xref: /dpdk/drivers/net/mlx5/mlx5_rxtx.c (revision b733c60f68f12e064359b27e630305c541a3fbdf)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5 
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10 
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28 
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35 
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38 
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
42 
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45 
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49 
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52 
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54 	[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56 
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59 
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68 	unsigned int i;
69 	uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70 
71 	/* Last entry must not be overwritten, reserved for errored packet. */
72 	for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73 		(*p)[i] = RTE_PTYPE_UNKNOWN;
74 	/*
75 	 * The index to the array should have:
76 	 * bit[1:0] = l3_hdr_type
77 	 * bit[4:2] = l4_hdr_type
78 	 * bit[5] = ip_frag
79 	 * bit[6] = tunneled
80 	 * bit[7] = outer_l3_type
81 	 */
82 	/* L2 */
83 	(*p)[0x00] = RTE_PTYPE_L2_ETHER;
84 	/* L3 */
85 	(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86 		     RTE_PTYPE_L4_NONFRAG;
87 	(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88 		     RTE_PTYPE_L4_NONFRAG;
89 	/* Fragmented */
90 	(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91 		     RTE_PTYPE_L4_FRAG;
92 	(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93 		     RTE_PTYPE_L4_FRAG;
94 	/* TCP */
95 	(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96 		     RTE_PTYPE_L4_TCP;
97 	(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98 		     RTE_PTYPE_L4_TCP;
99 	(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100 		     RTE_PTYPE_L4_TCP;
101 	(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102 		     RTE_PTYPE_L4_TCP;
103 	(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104 		     RTE_PTYPE_L4_TCP;
105 	(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106 		     RTE_PTYPE_L4_TCP;
107 	/* UDP */
108 	(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109 		     RTE_PTYPE_L4_UDP;
110 	(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111 		     RTE_PTYPE_L4_UDP;
112 	/* Repeat with outer_l3_type being set. Just in case. */
113 	(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114 		     RTE_PTYPE_L4_NONFRAG;
115 	(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116 		     RTE_PTYPE_L4_NONFRAG;
117 	(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118 		     RTE_PTYPE_L4_FRAG;
119 	(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120 		     RTE_PTYPE_L4_FRAG;
121 	(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122 		     RTE_PTYPE_L4_TCP;
123 	(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124 		     RTE_PTYPE_L4_TCP;
125 	(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126 		     RTE_PTYPE_L4_TCP;
127 	(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128 		     RTE_PTYPE_L4_TCP;
129 	(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130 		     RTE_PTYPE_L4_TCP;
131 	(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132 		     RTE_PTYPE_L4_TCP;
133 	(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134 		     RTE_PTYPE_L4_UDP;
135 	(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136 		     RTE_PTYPE_L4_UDP;
137 	/* Tunneled - L3 */
138 	(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139 	(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141 		     RTE_PTYPE_INNER_L4_NONFRAG;
142 	(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144 		     RTE_PTYPE_INNER_L4_NONFRAG;
145 	(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146 	(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148 		     RTE_PTYPE_INNER_L4_NONFRAG;
149 	(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151 		     RTE_PTYPE_INNER_L4_NONFRAG;
152 	/* Tunneled - Fragmented */
153 	(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155 		     RTE_PTYPE_INNER_L4_FRAG;
156 	(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158 		     RTE_PTYPE_INNER_L4_FRAG;
159 	(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161 		     RTE_PTYPE_INNER_L4_FRAG;
162 	(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164 		     RTE_PTYPE_INNER_L4_FRAG;
165 	/* Tunneled - TCP */
166 	(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168 		     RTE_PTYPE_INNER_L4_TCP;
169 	(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171 		     RTE_PTYPE_INNER_L4_TCP;
172 	(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174 		     RTE_PTYPE_INNER_L4_TCP;
175 	(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177 		     RTE_PTYPE_INNER_L4_TCP;
178 	(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180 		     RTE_PTYPE_INNER_L4_TCP;
181 	(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183 		     RTE_PTYPE_INNER_L4_TCP;
184 	(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186 		     RTE_PTYPE_INNER_L4_TCP;
187 	(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189 		     RTE_PTYPE_INNER_L4_TCP;
190 	(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192 		     RTE_PTYPE_INNER_L4_TCP;
193 	(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195 		     RTE_PTYPE_INNER_L4_TCP;
196 	(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198 		     RTE_PTYPE_INNER_L4_TCP;
199 	(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201 		     RTE_PTYPE_INNER_L4_TCP;
202 	/* Tunneled - UDP */
203 	(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205 		     RTE_PTYPE_INNER_L4_UDP;
206 	(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208 		     RTE_PTYPE_INNER_L4_UDP;
209 	(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211 		     RTE_PTYPE_INNER_L4_UDP;
212 	(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214 		     RTE_PTYPE_INNER_L4_UDP;
215 }
216 
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223 	unsigned int i;
224 	uint8_t v;
225 
226 	/*
227 	 * The index should have:
228 	 * bit[0] = PKT_TX_TCP_SEG
229 	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230 	 * bit[4] = PKT_TX_IP_CKSUM
231 	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
232 	 * bit[9] = tunnel
233 	 */
234 	for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235 		v = 0;
236 		if (i & (1 << 9)) {
237 			/* Tunneled packet. */
238 			if (i & (1 << 8)) /* Outer IP. */
239 				v |= MLX5_ETH_WQE_L3_CSUM;
240 			if (i & (1 << 4)) /* Inner IP. */
241 				v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243 				v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244 		} else {
245 			/* No tunnel. */
246 			if (i & (1 << 4)) /* IP. */
247 				v |= MLX5_ETH_WQE_L3_CSUM;
248 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249 				v |= MLX5_ETH_WQE_L4_CSUM;
250 		}
251 		mlx5_cksum_table[i] = v;
252 	}
253 }
254 
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261 	unsigned int i;
262 	uint8_t v;
263 
264 	/*
265 	 * The index should have:
266 	 * bit[0:1] = PKT_TX_L4_MASK
267 	 * bit[4] = PKT_TX_IPV6
268 	 * bit[8] = PKT_TX_OUTER_IPV6
269 	 * bit[9] = PKT_TX_OUTER_UDP
270 	 */
271 	for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272 		v = 0;
273 		if (i & (1 << 8))
274 			v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275 		if (i & (1 << 9))
276 			v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277 		if (i & (1 << 4))
278 			v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279 		if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280 			v |= MLX5_ETH_WQE_L4_INNER_UDP;
281 		mlx5_swp_types_table[i] = v;
282 	}
283 }
284 
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299 	size_t tailroom;
300 	tailroom = (uintptr_t)(txq->wqes) +
301 		   (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302 		   (uintptr_t)addr;
303 	return tailroom;
304 }
305 
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325 		void *base, size_t tailroom)
326 {
327 	void *ret;
328 
329 	if (n > tailroom) {
330 		rte_memcpy(dst, src, tailroom);
331 		rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332 			   n - tailroom);
333 		ret = (uint8_t *)base + n - tailroom;
334 	} else {
335 		rte_memcpy(dst, src, n);
336 		ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337 	}
338 	return ret;
339 }
340 
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349 	   uint32_t *length,
350 	   uintptr_t *addr,
351 	   uint16_t *pkt_inline_sz,
352 	   uint8_t **raw,
353 	   uint16_t *max_wqe,
354 	   uint16_t *tso_segsz,
355 	   uint16_t *tso_header_sz)
356 {
357 	uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358 				    (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359 	unsigned int copy_b;
360 	uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361 	const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362 				 PKT_TX_TUNNEL_MASK);
363 	uint16_t n_wqe;
364 
365 	*tso_segsz = buf->tso_segsz;
366 	*tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367 	if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368 		txq->stats.oerrors++;
369 		return -EINVAL;
370 	}
371 	if (tunneled)
372 		*tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373 	/* First seg must contain all TSO headers. */
374 	if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375 		     *tso_header_sz > DATA_LEN(buf)) {
376 		txq->stats.oerrors++;
377 		return -EINVAL;
378 	}
379 	copy_b = *tso_header_sz - *pkt_inline_sz;
380 	if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381 		return -EAGAIN;
382 	n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383 	if (unlikely(*max_wqe < n_wqe))
384 		return -EINVAL;
385 	*max_wqe -= n_wqe;
386 	rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387 	*length -= copy_b;
388 	*addr += copy_b;
389 	copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390 	*pkt_inline_sz += copy_b;
391 	*raw += copy_b;
392 	return 0;
393 }
394 
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409 	struct mlx5_txq_data *txq = tx_queue;
410 	uint16_t used;
411 
412 	mlx5_tx_complete(txq);
413 	used = txq->elts_head - txq->elts_tail;
414 	if (offset < used)
415 		return RTE_ETH_TX_DESC_FULL;
416 	return RTE_ETH_TX_DESC_DONE;
417 }
418 
419 /**
420  * DPDK callback to check the status of a rx descriptor.
421  *
422  * @param rx_queue
423  *   The rx queue.
424  * @param[in] offset
425  *   The index of the descriptor in the ring.
426  *
427  * @return
428  *   The status of the tx descriptor.
