xref: /dpdk/drivers/net/mlx5/mlx5_rxtx.c (revision 4f1ed78ebd26f2393fd3cf29a9a9fa95ce14eb44)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5 
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10 
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28 
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35 
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38 
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
42 
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45 
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49 
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52 
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54 	[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56 
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59 
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68 	unsigned int i;
69 	uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70 
71 	/* Last entry must not be overwritten, reserved for errored packet. */
72 	for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73 		(*p)[i] = RTE_PTYPE_UNKNOWN;
74 	/*
75 	 * The index to the array should have:
76 	 * bit[1:0] = l3_hdr_type
77 	 * bit[4:2] = l4_hdr_type
78 	 * bit[5] = ip_frag
79 	 * bit[6] = tunneled
80 	 * bit[7] = outer_l3_type
81 	 */
82 	/* L2 */
83 	(*p)[0x00] = RTE_PTYPE_L2_ETHER;
84 	/* L3 */
85 	(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86 		     RTE_PTYPE_L4_NONFRAG;
87 	(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88 		     RTE_PTYPE_L4_NONFRAG;
89 	/* Fragmented */
90 	(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91 		     RTE_PTYPE_L4_FRAG;
92 	(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93 		     RTE_PTYPE_L4_FRAG;
94 	/* TCP */
95 	(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96 		     RTE_PTYPE_L4_TCP;
97 	(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98 		     RTE_PTYPE_L4_TCP;
99 	(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100 		     RTE_PTYPE_L4_TCP;
101 	(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102 		     RTE_PTYPE_L4_TCP;
103 	(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104 		     RTE_PTYPE_L4_TCP;
105 	(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106 		     RTE_PTYPE_L4_TCP;
107 	/* UDP */
108 	(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109 		     RTE_PTYPE_L4_UDP;
110 	(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111 		     RTE_PTYPE_L4_UDP;
112 	/* Repeat with outer_l3_type being set. Just in case. */
113 	(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114 		     RTE_PTYPE_L4_NONFRAG;
115 	(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116 		     RTE_PTYPE_L4_NONFRAG;
117 	(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118 		     RTE_PTYPE_L4_FRAG;
119 	(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120 		     RTE_PTYPE_L4_FRAG;
121 	(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122 		     RTE_PTYPE_L4_TCP;
123 	(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124 		     RTE_PTYPE_L4_TCP;
125 	(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126 		     RTE_PTYPE_L4_TCP;
127 	(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128 		     RTE_PTYPE_L4_TCP;
129 	(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130 		     RTE_PTYPE_L4_TCP;
131 	(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132 		     RTE_PTYPE_L4_TCP;
133 	(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134 		     RTE_PTYPE_L4_UDP;
135 	(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136 		     RTE_PTYPE_L4_UDP;
137 	/* Tunneled - L3 */
138 	(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139 	(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141 		     RTE_PTYPE_INNER_L4_NONFRAG;
142 	(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144 		     RTE_PTYPE_INNER_L4_NONFRAG;
145 	(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146 	(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148 		     RTE_PTYPE_INNER_L4_NONFRAG;
149 	(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151 		     RTE_PTYPE_INNER_L4_NONFRAG;
152 	/* Tunneled - Fragmented */
153 	(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155 		     RTE_PTYPE_INNER_L4_FRAG;
156 	(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158 		     RTE_PTYPE_INNER_L4_FRAG;
159 	(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161 		     RTE_PTYPE_INNER_L4_FRAG;
162 	(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164 		     RTE_PTYPE_INNER_L4_FRAG;
165 	/* Tunneled - TCP */
166 	(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168 		     RTE_PTYPE_INNER_L4_TCP;
169 	(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171 		     RTE_PTYPE_INNER_L4_TCP;
172 	(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174 		     RTE_PTYPE_INNER_L4_TCP;
175 	(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177 		     RTE_PTYPE_INNER_L4_TCP;
178 	(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180 		     RTE_PTYPE_INNER_L4_TCP;
181 	(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183 		     RTE_PTYPE_INNER_L4_TCP;
184 	(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186 		     RTE_PTYPE_INNER_L4_TCP;
187 	(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189 		     RTE_PTYPE_INNER_L4_TCP;
190 	(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192 		     RTE_PTYPE_INNER_L4_TCP;
193 	(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195 		     RTE_PTYPE_INNER_L4_TCP;
196 	(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198 		     RTE_PTYPE_INNER_L4_TCP;
199 	(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201 		     RTE_PTYPE_INNER_L4_TCP;
202 	/* Tunneled - UDP */
203 	(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205 		     RTE_PTYPE_INNER_L4_UDP;
206 	(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208 		     RTE_PTYPE_INNER_L4_UDP;
