pkts,
4801 		     unsigned int pkts_n,
4802 		     struct mlx5_txq_local *__rte_restrict loc,
4803 		     unsigned int olx)
4804 {
4805 	enum mlx5_txcmp_code ret;
4806 
4807 	ret = mlx5_tx_able_to_empw(txq, loc, olx, false);
4808 	if (ret == MLX5_TXCMP_CODE_SINGLE)
4809 		goto ordinary_send;
4810 	MLX5_ASSERT(ret == MLX5_TXCMP_CODE_EMPW);
4811 	for (;;) {
4812 		/* Optimize for inline/no inline eMPW send. */
4813 		ret = (MLX5_TXOFF_CONFIG(INLINE)) ?
4814 			mlx5_tx_burst_empw_inline
4815 				(txq, pkts, pkts_n, loc, olx) :
4816 			mlx5_tx_burst_empw_simple
4817 				(txq, pkts, pkts_n, loc, olx);
4818 		if (ret != MLX5_TXCMP_CODE_SINGLE)
4819 			return ret;
4820 		/* The resources to send one packet should remain. */
4821 		MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4822 ordinary_send:
4823 		ret = mlx5_tx_burst_single_send(txq, pkts, pkts_n, loc, olx);
4824 		MLX5_ASSERT(ret != MLX5_TXCMP_CODE_SINGLE);
4825 		if (ret != MLX5_TXCMP_CODE_EMPW)
4826 			return ret;
4827 		/* The resources to send one packet should remain. */
4828 		MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4829 	}
4830 }
4831 
4832 /**
4833  * DPDK Tx callback template. This is configured template
4834  * used to generate routines optimized for specified offload setup.
4835  * One of this generated functions is chosen at SQ configuration
4836  * time.
4837  *
4838  * @param txq
4839  *   Generic pointer to TX queue structure.
4840  * @param[in] pkts
4841  *   Packets to transmit.
4842  * @param pkts_n
4843  *   Number of packets in array.
4844  * @param olx
4845  *   Configured offloads mask, presents the bits of MLX5_TXOFF_CONFIG_xxx
4846  *   values. Should be static to take compile time static configuration
4847  *   advantages.
4848  *
4849  * @return
4850  *   Number of packets successfully transmitted (<= pkts_n).
4851  */
4852 static __rte_always_inline uint16_t
4853 mlx5_tx_burst_tmpl(struct mlx5_txq_data *__rte_restrict txq,
4854 		   struct rte_mbuf **__rte_restrict pkts,
4855 		   uint16_t pkts_n,
4856 		   unsigned int olx)
4857 {
4858 	struct mlx5_txq_local loc;
4859 	enum mlx5_txcmp_code ret;
4860 	unsigned int part;
4861 
4862 	MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
4863 	MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
4864 	if (unlikely(!pkts_n))
4865 		return 0;
4866 	loc.pkts_sent = 0;
4867 	loc.pkts_copy = 0;
4868 	loc.wqe_last = NULL;
4869 
4870 send_loop:
4871 	loc.pkts_loop = loc.pkts_sent;
4872 	/*
4873 	 * Check if there are some CQEs, if any:
4874 	 * - process an encountered errors
4875 	 * - process the completed WQEs
4876 	 * - free related mbufs
4877 	 * - doorbell the NIC about processed CQEs
4878 	 */
4879 	rte_prefetch0(*(pkts + loc.pkts_sent));
4880 	mlx5_tx_handle_completion(txq, olx);
4881 	/*
4882 	 * Calculate the number of available resources - elts and WQEs.
4883 	 * There are two possible different scenarios:
4884 	 * - no data inlining into WQEs, one WQEBB may contains up to
4885 	 *   four packets, in this case elts become scarce resource
4886 	 * - data inlining into WQEs, one packet may require multiple
4887 	 *   WQEBBs, the WQEs become the limiting factor.
4888 	 */
4889 	MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
4890 	loc.elts_free = txq->elts_s -
4891 				(uint16_t)(txq->elts_head - txq->elts_tail);
4892 	MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
4893 	loc.wqe_free = txq->wqe_s -
4894 				(uint16_t)(txq->wqe_ci - txq->wqe_pi);
4895 	if (unlikely(!loc.elts_free || !loc.wqe_free))
4896 		goto burst_exit;
4897 	for (;;) {
4898 		/*
4899 		 * Fetch the packet from array. Usually this is
4900 		 * the first packet in series of multi/single
4901 		 * segment packets.
4902 		 */
4903 		loc.mbuf = *(pkts + loc.pkts_sent);
4904 		/* Dedicated branch for multi-segment packets. */
4905 		if (MLX5_TXOFF_CONFIG(MULTI) &&
4906 		    unlikely(NB_SEGS(loc.mbuf) > 1)) {
4907 			/*
4908 			 * Multi-segment packet encountered.
4909 			 * Hardware is able to process it only
4910 			 * with SEND/TSO opcodes, one packet
4911 			 * per WQE, do it in dedicated routine.