429  */
430 int
431 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
432 {
433 	struct mlx5_rxq_data *rxq = rx_queue;
434 	struct rxq_zip *zip = &rxq->zip;
435 	volatile struct mlx5_cqe *cqe;
436 	const unsigned int cqe_n = (1 << rxq->cqe_n);
437 	const unsigned int cqe_cnt = cqe_n - 1;
438 	unsigned int cq_ci;
439 	unsigned int used;
440 
441 	/* if we are processing a compressed cqe */
442 	if (zip->ai) {
443 		used = zip->cqe_cnt - zip->ca;
444 		cq_ci = zip->cq_ci;
445 	} else {
446 		used = 0;
447 		cq_ci = rxq->cq_ci;
448 	}
449 	cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
450 	while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
451 		int8_t op_own;
452 		unsigned int n;
453 
454 		op_own = cqe->op_own;
455 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
456 			n = rte_be_to_cpu_32(cqe->byte_cnt);
457 		else
458 			n = 1;
459 		cq_ci += n;
460 		used += n;
461 		cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
462 	}
463 	used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
464 	if (offset < used)
465 		return RTE_ETH_RX_DESC_DONE;
466 	return RTE_ETH_RX_DESC_AVAIL;
467 }
468 
469 /**
470  * DPDK callback for TX.
471  *
472  * @param dpdk_txq
473  *   Generic pointer to TX queue structure.
474  * @param[in] pkts
475  *   Packets to transmit.
476  * @param pkts_n
477  *   Number of packets in array.
478  *
479  * @return
480  *   Number of packets successfully transmitted (<= pkts_n).
481  */
482 uint16_t
483 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
484 {
485 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
486 	uint16_t elts_head = txq->elts_head;
487 	const uint16_t elts_n = 1 << txq->elts_n;
488 	const uint16_t elts_m = elts_n - 1;
489 	unsigned int i = 0;
490 	unsigned int j = 0;
491 	unsigned int k = 0;
492 	uint16_t max_elts;
493 	uint16_t max_wqe;
494 	unsigned int comp;
495 	volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
496 	unsigned int segs_n = 0;
497 	const unsigned int max_inline = txq->max_inline;
498 	uint64_t addr_64;
499 
500 	if (unlikely(!pkts_n))
501 		return 0;
502 	/* Prefetch first packet cacheline. */
503 	rte_prefetch0(*pkts);
504 	/* Start processing. */
505 	mlx5_tx_complete(txq);
506 	max_elts = (elts_n - (elts_head - txq->elts_tail));
507 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
508 	if (unlikely(!max_wqe))
509 		return 0;
510 	do {
511 		struct rte_mbuf *buf = *pkts; /* First_seg. */
512 		uint8_t *raw;
513 		volatile struct mlx5_wqe_v *wqe = NULL;
514 		volatile rte_v128u32_t *dseg = NULL;
515 		uint32_t length;
516 		unsigned int ds = 0;
517 		unsigned int sg = 0; /* counter of additional segs attached. */
518 		uintptr_t addr;
519 		uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
520 		uint16_t tso_header_sz = 0;
521 		uint16_t ehdr;
522 		uint8_t cs_flags;
523 		uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
524 		uint32_t swp_offsets = 0;
525 		uint8_t swp_types = 0;
526 		uint16_t tso_segsz = 0;
527 #ifdef MLX5_PMD_SOFT_COUNTERS
528 		uint32_t total_length = 0;
529 #endif
530 		int ret;
531 
532 		segs_n = buf->nb_segs;
533 		/*
534 		 * Make sure there is enough room to store this packet and
535 		 * that one ring entry remains unused.
536 		 */
537 		assert(segs_n);
538 		if (max_elts < segs_n)
539 			break;
540 		max_elts -= segs_n;
541 		sg = --segs_n;
542 		if (unlikely(--max_wqe == 0))
543 			break;
544 		wqe = (volatile struct mlx5_wqe_v *)
545 			tx_mlx5_wqe(txq, txq->wqe_ci);
546 		rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
547 		if (pkts_n - i > 1)
548 			rte_prefetch0(*(pkts + 1));
549 		addr = rte_pktmbuf_mtod(buf, uintptr_t);
550 		length = DATA_LEN(buf);
551 		ehdr = (((uint8_t *)addr)[1] << 8) |
552 		       ((uint8_t *)addr)[0];
553 #ifdef MLX5_PMD_SOFT_COUNTERS
554 		total_length = length;
555 #endif
556 		if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
557 			txq->stats.oerrors++;
558 			break;
559 		}
560 		/* Update element. */
561 		(*txq->elts)[elts_head & elts_m] = buf;
562 		/* Prefetch next buffer data. */
563 		if (pkts_n - i > 1)
564 			rte_prefetch0(
565 			    rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
566 		cs_flags = txq_ol_cksum_to_cs(buf);
567 		txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
568 		raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
569 		/* Replace the Ethernet type by the VLAN if necessary. */
570 		if (buf->ol_flags & PKT_TX_VLAN_PKT) {
571 			uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
572 							 buf->vlan_tci);
573 			unsigned int len = 2 * ETHER_ADDR_LEN - 2;
574 
575 			addr += 2;
576 			length -= 2;
577 			/* Copy Destination and source mac address. */
578 			memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
579 			/* Copy VLAN. */
580 			memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
581 			/* Copy missing two bytes to end the DSeg. */
582 			memcpy((uint8_t *)raw + len + sizeof(vlan),
583 			       ((uint8_t *)addr) + len, 2);
584 			addr += len + 2;
585 			length -= (len + 2);
586 		} else {
587 			memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
588 			       MLX5_WQE_DWORD_SIZE);
589 			length -= pkt_inline_sz;
590 			addr += pkt_inline_sz;
591 		}
592 		raw += MLX5_WQE_DWORD_SIZE;
593 		if (tso) {
594 			ret = inline_tso(txq, buf, &length,
595 					 &addr, &pkt_inline_sz,
596 					 &raw, &max_wqe,
597 					 &tso_segsz, &tso_header_sz);
598 			if (ret == -EINVAL) {
599 				break;
600 			} else if (ret == -EAGAIN) {
601 				/* NOP WQE. */
602 				wqe->ctrl = (rte_v128u32_t){
603 					rte_cpu_to_be_32(txq->wqe_ci << 8),
604 					rte_cpu_to_be_32(txq->qp_num_8s | 1),
605 					0,
606 					0,
607 				};
608 				ds = 1;
609 #ifdef MLX5_PMD_SOFT_COUNTERS
610 				total_length = 0;
611 #endif
612 				k++;
613 				goto next_wqe;
614 			}
615 		}
616 		/* Inline if enough room. */
617 		if (max_inline || tso) {
618 			uint32_t inl = 0;
619 			uintptr_t end = (uintptr_t)
620 				(((uintptr_t)txq->wqes) +
621 				 (1 << txq->wqe_n) * MLX5_WQE_SIZE);
622 			unsigned int inline_room = max_inline *
623 						   RTE_CACHE_LINE_SIZE -
624 						   (pkt_inline_sz - 2) -
625 						   !!tso * sizeof(inl);
626 			uintptr_t addr_end;
627 			unsigned int copy_b;
628 
629 pkt_inline:
630 			addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
631 						   RTE_CACHE_LINE_SIZE);
632 			copy_b = (addr_end > addr) ?
633 				 RTE_MIN((addr_end - addr), length) : 0;
634 			if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
635 				/*
636 				 * One Dseg remains in the current WQE.  To
637 				 * keep the computation positive, it is
638 				 * removed after the bytes to Dseg conversion.
639 				 */
640 				uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
641 
642 				if (unlikely(max_wqe < n))
643 					break;
644 				max_wqe -= n;
645 				if (tso) {
646 					assert(inl == 0);
647 					inl = rte_cpu_to_be_32(copy_b |
648 							       MLX5_INLINE_SEG);
649 					rte_memcpy((void *)raw,
650 						   (void *)&inl, sizeof(inl));
651 					raw += sizeof(inl);
652 					pkt_inline_sz += sizeof(inl);
653 				}
654 				rte_memcpy((void *)raw, (void *)addr, copy_b);
655 				addr += copy_b;
656 				length -= copy_b;
657 				pkt_inline_sz += copy_b;
658 			}
659 			/*
660 			 * 2 DWORDs consumed by the WQE header + ETH segment +
661 			 * the size of the inline part of the packet.
662 			 */
663 			ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
664 			if (length > 0) {
665 				if (ds % (MLX5_WQE_SIZE /
666 					  MLX5_WQE_DWORD_SIZE) == 0) {
667 					if (unlikely(--max_wqe == 0))
668 						break;
669 					dseg = (volatile rte_v128u32_t *)
670 					       tx_mlx5_wqe(txq, txq->wqe_ci +
671 							   ds / 4);
672 				} else {
673 					dseg = (volatile rte_v128u32_t *)
674 						((uintptr_t)wqe +
675 						 (ds * MLX5_WQE_DWORD_SIZE));
676 				}
677 				goto use_dseg;
678 			} else if (!segs_n) {
679 				goto next_pkt;
680 			} else {
681 				/*
682 				 * Further inline the next segment only for
683 				 * non-TSO packets.
684 				 */
685 				if (!tso) {
686 					raw += copy_b;
687 					inline_room -= copy_b;
688 				} else {
689 					inline_room = 0;
690 				}
691 				/* Move to the next segment. */
692 				--segs_n;
693 				buf = buf->next;
694 				assert(buf);
695 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
696 				length = DATA_LEN(buf);
697 #ifdef MLX5_PMD_SOFT_COUNTERS
698 				total_length += length;
699 #endif
700 				(*txq->elts)[++elts_head & elts_m] = buf;
701 				goto pkt_inline;
702 			}
703 		} else {
704 			/*
705 			 * No inline has been done in the packet, only the
706 			 * Ethernet Header as been stored.
