xref: /dpdk/drivers/net/mlx5/mlx5_rxtx.c (revision 5ecb687a5698d2d8ec1f3b3b5a7a16bceca3e29c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5 
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10 
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28 
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35 
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38 
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
42 
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45 
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49 
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52 
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54 	[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56 
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59 
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68 	unsigned int i;
69 	uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70 
71 	/* Last entry must not be overwritten, reserved for errored packet. */
72 	for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73 		(*p)[i] = RTE_PTYPE_UNKNOWN;
74 	/*
75 	 * The index to the array should have:
76 	 * bit[1:0] = l3_hdr_type
77 	 * bit[4:2] = l4_hdr_type
78 	 * bit[5] = ip_frag
79 	 * bit[6] = tunneled
80 	 * bit[7] = outer_l3_type
81 	 */
82 	/* L2 */
83 	(*p)[0x00] = RTE_PTYPE_L2_ETHER;
84 	/* L3 */
85 	(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86 		     RTE_PTYPE_L4_NONFRAG;
87 	(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88 		     RTE_PTYPE_L4_NONFRAG;
89 	/* Fragmented */
90 	(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91 		     RTE_PTYPE_L4_FRAG;
92 	(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93 		     RTE_PTYPE_L4_FRAG;
94 	/* TCP */
95 	(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96 		     RTE_PTYPE_L4_TCP;
97 	(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98 		     RTE_PTYPE_L4_TCP;
99 	(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100 		     RTE_PTYPE_L4_TCP;
101 	(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102 		     RTE_PTYPE_L4_TCP;
103 	(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104 		     RTE_PTYPE_L4_TCP;
105 	(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106 		     RTE_PTYPE_L4_TCP;
107 	/* UDP */
108 	(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109 		     RTE_PTYPE_L4_UDP;
110 	(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111 		     RTE_PTYPE_L4_UDP;
112 	/* Repeat with outer_l3_type being set. Just in case. */
113 	(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114 		     RTE_PTYPE_L4_NONFRAG;
115 	(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116 		     RTE_PTYPE_L4_NONFRAG;
117 	(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118 		     RTE_PTYPE_L4_FRAG;
119 	(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120 		     RTE_PTYPE_L4_FRAG;
121 	(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122 		     RTE_PTYPE_L4_TCP;
123 	(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124 		     RTE_PTYPE_L4_TCP;
125 	(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126 		     RTE_PTYPE_L4_TCP;
127 	(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128 		     RTE_PTYPE_L4_TCP;
129 	(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130 		     RTE_PTYPE_L4_TCP;
131 	(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132 		     RTE_PTYPE_L4_TCP;
133 	(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134 		     RTE_PTYPE_L4_UDP;
135 	(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136 		     RTE_PTYPE_L4_UDP;
137 	/* Tunneled - L3 */
138 	(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139 	(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141 		     RTE_PTYPE_INNER_L4_NONFRAG;
142 	(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144 		     RTE_PTYPE_INNER_L4_NONFRAG;
145 	(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146 	(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148 		     RTE_PTYPE_INNER_L4_NONFRAG;
149 	(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151 		     RTE_PTYPE_INNER_L4_NONFRAG;
152 	/* Tunneled - Fragmented */
153 	(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155 		     RTE_PTYPE_INNER_L4_FRAG;
156 	(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158 		     RTE_PTYPE_INNER_L4_FRAG;
159 	(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161 		     RTE_PTYPE_INNER_L4_FRAG;
162 	(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164 		     RTE_PTYPE_INNER_L4_FRAG;
165 	/* Tunneled - TCP */
166 	(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168 		     RTE_PTYPE_INNER_L4_TCP;
169 	(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171 		     RTE_PTYPE_INNER_L4_TCP;
172 	(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174 		     RTE_PTYPE_INNER_L4_TCP;
175 	(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177 		     RTE_PTYPE_INNER_L4_TCP;
178 	(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180 		     RTE_PTYPE_INNER_L4_TCP;
181 	(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183 		     RTE_PTYPE_INNER_L4_TCP;
184 	(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186 		     RTE_PTYPE_INNER_L4_TCP;
187 	(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189 		     RTE_PTYPE_INNER_L4_TCP;
190 	(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192 		     RTE_PTYPE_INNER_L4_TCP;
193 	(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195 		     RTE_PTYPE_INNER_L4_TCP;
196 	(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198 		     RTE_PTYPE_INNER_L4_TCP;
199 	(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201 		     RTE_PTYPE_INNER_L4_TCP;
202 	/* Tunneled - UDP */
203 	(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205 		     RTE_PTYPE_INNER_L4_UDP;
206 	(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208 		     RTE_PTYPE_INNER_L4_UDP;
209 	(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211 		     RTE_PTYPE_INNER_L4_UDP;
212 	(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214 		     RTE_PTYPE_INNER_L4_UDP;
215 }
216 
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223 	unsigned int i;
224 	uint8_t v;
225 
226 	/*
227 	 * The index should have:
228 	 * bit[0] = PKT_TX_TCP_SEG
229 	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230 	 * bit[4] = PKT_TX_IP_CKSUM
231 	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
232 	 * bit[9] = tunnel
233 	 */
234 	for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235 		v = 0;
236 		if (i & (1 << 9)) {
237 			/* Tunneled packet. */
238 			if (i & (1 << 8)) /* Outer IP. */
239 				v |= MLX5_ETH_WQE_L3_CSUM;
240 			if (i & (1 << 4)) /* Inner IP. */
241 				v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243 				v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244 		} else {
245 			/* No tunnel. */
246 			if (i & (1 << 4)) /* IP. */
247 				v |= MLX5_ETH_WQE_L3_CSUM;
248 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249 				v |= MLX5_ETH_WQE_L4_CSUM;
250 		}
251 		mlx5_cksum_table[i] = v;
252 	}
253 }
254 
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261 	unsigned int i;
262 	uint8_t v;
263 
264 	/*
265 	 * The index should have:
266 	 * bit[0:1] = PKT_TX_L4_MASK
267 	 * bit[4] = PKT_TX_IPV6
268 	 * bit[8] = PKT_TX_OUTER_IPV6
269 	 * bit[9] = PKT_TX_OUTER_UDP
270 	 */
271 	for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272 		v = 0;
273 		if (i & (1 << 8))
274 			v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275 		if (i & (1 << 9))
276 			v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277 		if (i & (1 << 4))
278 			v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279 		if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280 			v |= MLX5_ETH_WQE_L4_INNER_UDP;
281 		mlx5_swp_types_table[i] = v;
282 	}
283 }
284 
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299 	size_t tailroom;
300 	tailroom = (uintptr_t)(txq->wqes) +
301 		   (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302 		   (uintptr_t)addr;
303 	return tailroom;
304 }
305 
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325 		void *base, size_t tailroom)
326 {
327 	void *ret;
328 
329 	if (n > tailroom) {
330 		rte_memcpy(dst, src, tailroom);
331 		rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332 			   n - tailroom);
333 		ret = (uint8_t *)base + n - tailroom;
334 	} else {
335 		rte_memcpy(dst, src, n);
336 		ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337 	}
338 	return ret;
339 }
340 
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349 	   uint32_t *length,
350 	   uintptr_t *addr,
351 	   uint16_t *pkt_inline_sz,
352 	   uint8_t **raw,
353 	   uint16_t *max_wqe,
354 	   uint16_t *tso_segsz,
355 	   uint16_t *tso_header_sz)
356 {
357 	uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358 				    (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359 	unsigned int copy_b;
360 	uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361 	const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362 				 PKT_TX_TUNNEL_MASK);
363 	uint16_t n_wqe;
364 
365 	*tso_segsz = buf->tso_segsz;
366 	*tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367 	if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368 		txq->stats.oerrors++;
369 		return -EINVAL;
370 	}
371 	if (tunneled)
372 		*tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373 	/* First seg must contain all TSO headers. */
374 	if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375 		     *tso_header_sz > DATA_LEN(buf)) {
376 		txq->stats.oerrors++;
377 		return -EINVAL;
378 	}
379 	copy_b = *tso_header_sz - *pkt_inline_sz;
380 	if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381 		return -EAGAIN;
382 	n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383 	if (unlikely(*max_wqe < n_wqe))
384 		return -EINVAL;
385 	*max_wqe -= n_wqe;
386 	rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387 	*length -= copy_b;
388 	*addr += copy_b;
389 	copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390 	*pkt_inline_sz += copy_b;
391 	*raw += copy_b;
392 	return 0;
393 }
394 
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409 	struct mlx5_txq_data *txq = tx_queue;
410 	uint16_t used;
411 
412 	mlx5_tx_complete(txq);
413 	used = txq->elts_head - txq->elts_tail;
414 	if (offset < used)
415 		return RTE_ETH_TX_DESC_FULL;
416 	return RTE_ETH_TX_DESC_DONE;
417 }
418 
419 /**
420  * Internal function to compute the number of used descriptors in an RX queue
421  *
422  * @param rxq
423  *   The Rx queue.
424  *
425  * @return
426  *   The number of used rx descriptor.
427  */
428 static uint32_t
429 rx_queue_count(struct mlx5_rxq_data *rxq)
430 {
431 	struct rxq_zip *zip = &rxq->zip;
432 	volatile struct mlx5_cqe *cqe;
433 	const unsigned int cqe_n = (1 << rxq->cqe_n);
434 	const unsigned int cqe_cnt = cqe_n - 1;
435 	unsigned int cq_ci;
436 	unsigned int used;
437 
438 	/* if we are processing a compressed cqe */
439 	if (zip->ai) {
440 		used = zip->cqe_cnt - zip->ca;
441 		cq_ci = zip->cq_ci;
442 	} else {
443 		used = 0;
444 		cq_ci = rxq->cq_ci;
445 	}
446 	cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
447 	while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
448 		int8_t op_own;
449 		unsigned int n;
450 
451 		op_own = cqe->op_own;
452 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
453 			n = rte_be_to_cpu_32(cqe->byte_cnt);
454 		else
455 			n = 1;
456 		cq_ci += n;
457 		used += n;
458 		cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
459 	}
460 	used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
461 	return used;
462 }
463 
464 /**
465  * DPDK callback to check the status of a rx descriptor.