209 	(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211 		     RTE_PTYPE_INNER_L4_UDP;
212 	(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214 		     RTE_PTYPE_INNER_L4_UDP;
215 }
216 
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223 	unsigned int i;
224 	uint8_t v;
225 
226 	/*
227 	 * The index should have:
228 	 * bit[0] = PKT_TX_TCP_SEG
229 	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230 	 * bit[4] = PKT_TX_IP_CKSUM
231 	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
232 	 * bit[9] = tunnel
233 	 */
234 	for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235 		v = 0;
236 		if (i & (1 << 9)) {
237 			/* Tunneled packet. */
238 			if (i & (1 << 8)) /* Outer IP. */
239 				v |= MLX5_ETH_WQE_L3_CSUM;
240 			if (i & (1 << 4)) /* Inner IP. */
241 				v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243 				v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244 		} else {
245 			/* No tunnel. */
246 			if (i & (1 << 4)) /* IP. */
247 				v |= MLX5_ETH_WQE_L3_CSUM;
248 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249 				v |= MLX5_ETH_WQE_L4_CSUM;
250 		}
251 		mlx5_cksum_table[i] = v;
252 	}
253 }
254 
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261 	unsigned int i;
262 	uint8_t v;
263 
264 	/*
265 	 * The index should have:
266 	 * bit[0:1] = PKT_TX_L4_MASK
267 	 * bit[4] = PKT_TX_IPV6
268 	 * bit[8] = PKT_TX_OUTER_IPV6
269 	 * bit[9] = PKT_TX_OUTER_UDP
270 	 */
271 	for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272 		v = 0;
273 		if (i & (1 << 8))
274 			v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275 		if (i & (1 << 9))
276 			v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277 		if (i & (1 << 4))
278 			v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279 		if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280 			v |= MLX5_ETH_WQE_L4_INNER_UDP;
281 		mlx5_swp_types_table[i] = v;
282 	}
283 }
284 
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299 	size_t tailroom;
300 	tailroom = (uintptr_t)(txq->wqes) +
301 		   (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302 		   (uintptr_t)addr;
303 	return tailroom;
304 }
305 
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325 		void *base, size_t tailroom)
326 {
327 	void *ret;
328 
329 	if (n > tailroom) {
330 		rte_memcpy(dst, src, tailroom);
331 		rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332 			   n - tailroom);
333 		ret = (uint8_t *)base + n - tailroom;
334 	} else {
335 		rte_memcpy(dst, src, n);
336 		ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337 	}
338 	return ret;
339 }
340 
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349 	   uint32_t *length,
350 	   uintptr_t *addr,
351 	   uint16_t *pkt_inline_sz,
352 	   uint8_t **raw,
353 	   uint16_t *max_wqe,
354 	   uint16_t *tso_segsz,
355 	   uint16_t *tso_header_sz)
356 {
357 	uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358 				    (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359 	unsigned int copy_b;
360 	uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361 	const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362 				 PKT_TX_TUNNEL_MASK);
363 	uint16_t n_wqe;
364 
365 	*tso_segsz = buf->tso_segsz;
366 	*tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367 	if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368 		txq->stats.oerrors++;
369 		return -EINVAL;
370 	}
371 	if (tunneled)
372 		*tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373 	/* First seg must contain all TSO headers. */
374 	if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375 		     *tso_header_sz > DATA_LEN(buf)) {
376 		txq->stats.oerrors++;
377 		return -EINVAL;
378 	}
379 	copy_b = *tso_header_sz - *pkt_inline_sz;
380 	if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381 		return -EAGAIN;
382 	n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383 	if (unlikely(*max_wqe < n_wqe))
384 		return -EINVAL;
385 	*max_wqe -= n_wqe;
386 	rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387 	*length -= copy_b;
388 	*addr += copy_b;
389 	copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390 	*pkt_inline_sz += copy_b;
391 	*raw += copy_b;
392 	return 0;
393 }
394 
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409 	struct mlx5_txq_data *txq = tx_queue;
410 	uint16_t used;
411 
412 	mlx5_tx_complete(txq);
413 	used = txq->elts_head - txq->elts_tail;
414 	if (offset < used)
415 		return RTE_ETH_TX_DESC_FULL;
416 	return RTE_ETH_TX_DESC_DONE;
417 }
418 
419 /**
420  * DPDK callback to check the status of a rx descriptor.
421  *
422  * @param rx_queue
423  *   The rx queue.
424  * @param[in] offset
425  *   The index of the descriptor in the ring.
426  *
427  * @return
428  *   The status of the tx descriptor.
429  */
430 int
431 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
432 {
433 	struct mlx5_rxq_data *rxq = rx_queue;
434 	struct rxq_zip *zip = &rxq->zip;
435 	volatile struct mlx5_cqe *cqe;
436 	const unsigned int cqe_n = (1 << rxq->cqe_n);
437 	const unsigned int cqe_cnt = cqe_n - 1;
438 	unsigned int cq_ci;
439 	unsigned int used;
440 
441 	/* if we are processing a compressed cqe */
442 	if (zip->ai) {
443 		used = zip->cqe_cnt - zip->ca;
444 		cq_ci = zip->cq_ci;
445 	} else {
446 		used = 0;
447 		cq_ci = rxq->cq_ci;
448 	}
449 	cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
450 	while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
451 		int8_t op_own;
452 		unsigned int n;
453 
454 		op_own = cqe->op_own;
455 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
456 			n = rte_be_to_cpu_32(cqe->byte_cnt);
457 		else
458 			n = 1;
459 		cq_ci += n;
460 		used += n;
461 		cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
462 	}
463 	used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
464 	if (offset < used)
465 		return RTE_ETH_RX_DESC_DONE;
466 	return RTE_ETH_RX_DESC_AVAIL;
467 }
468 
469 /**
470  * DPDK callback for TX.