707 			 */
708 			dseg = (volatile rte_v128u32_t *)
709 				((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
710 			ds = 3;
711 use_dseg:
712 			/* Add the remaining packet as a simple ds. */
713 			addr_64 = rte_cpu_to_be_64(addr);
714 			*dseg = (rte_v128u32_t){
715 				rte_cpu_to_be_32(length),
716 				mlx5_tx_mb2mr(txq, buf),
717 				addr_64,
718 				addr_64 >> 32,
719 			};
720 			++ds;
721 			if (!segs_n)
722 				goto next_pkt;
723 		}
724 next_seg:
725 		assert(buf);
726 		assert(ds);
727 		assert(wqe);
728 		/*
729 		 * Spill on next WQE when the current one does not have
730 		 * enough room left. Size of WQE must a be a multiple
731 		 * of data segment size.
732 		 */
733 		assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
734 		if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
735 			if (unlikely(--max_wqe == 0))
736 				break;
737 			dseg = (volatile rte_v128u32_t *)
738 			       tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
739 			rte_prefetch0(tx_mlx5_wqe(txq,
740 						  txq->wqe_ci + ds / 4 + 1));
741 		} else {
742 			++dseg;
743 		}
744 		++ds;
745 		buf = buf->next;
746 		assert(buf);
747 		length = DATA_LEN(buf);
748 #ifdef MLX5_PMD_SOFT_COUNTERS
749 		total_length += length;
750 #endif
751 		/* Store segment information. */
752 		addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
753 		*dseg = (rte_v128u32_t){
754 			rte_cpu_to_be_32(length),
755 			mlx5_tx_mb2mr(txq, buf),
756 			addr_64,
757 			addr_64 >> 32,
758 		};
759 		(*txq->elts)[++elts_head & elts_m] = buf;
760 		if (--segs_n)
761 			goto next_seg;
762 next_pkt:
763 		if (ds > MLX5_DSEG_MAX) {
764 			txq->stats.oerrors++;
765 			break;
766 		}
767 		++elts_head;
768 		++pkts;
769 		++i;
770 		j += sg;
771 		/* Initialize known and common part of the WQE structure. */
772 		if (tso) {
773 			wqe->ctrl = (rte_v128u32_t){
774 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
775 						 MLX5_OPCODE_TSO),
776 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
777 				0,
778 				0,
779 			};
780 			wqe->eseg = (rte_v128u32_t){
781 				swp_offsets,
782 				cs_flags | (swp_types << 8) |
783 				(rte_cpu_to_be_16(tso_segsz) << 16),
784 				0,
785 				(ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
786 			};
787 		} else {
788 			wqe->ctrl = (rte_v128u32_t){
789 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
790 						 MLX5_OPCODE_SEND),
791 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
792 				0,
793 				0,
794 			};
795 			wqe->eseg = (rte_v128u32_t){
796 				swp_offsets,
797 				cs_flags | (swp_types << 8),
798 				0,
799 				(ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
800 			};
801 		}
802 next_wqe:
803 		txq->wqe_ci += (ds + 3) / 4;
804 		/* Save the last successful WQE for completion request */
805 		last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
806 #ifdef MLX5_PMD_SOFT_COUNTERS
807 		/* Increment sent bytes counter. */
808 		txq->stats.obytes += total_length;
809 #endif
810 	} while (i < pkts_n);
811 	/* Take a shortcut if nothing must be sent. */
812 	if (unlikely((i + k) == 0))
813 		return 0;
814 	txq->elts_head += (i + j);
815 	/* Check whether completion threshold has been reached. */
816 	comp = txq->elts_comp + i + j + k;
817 	if (comp >= MLX5_TX_COMP_THRESH) {
818 		/* A CQE slot must always be available. */
819 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
820 		/* Request completion on last WQE. */
821 		last_wqe->ctrl2 = rte_cpu_to_be_32(8);
822 		/* Save elts_head in unused "immediate" field of WQE. */
823 		last_wqe->ctrl3 = txq->elts_head;
824 		txq->elts_comp = 0;
825 	} else {
826 		txq->elts_comp = comp;
827 	}
828 #ifdef MLX5_PMD_SOFT_COUNTERS
829 	/* Increment sent packets counter. */
830 	txq->stats.opackets += i;
831 #endif
832 	/* Ring QP doorbell. */
833 	mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
834 	return i;
835 }
836 
837 /**
838  * Open a MPW session.
839  *
840  * @param txq
841  *   Pointer to TX queue structure.
842  * @param mpw
843  *   Pointer to MPW session structure.
844  * @param length
845  *   Packet length.
846  */
847 static inline void
848 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
849 {
850 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
851 	volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
852 		(volatile struct mlx5_wqe_data_seg (*)[])
853 		tx_mlx5_wqe(txq, idx + 1);
854 
855 	mpw->state = MLX5_MPW_STATE_OPENED;
856 	mpw->pkts_n = 0;
857 	mpw->len = length;
858 	mpw->total_len = 0;
859 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
860 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
861 	mpw->wqe->eseg.inline_hdr_sz = 0;
862 	mpw->wqe->eseg.rsvd0 = 0;
863 	mpw->wqe->eseg.rsvd1 = 0;
864 	mpw->wqe->eseg.rsvd2 = 0;
865 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
866 					     (txq->wqe_ci << 8) |
867 					     MLX5_OPCODE_TSO);
868 	mpw->wqe->ctrl[2] = 0;
869 	mpw->wqe->ctrl[3] = 0;
870 	mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
871 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
872 	mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
873 		(((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
874 	mpw->data.dseg[2] = &(*dseg)[0];
875 	mpw->data.dseg[3] = &(*dseg)[1];
876 	mpw->data.dseg[4] = &(*dseg)[2];
877 }
878 
879 /**
880  * Close a MPW session.
881  *
882  * @param txq
883  *   Pointer to TX queue structure.
884  * @param mpw
885  *   Pointer to MPW session structure.
886  */
887 static inline void
888 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
889 {
890 	unsigned int num = mpw->pkts_n;
891 
892 	/*
893 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
894 	 * count as 2.
895 	 */
896 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
897 	mpw->state = MLX5_MPW_STATE_CLOSED;
898 	if (num < 3)
899 		++txq->wqe_ci;
900 	else
901 		txq->wqe_ci += 2;
902 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
903 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
904 }
905 
906 /**
907  * DPDK callback for TX with MPW support.
908  *
909  * @param dpdk_txq
910  *   Generic pointer to TX queue structure.
911  * @param[in] pkts
912  *   Packets to transmit.
913  * @param pkts_n
914  *   Number of packets in array.
915  *
916  * @return
917  *   Number of packets successfully transmitted (<= pkts_n).
918  */
919 uint16_t
920 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
921 {
922 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
923 	uint16_t elts_head = txq->elts_head;
924 	const uint16_t elts_n = 1 << txq->elts_n;
925 	const uint16_t elts_m = elts_n - 1;
926 	unsigned int i = 0;
927 	unsigned int j = 0;
928 	uint16_t max_elts;
929 	uint16_t max_wqe;
930 	unsigned int comp;
931 	struct mlx5_mpw mpw = {
932 		.state = MLX5_MPW_STATE_CLOSED,
933 	};
934 
935 	if (unlikely(!pkts_n))
936 		return 0;
937 	/* Prefetch first packet cacheline. */
938 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
939 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
940 	/* Start processing. */
941 	mlx5_tx_complete(txq);
942 	max_elts = (elts_n - (elts_head - txq->elts_tail));
943 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
944 	if (unlikely(!max_wqe))
945 		return 0;
946 	do {
947 		struct rte_mbuf *buf = *(pkts++);
948 		uint32_t length;
949 		unsigned int segs_n = buf->nb_segs;
950 		uint32_t cs_flags;
951 
952 		/*
953 		 * Make sure there is enough room to store this packet and
954 		 * that one ring entry remains unused.
955 		 */
956 		assert(segs_n);
957 		if (max_elts < segs_n)
958 			break;
959 		/* Do not bother with large packets MPW cannot handle. */
960 		if (segs_n > MLX5_MPW_DSEG_MAX) {
961 			txq->stats.oerrors++;
962 			break;
963 		}
964 		max_elts -= segs_n;
965 		--pkts_n;
966 		cs_flags = txq_ol_cksum_to_cs(buf);
967 		/* Retrieve packet information. */
968 		length = PKT_LEN(buf);
969 		assert(length);
970 		/* Start new session if packet differs. */
971 		if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
972 		    ((mpw.len != length) ||
973 		     (segs_n != 1) ||
974 		     (mpw.wqe->eseg.cs_flags != cs_flags)))
975 			mlx5_mpw_close(txq, &mpw);
976 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
977 			/*
978 			 * Multi-Packet WQE consumes at most two WQE.
979 			 * mlx5_mpw_new() expects to be able to use such
980 			 * resources.