466  *
467  * @param rx_queue
468  *   The Rx queue.
469  * @param[in] offset
470  *   The index of the descriptor in the ring.
471  *
472  * @return
473  *   The status of the tx descriptor.
474  */
475 int
476 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
477 {
478 	struct mlx5_rxq_data *rxq = rx_queue;
479 	struct mlx5_rxq_ctrl *rxq_ctrl =
480 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
481 	struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
482 
483 	if (dev->rx_pkt_burst != mlx5_rx_burst) {
484 		rte_errno = ENOTSUP;
485 		return -rte_errno;
486 	}
487 	if (offset >= (1 << rxq->elts_n)) {
488 		rte_errno = EINVAL;
489 		return -rte_errno;
490 	}
491 	if (offset < rx_queue_count(rxq))
492 		return RTE_ETH_RX_DESC_DONE;
493 	return RTE_ETH_RX_DESC_AVAIL;
494 }
495 
496 /**
497  * DPDK callback to get the number of used descriptors in a RX queue
498  *
499  * @param dev
500  *   Pointer to the device structure.
501  *
502  * @param rx_queue_id
503  *   The Rx queue.
504  *
505  * @return
506  *   The number of used rx descriptor.
507  *   -EINVAL if the queue is invalid
508  */
509 uint32_t
510 mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
511 {
512 	struct mlx5_priv *priv = dev->data->dev_private;
513 	struct mlx5_rxq_data *rxq;
514 
515 	if (dev->rx_pkt_burst != mlx5_rx_burst) {
516 		rte_errno = ENOTSUP;
517 		return -rte_errno;
518 	}
519 	rxq = (*priv->rxqs)[rx_queue_id];
520 	if (!rxq) {
521 		rte_errno = EINVAL;
522 		return -rte_errno;
523 	}
524 	return rx_queue_count(rxq);
525 }
526 
527 /**
528  * DPDK callback for TX.
529  *
530  * @param dpdk_txq
531  *   Generic pointer to TX queue structure.
532  * @param[in] pkts
533  *   Packets to transmit.
534  * @param pkts_n
535  *   Number of packets in array.
536  *
537  * @return
538  *   Number of packets successfully transmitted (<= pkts_n).
539  */
540 uint16_t
541 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
542 {
543 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
544 	uint16_t elts_head = txq->elts_head;
545 	const uint16_t elts_n = 1 << txq->elts_n;
546 	const uint16_t elts_m = elts_n - 1;
547 	unsigned int i = 0;
548 	unsigned int j = 0;
549 	unsigned int k = 0;
550 	uint16_t max_elts;
551 	uint16_t max_wqe;
552 	unsigned int comp;
553 	volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
554 	unsigned int segs_n = 0;
555 	const unsigned int max_inline = txq->max_inline;
556 	uint64_t addr_64;
557 
558 	if (unlikely(!pkts_n))
559 		return 0;
560 	/* Prefetch first packet cacheline. */
561 	rte_prefetch0(*pkts);
562 	/* Start processing. */
563 	mlx5_tx_complete(txq);
564 	max_elts = (elts_n - (elts_head - txq->elts_tail));
565 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
566 	if (unlikely(!max_wqe))
567 		return 0;
568 	do {
569 		struct rte_mbuf *buf = *pkts; /* First_seg. */
570 		uint8_t *raw;
571 		volatile struct mlx5_wqe_v *wqe = NULL;
572 		volatile rte_v128u32_t *dseg = NULL;
573 		uint32_t length;
574 		unsigned int ds = 0;
575 		unsigned int sg = 0; /* counter of additional segs attached. */
576 		uintptr_t addr;
577 		uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
578 		uint16_t tso_header_sz = 0;
579 		uint16_t ehdr;
580 		uint8_t cs_flags;
581 		uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
582 		uint32_t swp_offsets = 0;
583 		uint8_t swp_types = 0;
584 		rte_be32_t metadata;
585 		uint16_t tso_segsz = 0;
586 #ifdef MLX5_PMD_SOFT_COUNTERS
587 		uint32_t total_length = 0;
588 #endif
589 		int ret;
590 
591 		segs_n = buf->nb_segs;
592 		/*
593 		 * Make sure there is enough room to store this packet and
594 		 * that one ring entry remains unused.
595 		 */
596 		assert(segs_n);
597 		if (max_elts < segs_n)
598 			break;
599 		max_elts -= segs_n;
600 		sg = --segs_n;
601 		if (unlikely(--max_wqe == 0))
602 			break;
603 		wqe = (volatile struct mlx5_wqe_v *)
604 			tx_mlx5_wqe(txq, txq->wqe_ci);
605 		rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
606 		if (pkts_n - i > 1)
607 			rte_prefetch0(*(pkts + 1));
608 		addr = rte_pktmbuf_mtod(buf, uintptr_t);
609 		length = DATA_LEN(buf);
610 		ehdr = (((uint8_t *)addr)[1] << 8) |
611 		       ((uint8_t *)addr)[0];
612 #ifdef MLX5_PMD_SOFT_COUNTERS
613 		total_length = length;
614 #endif
615 		if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
616 			txq->stats.oerrors++;
617 			break;
618 		}
619 		/* Update element. */
620 		(*txq->elts)[elts_head & elts_m] = buf;
621 		/* Prefetch next buffer data. */
622 		if (pkts_n - i > 1)
623 			rte_prefetch0(
624 			    rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
625 		cs_flags = txq_ol_cksum_to_cs(buf);
626 		txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
627 		raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
628 		/* Copy metadata from mbuf if valid */
629 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
630 							     0;
631 		/* Replace the Ethernet type by the VLAN if necessary. */
632 		if (buf->ol_flags & PKT_TX_VLAN_PKT) {
633 			uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
634 							 buf->vlan_tci);
635 			unsigned int len = 2 * ETHER_ADDR_LEN - 2;
636 
637 			addr += 2;
638 			length -= 2;
639 			/* Copy Destination and source mac address. */
640 			memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
641 			/* Copy VLAN. */
642 			memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
643 			/* Copy missing two bytes to end the DSeg. */
644 			memcpy((uint8_t *)raw + len + sizeof(vlan),
645 			       ((uint8_t *)addr) + len, 2);
646 			addr += len + 2;
647 			length -= (len + 2);
648 		} else {
649 			memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
650 			       MLX5_WQE_DWORD_SIZE);
651 			length -= pkt_inline_sz;
652 			addr += pkt_inline_sz;
653 		}
654 		raw += MLX5_WQE_DWORD_SIZE;
655 		if (tso) {
656 			ret = inline_tso(txq, buf, &length,
657 					 &addr, &pkt_inline_sz,
658 					 &raw, &max_wqe,
659 					 &tso_segsz, &tso_header_sz);
660 			if (ret == -EINVAL) {
661 				break;
662 			} else if (ret == -EAGAIN) {
663 				/* NOP WQE. */
664 				wqe->ctrl = (rte_v128u32_t){
665 					rte_cpu_to_be_32(txq->wqe_ci << 8),
666 					rte_cpu_to_be_32(txq->qp_num_8s | 1),
667 					0,
668 					0,
669 				};
670 				ds = 1;
671 #ifdef MLX5_PMD_SOFT_COUNTERS
672 				total_length = 0;
673 #endif
674 				k++;
675 				goto next_wqe;
676 			}
677 		}
678 		/* Inline if enough room. */
679 		if (max_inline || tso) {
680 			uint32_t inl = 0;
681 			uintptr_t end = (uintptr_t)
682 				(((uintptr_t)txq->wqes) +
683 				 (1 << txq->wqe_n) * MLX5_WQE_SIZE);
684 			unsigned int inline_room = max_inline *
685 						   RTE_CACHE_LINE_SIZE -
686 						   (pkt_inline_sz - 2) -
687 						   !!tso * sizeof(inl);
688 			uintptr_t addr_end;
689 			unsigned int copy_b;
690 
691 pkt_inline:
692 			addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
693 						   RTE_CACHE_LINE_SIZE);
694 			copy_b = (addr_end > addr) ?
695 				 RTE_MIN((addr_end - addr), length) : 0;
696 			if (copy_b && ((end - (uintptr_t)raw) >
697 				       (copy_b + sizeof(inl)))) {
698 				/*
699 				 * One Dseg remains in the current WQE.  To
700 				 * keep the computation positive, it is
701 				 * removed after the bytes to Dseg conversion.
702 				 */
703 				uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
704 
705 				if (unlikely(max_wqe < n))
706 					break;
707 				max_wqe -= n;
708 				if (tso) {
709 					assert(inl == 0);
710 					inl = rte_cpu_to_be_32(copy_b |
711 							       MLX5_INLINE_SEG);
712 					rte_memcpy((void *)raw,
713 						   (void *)&inl, sizeof(inl));
714 					raw += sizeof(inl);
715 					pkt_inline_sz += sizeof(inl);
716 				}
717 				rte_memcpy((void *)raw, (void *)addr, copy_b);
718 				addr += copy_b;
719 				length -= copy_b;
720 				pkt_inline_sz += copy_b;
721 			}
722 			/*
723 			 * 2 DWORDs consumed by the WQE header + ETH segment +
724 			 * the size of the inline part of the packet.