4912 			 */
4913 enter_send_multi:
4914 			MLX5_ASSERT(loc.pkts_sent >= loc.pkts_copy);
4915 			part = loc.pkts_sent - loc.pkts_copy;
4916 			if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
4917 				/*
4918 				 * There are some single-segment mbufs not
4919 				 * stored in elts. The mbufs must be in the
4920 				 * same order as WQEs, so we must copy the
4921 				 * mbufs to elts here, before the coming
4922 				 * multi-segment packet mbufs is appended.
4923 				 */
4924 				mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy,
4925 						  part, olx);
4926 				loc.pkts_copy = loc.pkts_sent;
4927 			}
4928 			MLX5_ASSERT(pkts_n > loc.pkts_sent);
4929 			ret = mlx5_tx_burst_mseg(txq, pkts, pkts_n, &loc, olx);
4930 			if (!MLX5_TXOFF_CONFIG(INLINE))
4931 				loc.pkts_copy = loc.pkts_sent;
4932 			/*
4933 			 * These returned code checks are supposed
4934 			 * to be optimized out due to routine inlining.
4935 			 */
4936 			if (ret == MLX5_TXCMP_CODE_EXIT) {
4937 				/*
4938 				 * The routine returns this code when
4939 				 * all packets are sent or there is no
4940 				 * enough resources to complete request.
4941 				 */
4942 				break;
4943 			}
4944 			if (ret == MLX5_TXCMP_CODE_ERROR) {
4945 				/*
4946 				 * The routine returns this code when
4947 				 * some error in the incoming packets
4948 				 * format occurred.
4949 				 */
4950 				txq->stats.oerrors++;
4951 				break;
4952 			}
4953 			if (ret == MLX5_TXCMP_CODE_SINGLE) {
4954 				/*
4955 				 * The single-segment packet was encountered
4956 				 * in the array, try to send it with the
4957 				 * best optimized way, possible engaging eMPW.
4958 				 */
4959 				goto enter_send_single;
4960 			}
4961 			if (MLX5_TXOFF_CONFIG(TSO) &&
4962 			    ret == MLX5_TXCMP_CODE_TSO) {
4963 				/*
4964 				 * The single-segment TSO packet was
4965 				 * encountered in the array.
4966 				 */
4967 				goto enter_send_tso;
4968 			}
4969 			/* We must not get here. Something is going wrong. */
4970 			MLX5_ASSERT(false);
4971 			txq->stats.oerrors++;
4972 			break;
4973 		}
4974 		/* Dedicated branch for single-segment TSO packets. */
4975 		if (MLX5_TXOFF_CONFIG(TSO) &&
4976 		    unlikely(loc.mbuf->ol_flags & PKT_TX_TCP_SEG)) {
4977 			/*
4978 			 * TSO might require special way for inlining
4979 			 * (dedicated parameters) and is sent with
4980 			 * MLX5_OPCODE_TSO opcode only, provide this
4981 			 * in dedicated branch.
4982 			 */
4983 enter_send_tso:
4984 			MLX5_ASSERT(NB_SEGS(loc.mbuf) == 1);
4985 			MLX5_ASSERT(pkts_n > loc.pkts_sent);
4986 			ret = mlx5_tx_burst_tso(txq, pkts, pkts_n, &loc, olx);
4987 			/*
4988 			 * These returned code checks are supposed
4989 			 * to be optimized out due to routine inlining.
4990 			 */
4991 			if (ret == MLX5_TXCMP_CODE_EXIT)
4992 				break;
4993 			if (ret == MLX5_TXCMP_CODE_ERROR) {
4994 				txq->stats.oerrors++;
4995 				break;
4996 			}
4997 			if (ret == MLX5_TXCMP_CODE_SINGLE)
4998 				goto enter_send_single;
4999 			if (MLX5_TXOFF_CONFIG(MULTI) &&
5000 			    ret == MLX5_TXCMP_CODE_MULTI) {
5001 				/*
5002 				 * The multi-segment packet was
5003 				 * encountered in the array.
5004 				 */
5005 				goto enter_send_multi;
5006 			}
5007 			/* We must not get here. Something is going wrong. */
5008 			MLX5_ASSERT(false);
5009 			txq->stats.oerrors++;
5010 			break;
5011 		}
5012 		/*
5013 		 * The dedicated branch for the single-segment packets
5014 		 * without TSO. Often these ones can be sent using
5015 		 * MLX5_OPCODE_EMPW with multiple packets in one WQE.
5016 		 * The routine builds the WQEs till it encounters
5017 		 * the TSO or multi-segment packet (in case if these
5018 		 * offloads are requested at SQ configuration time).
5019 		 */
5020 enter_send_single:
5021 		MLX5_ASSERT(pkts_n > loc.pkts_sent);
5022 		ret = mlx5_tx_burst_single(txq, pkts, pkts_n, &loc, olx);
5023 		/*
5024 		 * These returned code checks are supposed
5025 		 * to be optimized out due to routine inlining.
5026 		 */
5027 		if (ret == MLX5_TXCMP_CODE_EXIT)
5028 			break;
5029 		if (ret == MLX5_TXCMP_CODE_ERROR) {
5030 			txq->stats.oerrors++;
5031 			break;
5032 		}
5033 		if (MLX5_TXOFF_CONFIG(MULTI) &&
5034 		    ret == MLX5_TXCMP_CODE_MULTI) {
5035 			/*
5036 			 * The multi-segment packet was
5037 			 * encountered in the array.