981 			 */
982 			if (unlikely(max_wqe < 2))
983 				break;
984 			max_wqe -= 2;
985 			mlx5_mpw_new(txq, &mpw, length);
986 			mpw.wqe->eseg.cs_flags = cs_flags;
987 		}
988 		/* Multi-segment packets must be alone in their MPW. */
989 		assert((segs_n == 1) || (mpw.pkts_n == 0));
990 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
991 		length = 0;
992 #endif
993 		do {
994 			volatile struct mlx5_wqe_data_seg *dseg;
995 			uintptr_t addr;
996 
997 			assert(buf);
998 			(*txq->elts)[elts_head++ & elts_m] = buf;
999 			dseg = mpw.data.dseg[mpw.pkts_n];
1000 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1001 			*dseg = (struct mlx5_wqe_data_seg){
1002 				.byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1003 				.lkey = mlx5_tx_mb2mr(txq, buf),
1004 				.addr = rte_cpu_to_be_64(addr),
1005 			};
1006 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1007 			length += DATA_LEN(buf);
1008 #endif
1009 			buf = buf->next;
1010 			++mpw.pkts_n;
1011 			++j;
1012 		} while (--segs_n);
1013 		assert(length == mpw.len);
1014 		if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1015 			mlx5_mpw_close(txq, &mpw);
1016 #ifdef MLX5_PMD_SOFT_COUNTERS
1017 		/* Increment sent bytes counter. */
1018 		txq->stats.obytes += length;
1019 #endif
1020 		++i;
1021 	} while (pkts_n);
1022 	/* Take a shortcut if nothing must be sent. */
1023 	if (unlikely(i == 0))
1024 		return 0;
1025 	/* Check whether completion threshold has been reached. */
1026 	/* "j" includes both packets and segments. */
1027 	comp = txq->elts_comp + j;
1028 	if (comp >= MLX5_TX_COMP_THRESH) {
1029 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1030 
1031 		/* A CQE slot must always be available. */
1032 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1033 		/* Request completion on last WQE. */
1034 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1035 		/* Save elts_head in unused "immediate" field of WQE. */
1036 		wqe->ctrl[3] = elts_head;
1037 		txq->elts_comp = 0;
1038 	} else {
1039 		txq->elts_comp = comp;
1040 	}
1041 #ifdef MLX5_PMD_SOFT_COUNTERS
1042 	/* Increment sent packets counter. */
1043 	txq->stats.opackets += i;
1044 #endif
1045 	/* Ring QP doorbell. */
1046 	if (mpw.state == MLX5_MPW_STATE_OPENED)
1047 		mlx5_mpw_close(txq, &mpw);
1048 	mlx5_tx_dbrec(txq, mpw.wqe);
1049 	txq->elts_head = elts_head;
1050 	return i;
1051 }
1052 
1053 /**
1054  * Open a MPW inline session.
1055  *
1056  * @param txq
1057  *   Pointer to TX queue structure.
1058  * @param mpw
1059  *   Pointer to MPW session structure.
1060  * @param length
1061  *   Packet length.
1062  */
1063 static inline void
1064 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1065 		    uint32_t length)
1066 {
1067 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1068 	struct mlx5_wqe_inl_small *inl;
1069 
1070 	mpw->state = MLX5_MPW_INL_STATE_OPENED;
1071 	mpw->pkts_n = 0;
1072 	mpw->len = length;
1073 	mpw->total_len = 0;
1074 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1075 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1076 					     (txq->wqe_ci << 8) |
1077 					     MLX5_OPCODE_TSO);
1078 	mpw->wqe->ctrl[2] = 0;
1079 	mpw->wqe->ctrl[3] = 0;
1080 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1081 	mpw->wqe->eseg.inline_hdr_sz = 0;
1082 	mpw->wqe->eseg.cs_flags = 0;
1083 	mpw->wqe->eseg.rsvd0 = 0;
1084 	mpw->wqe->eseg.rsvd1 = 0;
1085 	mpw->wqe->eseg.rsvd2 = 0;
1086 	inl = (struct mlx5_wqe_inl_small *)
1087 		(((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1088 	mpw->data.raw = (uint8_t *)&inl->raw;
1089 }
1090 
1091 /**
1092  * Close a MPW inline session.
1093  *
1094  * @param txq
1095  *   Pointer to TX queue structure.
1096  * @param mpw
1097  *   Pointer to MPW session structure.
1098  */
1099 static inline void
1100 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1101 {
1102 	unsigned int size;
1103 	struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1104 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1105 
1106 	size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1107 	/*
1108 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
1109 	 * count as 2.
1110 	 */
1111 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1112 					     MLX5_WQE_DS(size));
1113 	mpw->state = MLX5_MPW_STATE_CLOSED;
1114 	inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1115 	txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1116 }
1117 
1118 /**
1119  * DPDK callback for TX with MPW inline support.
1120  *
1121  * @param dpdk_txq
1122  *   Generic pointer to TX queue structure.
1123  * @param[in] pkts
1124  *   Packets to transmit.
1125  * @param pkts_n
1126  *   Number of packets in array.
1127  *
1128  * @return
1129  *   Number of packets successfully transmitted (<= pkts_n).
1130  */
1131 uint16_t
1132 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1133 			 uint16_t pkts_n)
1134 {
1135 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1136 	uint16_t elts_head = txq->elts_head;
1137 	const uint16_t elts_n = 1 << txq->elts_n;
1138 	const uint16_t elts_m = elts_n - 1;
1139 	unsigned int i = 0;
1140 	unsigned int j = 0;
1141 	uint16_t max_elts;
1142 	uint16_t max_wqe;
1143 	unsigned int comp;
1144 	unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1145 	struct mlx5_mpw mpw = {
1146 		.state = MLX5_MPW_STATE_CLOSED,
1147 	};
1148 	/*
1149 	 * Compute the maximum number of WQE which can be consumed by inline
1150 	 * code.
1151 	 * - 2 DSEG for:
1152 	 *   - 1 control segment,
1153 	 *   - 1 Ethernet segment,
1154 	 * - N Dseg from the inline request.
1155 	 */
1156 	const unsigned int wqe_inl_n =
1157 		((2 * MLX5_WQE_DWORD_SIZE +
1158 		  txq->max_inline * RTE_CACHE_LINE_SIZE) +
1159 		 RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1160 
1161 	if (unlikely(!pkts_n))
1162 		return 0;
1163 	/* Prefetch first packet cacheline. */
1164 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1165 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1166 	/* Start processing. */
1167 	mlx5_tx_complete(txq);
1168 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1169 	do {
1170 		struct rte_mbuf *buf = *(pkts++);
1171 		uintptr_t addr;
1172 		uint32_t length;
1173 		unsigned int segs_n = buf->nb_segs;
1174 		uint8_t cs_flags;
1175 
1176 		/*
1177 		 * Make sure there is enough room to store this packet and
1178 		 * that one ring entry remains unused.
1179 		 */
1180 		assert(segs_n);
1181 		if (max_elts < segs_n)
1182 			break;
1183 		/* Do not bother with large packets MPW cannot handle. */
1184 		if (segs_n > MLX5_MPW_DSEG_MAX) {
1185 			txq->stats.oerrors++;
1186 			break;
1187 		}
1188 		max_elts -= segs_n;
1189 		--pkts_n;
1190 		/*
1191 		 * Compute max_wqe in case less WQE were consumed in previous
1192 		 * iteration.
1193 		 */
1194 		max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1195 		cs_flags = txq_ol_cksum_to_cs(buf);
1196 		/* Retrieve packet information. */
1197 		length = PKT_LEN(buf);
1198 		/* Start new session if packet differs. */
1199 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1200 			if ((mpw.len != length) ||
1201 			    (segs_n != 1) ||
1202 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1203 				mlx5_mpw_close(txq, &mpw);
1204 		} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1205 			if ((mpw.len != length) ||
1206 			    (segs_n != 1) ||
1207 			    (length > inline_room) ||
1208 			    (mpw.wqe->eseg.cs_flags != cs_flags)) {
1209 				mlx5_mpw_inline_close(txq, &mpw);
1210 				inline_room =
1211 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1212 			}
1213 		}
1214 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1215 			if ((segs_n != 1) ||
1216 			    (length > inline_room)) {
1217 				/*
1218 				 * Multi-Packet WQE consumes at most two WQE.
1219 				 * mlx5_mpw_new() expects to be able to use
1220 				 * such resources.