725 			 */
726 			ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
727 			if (length > 0) {
728 				if (ds % (MLX5_WQE_SIZE /
729 					  MLX5_WQE_DWORD_SIZE) == 0) {
730 					if (unlikely(--max_wqe == 0))
731 						break;
732 					dseg = (volatile rte_v128u32_t *)
733 					       tx_mlx5_wqe(txq, txq->wqe_ci +
734 							   ds / 4);
735 				} else {
736 					dseg = (volatile rte_v128u32_t *)
737 						((uintptr_t)wqe +
738 						 (ds * MLX5_WQE_DWORD_SIZE));
739 				}
740 				goto use_dseg;
741 			} else if (!segs_n) {
742 				goto next_pkt;
743 			} else {
744 				/*
745 				 * Further inline the next segment only for
746 				 * non-TSO packets.
747 				 */
748 				if (!tso) {
749 					raw += copy_b;
750 					inline_room -= copy_b;
751 				} else {
752 					inline_room = 0;
753 				}
754 				/* Move to the next segment. */
755 				--segs_n;
756 				buf = buf->next;
757 				assert(buf);
758 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
759 				length = DATA_LEN(buf);
760 #ifdef MLX5_PMD_SOFT_COUNTERS
761 				total_length += length;
762 #endif
763 				(*txq->elts)[++elts_head & elts_m] = buf;
764 				goto pkt_inline;
765 			}
766 		} else {
767 			/*
768 			 * No inline has been done in the packet, only the
769 			 * Ethernet Header as been stored.
770 			 */
771 			dseg = (volatile rte_v128u32_t *)
772 				((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
773 			ds = 3;
774 use_dseg:
775 			/* Add the remaining packet as a simple ds. */
776 			addr_64 = rte_cpu_to_be_64(addr);
777 			*dseg = (rte_v128u32_t){
778 				rte_cpu_to_be_32(length),
779 				mlx5_tx_mb2mr(txq, buf),
780 				addr_64,
781 				addr_64 >> 32,
782 			};
783 			++ds;
784 			if (!segs_n)
785 				goto next_pkt;
786 		}
787 next_seg:
788 		assert(buf);
789 		assert(ds);
790 		assert(wqe);
791 		/*
792 		 * Spill on next WQE when the current one does not have
793 		 * enough room left. Size of WQE must a be a multiple
794 		 * of data segment size.
795 		 */
796 		assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
797 		if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
798 			if (unlikely(--max_wqe == 0))
799 				break;
800 			dseg = (volatile rte_v128u32_t *)
801 			       tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
802 			rte_prefetch0(tx_mlx5_wqe(txq,
803 						  txq->wqe_ci + ds / 4 + 1));
804 		} else {
805 			++dseg;
806 		}
807 		++ds;
808 		buf = buf->next;
809 		assert(buf);
810 		length = DATA_LEN(buf);
811 #ifdef MLX5_PMD_SOFT_COUNTERS
812 		total_length += length;
813 #endif
814 		/* Store segment information. */
815 		addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
816 		*dseg = (rte_v128u32_t){
817 			rte_cpu_to_be_32(length),
818 			mlx5_tx_mb2mr(txq, buf),
819 			addr_64,
820 			addr_64 >> 32,
821 		};
822 		(*txq->elts)[++elts_head & elts_m] = buf;
823 		if (--segs_n)
824 			goto next_seg;
825 next_pkt:
826 		if (ds > MLX5_DSEG_MAX) {
827 			txq->stats.oerrors++;
828 			break;
829 		}
830 		++elts_head;
831 		++pkts;
832 		++i;
833 		j += sg;
834 		/* Initialize known and common part of the WQE structure. */
835 		if (tso) {
836 			wqe->ctrl = (rte_v128u32_t){
837 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
838 						 MLX5_OPCODE_TSO),
839 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
840 				0,
841 				0,
842 			};
843 			wqe->eseg = (rte_v128u32_t){
844 				swp_offsets,
845 				cs_flags | (swp_types << 8) |
846 				(rte_cpu_to_be_16(tso_segsz) << 16),
847 				metadata,
848 				(ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
849 			};
850 		} else {
851 			wqe->ctrl = (rte_v128u32_t){
852 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
853 						 MLX5_OPCODE_SEND),
854 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
855 				0,
856 				0,
857 			};
858 			wqe->eseg = (rte_v128u32_t){
859 				swp_offsets,
860 				cs_flags | (swp_types << 8),
861 				metadata,
862 				(ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
863 			};
864 		}
865 next_wqe:
866 		txq->wqe_ci += (ds + 3) / 4;
867 		/* Save the last successful WQE for completion request */
868 		last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
869 #ifdef MLX5_PMD_SOFT_COUNTERS
870 		/* Increment sent bytes counter. */
871 		txq->stats.obytes += total_length;
872 #endif
873 	} while (i < pkts_n);
874 	/* Take a shortcut if nothing must be sent. */
875 	if (unlikely((i + k) == 0))
876 		return 0;
877 	txq->elts_head += (i + j);
878 	/* Check whether completion threshold has been reached. */
879 	comp = txq->elts_comp + i + j + k;
880 	if (comp >= MLX5_TX_COMP_THRESH) {
881 		/* A CQE slot must always be available. */
882 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
883 		/* Request completion on last WQE. */
884 		last_wqe->ctrl2 = rte_cpu_to_be_32(8);
885 		/* Save elts_head in unused "immediate" field of WQE. */
886 		last_wqe->ctrl3 = txq->elts_head;
887 		txq->elts_comp = 0;
888 	} else {
889 		txq->elts_comp = comp;
890 	}
891 #ifdef MLX5_PMD_SOFT_COUNTERS
892 	/* Increment sent packets counter. */
893 	txq->stats.opackets += i;
894 #endif
895 	/* Ring QP doorbell. */
896 	mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
897 	return i;
898 }
899 
900 /**
901  * Open a MPW session.
902  *
903  * @param txq
904  *   Pointer to TX queue structure.
905  * @param mpw
906  *   Pointer to MPW session structure.
907  * @param length
908  *   Packet length.
909  */
910 static inline void
911 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
912 {
913 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
914 	volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
915 		(volatile struct mlx5_wqe_data_seg (*)[])
916 		tx_mlx5_wqe(txq, idx + 1);
917 
918 	mpw->state = MLX5_MPW_STATE_OPENED;
919 	mpw->pkts_n = 0;
920 	mpw->len = length;
921 	mpw->total_len = 0;
922 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
923 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
924 	mpw->wqe->eseg.inline_hdr_sz = 0;
925 	mpw->wqe->eseg.rsvd0 = 0;
926 	mpw->wqe->eseg.rsvd1 = 0;
927 	mpw->wqe->eseg.flow_table_metadata = 0;
928 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
929 					     (txq->wqe_ci << 8) |
930 					     MLX5_OPCODE_TSO);
931 	mpw->wqe->ctrl[2] = 0;
932 	mpw->wqe->ctrl[3] = 0;
933 	mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
934 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
935 	mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
936 		(((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
937 	mpw->data.dseg[2] = &(*dseg)[0];
938 	mpw->data.dseg[3] = &(*dseg)[1];
939 	mpw->data.dseg[4] = &(*dseg)[2];
940 }
941 
942 /**
943  * Close a MPW session.
944  *
945  * @param txq
946  *   Pointer to TX queue structure.
947  * @param mpw
948  *   Pointer to MPW session structure.
949  */
950 static inline void
951 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
952 {
953 	unsigned int num = mpw->pkts_n;
954 
955 	/*
956 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
957 	 * count as 2.
958 	 */
959 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
960 	mpw->state = MLX5_MPW_STATE_CLOSED;
961 	if (num < 3)
962 		++txq->wqe_ci;
963 	else
964 		txq->wqe_ci += 2;
965 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
966 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
967 }
968 
969 /**
970  * DPDK callback for TX with MPW support.
971  *
972  * @param dpdk_txq
973  *   Generic pointer to TX queue structure.
974  * @param[in] pkts
975  *   Packets to transmit.
976  * @param pkts_n
977  *   Number of packets in array.
978  *
979  * @return
980  *   Number of packets successfully transmitted (<= pkts_n).
981  */
982 uint16_t
983 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
984 {
985 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
986 	uint16_t elts_head = txq->elts_head;
987 	const uint16_t elts_n = 1 << txq->elts_n;
988 	const uint16_t elts_m = elts_n - 1;
989 	unsigned int i = 0;
990 	unsigned int j = 0;
991 	uint16_t max_elts;
992 	uint16_t max_wqe;
993 	unsigned int comp;
994 	struct mlx5_mpw mpw = {
995 		.state = MLX5_MPW_STATE_CLOSED,
996 	};
997 
998 	if (unlikely(!pkts_n))
999 		return 0;
1000 	/* Prefetch first packet cacheline. */
1001 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1002 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1003 	/* Start processing. */
1004 	mlx5_tx_complete(txq);
1005 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1006 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1007 	if (unlikely(!max_wqe))
1008 		return 0;
1009 	do {
1010 		struct rte_mbuf *buf = *(pkts++);
1011 		uint32_t length;
1012 		unsigned int segs_n = buf->nb_segs;
1013 		uint32_t cs_flags;
1014 		rte_be32_t metadata;
1015 
1016 		/*
1017 		 * Make sure there is enough room to store this packet and
1018 		 * that one ring entry remains unused.
1019 		 */
1020 		assert(segs_n);
1021 		if (max_elts < segs_n)
1022 			break;
1023 		/* Do not bother with large packets MPW cannot handle. */
1024 		if (segs_n > MLX5_MPW_DSEG_MAX) {
1025 			txq->stats.oerrors++;
1026 			break;
1027 		}
1028 		max_elts -= segs_n;
1029 		--pkts_n;
1030 		cs_flags = txq_ol_cksum_to_cs(buf);
1031 		/* Copy metadata from mbuf if valid */
1032 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1033 							     0;
1034 		/* Retrieve packet information. */
1035 		length = PKT_LEN(buf);
1036 		assert(length);
1037 		/* Start new session if packet differs. */
1038 		if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
1039 		    ((mpw.len != length) ||
1040 		     (segs_n != 1) ||
1041 		     (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1042 		     (mpw.wqe->eseg.cs_flags != cs_flags)))
1043 			mlx5_mpw_close(txq, &mpw);
1044 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1045 			/*
1046 			 * Multi-Packet WQE consumes at most two WQE.