471  *
472  * @param dpdk_txq
473  *   Generic pointer to TX queue structure.
474  * @param[in] pkts
475  *   Packets to transmit.
476  * @param pkts_n
477  *   Number of packets in array.
478  *
479  * @return
480  *   Number of packets successfully transmitted (<= pkts_n).
481  */
482 uint16_t
483 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
484 {
485 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
486 	uint16_t elts_head = txq->elts_head;
487 	const uint16_t elts_n = 1 << txq->elts_n;
488 	const uint16_t elts_m = elts_n - 1;
489 	unsigned int i = 0;
490 	unsigned int j = 0;
491 	unsigned int k = 0;
492 	uint16_t max_elts;
493 	uint16_t max_wqe;
494 	unsigned int comp;
495 	volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
496 	unsigned int segs_n = 0;
497 	const unsigned int max_inline = txq->max_inline;
498 	uint64_t addr_64;
499 
500 	if (unlikely(!pkts_n))
501 		return 0;
502 	/* Prefetch first packet cacheline. */
503 	rte_prefetch0(*pkts);
504 	/* Start processing. */
505 	mlx5_tx_complete(txq);
506 	max_elts = (elts_n - (elts_head - txq->elts_tail));
507 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
508 	if (unlikely(!max_wqe))
509 		return 0;
510 	do {
511 		struct rte_mbuf *buf = *pkts; /* First_seg. */
512 		uint8_t *raw;
513 		volatile struct mlx5_wqe_v *wqe = NULL;
514 		volatile rte_v128u32_t *dseg = NULL;
515 		uint32_t length;
516 		unsigned int ds = 0;
517 		unsigned int sg = 0; /* counter of additional segs attached. */
518 		uintptr_t addr;
519 		uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
520 		uint16_t tso_header_sz = 0;
521 		uint16_t ehdr;
522 		uint8_t cs_flags;
523 		uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
524 		uint32_t swp_offsets = 0;
525 		uint8_t swp_types = 0;
526 		rte_be32_t metadata;
527 		uint16_t tso_segsz = 0;
528 #ifdef MLX5_PMD_SOFT_COUNTERS
529 		uint32_t total_length = 0;
530 #endif
531 		int ret;
532 
533 		segs_n = buf->nb_segs;
534 		/*
535 		 * Make sure there is enough room to store this packet and
536 		 * that one ring entry remains unused.
537 		 */
538 		assert(segs_n);
539 		if (max_elts < segs_n)
540 			break;
541 		max_elts -= segs_n;
542 		sg = --segs_n;
543 		if (unlikely(--max_wqe == 0))
544 			break;
545 		wqe = (volatile struct mlx5_wqe_v *)
546 			tx_mlx5_wqe(txq, txq->wqe_ci);
547 		rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
548 		if (pkts_n - i > 1)
549 			rte_prefetch0(*(pkts + 1));
550 		addr = rte_pktmbuf_mtod(buf, uintptr_t);
551 		length = DATA_LEN(buf);
552 		ehdr = (((uint8_t *)addr)[1] << 8) |
553 		       ((uint8_t *)addr)[0];
554 #ifdef MLX5_PMD_SOFT_COUNTERS
555 		total_length = length;
556 #endif
557 		if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
558 			txq->stats.oerrors++;
559 			break;
560 		}
561 		/* Update element. */
562 		(*txq->elts)[elts_head & elts_m] = buf;
563 		/* Prefetch next buffer data. */
564 		if (pkts_n - i > 1)
565 			rte_prefetch0(
566 			    rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
567 		cs_flags = txq_ol_cksum_to_cs(buf);
568 		txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
569 		raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
570 		/* Copy metadata from mbuf if valid */
571 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
572 							     0;
573 		/* Replace the Ethernet type by the VLAN if necessary. */
574 		if (buf->ol_flags & PKT_TX_VLAN_PKT) {
575 			uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
576 							 buf->vlan_tci);
577 			unsigned int len = 2 * ETHER_ADDR_LEN - 2;
578 
579 			addr += 2;
580 			length -= 2;
581 			/* Copy Destination and source mac address. */
582 			memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
583 			/* Copy VLAN. */
584 			memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
585 			/* Copy missing two bytes to end the DSeg. */
586 			memcpy((uint8_t *)raw + len + sizeof(vlan),
587 			       ((uint8_t *)addr) + len, 2);
588 			addr += len + 2;
589 			length -= (len + 2);
590 		} else {
591 			memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
592 			       MLX5_WQE_DWORD_SIZE);
593 			length -= pkt_inline_sz;
594 			addr += pkt_inline_sz;
595 		}
596 		raw += MLX5_WQE_DWORD_SIZE;
597 		if (tso) {
598 			ret = inline_tso(txq, buf, &length,
599 					 &addr, &pkt_inline_sz,
600 					 &raw, &max_wqe,
601 					 &tso_segsz, &tso_header_sz);
602 			if (ret == -EINVAL) {
603 				break;
604 			} else if (ret == -EAGAIN) {
605 				/* NOP WQE. */
606 				wqe->ctrl = (rte_v128u32_t){
607 					rte_cpu_to_be_32(txq->wqe_ci << 8),
608 					rte_cpu_to_be_32(txq->qp_num_8s | 1),
609 					0,
610 					0,
611 				};
612 				ds = 1;
613 #ifdef MLX5_PMD_SOFT_COUNTERS
614 				total_length = 0;
615 #endif
616 				k++;
617 				goto next_wqe;
618 			}
619 		}
620 		/* Inline if enough room. */
621 		if (max_inline || tso) {
622 			uint32_t inl = 0;
623 			uintptr_t end = (uintptr_t)
624 				(((uintptr_t)txq->wqes) +
625 				 (1 << txq->wqe_n) * MLX5_WQE_SIZE);
626 			unsigned int inline_room = max_inline *
627 						   RTE_CACHE_LINE_SIZE -
628 						   (pkt_inline_sz - 2) -
629 						   !!tso * sizeof(inl);
630 			uintptr_t addr_end;
631 			unsigned int copy_b;
632 
633 pkt_inline:
634 			addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
635 						   RTE_CACHE_LINE_SIZE);
636 			copy_b = (addr_end > addr) ?