1221 				 */
1222 				if (unlikely(max_wqe < 2))
1223 					break;
1224 				max_wqe -= 2;
1225 				mlx5_mpw_new(txq, &mpw, length);
1226 				mpw.wqe->eseg.cs_flags = cs_flags;
1227 			} else {
1228 				if (unlikely(max_wqe < wqe_inl_n))
1229 					break;
1230 				max_wqe -= wqe_inl_n;
1231 				mlx5_mpw_inline_new(txq, &mpw, length);
1232 				mpw.wqe->eseg.cs_flags = cs_flags;
1233 			}
1234 		}
1235 		/* Multi-segment packets must be alone in their MPW. */
1236 		assert((segs_n == 1) || (mpw.pkts_n == 0));
1237 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1238 			assert(inline_room ==
1239 			       txq->max_inline * RTE_CACHE_LINE_SIZE);
1240 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1241 			length = 0;
1242 #endif
1243 			do {
1244 				volatile struct mlx5_wqe_data_seg *dseg;
1245 
1246 				assert(buf);
1247 				(*txq->elts)[elts_head++ & elts_m] = buf;
1248 				dseg = mpw.data.dseg[mpw.pkts_n];
1249 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
1250 				*dseg = (struct mlx5_wqe_data_seg){
1251 					.byte_count =
1252 					       rte_cpu_to_be_32(DATA_LEN(buf)),
1253 					.lkey = mlx5_tx_mb2mr(txq, buf),
1254 					.addr = rte_cpu_to_be_64(addr),
1255 				};
1256 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1257 				length += DATA_LEN(buf);
1258 #endif
1259 				buf = buf->next;
1260 				++mpw.pkts_n;
1261 				++j;
1262 			} while (--segs_n);
1263 			assert(length == mpw.len);
1264 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1265 				mlx5_mpw_close(txq, &mpw);
1266 		} else {
1267 			unsigned int max;
1268 
1269 			assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1270 			assert(length <= inline_room);
1271 			assert(length == DATA_LEN(buf));
1272 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1273 			(*txq->elts)[elts_head++ & elts_m] = buf;
1274 			/* Maximum number of bytes before wrapping. */
1275 			max = ((((uintptr_t)(txq->wqes)) +
1276 				(1 << txq->wqe_n) *
1277 				MLX5_WQE_SIZE) -
1278 			       (uintptr_t)mpw.data.raw);
1279 			if (length > max) {
1280 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1281 					   (void *)addr,
1282 					   max);
1283 				mpw.data.raw = (volatile void *)txq->wqes;
1284 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1285 					   (void *)(addr + max),
1286 					   length - max);
1287 				mpw.data.raw += length - max;
1288 			} else {
1289 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1290 					   (void *)addr,
1291 					   length);
1292 
1293 				if (length == max)
1294 					mpw.data.raw =
1295 						(volatile void *)txq->wqes;
1296 				else
1297 					mpw.data.raw += length;
1298 			}
1299 			++mpw.pkts_n;
1300 			mpw.total_len += length;
1301 			++j;
1302 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1303 				mlx5_mpw_inline_close(txq, &mpw);
1304 				inline_room =
1305 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1306 			} else {
1307 				inline_room -= length;
1308 			}
1309 		}
1310 #ifdef MLX5_PMD_SOFT_COUNTERS
1311 		/* Increment sent bytes counter. */
1312 		txq->stats.obytes += length;
1313 #endif
1314 		++i;
1315 	} while (pkts_n);
1316 	/* Take a shortcut if nothing must be sent. */
1317 	if (unlikely(i == 0))
1318 		return 0;
1319 	/* Check whether completion threshold has been reached. */
1320 	/* "j" includes both packets and segments. */
1321 	comp = txq->elts_comp + j;
1322 	if (comp >= MLX5_TX_COMP_THRESH) {
1323 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1324 
1325 		/* A CQE slot must always be available. */
1326 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1327 		/* Request completion on last WQE. */
1328 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1329 		/* Save elts_head in unused "immediate" field of WQE. */
1330 		wqe->ctrl[3] = elts_head;
1331 		txq->elts_comp = 0;
1332 	} else {
1333 		txq->elts_comp = comp;
1334 	}
1335 #ifdef MLX5_PMD_SOFT_COUNTERS
1336 	/* Increment sent packets counter. */
1337 	txq->stats.opackets += i;
1338 #endif
1339 	/* Ring QP doorbell. */
1340 	if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1341 		mlx5_mpw_inline_close(txq, &mpw);
1342 	else if (mpw.state == MLX5_MPW_STATE_OPENED)
1343 		mlx5_mpw_close(txq, &mpw);
1344 	mlx5_tx_dbrec(txq, mpw.wqe);
1345 	txq->elts_head = elts_head;
1346 	return i;
1347 }
1348 
1349 /**
1350  * Open an Enhanced MPW session.
1351  *
1352  * @param txq
1353  *   Pointer to TX queue structure.
1354  * @param mpw
1355  *   Pointer to MPW session structure.
1356  * @param length
1357  *   Packet length.
1358  */
1359 static inline void
1360 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1361 {
1362 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1363 
1364 	mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1365 	mpw->pkts_n = 0;
1366 	mpw->total_len = sizeof(struct mlx5_wqe);
1367 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1368 	mpw->wqe->ctrl[0] =
1369 		rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1370 				 (txq->wqe_ci << 8) |
1371 				 MLX5_OPCODE_ENHANCED_MPSW);
1372 	mpw->wqe->ctrl[2] = 0;
1373 	mpw->wqe->ctrl[3] = 0;
1374 	memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1375 	if (unlikely(padding)) {
1376 		uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1377 
1378 		/* Pad the first 2 DWORDs with zero-length inline header. */
1379 		*(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1380 		*(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1381 			rte_cpu_to_be_32(MLX5_INLINE_SEG);
1382 		mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1383 		/* Start from the next WQEBB. */
1384 		mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1385 	} else {
1386 		mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1387 	}
1388 }
1389 
1390 /**
1391  * Close an Enhanced MPW session.
1392  *
1393  * @param txq
1394  *   Pointer to TX queue structure.
1395  * @param mpw
1396  *   Pointer to MPW session structure.
1397  *
1398  * @return
1399  *   Number of consumed WQEs.
1400  */
1401 static inline uint16_t
1402 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1403 {
1404 	uint16_t ret;
1405 
1406 	/* Store size in multiple of 16 bytes. Control and Ethernet segments
1407 	 * count as 2.
1408 	 */
1409 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1410 					     MLX5_WQE_DS(mpw->total_len));
1411 	mpw->state = MLX5_MPW_STATE_CLOSED;
1412 	ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1413 	txq->wqe_ci += ret;
1414 	return ret;
1415 }
1416 
1417 /**
1418  * TX with Enhanced MPW support.
1419  *
1420  * @param txq
1421  *   Pointer to TX queue structure.
1422  * @param[in] pkts
1423  *   Packets to transmit.
1424  * @param pkts_n
1425  *   Number of packets in array.
1426  *
1427  * @return
1428  *   Number of packets successfully transmitted (<= pkts_n).
1429  */
1430 static inline uint16_t
1431 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1432 	       uint16_t pkts_n)
1433 {
1434 	uint16_t elts_head = txq->elts_head;
1435 	const uint16_t elts_n = 1 << txq->elts_n;
1436 	const uint16_t elts_m = elts_n - 1;
1437 	unsigned int i = 0;
1438 	unsigned int j = 0;
1439 	uint16_t max_elts;
1440 	uint16_t max_wqe;
1441 	unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1442 	unsigned int mpw_room = 0;
1443 	unsigned int inl_pad = 0;
1444 	uint32_t inl_hdr;
1445 	uint64_t addr_64;
1446 	struct mlx5_mpw mpw = {
1447 		.state = MLX5_MPW_STATE_CLOSED,
1448 	};
1449 
1450 	if (unlikely(!pkts_n))
1451 		return 0;
1452 	/* Start processing. */
1453 	mlx5_tx_complete(txq);
1454 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1455 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1456 	if (unlikely(!max_wqe))
1457 		return 0;
1458 	do {
1459 		struct rte_mbuf *buf = *(pkts++);
1460 		uintptr_t addr;
1461 		unsigned int do_inline = 0; /* Whether inline is possible. */
1462 		uint32_t length;
1463 		uint8_t cs_flags;
1464 
1465 		/* Multi-segmented packet is handled in slow-path outside. */
1466 		assert(NB_SEGS(buf) == 1);
1467 		/* Make sure there is enough room to store this packet. */
1468 		if (max_elts - j == 0)
1469 			break;
1470 		cs_flags = txq_ol_cksum_to_cs(buf);
1471 		/* Retrieve packet information. */
1472 		length = PKT_LEN(buf);
1473 		/* Start new session if:
1474 		 * - multi-segment packet
1475 		 * - no space left even for a dseg
1476 		 * - next packet can be inlined with a new WQE
1477 		 * - cs_flag differs
1478 		 */
1479 		if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1480 			if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1481 			     mpw_room) ||
1482 			    (length <= txq->inline_max_packet_sz &&
1483 			     inl_pad + sizeof(inl_hdr) + length >
1484 			     mpw_room) ||
1485 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1486 				max_wqe -= mlx5_empw_close(txq, &mpw);
1487 		}
1488 		if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1489 			/* In Enhanced MPW, inline as much as the budget is
1490 			 * allowed. The remaining space is to be filled with
1491 			 * dsegs. If the title WQEBB isn't padded, it will have
1492 			 * 2 dsegs there.
1493 			 */
1494 			mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1495 					   (max_inline ? max_inline :
1496 					    pkts_n * MLX5_WQE_DWORD_SIZE) +
1497 					   MLX5_WQE_SIZE);
1498 			if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1499 				break;
1500 			/* Don't pad the title WQEBB to not waste WQ. */
1501 			mlx5_empw_new(txq, &mpw, 0);
1502 			mpw_room -= mpw.total_len;
1503 			inl_pad = 0;
1504 			do_inline = length <= txq->inline_max_packet_sz &&
1505 				    sizeof(inl_hdr) + length <= mpw_room &&
1506 				    !txq->mpw_hdr_dseg;
1507 			mpw.wqe->eseg.cs_flags = cs_flags;
1508 		} else {
1509 			/* Evaluate whether the next packet can be inlined.