1047 			 * mlx5_mpw_new() expects to be able to use such
1048 			 * resources.
1049 			 */
1050 			if (unlikely(max_wqe < 2))
1051 				break;
1052 			max_wqe -= 2;
1053 			mlx5_mpw_new(txq, &mpw, length);
1054 			mpw.wqe->eseg.cs_flags = cs_flags;
1055 			mpw.wqe->eseg.flow_table_metadata = metadata;
1056 		}
1057 		/* Multi-segment packets must be alone in their MPW. */
1058 		assert((segs_n == 1) || (mpw.pkts_n == 0));
1059 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1060 		length = 0;
1061 #endif
1062 		do {
1063 			volatile struct mlx5_wqe_data_seg *dseg;
1064 			uintptr_t addr;
1065 
1066 			assert(buf);
1067 			(*txq->elts)[elts_head++ & elts_m] = buf;
1068 			dseg = mpw.data.dseg[mpw.pkts_n];
1069 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1070 			*dseg = (struct mlx5_wqe_data_seg){
1071 				.byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1072 				.lkey = mlx5_tx_mb2mr(txq, buf),
1073 				.addr = rte_cpu_to_be_64(addr),
1074 			};
1075 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1076 			length += DATA_LEN(buf);
1077 #endif
1078 			buf = buf->next;
1079 			++mpw.pkts_n;
1080 			++j;
1081 		} while (--segs_n);
1082 		assert(length == mpw.len);
1083 		if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1084 			mlx5_mpw_close(txq, &mpw);
1085 #ifdef MLX5_PMD_SOFT_COUNTERS
1086 		/* Increment sent bytes counter. */
1087 		txq->stats.obytes += length;
1088 #endif
1089 		++i;
1090 	} while (pkts_n);
1091 	/* Take a shortcut if nothing must be sent. */
1092 	if (unlikely(i == 0))
1093 		return 0;
1094 	/* Check whether completion threshold has been reached. */
1095 	/* "j" includes both packets and segments. */
1096 	comp = txq->elts_comp + j;
1097 	if (comp >= MLX5_TX_COMP_THRESH) {
1098 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1099 
1100 		/* A CQE slot must always be available. */
1101 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1102 		/* Request completion on last WQE. */
1103 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1104 		/* Save elts_head in unused "immediate" field of WQE. */
1105 		wqe->ctrl[3] = elts_head;
1106 		txq->elts_comp = 0;
1107 	} else {
1108 		txq->elts_comp = comp;
1109 	}
1110 #ifdef MLX5_PMD_SOFT_COUNTERS
1111 	/* Increment sent packets counter. */
1112 	txq->stats.opackets += i;
1113 #endif
1114 	/* Ring QP doorbell. */
1115 	if (mpw.state == MLX5_MPW_STATE_OPENED)
1116 		mlx5_mpw_close(txq, &mpw);
1117 	mlx5_tx_dbrec(txq, mpw.wqe);
1118 	txq->elts_head = elts_head;
1119 	return i;
1120 }
1121 
1122 /**
1123  * Open a MPW inline session.
1124  *
1125  * @param txq
1126  *   Pointer to TX queue structure.
1127  * @param mpw
1128  *   Pointer to MPW session structure.
1129  * @param length
1130  *   Packet length.
1131  */
1132 static inline void
1133 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1134 		    uint32_t length)
1135 {
1136 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1137 	struct mlx5_wqe_inl_small *inl;
1138 
1139 	mpw->state = MLX5_MPW_INL_STATE_OPENED;
1140 	mpw->pkts_n = 0;
1141 	mpw->len = length;
1142 	mpw->total_len = 0;
1143 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1144 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1145 					     (txq->wqe_ci << 8) |
1146 					     MLX5_OPCODE_TSO);
1147 	mpw->wqe->ctrl[2] = 0;
1148 	mpw->wqe->ctrl[3] = 0;
1149 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1150 	mpw->wqe->eseg.inline_hdr_sz = 0;
1151 	mpw->wqe->eseg.cs_flags = 0;
1152 	mpw->wqe->eseg.rsvd0 = 0;
1153 	mpw->wqe->eseg.rsvd1 = 0;
1154 	mpw->wqe->eseg.flow_table_metadata = 0;
1155 	inl = (struct mlx5_wqe_inl_small *)
1156 		(((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1157 	mpw->data.raw = (uint8_t *)&inl->raw;
1158 }
1159 
1160 /**
1161  * Close a MPW inline session.
1162  *
1163  * @param txq
1164  *   Pointer to TX queue structure.
1165  * @param mpw
1166  *   Pointer to MPW session structure.
1167  */
1168 static inline void
1169 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1170 {
1171 	unsigned int size;
1172 	struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1173 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1174 
1175 	size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1176 	/*
1177 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
1178 	 * count as 2.
1179 	 */
1180 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1181 					     MLX5_WQE_DS(size));
1182 	mpw->state = MLX5_MPW_STATE_CLOSED;
1183 	inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1184 	txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1185 }
1186 
1187 /**
1188  * DPDK callback for TX with MPW inline support.
1189  *
1190  * @param dpdk_txq
1191  *   Generic pointer to TX queue structure.
1192  * @param[in] pkts
1193  *   Packets to transmit.
1194  * @param pkts_n
1195  *   Number of packets in array.
1196  *
1197  * @return
1198  *   Number of packets successfully transmitted (<= pkts_n).
1199  */
1200 uint16_t
1201 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1202 			 uint16_t pkts_n)
1203 {
1204 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1205 	uint16_t elts_head = txq->elts_head;
1206 	const uint16_t elts_n = 1 << txq->elts_n;
1207 	const uint16_t elts_m = elts_n - 1;
1208 	unsigned int i = 0;
1209 	unsigned int j = 0;
1210 	uint16_t max_elts;
1211 	uint16_t max_wqe;
1212 	unsigned int comp;
1213 	unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1214 	struct mlx5_mpw mpw = {
1215 		.state = MLX5_MPW_STATE_CLOSED,
1216 	};
1217 	/*
1218 	 * Compute the maximum number of WQE which can be consumed by inline
1219 	 * code.
1220 	 * - 2 DSEG for:
1221 	 *   - 1 control segment,
1222 	 *   - 1 Ethernet segment,
1223 	 * - N Dseg from the inline request.
1224 	 */
1225 	const unsigned int wqe_inl_n =
1226 		((2 * MLX5_WQE_DWORD_SIZE +
1227 		  txq->max_inline * RTE_CACHE_LINE_SIZE) +
1228 		 RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1229 
1230 	if (unlikely(!pkts_n))
1231 		return 0;
1232 	/* Prefetch first packet cacheline. */
1233 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1234 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1235 	/* Start processing. */
1236 	mlx5_tx_complete(txq);
1237 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1238 	do {
1239 		struct rte_mbuf *buf = *(pkts++);
1240 		uintptr_t addr;
1241 		uint32_t length;
1242 		unsigned int segs_n = buf->nb_segs;
1243 		uint8_t cs_flags;
1244 		rte_be32_t metadata;
1245 
1246 		/*
1247 		 * Make sure there is enough room to store this packet and
1248 		 * that one ring entry remains unused.
1249 		 */
1250 		assert(segs_n);
1251 		if (max_elts < segs_n)
1252 			break;
1253 		/* Do not bother with large packets MPW cannot handle. */
1254 		if (segs_n > MLX5_MPW_DSEG_MAX) {
1255 			txq->stats.oerrors++;
1256 			break;
1257 		}
1258 		max_elts -= segs_n;
1259 		--pkts_n;
1260 		/*
1261 		 * Compute max_wqe in case less WQE were consumed in previous
1262 		 * iteration.
1263 		 */
1264 		max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1265 		cs_flags = txq_ol_cksum_to_cs(buf);
1266 		/* Copy metadata from mbuf if valid */
1267 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1268 							     0;
1269 		/* Retrieve packet information. */
1270 		length = PKT_LEN(buf);
1271 		/* Start new session if packet differs. */
1272 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1273 			if ((mpw.len != length) ||
1274 			    (segs_n != 1) ||
1275 			    (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1276 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1277 				mlx5_mpw_close(txq, &mpw);
1278 		} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1279 			if ((mpw.len != length) ||
1280 			    (segs_n != 1) ||
1281 			    (length > inline_room) ||
1282 			    (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1283 			    (mpw.wqe->eseg.cs_flags != cs_flags)) {
1284 				mlx5_mpw_inline_close(txq, &mpw);
1285 				inline_room =
1286 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1287 			}
1288 		}
1289 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1290 			if ((segs_n != 1) ||
1291 			    (length > inline_room)) {
1292 				/*
1293 				 * Multi-Packet WQE consumes at most two WQE.
1294 				 * mlx5_mpw_new() expects to be able to use
1295 				 * such resources.