5038 			 */
5039 			goto enter_send_multi;
5040 		}
5041 		if (MLX5_TXOFF_CONFIG(TSO) &&
5042 		    ret == MLX5_TXCMP_CODE_TSO) {
5043 			/*
5044 			 * The single-segment TSO packet was
5045 			 * encountered in the array.
5046 			 */
5047 			goto enter_send_tso;
5048 		}
5049 		/* We must not get here. Something is going wrong. */
5050 		MLX5_ASSERT(false);
5051 		txq->stats.oerrors++;
5052 		break;
5053 	}
5054 	/*
5055 	 * Main Tx loop is completed, do the rest:
5056 	 * - set completion request if thresholds are reached
5057 	 * - doorbell the hardware
5058 	 * - copy the rest of mbufs to elts (if any)
5059 	 */
5060 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE) ||
5061 		    loc.pkts_sent >= loc.pkts_copy);
5062 	/* Take a shortcut if nothing is sent. */
5063 	if (unlikely(loc.pkts_sent == loc.pkts_loop))
5064 		goto burst_exit;
5065 	/* Request CQE generation if limits are reached. */
5066 	mlx5_tx_request_completion(txq, &loc, olx);
5067 	/*
5068 	 * Ring QP doorbell immediately after WQE building completion
5069 	 * to improve latencies. The pure software related data treatment
5070 	 * can be completed after doorbell. Tx CQEs for this SQ are
5071 	 * processed in this thread only by the polling.
5072 	 *
5073 	 * The rdma core library can map doorbell register in two ways,
5074 	 * depending on the environment variable "MLX5_SHUT_UP_BF":
5075 	 *
5076 	 * - as regular cached memory, the variable is either missing or
5077 	 *   set to zero. This type of mapping may cause the significant
5078 	 *   doorbell register writing latency and requires explicit
5079 	 *   memory write barrier to mitigate this issue and prevent
5080 	 *   write combining.
5081 	 *
5082 	 * - as non-cached memory, the variable is present and set to
5083 	 *   not "0" value. This type of mapping may cause performance
5084 	 *   impact under heavy loading conditions but the explicit write
5085 	 *   memory barrier is not required and it may improve core
5086 	 *   performance.
5087 	 *
5088 	 * - the legacy behaviour (prior 19.08 release) was to use some
5089 	 *   heuristics to decide whether write memory barrier should
5090 	 *   be performed. This behavior is supported with specifying
5091 	 *   tx_db_nc=2, write barrier is skipped if application
5092 	 *   provides the full recommended burst of packets, it
5093 	 *   supposes the next packets are coming and the write barrier
5094 	 *   will be issued on the next burst (after descriptor writing,
5095 	 *   at least).
5096 	 */
5097 	mlx5_tx_dbrec_cond_wmb(txq, loc.wqe_last, !txq->db_nc &&
5098 			(!txq->db_heu || pkts_n % MLX5_TX_DEFAULT_BURST));
5099 	/* Not all of the mbufs may be stored into elts yet. */
5100 	part = MLX5_TXOFF_CONFIG(INLINE) ? 0 : loc.pkts_sent - loc.pkts_copy;
5101 	if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
5102 		/*
5103 		 * There are some single-segment mbufs not stored in elts.
5104 		 * It can be only if the last packet was single-segment.
5105 		 * The copying is gathered into one place due to it is
5106 		 * a good opportunity to optimize that with SIMD.
5107 		 * Unfortunately if inlining is enabled the gaps in
5108 		 * pointer array may happen due to early freeing of the
5109 		 * inlined mbufs.
5110 		 */
5111 		mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy, part, olx);
5112 		loc.pkts_copy = loc.pkts_sent;
5113 	}
5114 	MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
5115 	MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
5116 	if (pkts_n > loc.pkts_sent) {
5117 		/*
5118 		 * If burst size is large there might be no enough CQE
5119 		 * fetched from completion queue and no enough resources
5120 		 * freed to send all the packets.