637 				 RTE_MIN((addr_end - addr), length) : 0;
638 			if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
639 				/*
640 				 * One Dseg remains in the current WQE.  To
641 				 * keep the computation positive, it is
642 				 * removed after the bytes to Dseg conversion.
643 				 */
644 				uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
645 
646 				if (unlikely(max_wqe < n))
647 					break;
648 				max_wqe -= n;
649 				if (tso) {
650 					assert(inl == 0);
651 					inl = rte_cpu_to_be_32(copy_b |
652 							       MLX5_INLINE_SEG);
653 					rte_memcpy((void *)raw,
654 						   (void *)&inl, sizeof(inl));
655 					raw += sizeof(inl);
656 					pkt_inline_sz += sizeof(inl);
657 				}
658 				rte_memcpy((void *)raw, (void *)addr, copy_b);
659 				addr += copy_b;
660 				length -= copy_b;
661 				pkt_inline_sz += copy_b;
662 			}
663 			/*
664 			 * 2 DWORDs consumed by the WQE header + ETH segment +
665 			 * the size of the inline part of the packet.
666 			 */
667 			ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
668 			if (length > 0) {
669 				if (ds % (MLX5_WQE_SIZE /
670 					  MLX5_WQE_DWORD_SIZE) == 0) {
671 					if (unlikely(--max_wqe == 0))
672 						break;
673 					dseg = (volatile rte_v128u32_t *)
674 					       tx_mlx5_wqe(txq, txq->wqe_ci +
675 							   ds / 4);
676 				} else {
677 					dseg = (volatile rte_v128u32_t *)
678 						((uintptr_t)wqe +
679 						 (ds * MLX5_WQE_DWORD_SIZE));
680 				}
681 				goto use_dseg;
682 			} else if (!segs_n) {
683 				goto next_pkt;
684 			} else {
685 				/*
686 				 * Further inline the next segment only for
687 				 * non-TSO packets.
688 				 */
689 				if (!tso) {
690 					raw += copy_b;
691 					inline_room -= copy_b;
692 				} else {
693 					inline_room = 0;
694 				}
695 				/* Move to the next segment. */
696 				--segs_n;
697 				buf = buf->next;
698 				assert(buf);
699 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
700 				length = DATA_LEN(buf);
701 #ifdef MLX5_PMD_SOFT_COUNTERS
702 				total_length += length;
703 #endif
704 				(*txq->elts)[++elts_head & elts_m] = buf;
705 				goto pkt_inline;
706 			}
707 		} else {
708 			/*
709 			 * No inline has been done in the packet, only the
710 			 * Ethernet Header as been stored.
711 			 */
712 			dseg = (volatile rte_v128u32_t *)
713 				((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
714 			ds = 3;
715 use_dseg:
716 			/* Add the remaining packet as a simple ds. */
717 			addr_64 = rte_cpu_to_be_64(addr);
718 			*dseg = (rte_v128u32_t){
719 				rte_cpu_to_be_32(length),
720 				mlx5_tx_mb2mr(txq, buf),
721 				addr_64,
722 				addr_64 >> 32,
723 			};
724 			++ds;
725 			if (!segs_n)
726 				goto next_pkt;
727 		}
728 next_seg:
729 		assert(buf);
730 		assert(ds);
731 		assert(wqe);
732 		/*
733 		 * Spill on next WQE when the current one does not have
734 		 * enough room left. Size of WQE must a be a multiple
735 		 * of data segment size.