1510 			 * Inlininig is possible when:
1511 			 * - length is less than configured value
1512 			 * - length fits for remaining space
1513 			 * - not required to fill the title WQEBB with dsegs
1514 			 */
1515 			do_inline =
1516 				length <= txq->inline_max_packet_sz &&
1517 				inl_pad + sizeof(inl_hdr) + length <=
1518 				 mpw_room &&
1519 				(!txq->mpw_hdr_dseg ||
1520 				 mpw.total_len >= MLX5_WQE_SIZE);
1521 		}
1522 		if (max_inline && do_inline) {
1523 			/* Inline packet into WQE. */
1524 			unsigned int max;
1525 
1526 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1527 			assert(length == DATA_LEN(buf));
1528 			inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1529 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1530 			mpw.data.raw = (volatile void *)
1531 				((uintptr_t)mpw.data.raw + inl_pad);
1532 			max = tx_mlx5_wq_tailroom(txq,
1533 					(void *)(uintptr_t)mpw.data.raw);
1534 			/* Copy inline header. */
1535 			mpw.data.raw = (volatile void *)
1536 				mlx5_copy_to_wq(
1537 					  (void *)(uintptr_t)mpw.data.raw,
1538 					  &inl_hdr,
1539 					  sizeof(inl_hdr),
1540 					  (void *)(uintptr_t)txq->wqes,
1541 					  max);
1542 			max = tx_mlx5_wq_tailroom(txq,
1543 					(void *)(uintptr_t)mpw.data.raw);
1544 			/* Copy packet data. */
1545 			mpw.data.raw = (volatile void *)
1546 				mlx5_copy_to_wq(
1547 					  (void *)(uintptr_t)mpw.data.raw,
1548 					  (void *)addr,
1549 					  length,
1550 					  (void *)(uintptr_t)txq->wqes,
1551 					  max);
1552 			++mpw.pkts_n;
1553 			mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1554 			/* No need to get completion as the entire packet is
1555 			 * copied to WQ. Free the buf right away.
1556 			 */
1557 			rte_pktmbuf_free_seg(buf);
1558 			mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1559 			/* Add pad in the next packet if any. */
1560 			inl_pad = (((uintptr_t)mpw.data.raw +
1561 					(MLX5_WQE_DWORD_SIZE - 1)) &
1562 					~(MLX5_WQE_DWORD_SIZE - 1)) -
1563 				  (uintptr_t)mpw.data.raw;
1564 		} else {
1565 			/* No inline. Load a dseg of packet pointer. */
1566 			volatile rte_v128u32_t *dseg;
1567 
1568 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1569 			assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1570 			assert(length == DATA_LEN(buf));
1571 			if (!tx_mlx5_wq_tailroom(txq,
1572 					(void *)((uintptr_t)mpw.data.raw
1573 						+ inl_pad)))
1574 				dseg = (volatile void *)txq->wqes;
1575 			else
1576 				dseg = (volatile void *)
1577 					((uintptr_t)mpw.data.raw +
1578 					 inl_pad);
1579 			(*txq->elts)[elts_head++ & elts_m] = buf;
1580 			addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1581 								    uintptr_t));
1582 			*dseg = (rte_v128u32_t) {
1583 				rte_cpu_to_be_32(length),
1584 				mlx5_tx_mb2mr(txq, buf),
1585 				addr_64,
1586 				addr_64 >> 32,
1587 			};
1588 			mpw.data.raw = (volatile void *)(dseg + 1);
1589 			mpw.total_len += (inl_pad + sizeof(*dseg));
1590 			++j;
1591 			++mpw.pkts_n;
1592 			mpw_room -= (inl_pad + sizeof(*dseg));
1593 			inl_pad = 0;
1594 		}
1595 #ifdef MLX5_PMD_SOFT_COUNTERS
1596 		/* Increment sent bytes counter. */
1597 		txq->stats.obytes += length;
1598 #endif
1599 		++i;
1600 	} while (i < pkts_n);
1601 	/* Take a shortcut if nothing must be sent. */
1602 	if (unlikely(i == 0))
1603 		return 0;
1604 	/* Check whether completion threshold has been reached. */
1605 	if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1606 			(uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1607 			 (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1608 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1609 
1610 		/* A CQE slot must always be available. */
1611 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1612 		/* Request completion on last WQE. */
1613 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1614 		/* Save elts_head in unused "immediate" field of WQE. */
1615 		wqe->ctrl[3] = elts_head;
1616 		txq->elts_comp = 0;
1617 		txq->mpw_comp = txq->wqe_ci;
1618 	} else {
1619 		txq->elts_comp += j;
1620 	}
1621 #ifdef MLX5_PMD_SOFT_COUNTERS
1622 	/* Increment sent packets counter. */
1623 	txq->stats.opackets += i;
1624 #endif
1625 	if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1626 		mlx5_empw_close(txq, &mpw);
1627 	/* Ring QP doorbell. */
1628 	mlx5_tx_dbrec(txq, mpw.wqe);
1629 	txq->elts_head = elts_head;
1630 	return i;
1631 }
1632 
1633 /**
1634  * DPDK callback for TX with Enhanced MPW support.
1635  *
1636  * @param dpdk_txq
1637  *   Generic pointer to TX queue structure.
1638  * @param[in] pkts
1639  *   Packets to transmit.
1640  * @param pkts_n
1641  *   Number of packets in array.
1642  *
1643  * @return
1644  *   Number of packets successfully transmitted (<= pkts_n).
1645  */
1646 uint16_t
1647 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1648 {
1649 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1650 	uint16_t nb_tx = 0;
1651 
1652 	while (pkts_n > nb_tx) {
1653 		uint16_t n;
1654 		uint16_t ret;
1655 
1656 		n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1657 		if (n) {
1658 			ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1659 			if (!ret)
1660 				break;
1661 			nb_tx += ret;
1662 		}
1663 		n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1664 		if (n) {
1665 			ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1666 			if (!ret)
1667 				break;
1668 			nb_tx += ret;
1669 		}
1670 	}
1671 	return nb_tx;
1672 }
1673 
1674 /**
1675  * Translate RX completion flags to packet type.
1676  *
1677  * @param[in] rxq
1678  *   Pointer to RX queue structure.
1679  * @param[in] cqe
1680  *   Pointer to CQE.
1681  *
1682  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1683  *
1684  * @return
1685  *   Packet type for struct rte_mbuf.
1686  */
1687 static inline uint32_t
1688 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1689 {
1690 	uint8_t idx;
1691 	uint8_t pinfo = cqe->pkt_info;
1692 	uint16_t ptype = cqe->hdr_type_etc;
1693 
1694 	/*
1695 	 * The index to the array should have:
1696 	 * bit[1:0] = l3_hdr_type
1697 	 * bit[4:2] = l4_hdr_type
1698 	 * bit[5] = ip_frag
1699 	 * bit[6] = tunneled
1700 	 * bit[7] = outer_l3_type
1701 	 */
1702 	idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1703 	return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1704 }
1705 
1706 /**
1707  * Get size of the next packet for a given CQE. For compressed CQEs, the
1708  * consumer index is updated only once all packets of the current one have
1709  * been processed.
1710  *
1711  * @param rxq
1712  *   Pointer to RX queue.
1713  * @param cqe
1714  *   CQE to process.
1715  * @param[out] mcqe
1716  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1717  *   written.
1718  *
1719  * @return
1720  *   Packet size in bytes (0 if there is none), -1 in case of completion
1721  *   with error.
1722  */
1723 static inline int
1724 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1725 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1726 {
1727 	struct rxq_zip *zip = &rxq->zip;
1728 	uint16_t cqe_n = cqe_cnt + 1;
1729 	int len = 0;
1730 	uint16_t idx, end;
1731 
1732 	/* Process compressed data in the CQE and mini arrays. */
1733 	if (zip->ai) {
1734 		volatile struct mlx5_mini_cqe8 (*mc)[8] =
1735 			(volatile struct mlx5_mini_cqe8 (*)[8])
1736 			(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1737 
1738 		len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1739 		*mcqe = &(*mc)[zip->ai & 7];
1740 		if ((++zip->ai & 7) == 0) {
1741 			/* Invalidate consumed CQEs */
1742 			idx = zip->ca;
1743 			end = zip->na;
1744 			while (idx != end) {
1745 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1746 					MLX5_CQE_INVALIDATE;
1747 				++idx;
1748 			}
1749 			/*
1750 			 * Increment consumer index to skip the number of
1751 			 * CQEs consumed. Hardware leaves holes in the CQ
1752 			 * ring for software use.
1753 			 */
1754 			zip->ca = zip->na;
1755 			zip->na += 8;
1756 		}
1757 		if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1758 			/* Invalidate the rest */
1759 			idx = zip->ca;
1760 			end = zip->cq_ci;
1761 
1762 			while (idx != end) {
1763 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1764 					MLX5_CQE_INVALIDATE;
1765 				++idx;
1766 			}
1767 			rxq->cq_ci = zip->cq_ci;
1768 			zip->ai = 0;
1769 		}
1770 	/* No compressed data, get next CQE and verify if it is compressed. */
1771 	} else {
1772 		int ret;
1773 		int8_t op_own;
1774 
1775 		ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1776 		if (unlikely(ret == 1))
1777 			return 0;
1778 		++rxq->cq_ci;
1779 		op_own = cqe->op_own;
1780 		rte_cio_rmb();
1781 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1782 			volatile struct mlx5_mini_cqe8 (*mc)[8] =
1783 				(volatile struct mlx5_mini_cqe8 (*)[8])
1784 				(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1785 							  cqe_cnt].pkt_info);
1786 
1787 			/* Fix endianness. */
1788 			zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1789 			/*
1790 			 * Current mini array position is the one returned by
1791 			 * check_cqe64().
1792 			 *
1793 			 * If completion comprises several mini arrays, as a
1794 			 * special case the second one is located 7 CQEs after
1795 			 * the initial CQE instead of 8 for subsequent ones.
1796 			 */
1797 			zip->ca = rxq->cq_ci;
1798 			zip->na = zip->ca + 7;
1799 			/* Compute the next non compressed CQE. */
1800 			--rxq->cq_ci;
1801 			zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1802 			/* Get packet size to return. */
1803 			len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1804 			*mcqe = &(*mc)[0];
1805 			zip->ai = 1;
1806 			/* Prefetch all the entries to be invalidated */
1807 			idx = zip->ca;
1808 			end = zip->cq_ci;
1809 			while (idx != end) {
1810 				rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1811 				++idx;
1812 			}
1813 		} else {
1814 			len = rte_be_to_cpu_32(cqe->byte_cnt);
1815 		}
1816 		/* Error while receiving packet. */
1817 		if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1818 			return -1;
1819 	}
1820 	return len;
1821 }
1822 
1823 /**
1824  * Translate RX completion flags to offload flags.