5121 		 */
5122 		goto send_loop;
5123 	}
5124 burst_exit:
5125 #ifdef MLX5_PMD_SOFT_COUNTERS
5126 	/* Increment sent packets counter. */
5127 	txq->stats.opackets += loc.pkts_sent;
5128 #endif
5129 	return loc.pkts_sent;
5130 }
5131 
5132 /* Generate routines with Enhanced Multi-Packet Write support. */
5133 MLX5_TXOFF_DECL(full_empw,
5134 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_EMPW)
5135 
5136 MLX5_TXOFF_DECL(none_empw,
5137 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW)
5138 
5139 MLX5_TXOFF_DECL(md_empw,
5140 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5141 
5142 MLX5_TXOFF_DECL(mt_empw,
5143 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5144 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5145 
5146 MLX5_TXOFF_DECL(mtsc_empw,
5147 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5148 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5149 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5150 
5151 MLX5_TXOFF_DECL(mti_empw,
5152 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5153 		MLX5_TXOFF_CONFIG_INLINE |
5154 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5155 
5156 MLX5_TXOFF_DECL(mtv_empw,
5157 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5158 		MLX5_TXOFF_CONFIG_VLAN |
5159 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5160 
5161 MLX5_TXOFF_DECL(mtiv_empw,
5162 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5163 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5164 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5165 
5166 MLX5_TXOFF_DECL(sc_empw,
5167 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5168 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5169 
5170 MLX5_TXOFF_DECL(sci_empw,
5171 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5172 		MLX5_TXOFF_CONFIG_INLINE |
5173 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5174 
5175 MLX5_TXOFF_DECL(scv_empw,
5176 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5177 		MLX5_TXOFF_CONFIG_VLAN |
5178 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5179 
5180 MLX5_TXOFF_DECL(sciv_empw,
5181 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5182 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5183 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5184 
5185 MLX5_TXOFF_DECL(i_empw,
5186 		MLX5_TXOFF_CONFIG_INLINE |
5187 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5188 
5189 MLX5_TXOFF_DECL(v_empw,
5190 		MLX5_TXOFF_CONFIG_VLAN |
5191 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5192 
5193 MLX5_TXOFF_DECL(iv_empw,
5194 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5195 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5196 
5197 /* Generate routines without Enhanced Multi-Packet Write support. */
5198 MLX5_TXOFF_DECL(full,
5199 		MLX5_TXOFF_CONFIG_FULL)
5200 
5201 MLX5_TXOFF_DECL(none,
5202 		MLX5_TXOFF_CONFIG_NONE)
5203 
5204 MLX5_TXOFF_DECL(md,
5205 		MLX5_TXOFF_CONFIG_METADATA)
5206 
5207 MLX5_TXOFF_DECL(mt,
5208 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5209 		MLX5_TXOFF_CONFIG_METADATA)
5210 
5211 MLX5_TXOFF_DECL(mtsc,
5212 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5213 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5214 		MLX5_TXOFF_CONFIG_METADATA)
5215 
5216 MLX5_TXOFF_DECL(mti,
5217 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5218 		MLX5_TXOFF_CONFIG_INLINE |
5219 		MLX5_TXOFF_CONFIG_METADATA)
5220 
5221 
5222 MLX5_TXOFF_DECL(mtv,
5223 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5224 		MLX5_TXOFF_CONFIG_VLAN |
5225 		MLX5_TXOFF_CONFIG_METADATA)
5226 
5227 
5228 MLX5_TXOFF_DECL(mtiv,
5229 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5230 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5231 		MLX5_TXOFF_CONFIG_METADATA)
5232 
5233 MLX5_TXOFF_DECL(sc,
5234 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5235 		MLX5_TXOFF_CONFIG_METADATA)
5236 
5237 MLX5_TXOFF_DECL(sci,
5238 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5239 		MLX5_TXOFF_CONFIG_INLINE |
5240 		MLX5_TXOFF_CONFIG_METADATA)
5241 
5242 
5243 MLX5_TXOFF_DECL(scv,
5244 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5245 		MLX5_TXOFF_CONFIG_VLAN |
5246 		MLX5_TXOFF_CONFIG_METADATA)
5247 
5248 
5249 MLX5_TXOFF_DECL(sciv,
5250 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5251 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5252 		MLX5_TXOFF_CONFIG_METADATA)
5253 
5254 MLX5_TXOFF_DECL(i,
5255 		MLX5_TXOFF_CONFIG_INLINE |
5256 		MLX5_TXOFF_CONFIG_METADATA)
5257 
5258 MLX5_TXOFF_DECL(v,
5259 		MLX5_TXOFF_CONFIG_VLAN |
5260 		MLX5_TXOFF_CONFIG_METADATA)
5261 
5262 MLX5_TXOFF_DECL(iv,
5263 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5264 		MLX5_TXOFF_CONFIG_METADATA)
5265 
5266 /* Generate routines with timestamp scheduling. */
5267 MLX5_TXOFF_DECL(full_ts_nompw,
5268 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_TXPP)
5269 
5270 MLX5_TXOFF_DECL(full_ts_nompwi,
5271 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5272 		MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
5273 		MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA |
5274 		MLX5_TXOFF_CONFIG_TXPP)
5275 
5276 MLX5_TXOFF_DECL(full_ts,
5277 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_TXPP |
5278 		MLX5_TXOFF_CONFIG_EMPW)
5279 
5280 MLX5_TXOFF_DECL(full_ts_noi,
5281 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5282 		MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
5283 		MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA |
5284 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5285 
5286 MLX5_TXOFF_DECL(none_ts,
5287 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_TXPP |
5288 		MLX5_TXOFF_CONFIG_EMPW)
5289 
5290 MLX5_TXOFF_DECL(mdi_ts,
5291 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA |
5292 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5293 
5294 MLX5_TXOFF_DECL(mti_ts,
5295 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5296 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA |
5297 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5298 
5299 MLX5_TXOFF_DECL(mtiv_ts,
5300 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5301 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5302 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_TXPP |
5303 		MLX5_TXOFF_CONFIG_EMPW)
5304 
5305 /*
5306  * Generate routines with Legacy Multi-Packet Write support.