1296 				 */
1297 				if (unlikely(max_wqe < 2))
1298 					break;
1299 				max_wqe -= 2;
1300 				mlx5_mpw_new(txq, &mpw, length);
1301 				mpw.wqe->eseg.cs_flags = cs_flags;
1302 				mpw.wqe->eseg.flow_table_metadata = metadata;
1303 			} else {
1304 				if (unlikely(max_wqe < wqe_inl_n))
1305 					break;
1306 				max_wqe -= wqe_inl_n;
1307 				mlx5_mpw_inline_new(txq, &mpw, length);
1308 				mpw.wqe->eseg.cs_flags = cs_flags;
1309 				mpw.wqe->eseg.flow_table_metadata = metadata;
1310 			}
1311 		}
1312 		/* Multi-segment packets must be alone in their MPW. */
1313 		assert((segs_n == 1) || (mpw.pkts_n == 0));
1314 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1315 			assert(inline_room ==
1316 			       txq->max_inline * RTE_CACHE_LINE_SIZE);
1317 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1318 			length = 0;
1319 #endif
1320 			do {
1321 				volatile struct mlx5_wqe_data_seg *dseg;
1322 
1323 				assert(buf);
1324 				(*txq->elts)[elts_head++ & elts_m] = buf;
1325 				dseg = mpw.data.dseg[mpw.pkts_n];
1326 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
1327 				*dseg = (struct mlx5_wqe_data_seg){
1328 					.byte_count =
1329 					       rte_cpu_to_be_32(DATA_LEN(buf)),
1330 					.lkey = mlx5_tx_mb2mr(txq, buf),
1331 					.addr = rte_cpu_to_be_64(addr),
1332 				};
1333 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1334 				length += DATA_LEN(buf);
1335 #endif
1336 				buf = buf->next;
1337 				++mpw.pkts_n;
1338 				++j;
1339 			} while (--segs_n);
1340 			assert(length == mpw.len);
1341 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1342 				mlx5_mpw_close(txq, &mpw);
1343 		} else {
1344 			unsigned int max;
1345 
1346 			assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1347 			assert(length <= inline_room);
1348 			assert(length == DATA_LEN(buf));
1349 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1350 			(*txq->elts)[elts_head++ & elts_m] = buf;
1351 			/* Maximum number of bytes before wrapping. */
1352 			max = ((((uintptr_t)(txq->wqes)) +
1353 				(1 << txq->wqe_n) *
1354 				MLX5_WQE_SIZE) -
1355 			       (uintptr_t)mpw.data.raw);
1356 			if (length > max) {
1357 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1358 					   (void *)addr,
1359 					   max);
1360 				mpw.data.raw = (volatile void *)txq->wqes;
1361 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1362 					   (void *)(addr + max),
1363 					   length - max);
1364 				mpw.data.raw += length - max;
1365 			} else {
1366 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1367 					   (void *)addr,
1368 					   length);
1369 
1370 				if (length == max)
1371 					mpw.data.raw =
1372 						(volatile void *)txq->wqes;
1373 				else
1374 					mpw.data.raw += length;
1375 			}
1376 			++mpw.pkts_n;
1377 			mpw.total_len += length;
1378 			++j;
1379 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1380 				mlx5_mpw_inline_close(txq, &mpw);
1381 				inline_room =
1382 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1383 			} else {
1384 				inline_room -= length;
1385 			}
1386 		}
1387 #ifdef MLX5_PMD_SOFT_COUNTERS
1388 		/* Increment sent bytes counter. */
1389 		txq->stats.obytes += length;
1390 #endif
1391 		++i;
1392 	} while (pkts_n);
1393 	/* Take a shortcut if nothing must be sent. */
1394 	if (unlikely(i == 0))
1395 		return 0;
1396 	/* Check whether completion threshold has been reached. */
1397 	/* "j" includes both packets and segments. */
1398 	comp = txq->elts_comp + j;
1399 	if (comp >= MLX5_TX_COMP_THRESH) {
1400 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1401 
1402 		/* A CQE slot must always be available. */
1403 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1404 		/* Request completion on last WQE. */
1405 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1406 		/* Save elts_head in unused "immediate" field of WQE. */
1407 		wqe->ctrl[3] = elts_head;
1408 		txq->elts_comp = 0;
1409 	} else {
1410 		txq->elts_comp = comp;
1411 	}
1412 #ifdef MLX5_PMD_SOFT_COUNTERS
1413 	/* Increment sent packets counter. */
1414 	txq->stats.opackets += i;
1415 #endif
1416 	/* Ring QP doorbell. */
1417 	if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1418 		mlx5_mpw_inline_close(txq, &mpw);
1419 	else if (mpw.state == MLX5_MPW_STATE_OPENED)
1420 		mlx5_mpw_close(txq, &mpw);
1421 	mlx5_tx_dbrec(txq, mpw.wqe);
1422 	txq->elts_head = elts_head;
1423 	return i;
1424 }
1425 
1426 /**
1427  * Open an Enhanced MPW session.
1428  *
1429  * @param txq
1430  *   Pointer to TX queue structure.
1431  * @param mpw
1432  *   Pointer to MPW session structure.
1433  * @param length
1434  *   Packet length.
1435  */
1436 static inline void
1437 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1438 {
1439 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1440 
1441 	mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1442 	mpw->pkts_n = 0;
1443 	mpw->total_len = sizeof(struct mlx5_wqe);
1444 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1445 	mpw->wqe->ctrl[0] =
1446 		rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1447 				 (txq->wqe_ci << 8) |
1448 				 MLX5_OPCODE_ENHANCED_MPSW);
1449 	mpw->wqe->ctrl[2] = 0;
1450 	mpw->wqe->ctrl[3] = 0;
1451 	memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1452 	if (unlikely(padding)) {
1453 		uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1454 
1455 		/* Pad the first 2 DWORDs with zero-length inline header. */
1456 		*(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1457 		*(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1458 			rte_cpu_to_be_32(MLX5_INLINE_SEG);
1459 		mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1460 		/* Start from the next WQEBB. */
1461 		mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1462 	} else {
1463 		mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1464 	}
1465 }
1466 
1467 /**
1468  * Close an Enhanced MPW session.
1469  *
1470  * @param txq
1471  *   Pointer to TX queue structure.
1472  * @param mpw
1473  *   Pointer to MPW session structure.
1474  *
1475  * @return
1476  *   Number of consumed WQEs.
1477  */
1478 static inline uint16_t
1479 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1480 {
1481 	uint16_t ret;
1482 
1483 	/* Store size in multiple of 16 bytes. Control and Ethernet segments
1484 	 * count as 2.
1485 	 */
1486 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1487 					     MLX5_WQE_DS(mpw->total_len));
1488 	mpw->state = MLX5_MPW_STATE_CLOSED;
1489 	ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1490 	txq->wqe_ci += ret;
1491 	return ret;
1492 }
1493 
1494 /**
1495  * TX with Enhanced MPW support.
1496  *
1497  * @param txq
1498  *   Pointer to TX queue structure.
1499  * @param[in] pkts
1500  *   Packets to transmit.
1501  * @param pkts_n
1502  *   Number of packets in array.
1503  *
1504  * @return
1505  *   Number of packets successfully transmitted (<= pkts_n).
1506  */
1507 static inline uint16_t
1508 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1509 	       uint16_t pkts_n)
1510 {
1511 	uint16_t elts_head = txq->elts_head;
1512 	const uint16_t elts_n = 1 << txq->elts_n;
1513 	const uint16_t elts_m = elts_n - 1;
1514 	unsigned int i = 0;
1515 	unsigned int j = 0;
1516 	uint16_t max_elts;
1517 	uint16_t max_wqe;
1518 	unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1519 	unsigned int mpw_room = 0;
1520 	unsigned int inl_pad = 0;
1521 	uint32_t inl_hdr;
1522 	uint64_t addr_64;
1523 	struct mlx5_mpw mpw = {
1524 		.state = MLX5_MPW_STATE_CLOSED,
1525 	};
1526 
1527 	if (unlikely(!pkts_n))
1528 		return 0;
1529 	/* Start processing. */
1530 	mlx5_tx_complete(txq);
1531 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1532 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1533 	if (unlikely(!max_wqe))
1534 		return 0;
1535 	do {
1536 		struct rte_mbuf *buf = *(pkts++);
1537 		uintptr_t addr;
1538 		unsigned int do_inline = 0; /* Whether inline is possible. */
1539 		uint32_t length;
1540 		uint8_t cs_flags;
1541 		rte_be32_t metadata;
1542 
1543 		/* Multi-segmented packet is handled in slow-path outside. */
1544 		assert(NB_SEGS(buf) == 1);
1545 		/* Make sure there is enough room to store this packet. */
1546 		if (max_elts - j == 0)
1547 			break;
1548 		cs_flags = txq_ol_cksum_to_cs(buf);
1549 		/* Copy metadata from mbuf if valid */
1550 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1551 							     0;
1552 		/* Retrieve packet information. */
1553 		length = PKT_LEN(buf);
1554 		/* Start new session if:
1555 		 * - multi-segment packet
1556 		 * - no space left even for a dseg
1557 		 * - next packet can be inlined with a new WQE
1558 		 * - cs_flag differs
1559 		 */
1560 		if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1561 			if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1562 			     mpw_room) ||
1563 			    (length <= txq->inline_max_packet_sz &&
1564 			     inl_pad + sizeof(inl_hdr) + length >
1565 			     mpw_room) ||
1566 			     (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1567 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1568 				max_wqe -= mlx5_empw_close(txq, &mpw);
1569 		}
1570 		if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1571 			/* In Enhanced MPW, inline as much as the budget is
1572 			 * allowed. The remaining space is to be filled with
1573 			 * dsegs. If the title WQEBB isn't padded, it will have
1574 			 * 2 dsegs there.
1575 			 */
1576 			mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1577 					   (max_inline ? max_inline :
1578 					    pkts_n * MLX5_WQE_DWORD_SIZE) +
1579 					   MLX5_WQE_SIZE);
1580 			if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1581 				break;
1582 			/* Don't pad the title WQEBB to not waste WQ. */
1583 			mlx5_empw_new(txq, &mpw, 0);
1584 			mpw_room -= mpw.total_len;
1585 			inl_pad = 0;
1586 			do_inline = length <= txq->inline_max_packet_sz &&
1587 				    sizeof(inl_hdr) + length <= mpw_room &&
1588 				    !txq->mpw_hdr_dseg;
1589 			mpw.wqe->eseg.cs_flags = cs_flags;
1590 			mpw.wqe->eseg.flow_table_metadata = metadata;
1591 		} else {
1592 			/* Evaluate whether the next packet can be inlined.