736 		 */
737 		assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
738 		if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
739 			if (unlikely(--max_wqe == 0))
740 				break;
741 			dseg = (volatile rte_v128u32_t *)
742 			       tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
743 			rte_prefetch0(tx_mlx5_wqe(txq,
744 						  txq->wqe_ci + ds / 4 + 1));
745 		} else {
746 			++dseg;
747 		}
748 		++ds;
749 		buf = buf->next;
750 		assert(buf);
751 		length = DATA_LEN(buf);
752 #ifdef MLX5_PMD_SOFT_COUNTERS
753 		total_length += length;
754 #endif
755 		/* Store segment information. */
756 		addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
757 		*dseg = (rte_v128u32_t){
758 			rte_cpu_to_be_32(length),
759 			mlx5_tx_mb2mr(txq, buf),
760 			addr_64,
761 			addr_64 >> 32,
762 		};
763 		(*txq->elts)[++elts_head & elts_m] = buf;
764 		if (--segs_n)
765 			goto next_seg;
766 next_pkt:
767 		if (ds > MLX5_DSEG_MAX) {
768 			txq->stats.oerrors++;
769 			break;
770 		}
771 		++elts_head;
772 		++pkts;
773 		++i;
774 		j += sg;
775 		/* Initialize known and common part of the WQE structure. */
776 		if (tso) {
777 			wqe->ctrl = (rte_v128u32_t){
778 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
779 						 MLX5_OPCODE_TSO),
780 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
781 				0,
782 				0,
783 			};
784 			wqe->eseg = (rte_v128u32_t){
785 				swp_offsets,
786 				cs_flags | (swp_types << 8) |
787 				(rte_cpu_to_be_16(tso_segsz) << 16),
788 				metadata,
789 				(ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
790 			};
791 		} else {
792 			wqe->ctrl = (rte_v128u32_t){
793 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
794 						 MLX5_OPCODE_SEND),
795 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
796 				0,
797 				0,
798 			};
799 			wqe->eseg = (rte_v128u32_t){
800 				swp_offsets,
801 				cs_flags | (swp_types << 8),
802 				metadata,
803 				(ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
804 			};
805 		}
806 next_wqe:
807 		txq->wqe_ci += (ds + 3) / 4;
808 		/* Save the last successful WQE for completion request */
809 		last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
810 #ifdef MLX5_PMD_SOFT_COUNTERS
811 		/* Increment sent bytes counter. */
812 		txq->stats.obytes += total_length;
813 #endif
814 	} while (i < pkts_n);
815 	/* Take a shortcut if nothing must be sent. */
816 	if (unlikely((i + k) == 0))
817 		return 0;
818 	txq->elts_head += (i + j);
819 	/* Check whether completion threshold has been reached. */
820 	comp = txq->elts_comp + i + j + k;
821 	if (comp >= MLX5_TX_COMP_THRESH) {
822 		/* A CQE slot must always be available. */
823 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
824 		/* Request completion on last WQE. */
825 		last_wqe->ctrl2 = rte_cpu_to_be_32(8);
826 		/* Save elts_head in unused "immediate" field of WQE. */
827 		last_wqe->ctrl3 = txq->elts_head;
828 		txq->elts_comp = 0;
829 	} else {
830 		txq->elts_comp = comp;
831 	}
832 #ifdef MLX5_PMD_SOFT_COUNTERS
833 	/* Increment sent packets counter. */
834 	txq->stats.opackets += i;
835 #endif
836 	/* Ring QP doorbell. */
837 	mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
838 	return i;
839 }
840 
841 /**
842  * Open a MPW session.
843  *
844  * @param txq
845  *   Pointer to TX queue structure.
846  * @param mpw
847  *   Pointer to MPW session structure.
848  * @param length
849  *   Packet length.
850  */
851 static inline void
852 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
853 {
854 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
855 	volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
856 		(volatile struct mlx5_wqe_data_seg (*)[])
857 		tx_mlx5_wqe(txq, idx + 1);
858 
859 	mpw->state = MLX5_MPW_STATE_OPENED;
860 	mpw->pkts_n = 0;
861 	mpw->len = length;
862 	mpw->total_len = 0;
863 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
864 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
865 	mpw->wqe->eseg.inline_hdr_sz = 0;
866 	mpw->wqe->eseg.rsvd0 = 0;
867 	mpw->wqe->eseg.rsvd1 = 0;
868 	mpw->wqe->eseg.flow_table_metadata = 0;
869 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
870 					     (txq->wqe_ci << 8) |
871 					     MLX5_OPCODE_TSO);
872 	mpw->wqe->ctrl[2] = 0;
873 	mpw->wqe->ctrl[3] = 0;
874 	mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
875 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
876 	mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
877 		(((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
878 	mpw->data.dseg[2] = &(*dseg)[0];
879 	mpw->data.dseg[3] = &(*dseg)[1];
880 	mpw->data.dseg[4] = &(*dseg)[2];
881 }
882 
883 /**
884  * Close a MPW session.
885  *
886  * @param txq
887  *   Pointer to TX queue structure.
888  * @param mpw
889  *   Pointer to MPW session structure.
890  */
891 static inline void
892 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
893 {
894 	unsigned int num = mpw->pkts_n;
895 
896 	/*
897 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
898 	 * count as 2.
899 	 */
900 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
901 	mpw->state = MLX5_MPW_STATE_CLOSED;
902 	if (num < 3)
903 		++txq->wqe_ci;
904 	else
905 		txq->wqe_ci += 2;
906 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
907 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
908 }
909 
910 /**
911  * DPDK callback for TX with MPW support.
912  *
913  * @param dpdk_txq
914  *   Generic pointer to TX queue structure.
915  * @param[in] pkts
916  *   Packets to transmit.
917  * @param pkts_n
918  *   Number of packets in array.
919  *
920  * @return
921  *   Number of packets successfully transmitted (<= pkts_n).