5307  * This mode is supported by ConnectX-4 Lx only and imposes
5308  * offload limitations, not supported:
5309  *   - ACL/Flows (metadata are becoming meaningless)
5310  *   - WQE Inline headers
5311  *   - SRIOV (E-Switch offloads)
5312  *   - VLAN insertion
5313  *   - tunnel encapsulation/decapsulation
5314  *   - TSO
5315  */
5316 MLX5_TXOFF_DECL(none_mpw,
5317 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW |
5318 		MLX5_TXOFF_CONFIG_MPW)
5319 
5320 MLX5_TXOFF_DECL(mci_mpw,
5321 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
5322 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
5323 		MLX5_TXOFF_CONFIG_MPW)
5324 
5325 MLX5_TXOFF_DECL(mc_mpw,
5326 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
5327 		MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW)
5328 
5329 MLX5_TXOFF_DECL(i_mpw,
5330 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
5331 		MLX5_TXOFF_CONFIG_MPW)
5332 
5333 /*
5334  * Array of declared and compiled Tx burst function and corresponding
5335  * supported offloads set. The array is used to select the Tx burst
5336  * function for specified offloads set at Tx queue configuration time.
5337  */
5338 const struct {
5339 	eth_tx_burst_t func;
5340 	unsigned int olx;
5341 } txoff_func[] = {
5342 MLX5_TXOFF_INFO(full_empw,
5343 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5344 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5345 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5346 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5347 
5348 MLX5_TXOFF_INFO(none_empw,
5349 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW)
5350 
5351 MLX5_TXOFF_INFO(md_empw,
5352 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5353 
5354 MLX5_TXOFF_INFO(mt_empw,
5355 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5356 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5357 
5358 MLX5_TXOFF_INFO(mtsc_empw,
5359 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5360 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5361 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5362 
5363 MLX5_TXOFF_INFO(mti_empw,
5364 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5365 		MLX5_TXOFF_CONFIG_INLINE |
5366 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5367 
5368 MLX5_TXOFF_INFO(mtv_empw,
5369 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5370 		MLX5_TXOFF_CONFIG_VLAN |
5371 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5372 
5373 MLX5_TXOFF_INFO(mtiv_empw,
5374 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5375 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5376 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5377 
5378 MLX5_TXOFF_INFO(sc_empw,
5379 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5380 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5381 
5382 MLX5_TXOFF_INFO(sci_empw,
5383 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5384 		MLX5_TXOFF_CONFIG_INLINE |
5385 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5386 
5387 MLX5_TXOFF_INFO(scv_empw,
5388 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5389 		MLX5_TXOFF_CONFIG_VLAN |
5390 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5391 
5392 MLX5_TXOFF_INFO(sciv_empw,
5393 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5394 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5395 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5396 
5397 MLX5_TXOFF_INFO(i_empw,
5398 		MLX5_TXOFF_CONFIG_INLINE |
5399 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5400 
5401 MLX5_TXOFF_INFO(v_empw,
5402 		MLX5_TXOFF_CONFIG_VLAN |
5403 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5404 
5405 MLX5_TXOFF_INFO(iv_empw,
5406 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5407 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5408 
5409 MLX5_TXOFF_INFO(full_ts_nompw,
5410 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_TXPP)
5411 
5412 MLX5_TXOFF_INFO(full_ts_nompwi,
5413 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5414 		MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
5415 		MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA |
5416 		MLX5_TXOFF_CONFIG_TXPP)
5417 
5418 MLX5_TXOFF_INFO(full_ts,
5419 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_TXPP |
5420 		MLX5_TXOFF_CONFIG_EMPW)
5421 
5422 MLX5_TXOFF_INFO(full_ts_noi,
5423 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5424 		MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
5425 		MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA |
5426 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5427 
5428 MLX5_TXOFF_INFO(none_ts,
5429 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_TXPP |
5430 		MLX5_TXOFF_CONFIG_EMPW)
5431 
5432 MLX5_TXOFF_INFO(mdi_ts,
5433 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA |
5434 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5435 
5436 MLX5_TXOFF_INFO(mti_ts,
5437 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5438 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA |
5439 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5440 
5441 MLX5_TXOFF_INFO(mtiv_ts,
5442 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5443 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5444 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_TXPP |
5445 		MLX5_TXOFF_CONFIG_EMPW)
5446 
5447 MLX5_TXOFF_INFO(full,
5448 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5449 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5450 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5451 		MLX5_TXOFF_CONFIG_METADATA)
5452 
5453 MLX5_TXOFF_INFO(none,
5454 		MLX5_TXOFF_CONFIG_NONE)