1593 			 * Inlininig is possible when:
1594 			 * - length is less than configured value
1595 			 * - length fits for remaining space
1596 			 * - not required to fill the title WQEBB with dsegs
1597 			 */
1598 			do_inline =
1599 				length <= txq->inline_max_packet_sz &&
1600 				inl_pad + sizeof(inl_hdr) + length <=
1601 				 mpw_room &&
1602 				(!txq->mpw_hdr_dseg ||
1603 				 mpw.total_len >= MLX5_WQE_SIZE);
1604 		}
1605 		if (max_inline && do_inline) {
1606 			/* Inline packet into WQE. */
1607 			unsigned int max;
1608 
1609 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1610 			assert(length == DATA_LEN(buf));
1611 			inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1612 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1613 			mpw.data.raw = (volatile void *)
1614 				((uintptr_t)mpw.data.raw + inl_pad);
1615 			max = tx_mlx5_wq_tailroom(txq,
1616 					(void *)(uintptr_t)mpw.data.raw);
1617 			/* Copy inline header. */
1618 			mpw.data.raw = (volatile void *)
1619 				mlx5_copy_to_wq(
1620 					  (void *)(uintptr_t)mpw.data.raw,
1621 					  &inl_hdr,
1622 					  sizeof(inl_hdr),
1623 					  (void *)(uintptr_t)txq->wqes,
1624 					  max);
1625 			max = tx_mlx5_wq_tailroom(txq,
1626 					(void *)(uintptr_t)mpw.data.raw);
1627 			/* Copy packet data. */
1628 			mpw.data.raw = (volatile void *)
1629 				mlx5_copy_to_wq(
1630 					  (void *)(uintptr_t)mpw.data.raw,
1631 					  (void *)addr,
1632 					  length,
1633 					  (void *)(uintptr_t)txq->wqes,
1634 					  max);
1635 			++mpw.pkts_n;
1636 			mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1637 			/* No need to get completion as the entire packet is
1638 			 * copied to WQ. Free the buf right away.
1639 			 */
1640 			rte_pktmbuf_free_seg(buf);
1641 			mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1642 			/* Add pad in the next packet if any. */
1643 			inl_pad = (((uintptr_t)mpw.data.raw +
1644 					(MLX5_WQE_DWORD_SIZE - 1)) &
1645 					~(MLX5_WQE_DWORD_SIZE - 1)) -
1646 				  (uintptr_t)mpw.data.raw;
1647 		} else {
1648 			/* No inline. Load a dseg of packet pointer. */
1649 			volatile rte_v128u32_t *dseg;
1650 
1651 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1652 			assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1653 			assert(length == DATA_LEN(buf));
1654 			if (!tx_mlx5_wq_tailroom(txq,
1655 					(void *)((uintptr_t)mpw.data.raw
1656 						+ inl_pad)))
1657 				dseg = (volatile void *)txq->wqes;
1658 			else
1659 				dseg = (volatile void *)
1660 					((uintptr_t)mpw.data.raw +
1661 					 inl_pad);
1662 			(*txq->elts)[elts_head++ & elts_m] = buf;
1663 			addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1664 								    uintptr_t));
1665 			*dseg = (rte_v128u32_t) {
1666 				rte_cpu_to_be_32(length),
1667 				mlx5_tx_mb2mr(txq, buf),
1668 				addr_64,
1669 				addr_64 >> 32,
1670 			};
1671 			mpw.data.raw = (volatile void *)(dseg + 1);
1672 			mpw.total_len += (inl_pad + sizeof(*dseg));
1673 			++j;
1674 			++mpw.pkts_n;
1675 			mpw_room -= (inl_pad + sizeof(*dseg));
1676 			inl_pad = 0;
1677 		}
1678 #ifdef MLX5_PMD_SOFT_COUNTERS
1679 		/* Increment sent bytes counter. */
1680 		txq->stats.obytes += length;
1681 #endif
1682 		++i;
1683 	} while (i < pkts_n);
1684 	/* Take a shortcut if nothing must be sent. */
1685 	if (unlikely(i == 0))
1686 		return 0;
1687 	/* Check whether completion threshold has been reached. */
1688 	if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1689 			(uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1690 			 (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1691 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1692 
1693 		/* A CQE slot must always be available. */
1694 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1695 		/* Request completion on last WQE. */
1696 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1697 		/* Save elts_head in unused "immediate" field of WQE. */
1698 		wqe->ctrl[3] = elts_head;
1699 		txq->elts_comp = 0;
1700 		txq->mpw_comp = txq->wqe_ci;
1701 	} else {
1702 		txq->elts_comp += j;
1703 	}
1704 #ifdef MLX5_PMD_SOFT_COUNTERS
1705 	/* Increment sent packets counter. */
1706 	txq->stats.opackets += i;
1707 #endif
1708 	if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1709 		mlx5_empw_close(txq, &mpw);
1710 	/* Ring QP doorbell. */
1711 	mlx5_tx_dbrec(txq, mpw.wqe);
1712 	txq->elts_head = elts_head;
1713 	return i;
1714 }
1715 
1716 /**
1717  * DPDK callback for TX with Enhanced MPW support.
1718  *
1719  * @param dpdk_txq
1720  *   Generic pointer to TX queue structure.
1721  * @param[in] pkts
1722  *   Packets to transmit.
1723  * @param pkts_n
1724  *   Number of packets in array.
1725  *
1726  * @return
1727  *   Number of packets successfully transmitted (<= pkts_n).
1728  */
1729 uint16_t
1730 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1731 {
1732 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1733 	uint16_t nb_tx = 0;
1734 
1735 	while (pkts_n > nb_tx) {
1736 		uint16_t n;
1737 		uint16_t ret;
1738 
1739 		n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1740 		if (n) {
1741 			ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1742 			if (!ret)
1743 				break;
1744 			nb_tx += ret;
1745 		}
1746 		n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1747 		if (n) {
1748 			ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1749 			if (!ret)
1750 				break;
1751 			nb_tx += ret;
1752 		}
1753 	}
1754 	return nb_tx;
1755 }
1756 
1757 /**
1758  * Translate RX completion flags to packet type.
1759  *
1760  * @param[in] rxq
1761  *   Pointer to RX queue structure.
1762  * @param[in] cqe
1763  *   Pointer to CQE.
1764  *
1765  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1766  *
1767  * @return
1768  *   Packet type for struct rte_mbuf.
1769  */
1770 static inline uint32_t
1771 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1772 {
1773 	uint8_t idx;
1774 	uint8_t pinfo = cqe->pkt_info;
1775 	uint16_t ptype = cqe->hdr_type_etc;
1776 
1777 	/*
1778 	 * The index to the array should have:
1779 	 * bit[1:0] = l3_hdr_type
1780 	 * bit[4:2] = l4_hdr_type
1781 	 * bit[5] = ip_frag
1782 	 * bit[6] = tunneled
1783 	 * bit[7] = outer_l3_type
1784 	 */
1785 	idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1786 	return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1787 }
1788 
1789 /**
1790  * Get size of the next packet for a given CQE. For compressed CQEs, the
1791  * consumer index is updated only once all packets of the current one have
1792  * been processed.
1793  *
1794  * @param rxq
1795  *   Pointer to RX queue.
1796  * @param cqe
1797  *   CQE to process.
1798  * @param[out] mcqe
1799  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1800  *   written.
1801  *
1802  * @return
1803  *   Packet size in bytes (0 if there is none), -1 in case of completion
1804  *   with error.
1805  */
1806 static inline int
1807 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1808 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1809 {
1810 	struct rxq_zip *zip = &rxq->zip;
1811 	uint16_t cqe_n = cqe_cnt + 1;
1812 	int len = 0;
1813 	uint16_t idx, end;
1814 
1815 	/* Process compressed data in the CQE and mini arrays. */
1816 	if (zip->ai) {
1817 		volatile struct mlx5_mini_cqe8 (*mc)[8] =
1818 			(volatile struct mlx5_mini_cqe8 (*)[8])
1819 			(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1820 
1821 		len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1822 		*mcqe = &(*mc)[zip->ai & 7];
1823 		if ((++zip->ai & 7) == 0) {
1824 			/* Invalidate consumed CQEs */
1825 			idx = zip->ca;
1826 			end = zip->na;
1827 			while (idx != end) {
1828 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1829 					MLX5_CQE_INVALIDATE;
1830 				++idx;
1831 			}
1832 			/*
1833 			 * Increment consumer index to skip the number of
1834 			 * CQEs consumed. Hardware leaves holes in the CQ
1835 			 * ring for software use.
1836 			 */
1837 			zip->ca = zip->na;
1838 			zip->na += 8;
1839 		}
1840 		if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1841 			/* Invalidate the rest */
1842 			idx = zip->ca;
1843 			end = zip->cq_ci;
1844 
1845 			while (idx != end) {
1846 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1847 					MLX5_CQE_INVALIDATE;
1848 				++idx;
1849 			}
1850 			rxq->cq_ci = zip->cq_ci;
1851 			zip->ai = 0;
1852 		}
1853 	/* No compressed data, get next CQE and verify if it is compressed. */
1854 	} else {
1855 		int ret;
1856 		int8_t op_own;
1857 
1858 		ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1859 		if (unlikely(ret == 1))
1860 			return 0;
1861 		++rxq->cq_ci;
1862 		op_own = cqe->op_own;
1863 		rte_cio_rmb();
1864 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1865 			volatile struct mlx5_mini_cqe8 (*mc)[8] =
1866 				(volatile struct mlx5_mini_cqe8 (*)[8])
1867 				(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1868 							  cqe_cnt].pkt_info);
1869 
1870 			/* Fix endianness. */
1871 			zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1872 			/*
1873 			 * Current mini array position is the one returned by
1874 			 * check_cqe64().