922  */
923 uint16_t
924 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
925 {
926 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
927 	uint16_t elts_head = txq->elts_head;
928 	const uint16_t elts_n = 1 << txq->elts_n;
929 	const uint16_t elts_m = elts_n - 1;
930 	unsigned int i = 0;
931 	unsigned int j = 0;
932 	uint16_t max_elts;
933 	uint16_t max_wqe;
934 	unsigned int comp;
935 	struct mlx5_mpw mpw = {
936 		.state = MLX5_MPW_STATE_CLOSED,
937 	};
938 
939 	if (unlikely(!pkts_n))
940 		return 0;
941 	/* Prefetch first packet cacheline. */
942 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
943 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
944 	/* Start processing. */
945 	mlx5_tx_complete(txq);
946 	max_elts = (elts_n - (elts_head - txq->elts_tail));
947 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
948 	if (unlikely(!max_wqe))
949 		return 0;
950 	do {
951 		struct rte_mbuf *buf = *(pkts++);
952 		uint32_t length;
953 		unsigned int segs_n = buf->nb_segs;
954 		uint32_t cs_flags;
955 		rte_be32_t metadata;
956 
957 		/*
958 		 * Make sure there is enough room to store this packet and
959 		 * that one ring entry remains unused.
960 		 */
961 		assert(segs_n);
962 		if (max_elts < segs_n)
963 			break;
964 		/* Do not bother with large packets MPW cannot handle. */
965 		if (segs_n > MLX5_MPW_DSEG_MAX) {
966 			txq->stats.oerrors++;
967 			break;
968 		}
969 		max_elts -= segs_n;
970 		--pkts_n;
971 		cs_flags = txq_ol_cksum_to_cs(buf);
972 		/* Copy metadata from mbuf if valid */
973 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
974 							     0;
975 		/* Retrieve packet information. */
976 		length = PKT_LEN(buf);
977 		assert(length);
978 		/* Start new session if packet differs. */
979 		if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
980 		    ((mpw.len != length) ||
981 		     (segs_n != 1) ||
982 		     (mpw.wqe->eseg.flow_table_metadata != metadata) ||
983 		     (mpw.wqe->eseg.cs_flags != cs_flags)))
984 			mlx5_mpw_close(txq, &mpw);
985 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
986 			/*
987 			 * Multi-Packet WQE consumes at most two WQE.
988 			 * mlx5_mpw_new() expects to be able to use such
989 			 * resources.
990 			 */
991 			if (unlikely(max_wqe < 2))
992 				break;
993 			max_wqe -= 2;
994 			mlx5_mpw_new(txq, &mpw, length);
995 			mpw.wqe->eseg.cs_flags = cs_flags;
996 			mpw.wqe->eseg.flow_table_metadata = metadata;
997 		}
998 		/* Multi-segment packets must be alone in their MPW. */
999 		assert((segs_n == 1) || (mpw.pkts_n == 0));
1000 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1001 		length = 0;
1002 #endif
1003 		do {
1004 			volatile struct mlx5_wqe_data_seg *dseg;
1005 			uintptr_t addr;
1006 
1007 			assert(buf);
1008 			(*txq->elts)[elts_head++ & elts_m] = buf;
1009 			dseg = mpw.data.dseg[mpw.pkts_n];
1010 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1011 			*dseg = (struct mlx5_wqe_data_seg){
1012 				.byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1013 				.lkey = mlx5_tx_mb2mr(txq, buf),
1014 				.addr = rte_cpu_to_be_64(addr),
1015 			};
1016 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1017 			length += DATA_LEN(buf);
1018 #endif
1019 			buf = buf->next;
1020 			++mpw.pkts_n;
1021 			++j;
1022 		} while (--segs_n);
1023 		assert(length == mpw.len);
1024 		if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1025 			mlx5_mpw_close(txq, &mpw);
1026 #ifdef MLX5_PMD_SOFT_COUNTERS
1027 		/* Increment sent bytes counter. */
1028 		txq->stats.obytes += length;
1029 #endif
1030 		++i;
1031 	} while (pkts_n);
1032 	/* Take a shortcut if nothing must be sent. */
1033 	if (unlikely(i == 0))
1034 		return 0;
1035 	/* Check whether completion threshold has been reached. */
1036 	/* "j" includes both packets and segments. */
1037 	comp = txq->elts_comp + j;
1038 	if (comp >= MLX5_TX_COMP_THRESH) {
1039 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1040 
1041 		/* A CQE slot must always be available. */
1042 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1043 		/* Request completion on last WQE. */
1044 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1045 		/* Save elts_head in unused "immediate" field of WQE. */
1046 		wqe->ctrl[3] = elts_head;
1047 		txq->elts_comp = 0;
1048 	} else {
1049 		txq->elts_comp = comp;
1050 	}
1051 #ifdef MLX5_PMD_SOFT_COUNTERS
1052 	/* Increment sent packets counter. */
1053 	txq->stats.opackets += i;
1054 #endif
1055 	/* Ring QP doorbell. */
1056 	if (mpw.state == MLX5_MPW_STATE_OPENED)
1057 		mlx5_mpw_close(txq, &mpw);
1058 	mlx5_tx_dbrec(txq, mpw.wqe);
1059 	txq->elts_head = elts_head;
1060 	return i;
1061 }
1062 
1063 /**
1064  * Open a MPW inline session.
1065  *
1066  * @param txq
1067  *   Pointer to TX queue structure.
1068  * @param mpw
1069  *   Pointer to MPW session structure.