1825  *
1826  * @param[in] cqe
1827  *   Pointer to CQE.
1828  *
1829  * @return
1830  *   Offload flags (ol_flags) for struct rte_mbuf.
1831  */
1832 static inline uint32_t
1833 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1834 {
1835 	uint32_t ol_flags = 0;
1836 	uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1837 
1838 	ol_flags =
1839 		TRANSPOSE(flags,
1840 			  MLX5_CQE_RX_L3_HDR_VALID,
1841 			  PKT_RX_IP_CKSUM_GOOD) |
1842 		TRANSPOSE(flags,
1843 			  MLX5_CQE_RX_L4_HDR_VALID,
1844 			  PKT_RX_L4_CKSUM_GOOD);
1845 	return ol_flags;
1846 }
1847 
1848 /**
1849  * Fill in mbuf fields from RX completion flags.
1850  * Note that pkt->ol_flags should be initialized outside of this function.
1851  *
1852  * @param rxq
1853  *   Pointer to RX queue.
1854  * @param pkt
1855  *   mbuf to fill.
1856  * @param cqe
1857  *   CQE to process.
1858  * @param rss_hash_res
1859  *   Packet RSS Hash result.
1860  */
1861 static inline void
1862 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1863 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1864 {
1865 	/* Update packet information. */
1866 	pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1867 	if (rss_hash_res && rxq->rss_hash) {
1868 		pkt->hash.rss = rss_hash_res;
1869 		pkt->ol_flags |= PKT_RX_RSS_HASH;
1870 	}
1871 	if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1872 		pkt->ol_flags |= PKT_RX_FDIR;
1873 		if (cqe->sop_drop_qpn !=
1874 		    rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1875 			uint32_t mark = cqe->sop_drop_qpn;
1876 
1877 			pkt->ol_flags |= PKT_RX_FDIR_ID;
1878 			pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1879 		}
1880 	}
1881 	if (rxq->csum)
1882 		pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1883 	if (rxq->vlan_strip &&
1884 	    (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1885 		pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1886 		pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1887 	}
1888 	if (rxq->hw_timestamp) {
1889 		pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1890 		pkt->ol_flags |= PKT_RX_TIMESTAMP;
1891 	}
1892 }
1893 
1894 /**
1895  * DPDK callback for RX.
1896  *
1897  * @param dpdk_rxq
1898  *   Generic pointer to RX queue structure.
1899  * @param[out] pkts
1900  *   Array to store received packets.
1901  * @param pkts_n
1902  *   Maximum number of packets in array.
1903  *
1904  * @return
1905  *   Number of packets successfully received (<= pkts_n).
1906  */
1907 uint16_t
1908 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1909 {
1910 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1911 	const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1912 	const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1913 	const unsigned int sges_n = rxq->sges_n;
1914 	struct rte_mbuf *pkt = NULL;
1915 	struct rte_mbuf *seg = NULL;
1916 	volatile struct mlx5_cqe *cqe =
1917 		&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1918 	unsigned int i = 0;
1919 	unsigned int rq_ci = rxq->rq_ci << sges_n;
1920 	int len = 0; /* keep its value across iterations. */
1921 
1922 	while (pkts_n) {
1923 		unsigned int idx = rq_ci & wqe_cnt;
1924 		volatile struct mlx5_wqe_data_seg *wqe =
1925 			&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1926 		struct rte_mbuf *rep = (*rxq->elts)[idx];
1927 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1928 		uint32_t rss_hash_res;
1929 
1930 		if (pkt)
1931 			NEXT(seg) = rep;
1932 		seg = rep;
1933 		rte_prefetch0(seg);
1934 		rte_prefetch0(cqe);
1935 		rte_prefetch0(wqe);
1936 		rep = rte_mbuf_raw_alloc(rxq->mp);
1937 		if (unlikely(rep == NULL)) {
1938 			++rxq->stats.rx_nombuf;
1939 			if (!pkt) {
1940 				/*
1941 				 * no buffers before we even started,
1942 				 * bail out silently.
1943 				 */
1944 				break;
1945 			}
1946 			while (pkt != seg) {
1947 				assert(pkt != (*rxq->elts)[idx]);
1948 				rep = NEXT(pkt);
1949 				NEXT(pkt) = NULL;
1950 				NB_SEGS(pkt) = 1;
1951 				rte_mbuf_raw_free(pkt);
1952 				pkt = rep;
1953 			}
1954 			break;
1955 		}
1956 		if (!pkt) {
1957 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1958 			len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
1959 			if (!len) {
1960 				rte_mbuf_raw_free(rep);
1961 				break;
1962 			}
1963 			if (unlikely(len == -1)) {
1964 				/* RX error, packet is likely too large. */
1965 				rte_mbuf_raw_free(rep);
1966 				++rxq->stats.idropped;
1967 				goto skip;
1968 			}
1969 			pkt = seg;
1970 			assert(len >= (rxq->crc_present << 2));
1971 			pkt->ol_flags = 0;
1972 			/* If compressed, take hash result from mini-CQE. */
1973 			rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
1974 							cqe->rx_hash_res :
1975 							mcqe->rx_hash_result);
1976 			rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
1977 			if (rxq->crc_present)
1978 				len -= ETHER_CRC_LEN;
1979 			PKT_LEN(pkt) = len;
1980 		}
1981 		DATA_LEN(rep) = DATA_LEN(seg);
1982 		PKT_LEN(rep) = PKT_LEN(seg);
1983 		SET_DATA_OFF(rep, DATA_OFF(seg));
1984 		PORT(rep) = PORT(seg);
1985 		(*rxq->elts)[idx] = rep;
1986 		/*
1987 		 * Fill NIC descriptor with the new buffer.  The lkey and size
1988 		 * of the buffers are already known, only the buffer address
1989 		 * changes.
1990 		 */
1991 		wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1992 		/* If there's only one MR, no need to replace LKey in WQE. */
1993 		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
1994 			wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
1995 		if (len > DATA_LEN(seg)) {
1996 			len -= DATA_LEN(seg);
1997 			++NB_SEGS(pkt);
1998 			++rq_ci;
1999 			continue;
2000 		}
2001 		DATA_LEN(seg) = len;
2002 #ifdef MLX5_PMD_SOFT_COUNTERS
2003 		/* Increment bytes counter. */
2004 		rxq->stats.ibytes += PKT_LEN(pkt);
2005 #endif
2006 		/* Return packet. */
2007 		*(pkts++) = pkt;
2008 		pkt = NULL;
2009 		--pkts_n;
2010 		++i;
2011 skip:
2012 		/* Align consumer index to the next stride. */
2013 		rq_ci >>= sges_n;
2014 		++rq_ci;
2015 		rq_ci <<= sges_n;
2016 	}
2017 	if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2018 		return 0;
2019 	/* Update the consumer index. */
2020 	rxq->rq_ci = rq_ci >> sges_n;
2021 	rte_cio_wmb();
2022 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2023 	rte_cio_wmb();
2024 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2025 #ifdef MLX5_PMD_SOFT_COUNTERS
2026 	/* Increment packets counter. */
2027 	rxq->stats.ipackets += i;
2028 #endif
2029 	return i;
2030 }
2031 
2032 void
2033 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2034 {
2035 	struct mlx5_mprq_buf *buf = opaque;
2036 
2037 	if (rte_atomic16_read(&buf->refcnt) == 1) {
2038 		rte_mempool_put(buf->mp, buf);
2039 	} else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2040 		rte_atomic16_set(&buf->refcnt, 1);
2041 		rte_mempool_put(buf->mp, buf);
2042 	}
2043 }
2044 
2045 void
2046 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2047 {
2048 	mlx5_mprq_buf_free_cb(NULL, buf);
2049 }
2050 
2051 static inline void
2052 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2053 {
2054 	struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2055 	volatile struct mlx5_wqe_data_seg *wqe =
2056 		&((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2057 	void *addr;
2058 
2059 	assert(rep != NULL);
2060 	/* Replace MPRQ buf. */
2061 	(*rxq->mprq_bufs)[rq_idx] = rep;
2062 	/* Replace WQE. */
2063 	addr = mlx5_mprq_buf_addr(rep);
2064 	wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2065 	/* If there's only one MR, no need to replace LKey in WQE. */
2066 	if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2067 		wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2068 	/* Stash a mbuf for next replacement. */
2069 	if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2070 		rxq->mprq_repl = rep;
2071 	else
2072 		rxq->mprq_repl = NULL;
2073 }
2074 
2075 /**
2076  * DPDK callback for RX with Multi-Packet RQ support.
2077  *
2078  * @param dpdk_rxq
2079  *   Generic pointer to RX queue structure.
2080  * @param[out] pkts
2081  *   Array to store received packets.
2082  * @param pkts_n
2083  *   Maximum number of packets in array.
2084  *
2085  * @return
2086  *   Number of packets successfully received (<= pkts_n).