1875 			 *
1876 			 * If completion comprises several mini arrays, as a
1877 			 * special case the second one is located 7 CQEs after
1878 			 * the initial CQE instead of 8 for subsequent ones.
1879 			 */
1880 			zip->ca = rxq->cq_ci;
1881 			zip->na = zip->ca + 7;
1882 			/* Compute the next non compressed CQE. */
1883 			--rxq->cq_ci;
1884 			zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1885 			/* Get packet size to return. */
1886 			len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1887 			*mcqe = &(*mc)[0];
1888 			zip->ai = 1;
1889 			/* Prefetch all the entries to be invalidated */
1890 			idx = zip->ca;
1891 			end = zip->cq_ci;
1892 			while (idx != end) {
1893 				rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1894 				++idx;
1895 			}
1896 		} else {
1897 			len = rte_be_to_cpu_32(cqe->byte_cnt);
1898 		}
1899 		/* Error while receiving packet. */
1900 		if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1901 			return -1;
1902 	}
1903 	return len;
1904 }
1905 
1906 /**
1907  * Translate RX completion flags to offload flags.
1908  *
1909  * @param[in] cqe
1910  *   Pointer to CQE.
1911  *
1912  * @return
1913  *   Offload flags (ol_flags) for struct rte_mbuf.
1914  */
1915 static inline uint32_t
1916 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1917 {
1918 	uint32_t ol_flags = 0;
1919 	uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1920 
1921 	ol_flags =
1922 		TRANSPOSE(flags,
1923 			  MLX5_CQE_RX_L3_HDR_VALID,
1924 			  PKT_RX_IP_CKSUM_GOOD) |
1925 		TRANSPOSE(flags,
1926 			  MLX5_CQE_RX_L4_HDR_VALID,
1927 			  PKT_RX_L4_CKSUM_GOOD);
1928 	return ol_flags;
1929 }
1930 
1931 /**
1932  * Fill in mbuf fields from RX completion flags.
1933  * Note that pkt->ol_flags should be initialized outside of this function.
1934  *
1935  * @param rxq
1936  *   Pointer to RX queue.
1937  * @param pkt
1938  *   mbuf to fill.
1939  * @param cqe
1940  *   CQE to process.
1941  * @param rss_hash_res
1942  *   Packet RSS Hash result.
1943  */
1944 static inline void
1945 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1946 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1947 {
1948 	/* Update packet information. */
1949 	pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1950 	if (rss_hash_res && rxq->rss_hash) {
1951 		pkt->hash.rss = rss_hash_res;
1952 		pkt->ol_flags |= PKT_RX_RSS_HASH;
1953 	}
1954 	if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1955 		pkt->ol_flags |= PKT_RX_FDIR;
1956 		if (cqe->sop_drop_qpn !=
1957 		    rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1958 			uint32_t mark = cqe->sop_drop_qpn;
1959 
1960 			pkt->ol_flags |= PKT_RX_FDIR_ID;
1961 			pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1962 		}
1963 	}
1964 	if (rxq->csum)
1965 		pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1966 	if (rxq->vlan_strip &&
1967 	    (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1968 		pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1969 		pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1970 	}
1971 	if (rxq->hw_timestamp) {
1972 		pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1973 		pkt->ol_flags |= PKT_RX_TIMESTAMP;
1974 	}
1975 }
1976 
1977 /**
1978  * DPDK callback for RX.
1979  *
1980  * @param dpdk_rxq
1981  *   Generic pointer to RX queue structure.
1982  * @param[out] pkts
1983  *   Array to store received packets.
1984  * @param pkts_n
1985  *   Maximum number of packets in array.
1986  *
1987  * @return
1988  *   Number of packets successfully received (<= pkts_n).
1989  */
1990 uint16_t
1991 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1992 {
1993 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1994 	const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1995 	const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1996 	const unsigned int sges_n = rxq->sges_n;
1997 	struct rte_mbuf *pkt = NULL;
1998 	struct rte_mbuf *seg = NULL;
1999 	volatile struct mlx5_cqe *cqe =
2000 		&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2001 	unsigned int i = 0;
2002 	unsigned int rq_ci = rxq->rq_ci << sges_n;
2003 	int len = 0; /* keep its value across iterations. */
2004 
2005 	while (pkts_n) {
2006 		unsigned int idx = rq_ci & wqe_cnt;
2007 		volatile struct mlx5_wqe_data_seg *wqe =
2008 			&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
2009 		struct rte_mbuf *rep = (*rxq->elts)[idx];
2010 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2011 		uint32_t rss_hash_res;
2012 
2013 		if (pkt)
2014 			NEXT(seg) = rep;
2015 		seg = rep;
2016 		rte_prefetch0(seg);
2017 		rte_prefetch0(cqe);
2018 		rte_prefetch0(wqe);
2019 		rep = rte_mbuf_raw_alloc(rxq->mp);
2020 		if (unlikely(rep == NULL)) {
2021 			++rxq->stats.rx_nombuf;
2022 			if (!pkt) {
2023 				/*
2024 				 * no buffers before we even started,
2025 				 * bail out silently.
2026 				 */
2027 				break;
2028 			}
2029 			while (pkt != seg) {
2030 				assert(pkt != (*rxq->elts)[idx]);
2031 				rep = NEXT(pkt);
2032 				NEXT(pkt) = NULL;
2033 				NB_SEGS(pkt) = 1;
2034 				rte_mbuf_raw_free(pkt);
2035 				pkt = rep;
2036 			}
2037 			break;
2038 		}
2039 		if (!pkt) {
2040 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2041 			len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
2042 			if (!len) {
2043 				rte_mbuf_raw_free(rep);
2044 				break;
2045 			}
2046 			if (unlikely(len == -1)) {
2047 				/* RX error, packet is likely too large. */
2048 				rte_mbuf_raw_free(rep);
2049 				++rxq->stats.idropped;
2050 				goto skip;
2051 			}
2052 			pkt = seg;
2053 			assert(len >= (rxq->crc_present << 2));
2054 			pkt->ol_flags = 0;
2055 			/* If compressed, take hash result from mini-CQE. */
2056 			rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
2057 							cqe->rx_hash_res :
2058 							mcqe->rx_hash_result);
2059 			rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2060 			if (rxq->crc_present)
2061 				len -= ETHER_CRC_LEN;
2062 			PKT_LEN(pkt) = len;
2063 		}
2064 		DATA_LEN(rep) = DATA_LEN(seg);
2065 		PKT_LEN(rep) = PKT_LEN(seg);
2066 		SET_DATA_OFF(rep, DATA_OFF(seg));
2067 		PORT(rep) = PORT(seg);
2068 		(*rxq->elts)[idx] = rep;
2069 		/*
2070 		 * Fill NIC descriptor with the new buffer.  The lkey and size
2071 		 * of the buffers are already known, only the buffer address
2072 		 * changes.
2073 		 */
2074 		wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
2075 		/* If there's only one MR, no need to replace LKey in WQE. */
2076 		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2077 			wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
2078 		if (len > DATA_LEN(seg)) {
2079 			len -= DATA_LEN(seg);
2080 			++NB_SEGS(pkt);
2081 			++rq_ci;
2082 			continue;
2083 		}
2084 		DATA_LEN(seg) = len;
2085 #ifdef MLX5_PMD_SOFT_COUNTERS
2086 		/* Increment bytes counter. */
2087 		rxq->stats.ibytes += PKT_LEN(pkt);
2088 #endif
2089 		/* Return packet. */
2090 		*(pkts++) = pkt;
2091 		pkt = NULL;
2092 		--pkts_n;
2093 		++i;
2094 skip:
2095 		/* Align consumer index to the next stride. */
2096 		rq_ci >>= sges_n;
2097 		++rq_ci;
2098 		rq_ci <<= sges_n;
2099 	}
2100 	if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2101 		return 0;
2102 	/* Update the consumer index. */
2103 	rxq->rq_ci = rq_ci >> sges_n;
2104 	rte_cio_wmb();
2105 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2106 	rte_cio_wmb();
2107 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2108 #ifdef MLX5_PMD_SOFT_COUNTERS
2109 	/* Increment packets counter. */
2110 	rxq->stats.ipackets += i;
2111 #endif
2112 	return i;
2113 }
2114 
2115 void
2116 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2117 {
2118 	struct mlx5_mprq_buf *buf = opaque;
2119 
2120 	if (rte_atomic16_read(&buf->refcnt) == 1) {
2121 		rte_mempool_put(buf->mp, buf);
2122 	} else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2123 		rte_atomic16_set(&buf->refcnt, 1);
2124 		rte_mempool_put(buf->mp, buf);
2125 	}
2126 }
2127 
2128 void
2129 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2130 {
2131 	mlx5_mprq_buf_free_cb(NULL, buf);
2132 }
2133 
2134 static inline void
2135 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2136 {
2137 	struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2138 	volatile struct mlx5_wqe_data_seg *wqe =
2139 		&((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2140 	void *addr;
2141 
2142 	assert(rep != NULL);
2143 	/* Replace MPRQ buf. */
2144 	(*rxq->mprq_bufs)[rq_idx] = rep;
2145 	/* Replace WQE. */
2146 	addr = mlx5_mprq_buf_addr(rep);
2147 	wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2148 	/* If there's only one MR, no need to replace LKey in WQE. */
2149 	if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2150 		wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2151 	/* Stash a mbuf for next replacement. */
2152 	if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2153 		rxq->mprq_repl = rep;
2154 	else
2155 		rxq->mprq_repl = NULL;
2156 }
2157 
2158 /**
2159  * DPDK callback for RX with Multi-Packet RQ support.
2160  *
2161  * @param dpdk_rxq
2162  *   Generic pointer to RX queue structure.
2163  * @param[out] pkts
2164  *   Array to store received packets.
2165  * @param pkts_n
2166  *   Maximum number of packets in array.