1070  * @param length
1071  *   Packet length.
1072  */
1073 static inline void
1074 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1075 		    uint32_t length)
1076 {
1077 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1078 	struct mlx5_wqe_inl_small *inl;
1079 
1080 	mpw->state = MLX5_MPW_INL_STATE_OPENED;
1081 	mpw->pkts_n = 0;
1082 	mpw->len = length;
1083 	mpw->total_len = 0;
1084 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1085 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1086 					     (txq->wqe_ci << 8) |
1087 					     MLX5_OPCODE_TSO);
1088 	mpw->wqe->ctrl[2] = 0;
1089 	mpw->wqe->ctrl[3] = 0;
1090 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1091 	mpw->wqe->eseg.inline_hdr_sz = 0;
1092 	mpw->wqe->eseg.cs_flags = 0;
1093 	mpw->wqe->eseg.rsvd0 = 0;
1094 	mpw->wqe->eseg.rsvd1 = 0;
1095 	mpw->wqe->eseg.flow_table_metadata = 0;
1096 	inl = (struct mlx5_wqe_inl_small *)
1097 		(((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1098 	mpw->data.raw = (uint8_t *)&inl->raw;
1099 }
1100 
1101 /**
1102  * Close a MPW inline session.
1103  *
1104  * @param txq
1105  *   Pointer to TX queue structure.
1106  * @param mpw
1107  *   Pointer to MPW session structure.
1108  */
1109 static inline void
1110 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1111 {
1112 	unsigned int size;
1113 	struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1114 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1115 
1116 	size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1117 	/*
1118 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
1119 	 * count as 2.
1120 	 */
1121 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1122 					     MLX5_WQE_DS(size));
1123 	mpw->state = MLX5_MPW_STATE_CLOSED;
1124 	inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1125 	txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1126 }
1127 
1128 /**
1129  * DPDK callback for TX with MPW inline support.
1130  *
1131  * @param dpdk_txq
1132  *   Generic pointer to TX queue structure.
1133  * @param[in] pkts
1134  *   Packets to transmit.
1135  * @param pkts_n
1136  *   Number of packets in array.
1137  *
1138  * @return
1139  *   Number of packets successfully transmitted (<= pkts_n).
1140  */
1141 uint16_t
1142 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1143 			 uint16_t pkts_n)
1144 {
1145 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1146 	uint16_t elts_head = txq->elts_head;
1147 	const uint16_t elts_n = 1 << txq->elts_n;
1148 	const uint16_t elts_m = elts_n - 1;
1149 	unsigned int i = 0;
1150 	unsigned int j = 0;
1151 	uint16_t max_elts;
1152 	uint16_t max_wqe;
1153 	unsigned int comp;
1154 	unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1155 	struct mlx5_mpw mpw = {
1156 		.state = MLX5_MPW_STATE_CLOSED,
1157 	};
1158 	/*
1159 	 * Compute the maximum number of WQE which can be consumed by inline
1160 	 * code.
1161 	 * - 2 DSEG for:
1162 	 *   - 1 control segment,
1163 	 *   - 1 Ethernet segment,
1164 	 * - N Dseg from the inline request.
1165 	 */
1166 	const unsigned int wqe_inl_n =
1167 		((2 * MLX5_WQE_DWORD_SIZE +
1168 		  txq->max_inline * RTE_CACHE_LINE_SIZE) +
1169 		 RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1170 
1171 	if (unlikely(!pkts_n))
1172 		return 0;
1173 	/* Prefetch first packet cacheline. */
1174 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1175 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1176 	/* Start processing. */
1177 	mlx5_tx_complete(txq);
1178 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1179 	do {
1180 		struct rte_mbuf *buf = *(pkts++);
1181 		uintptr_t addr;
1182 		uint32_t length;
1183 		unsigned int segs_n = buf->nb_segs;
1184 		uint8_t cs_flags;
1185 		rte_be32_t metadata;
1186 
1187 		/*
1188 		 * Make sure there is enough room to store this packet and
1189 		 * that one ring entry remains unused.
1190 		 */
1191 		assert(segs_n);
1192 		if (max_elts < segs_n)
1193 			break;
1194 		/* Do not bother with large packets MPW cannot handle. */
1195 		if (segs_n > MLX5_MPW_DSEG_MAX) {
1196 			txq->stats.oerrors++;
1197 			break;
1198 		}
1199 		max_elts -= segs_n;
1200 		--pkts_n;
1201 		/*
1202 		 * Compute max_wqe in case less WQE were consumed in previous
1203 		 * iteration.
1204 		 */
1205 		max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1206 		cs_flags = txq_ol_cksum_to_cs(buf);
1207 		/* Copy metadata from mbuf if valid */
1208 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1209 							     0;
1210 		/* Retrieve packet information. */
1211 		length = PKT_LEN(buf);
1212 		/* Start new session if packet differs. */
1213 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1214 			if ((mpw.len != length) ||
1215 			    (segs_n != 1) ||
1216 			    (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1217 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1218 				mlx5_mpw_close(txq, &mpw);
1219 		} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1220 			if ((mpw.len != length) ||
1221 			    (segs_n != 1) ||
1222 			    (length > inline_room) ||
1223 			    (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1224 			    (mpw.wqe->eseg.cs_flags != cs_flags)) {
1225 				mlx5_mpw_inline_close(txq, &mpw);
1226 				inline_room =
1227 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1228 			}
1229 		}
1230 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1231 			if ((segs_n != 1) ||
1232 			    (length > inline_room)) {
1233 				/*
1234 				 * Multi-Packet WQE consumes at most two WQE.