2087  */
2088 uint16_t
2089 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2090 {
2091 	struct mlx5_rxq_data *rxq = dpdk_rxq;
2092 	const unsigned int strd_n = 1 << rxq->strd_num_n;
2093 	const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2094 	const unsigned int strd_shift =
2095 		MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2096 	const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2097 	const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2098 	volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2099 	unsigned int i = 0;
2100 	uint32_t rq_ci = rxq->rq_ci;
2101 	uint16_t consumed_strd = rxq->consumed_strd;
2102 	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2103 
2104 	while (i < pkts_n) {
2105 		struct rte_mbuf *pkt;
2106 		void *addr;
2107 		int ret;
2108 		unsigned int len;
2109 		uint16_t strd_cnt;
2110 		uint16_t strd_idx;
2111 		uint32_t offset;
2112 		uint32_t byte_cnt;
2113 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2114 		uint32_t rss_hash_res = 0;
2115 
2116 		if (consumed_strd == strd_n) {
2117 			/* Replace WQE only if the buffer is still in use. */
2118 			if (rte_atomic16_read(&buf->refcnt) > 1) {
2119 				mprq_buf_replace(rxq, rq_ci & wq_mask);
2120 				/* Release the old buffer. */
2121 				mlx5_mprq_buf_free(buf);
2122 			} else if (unlikely(rxq->mprq_repl == NULL)) {
2123 				struct mlx5_mprq_buf *rep;
2124 
2125 				/*
2126 				 * Currently, the MPRQ mempool is out of buffer
2127 				 * and doing memcpy regardless of the size of Rx
2128 				 * packet. Retry allocation to get back to
2129 				 * normal.
2130 				 */
2131 				if (!rte_mempool_get(rxq->mprq_mp,
2132 						     (void **)&rep))
2133 					rxq->mprq_repl = rep;
2134 			}
2135 			/* Advance to the next WQE. */
2136 			consumed_strd = 0;
2137 			++rq_ci;
2138 			buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2139 		}
2140 		cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2141 		ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
2142 		if (!ret)
2143 			break;
2144 		if (unlikely(ret == -1)) {
2145 			/* RX error, packet is likely too large. */
2146 			++rxq->stats.idropped;
2147 			continue;
2148 		}
2149 		byte_cnt = ret;
2150 		strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2151 			   MLX5_MPRQ_STRIDE_NUM_SHIFT;
2152 		assert(strd_cnt);
2153 		consumed_strd += strd_cnt;
2154 		if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2155 			continue;
2156 		if (mcqe == NULL) {
2157 			rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
2158 			strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
2159 		} else {
2160 			/* mini-CQE for MPRQ doesn't have hash result. */
2161 			strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
2162 		}
2163 		assert(strd_idx < strd_n);
2164 		assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
2165 		/*
2166 		 * Currently configured to receive a packet per a stride. But if
2167 		 * MTU is adjusted through kernel interface, device could
2168 		 * consume multiple strides without raising an error. In this
2169 		 * case, the packet should be dropped because it is bigger than
2170 		 * the max_rx_pkt_len.
2171 		 */
2172 		if (unlikely(strd_cnt > 1)) {
2173 			++rxq->stats.idropped;
2174 			continue;
2175 		}
2176 		pkt = rte_pktmbuf_alloc(rxq->mp);
2177 		if (unlikely(pkt == NULL)) {
2178 			++rxq->stats.rx_nombuf;
2179 			break;
2180 		}
2181 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2182 		assert((int)len >= (rxq->crc_present << 2));
2183 		if (rxq->crc_present)
2184 			len -= ETHER_CRC_LEN;
2185 		offset = strd_idx * strd_sz + strd_shift;
2186 		addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2187 		/* Initialize the offload flag. */
2188 		pkt->ol_flags = 0;
2189 		/*
2190 		 * Memcpy packets to the target mbuf if:
2191 		 * - The size of packet is smaller than mprq_max_memcpy_len.
2192 		 * - Out of buffer in the Mempool for Multi-Packet RQ.
2193 		 */
2194 		if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2195 			/*
2196 			 * When memcpy'ing packet due to out-of-buffer, the
2197 			 * packet must be smaller than the target mbuf.
2198 			 */
2199 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2200 				rte_pktmbuf_free_seg(pkt);
2201 				++rxq->stats.idropped;
2202 				continue;
2203 			}
2204 			rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2205 		} else {
2206 			rte_iova_t buf_iova;
2207 			struct rte_mbuf_ext_shared_info *shinfo;
2208 			uint16_t buf_len = strd_cnt * strd_sz;
2209 
2210 			/* Increment the refcnt of the whole chunk. */
2211 			rte_atomic16_add_return(&buf->refcnt, 1);
2212 			assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2213 			       strd_n + 1);
2214 			addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2215 			/*
2216 			 * MLX5 device doesn't use iova but it is necessary in a
2217 			 * case where the Rx packet is transmitted via a
2218 			 * different PMD.
2219 			 */
2220 			buf_iova = rte_mempool_virt2iova(buf) +
2221 				   RTE_PTR_DIFF(addr, buf);
2222 			shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2223 					&buf_len, mlx5_mprq_buf_free_cb, buf);
2224 			/*
2225 			 * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2226 			 * attaching the stride to mbuf and more offload flags
2227 			 * will be added below by calling rxq_cq_to_mbuf().
2228 			 * Other fields will be overwritten.
2229 			 */
2230 			rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2231 						  shinfo);
2232 			rte_pktmbuf_reset_headroom(pkt);
2233 			assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2234 			/*
2235 			 * Prevent potential overflow due to MTU change through
2236 			 * kernel interface.
2237 			 */
2238 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2239 				rte_pktmbuf_free_seg(pkt);
2240 				++rxq->stats.idropped;
2241 				continue;
2242 			}
2243 		}
2244 		rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2245 		PKT_LEN(pkt) = len;
2246 		DATA_LEN(pkt) = len;
2247 		PORT(pkt) = rxq->port_id;
2248 #ifdef MLX5_PMD_SOFT_COUNTERS
2249 		/* Increment bytes counter. */
2250 		rxq->stats.ibytes += PKT_LEN(pkt);
2251 #endif
2252 		/* Return packet. */
2253 		*(pkts++) = pkt;
2254 		++i;
2255 	}
2256 	/* Update the consumer indexes. */
2257 	rxq->consumed_strd = consumed_strd;
2258 	rte_cio_wmb();
2259 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2260 	if (rq_ci != rxq->rq_ci) {
2261 		rxq->rq_ci = rq_ci;
2262 		rte_cio_wmb();
2263 		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2264 	}
2265 #ifdef MLX5_PMD_SOFT_COUNTERS
2266 	/* Increment packets counter. */
2267 	rxq->stats.ipackets += i;
2268 #endif
2269 	return i;
2270 }
2271 
2272 /**
2273  * Dummy DPDK callback for TX.
2274  *
2275  * This function is used to temporarily replace the real callback during
2276  * unsafe control operations on the queue, or in case of error.
2277  *
2278  * @param dpdk_txq
2279  *   Generic pointer to TX queue structure.
2280  * @param[in] pkts
2281  *   Packets to transmit.
2282  * @param pkts_n
2283  *   Number of packets in array.
2284  *
2285  * @return
2286  *   Number of packets successfully transmitted (<= pkts_n).
2287  */
2288 uint16_t
2289 removed_tx_burst(void *dpdk_txq __rte_unused,
2290 		 struct rte_mbuf **pkts __rte_unused,
2291 		 uint16_t pkts_n __rte_unused)
2292 {
2293 	return 0;
2294 }
2295 
2296 /**
2297  * Dummy DPDK callback for RX.
2298  *
2299  * This function is used to temporarily replace the real callback during
2300  * unsafe control operations on the queue, or in case of error.
2301  *
2302  * @param dpdk_rxq
2303  *   Generic pointer to RX queue structure.
2304  * @param[out] pkts
2305  *   Array to store received packets.
2306  * @param pkts_n
2307  *   Maximum number of packets in array.
2308  *
2309  * @return
2310  *   Number of packets successfully received (<= pkts_n).
2311  */
2312 uint16_t
2313 removed_rx_burst(void *dpdk_txq __rte_unused,
2314 		 struct rte_mbuf **pkts __rte_unused,
2315 		 uint16_t pkts_n __rte_unused)
2316 {
2317 	return 0;
2318 }
2319 
2320 /*
2321  * Vectorized Rx/Tx routines are not compiled in when required vector
2322  * instructions are not supported on a target architecture. The following null
2323  * stubs are needed for linkage when those are not included outside of this file
2324  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2325  */
2326 
2327 uint16_t __attribute__((weak))
2328 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2329 		      struct rte_mbuf **pkts __rte_unused,
2330 		      uint16_t pkts_n __rte_unused)
2331 {
2332 	return 0;
2333 }
2334 
2335 uint16_t __attribute__((weak))
2336 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2337 		  struct rte_mbuf **pkts __rte_unused,
2338 		  uint16_t pkts_n __rte_unused)
2339 {
2340 	return 0;
2341 }
2342 
2343 uint16_t __attribute__((weak))
2344 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2345 		  struct rte_mbuf **pkts __rte_unused,
2346 		  uint16_t pkts_n __rte_unused)
2347 {
2348 	return 0;
2349 }
2350 
2351 int __attribute__((weak))
2352 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2353 {
2354 	return -ENOTSUP;
2355 }
2356 
2357 int __attribute__((weak))
2358 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2359 {
2360 	return -ENOTSUP;
2361 }
2362 
2363 int __attribute__((weak))
2364 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2365 {
2366 	return -ENOTSUP;
2367 }
2368 
2369 int __attribute__((weak))
2370 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2371 {
2372 	return -ENOTSUP;
2373 }
2374