5455 
5456 MLX5_TXOFF_INFO(md,
5457 		MLX5_TXOFF_CONFIG_METADATA)
5458 
5459 MLX5_TXOFF_INFO(mt,
5460 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5461 		MLX5_TXOFF_CONFIG_METADATA)
5462 
5463 MLX5_TXOFF_INFO(mtsc,
5464 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5465 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5466 		MLX5_TXOFF_CONFIG_METADATA)
5467 
5468 MLX5_TXOFF_INFO(mti,
5469 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5470 		MLX5_TXOFF_CONFIG_INLINE |
5471 		MLX5_TXOFF_CONFIG_METADATA)
5472 
5473 MLX5_TXOFF_INFO(mtv,
5474 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5475 		MLX5_TXOFF_CONFIG_VLAN |
5476 		MLX5_TXOFF_CONFIG_METADATA)
5477 
5478 MLX5_TXOFF_INFO(mtiv,
5479 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5480 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5481 		MLX5_TXOFF_CONFIG_METADATA)
5482 
5483 MLX5_TXOFF_INFO(sc,
5484 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5485 		MLX5_TXOFF_CONFIG_METADATA)
5486 
5487 MLX5_TXOFF_INFO(sci,
5488 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5489 		MLX5_TXOFF_CONFIG_INLINE |
5490 		MLX5_TXOFF_CONFIG_METADATA)
5491 
5492 MLX5_TXOFF_INFO(scv,
5493 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5494 		MLX5_TXOFF_CONFIG_VLAN |
5495 		MLX5_TXOFF_CONFIG_METADATA)
5496 
5497 MLX5_TXOFF_INFO(sciv,
5498 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5499 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5500 		MLX5_TXOFF_CONFIG_METADATA)
5501 
5502 MLX5_TXOFF_INFO(i,
5503 		MLX5_TXOFF_CONFIG_INLINE |
5504 		MLX5_TXOFF_CONFIG_METADATA)
5505 
5506 MLX5_TXOFF_INFO(v,
5507 		MLX5_TXOFF_CONFIG_VLAN |
5508 		MLX5_TXOFF_CONFIG_METADATA)
5509 
5510 MLX5_TXOFF_INFO(iv,
5511 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5512 		MLX5_TXOFF_CONFIG_METADATA)
5513 
5514 MLX5_TXOFF_INFO(none_mpw,
5515 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW |
5516 		MLX5_TXOFF_CONFIG_MPW)
5517 
5518 MLX5_TXOFF_INFO(mci_mpw,
5519 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
5520 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
5521 		MLX5_TXOFF_CONFIG_MPW)
5522 
5523 MLX5_TXOFF_INFO(mc_mpw,
5524 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
5525 		MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW)
5526 
5527 MLX5_TXOFF_INFO(i_mpw,
5528 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
5529 		MLX5_TXOFF_CONFIG_MPW)
5530 };
5531 
5532 /**
5533  * Configure the Tx function to use. The routine checks configured
5534  * Tx offloads for the device and selects appropriate Tx burst
5535  * routine. There are multiple Tx burst routines compiled from
5536  * the same template in the most optimal way for the dedicated
5537  * Tx offloads set.
5538  *
5539  * @param dev
5540  *   Pointer to private data structure.
5541  *
5542  * @return
5543  *   Pointer to selected Tx burst function.
5544  */
5545 eth_tx_burst_t
5546 mlx5_select_tx_function(struct rte_eth_dev *dev)
5547 {
5548 	struct mlx5_priv *priv = dev->data->dev_private;
5549 	struct mlx5_dev_config *config = &priv->config;
5550 	uint64_t tx_offloads = dev->data->dev_conf.txmode.offloads;
5551 	unsigned int diff = 0, olx = 0, i, m;
5552 
5553 	static_assert(MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE <=
5554 		      MLX5_DSEG_MAX, "invalid WQE max size");
5555 	static_assert(MLX5_WQE_CSEG_SIZE == MLX5_WSEG_SIZE,
5556 		      "invalid WQE Control Segment size");
5557 	static_assert(MLX5_WQE_ESEG_SIZE == MLX5_WSEG_SIZE,
5558 		      "invalid WQE Ethernet Segment size");
5559 	static_assert(MLX5_WQE_DSEG_SIZE == MLX5_WSEG_SIZE,
5560 		      "invalid WQE Data Segment size");
5561 	static_assert(MLX5_WQE_SIZE == 4 * MLX5_WSEG_SIZE,
5562 		      "invalid WQE size");
5563 	MLX5_ASSERT(priv);
5564 	if (tx_offloads & DEV_TX_OFFLOAD_MULTI_SEGS) {
5565 		/* We should support Multi-Segment Packets. */
5566 		olx |= MLX5_TXOFF_CONFIG_MULTI;
5567 	}
5568 	if (tx_offloads & (DEV_TX_OFFLOAD_TCP_TSO |
5569 			   DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
5570 			   DEV_TX_OFFLOAD_GRE_TNL_TSO |
5571 			   DEV_TX_OFFLOAD_IP_TNL_TSO |
5572 			   DEV_TX_OFFLOAD_UDP_TNL_TSO)) {
5573 		/* We should support TCP Send Offload. */
5574 		olx |= MLX5_TXOFF_CONFIG_TSO;
5575 	}
5576 	if (tx_offloads & (DEV_TX_OFFLOAD_IP_TNL_TSO |
5577 			   DEV_TX_OFFLOAD_UDP_TNL_TSO |
5578 			   DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) {
5579 		/* We should support Software Parser for Tunnels. */
5580 		olx |= MLX5_TXOFF_CONFIG_SWP;
5581 	}
5582 	if (tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
5583 			   DEV_TX_OFFLOAD_UDP_CKSUM |
5584 			   DEV_TX_OFFLOAD_TCP_CKSUM |
5585 			   DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) {
5586 		/* We should support IP/TCP/UDP Checksums. */
5587 		olx |= MLX5_TXOFF_CONFIG_CSUM;
5588 	}
5589 	if (tx_offloads & DEV_TX_OFFLOAD_VLAN_INSERT) {
5590 		/* We should support VLAN insertion. */
5591 		olx |= MLX5_TXOFF_CONFIG_VLAN;
5592 	}
5593 	if (tx_offloads & DEV_TX_OFFLOAD_SEND_ON_TIMESTAMP &&
5594 	    rte_mbuf_dynflag_lookup
5595 			(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL) >= 0 &&
5596 	    rte_mbuf_dynfield_lookup
5597 			(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL) >= 0) {
5598 		/* Offload configured, dynamic entities registered. */
5599 		olx |= MLX5_TXOFF_CONFIG_TXPP;
5600 	}
5601 	if (priv->txqs_n && (*priv->txqs)[0]) {
5602 		struct mlx5_txq_data *txd = (*priv->txqs)[0];
5603 
5604 		if (txd->inlen_send) {
5605 			/*
5606 			 * Check the data inline requirements. Data inline
5607 			 * is enabled on per device basis, we can check
5608 			 * the first Tx queue only.