2167  *
2168  * @return
2169  *   Number of packets successfully received (<= pkts_n).
2170  */
2171 uint16_t
2172 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2173 {
2174 	struct mlx5_rxq_data *rxq = dpdk_rxq;
2175 	const unsigned int strd_n = 1 << rxq->strd_num_n;
2176 	const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2177 	const unsigned int strd_shift =
2178 		MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2179 	const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2180 	const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2181 	volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2182 	unsigned int i = 0;
2183 	uint32_t rq_ci = rxq->rq_ci;
2184 	uint16_t consumed_strd = rxq->consumed_strd;
2185 	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2186 
2187 	while (i < pkts_n) {
2188 		struct rte_mbuf *pkt;
2189 		void *addr;
2190 		int ret;
2191 		unsigned int len;
2192 		uint16_t strd_cnt;
2193 		uint16_t strd_idx;
2194 		uint32_t offset;
2195 		uint32_t byte_cnt;
2196 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2197 		uint32_t rss_hash_res = 0;
2198 
2199 		if (consumed_strd == strd_n) {
2200 			/* Replace WQE only if the buffer is still in use. */
2201 			if (rte_atomic16_read(&buf->refcnt) > 1) {
2202 				mprq_buf_replace(rxq, rq_ci & wq_mask);
2203 				/* Release the old buffer. */
2204 				mlx5_mprq_buf_free(buf);
2205 			} else if (unlikely(rxq->mprq_repl == NULL)) {
2206 				struct mlx5_mprq_buf *rep;
2207 
2208 				/*
2209 				 * Currently, the MPRQ mempool is out of buffer
2210 				 * and doing memcpy regardless of the size of Rx
2211 				 * packet. Retry allocation to get back to
2212 				 * normal.
2213 				 */
2214 				if (!rte_mempool_get(rxq->mprq_mp,
2215 						     (void **)&rep))
2216 					rxq->mprq_repl = rep;
2217 			}
2218 			/* Advance to the next WQE. */
2219 			consumed_strd = 0;
2220 			++rq_ci;
2221 			buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2222 		}
2223 		cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2224 		ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
2225 		if (!ret)
2226 			break;
2227 		if (unlikely(ret == -1)) {
2228 			/* RX error, packet is likely too large. */
2229 			++rxq->stats.idropped;
2230 			continue;
2231 		}
2232 		byte_cnt = ret;
2233 		strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2234 			   MLX5_MPRQ_STRIDE_NUM_SHIFT;
2235 		assert(strd_cnt);
2236 		consumed_strd += strd_cnt;
2237 		if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2238 			continue;
2239 		if (mcqe == NULL) {
2240 			rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
2241 			strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
2242 		} else {
2243 			/* mini-CQE for MPRQ doesn't have hash result. */
2244 			strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
2245 		}
2246 		assert(strd_idx < strd_n);
2247 		assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
2248 		/*
2249 		 * Currently configured to receive a packet per a stride. But if
2250 		 * MTU is adjusted through kernel interface, device could
2251 		 * consume multiple strides without raising an error. In this
2252 		 * case, the packet should be dropped because it is bigger than
2253 		 * the max_rx_pkt_len.
2254 		 */
2255 		if (unlikely(strd_cnt > 1)) {
2256 			++rxq->stats.idropped;
2257 			continue;
2258 		}
2259 		pkt = rte_pktmbuf_alloc(rxq->mp);
2260 		if (unlikely(pkt == NULL)) {
2261 			++rxq->stats.rx_nombuf;
2262 			break;
2263 		}
2264 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2265 		assert((int)len >= (rxq->crc_present << 2));
2266 		if (rxq->crc_present)
2267 			len -= ETHER_CRC_LEN;
2268 		offset = strd_idx * strd_sz + strd_shift;
2269 		addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2270 		/* Initialize the offload flag. */
2271 		pkt->ol_flags = 0;
2272 		/*
2273 		 * Memcpy packets to the target mbuf if:
2274 		 * - The size of packet is smaller than mprq_max_memcpy_len.
2275 		 * - Out of buffer in the Mempool for Multi-Packet RQ.
2276 		 */
2277 		if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2278 			/*
2279 			 * When memcpy'ing packet due to out-of-buffer, the
2280 			 * packet must be smaller than the target mbuf.
2281 			 */
2282 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2283 				rte_pktmbuf_free_seg(pkt);
2284 				++rxq->stats.idropped;
2285 				continue;
2286 			}
2287 			rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2288 		} else {
2289 			rte_iova_t buf_iova;
2290 			struct rte_mbuf_ext_shared_info *shinfo;
2291 			uint16_t buf_len = strd_cnt * strd_sz;
2292 
2293 			/* Increment the refcnt of the whole chunk. */
2294 			rte_atomic16_add_return(&buf->refcnt, 1);
2295 			assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2296 			       strd_n + 1);
2297 			addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2298 			/*
2299 			 * MLX5 device doesn't use iova but it is necessary in a
2300 			 * case where the Rx packet is transmitted via a
2301 			 * different PMD.
2302 			 */
2303 			buf_iova = rte_mempool_virt2iova(buf) +
2304 				   RTE_PTR_DIFF(addr, buf);
2305 			shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2306 					&buf_len, mlx5_mprq_buf_free_cb, buf);
2307 			/*
2308 			 * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2309 			 * attaching the stride to mbuf and more offload flags
2310 			 * will be added below by calling rxq_cq_to_mbuf().
2311 			 * Other fields will be overwritten.
2312 			 */
2313 			rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2314 						  shinfo);
2315 			rte_pktmbuf_reset_headroom(pkt);
2316 			assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2317 			/*
2318 			 * Prevent potential overflow due to MTU change through
2319 			 * kernel interface.
2320 			 */
2321 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2322 				rte_pktmbuf_free_seg(pkt);
2323 				++rxq->stats.idropped;
2324 				continue;
2325 			}
2326 		}
2327 		rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2328 		PKT_LEN(pkt) = len;
2329 		DATA_LEN(pkt) = len;
2330 		PORT(pkt) = rxq->port_id;
2331 #ifdef MLX5_PMD_SOFT_COUNTERS
2332 		/* Increment bytes counter. */
2333 		rxq->stats.ibytes += PKT_LEN(pkt);
2334 #endif
2335 		/* Return packet. */
2336 		*(pkts++) = pkt;
2337 		++i;
2338 	}
2339 	/* Update the consumer indexes. */
2340 	rxq->consumed_strd = consumed_strd;
2341 	rte_cio_wmb();
2342 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2343 	if (rq_ci != rxq->rq_ci) {
2344 		rxq->rq_ci = rq_ci;
2345 		rte_cio_wmb();
2346 		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2347 	}
2348 #ifdef MLX5_PMD_SOFT_COUNTERS
2349 	/* Increment packets counter. */
2350 	rxq->stats.ipackets += i;
2351 #endif
2352 	return i;
2353 }
2354 
2355 /**
2356  * Dummy DPDK callback for TX.
2357  *
2358  * This function is used to temporarily replace the real callback during
2359  * unsafe control operations on the queue, or in case of error.
2360  *
2361  * @param dpdk_txq
2362  *   Generic pointer to TX queue structure.
2363  * @param[in] pkts
2364  *   Packets to transmit.
2365  * @param pkts_n
2366  *   Number of packets in array.
2367  *
2368  * @return
2369  *   Number of packets successfully transmitted (<= pkts_n).
2370  */
2371 uint16_t
2372 removed_tx_burst(void *dpdk_txq __rte_unused,
2373 		 struct rte_mbuf **pkts __rte_unused,
2374 		 uint16_t pkts_n __rte_unused)
2375 {
2376 	rte_mb();
2377 	return 0;
2378 }
2379 
2380 /**
2381  * Dummy DPDK callback for RX.
2382  *
2383  * This function is used to temporarily replace the real callback during
2384  * unsafe control operations on the queue, or in case of error.
2385  *
2386  * @param dpdk_rxq
2387  *   Generic pointer to RX queue structure.
2388  * @param[out] pkts
2389  *   Array to store received packets.
2390  * @param pkts_n
2391  *   Maximum number of packets in array.
2392  *
2393  * @return
2394  *   Number of packets successfully received (<= pkts_n).
2395  */
2396 uint16_t
2397 removed_rx_burst(void *dpdk_txq __rte_unused,
2398 		 struct rte_mbuf **pkts __rte_unused,
2399 		 uint16_t pkts_n __rte_unused)
2400 {
2401 	rte_mb();
2402 	return 0;
2403 }
2404 
2405 /*
2406  * Vectorized Rx/Tx routines are not compiled in when required vector
2407  * instructions are not supported on a target architecture. The following null
2408  * stubs are needed for linkage when those are not included outside of this file
2409  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2410  */
2411 
2412 __rte_weak uint16_t
2413 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2414 		      struct rte_mbuf **pkts __rte_unused,
2415 		      uint16_t pkts_n __rte_unused)
2416 {
2417 	return 0;
2418 }
2419 
2420 __rte_weak uint16_t
2421 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2422 		  struct rte_mbuf **pkts __rte_unused,
2423 		  uint16_t pkts_n __rte_unused)
2424 {
2425 	return 0;
2426 }
2427 
2428 __rte_weak uint16_t
2429 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2430 		  struct rte_mbuf **pkts __rte_unused,
2431 		  uint16_t pkts_n __rte_unused)
2432 {
2433 	return 0;
2434 }
2435 
2436 __rte_weak int
2437 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2438 {
2439 	return -ENOTSUP;
2440 }
2441 
2442 __rte_weak int
2443 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2444 {
2445 	return -ENOTSUP;
2446 }
2447 
2448 __rte_weak int
2449 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2450 {
2451 	return -ENOTSUP;
2452 }
2453 
2454 __rte_weak int
2455 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2456 {
2457 	return -ENOTSUP;
2458 }
2459