5609 			 *
5610 			 * If device does not support VLAN insertion in WQE
5611 			 * and some queues are requested to perform VLAN
5612 			 * insertion offload than inline must be enabled.
5613 			 */
5614 			olx |= MLX5_TXOFF_CONFIG_INLINE;
5615 		}
5616 	}
5617 	if (config->mps == MLX5_MPW_ENHANCED &&
5618 	    config->txq_inline_min <= 0) {
5619 		/*
5620 		 * The NIC supports Enhanced Multi-Packet Write
5621 		 * and does not require minimal inline data.
5622 		 */
5623 		olx |= MLX5_TXOFF_CONFIG_EMPW;
5624 	}
5625 	if (rte_flow_dynf_metadata_avail()) {
5626 		/* We should support Flow metadata. */
5627 		olx |= MLX5_TXOFF_CONFIG_METADATA;
5628 	}
5629 	if (config->mps == MLX5_MPW) {
5630 		/*
5631 		 * The NIC supports Legacy Multi-Packet Write.
5632 		 * The MLX5_TXOFF_CONFIG_MPW controls the
5633 		 * descriptor building method in combination
5634 		 * with MLX5_TXOFF_CONFIG_EMPW.
5635 		 */
5636 		if (!(olx & (MLX5_TXOFF_CONFIG_TSO |
5637 			     MLX5_TXOFF_CONFIG_SWP |
5638 			     MLX5_TXOFF_CONFIG_VLAN |
5639 			     MLX5_TXOFF_CONFIG_METADATA)))
5640 			olx |= MLX5_TXOFF_CONFIG_EMPW |
5641 			       MLX5_TXOFF_CONFIG_MPW;
5642 	}
5643 	/*
5644 	 * Scan the routines table to find the minimal
5645 	 * satisfying routine with requested offloads.
5646 	 */
5647 	m = RTE_DIM(txoff_func);
5648 	for (i = 0; i < RTE_DIM(txoff_func); i++) {
5649 		unsigned int tmp;
5650 
5651 		tmp = txoff_func[i].olx;
5652 		if (tmp == olx) {
5653 			/* Meets requested offloads exactly.*/
5654 			m = i;
5655 			break;
5656 		}
5657 		if ((tmp & olx) != olx) {
5658 			/* Does not meet requested offloads at all. */
5659 			continue;
5660 		}
5661 		if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_MPW)
5662 			/* Do not enable legacy MPW if not configured. */
5663 			continue;
5664 		if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_EMPW)
5665 			/* Do not enable eMPW if not configured. */
5666 			continue;
5667 		if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_INLINE)
5668 			/* Do not enable inlining if not configured. */
5669 			continue;
5670 		if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_TXPP)
5671 			/* Do not enable scheduling if not configured. */
5672 			continue;
5673 		/*
5674 		 * Some routine meets the requirements.
5675 		 * Check whether it has minimal amount
5676 		 * of not requested offloads.
5677 		 */
5678 		tmp = __builtin_popcountl(tmp & ~olx);
5679 		if (m >= RTE_DIM(txoff_func) || tmp < diff) {
5680 			/* First or better match, save and continue. */
5681 			m = i;
5682 			diff = tmp;
5683 			continue;
5684 		}
5685 		if (tmp == diff) {
5686 			tmp = txoff_func[i].olx ^ txoff_func[m].olx;
5687 			if (__builtin_ffsl(txoff_func[i].olx & ~tmp) <
5688 			    __builtin_ffsl(txoff_func[m].olx & ~tmp)) {
5689 				/* Lighter not requested offload. */
5690 				m = i;
5691 			}
5692 		}
5693 	}
5694 	if (m >= RTE_DIM(txoff_func)) {
5695 		DRV_LOG(DEBUG, "port %u has no selected Tx function"
5696 			       " for requested offloads %04X",
5697 				dev->data->port_id, olx);
5698 		return NULL;
5699 	}
5700 	DRV_LOG(DEBUG, "port %u has selected Tx function"
5701 		       " supporting offloads %04X/%04X",
5702 			dev->data->port_id, olx, txoff_func[m].olx);
5703 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_MULTI)
5704 		DRV_LOG(DEBUG, "\tMULTI (multi segment)");
5705 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_TSO)
5706 		DRV_LOG(DEBUG, "\tTSO   (TCP send offload)");
5707 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_SWP)
5708 		DRV_LOG(DEBUG, "\tSWP   (software parser)");
5709 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_CSUM)
5710 		DRV_LOG(DEBUG, "\tCSUM  (checksum offload)");
5711 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_INLINE)
5712 		DRV_LOG(DEBUG, "\tINLIN (inline data)");
5713 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_VLAN)
5714 		DRV_LOG(DEBUG, "\tVLANI (VLAN insertion)");
5715 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_METADATA)
5716 		DRV_LOG(DEBUG, "\tMETAD (tx Flow metadata)");
5717 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_TXPP)
5718 		DRV_LOG(DEBUG, "\tMETAD (tx Scheduling)");
5719 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_EMPW) {
5720 		if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_MPW)
5721 			DRV_LOG(DEBUG, "\tMPW   (Legacy MPW)");
5722 		else
5723 			DRV_LOG(DEBUG, "\tEMPW  (Enhanced MPW)");
5724 	}
5725 	return txoff_func[m].func;
5726 }
5727 
5728 /**
5729  * DPDK callback to get the TX queue information
5730  *
5731  * @param dev
5732  *   Pointer to the device structure.
5733  *
5734  * @param tx_queue_id
5735  *   Tx queue identificator.
5736  *
5737  * @param qinfo
5738  *   Pointer to the TX queue information structure.
5739  *
5740  * @return
5741  *   None.
5742  */
5743 
5744 void
5745 mlx5_txq_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
5746 		  struct rte_eth_txq_info *qinfo)
5747 {
5748 	struct mlx5_priv *priv = dev->data->dev_private;
5749 	struct mlx5_txq_data *txq = (*priv->txqs)[tx_queue_id];
5750 	struct mlx5_txq_ctrl *txq_ctrl =
5751 			container_of(txq, struct mlx5_txq_ctrl, txq);
5752 
5753 	if (!txq)
5754 		return;
5755 	qinfo->nb_desc = txq->elts_s;
5756 	qinfo->conf.tx_thresh.pthresh = 0;
5757 	qinfo->conf.tx_thresh.hthresh = 0;
5758 	qinfo->conf.tx_thresh.wthresh = 0;
5759 	qinfo->conf.tx_rs_thresh = 0;
5760 	qinfo->conf.tx_free_thresh = 0;
5761 	qinfo->conf.tx_deferred_start = txq_ctrl ? 0 : 1;
5762 	qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
5763 }
5764 
5765 /**
5766  * DPDK callback to get the TX packet burst mode information
5767  *
5768  * @param dev
5769  *   Pointer to the device structure.
5770  *
5771  * @param tx_queue_id
5772  *   Tx queue identificatior.
5773  *
5774  * @param mode
5775  *   Pointer to the burts mode information.
5776  *
5777  * @return
5778  *   0 as success, -EINVAL as failure.
5779  */
5780 
5781 int
5782 mlx5_tx_burst_mode_get(struct rte_eth_dev *dev,
5783 		       uint16_t tx_queue_id __rte_unused,
5784 		       struct rte_eth_burst_mode *mode)
5785 {
5786 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
5787 	unsigned int i, olx;
5788 
5789 	for (i = 0; i < RTE_DIM(txoff_func); i++) {
5790 		if (pkt_burst == txoff_func[i].func) {
5791 			olx = txoff_func[i].olx;
5792 			snprintf(mode->info, sizeof(mode->info),
5793 				 "%s%s%s%s%s%s%s%s%s",
5794 				 (olx & MLX5_TXOFF_CONFIG_EMPW) ?
5795 				 ((olx & MLX5_TXOFF_CONFIG_MPW) ?
5796 				 "Legacy MPW" : "Enhanced MPW") : "No MPW",
5797 				 (olx & MLX5_TXOFF_CONFIG_MULTI) ?
5798 				 " + MULTI" : "",
5799 				 (olx & MLX5_TXOFF_CONFIG_TSO) ?
5800 				 " + TSO" : "",
5801 				 (olx & MLX5_TXOFF_CONFIG_SWP) ?
5802 				 " + SWP" : "",
5803 				 (olx & MLX5_TXOFF_CONFIG_CSUM) ?
5804 				 "  + CSUM" : "",
5805 				 (olx & MLX5_TXOFF_CONFIG_INLINE) ?
5806 				 " + INLINE" : "",
5807 				 (olx & MLX5_TXOFF_CONFIG_VLAN) ?
5808 				 " + VLAN" : "",
5809 				 (olx & MLX5_TXOFF_CONFIG_METADATA) ?
5810 				 " + METADATA" : "",
5811 				 (olx & MLX5_TXOFF_CONFIG_TXPP) ?
5812 				 " + TXPP" : "");
5813 			return 0;
5814 		}
5815 	}
5816 	return -EINVAL;
5817 }
5818