1235 				 * mlx5_mpw_new() expects to be able to use
1236 				 * such resources.
1237 				 */
1238 				if (unlikely(max_wqe < 2))
1239 					break;
1240 				max_wqe -= 2;
1241 				mlx5_mpw_new(txq, &mpw, length);
1242 				mpw.wqe->eseg.cs_flags = cs_flags;
1243 				mpw.wqe->eseg.flow_table_metadata = metadata;
1244 			} else {
1245 				if (unlikely(max_wqe < wqe_inl_n))
1246 					break;
1247 				max_wqe -= wqe_inl_n;
1248 				mlx5_mpw_inline_new(txq, &mpw, length);
1249 				mpw.wqe->eseg.cs_flags = cs_flags;
1250 				mpw.wqe->eseg.flow_table_metadata = metadata;
1251 			}
1252 		}
1253 		/* Multi-segment packets must be alone in their MPW. */
1254 		assert((segs_n == 1) || (mpw.pkts_n == 0));
1255 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1256 			assert(inline_room ==
1257 			       txq->max_inline * RTE_CACHE_LINE_SIZE);
1258 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1259 			length = 0;
1260 #endif
1261 			do {
1262 				volatile struct mlx5_wqe_data_seg *dseg;
1263 
1264 				assert(buf);
1265 				(*txq->elts)[elts_head++ & elts_m] = buf;
1266 				dseg = mpw.data.dseg[mpw.pkts_n];
1267 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
1268 				*dseg = (struct mlx5_wqe_data_seg){
1269 					.byte_count =
1270 					       rte_cpu_to_be_32(DATA_LEN(buf)),
1271 					.lkey = mlx5_tx_mb2mr(txq, buf),
1272 					.addr = rte_cpu_to_be_64(addr),
1273 				};
1274 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1275 				length += DATA_LEN(buf);
1276 #endif
1277 				buf = buf->next;
1278 				++mpw.pkts_n;
1279 				++j;
1280 			} while (--segs_n);
1281 			assert(length == mpw.len);
1282 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1283 				mlx5_mpw_close(txq, &mpw);
1284 		} else {
1285 			unsigned int max;
1286 
1287 			assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1288 			assert(length <= inline_room);
1289 			assert(length == DATA_LEN(buf));
1290 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1291 			(*txq->elts)[elts_head++ & elts_m] = buf;
1292 			/* Maximum number of bytes before wrapping. */
1293 			max = ((((uintptr_t)(txq->wqes)) +
1294 				(1 << txq->wqe_n) *
1295 				MLX5_WQE_SIZE) -
1296 			       (uintptr_t)mpw.data.raw);
1297 			if (length > max) {
1298 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1299 					   (void *)addr,
1300 					   max);
1301 				mpw.data.raw = (volatile void *)txq->wqes;
1302 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1303 					   (void *)(addr + max),
1304 					   length - max);
1305 				mpw.data.raw += length - max;
1306 			} else {
1307 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1308 					   (void *)addr,
1309 					   length);
1310 
1311 				if (length == max)
1312 					mpw.data.raw =
1313 						(volatile void *)txq->wqes;
1314 				else
1315 					mpw.data.raw += length;
1316 			}
1317 			++mpw.pkts_n;
1318 			mpw.total_len += length;
1319 			++j;
1320 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1321 				mlx5_mpw_inline_close(txq, &mpw);
1322 				inline_room =
1323 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1324 			} else {
1325 				inline_room -= length;
1326 			}
1327 		}
1328 #ifdef MLX5_PMD_SOFT_COUNTERS
1329 		/* Increment sent bytes counter. */
1330 		txq->stats.obytes += length;
1331 #endif
1332 		++i;
1333 	} while (pkts_n);
1334 	/* Take a shortcut if nothing must be sent. */
1335 	if (unlikely(i == 0))
1336 		return 0;
1337 	/* Check whether completion threshold has been reached. */
1338 	/* "j" includes both packets and segments. */
1339 	comp = txq->elts_comp + j;
1340 	if (comp >= MLX5_TX_COMP_THRESH) {
1341 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1342 
1343 		/* A CQE slot must always be available. */
1344 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1345 		/* Request completion on last WQE. */
1346 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1347 		/* Save elts_head in unused "immediate" field of WQE. */
1348 		wqe->ctrl[3] = elts_head;
1349 		txq->elts_comp = 0;
1350 	} else {
1351 		txq->elts_comp = comp;
1352 	}
1353 #ifdef MLX5_PMD_SOFT_COUNTERS
1354 	/* Increment sent packets counter. */
1355 	txq->stats.opackets += i;
1356 #endif
1357 	/* Ring QP doorbell. */
1358 	if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1359 		mlx5_mpw_inline_close(txq, &mpw);
1360 	else if (mpw.state == MLX5_MPW_STATE_OPENED)
1361 		mlx5_mpw_close(txq, &mpw);
1362 	mlx5_tx_dbrec(txq, mpw.wqe);
1363 	txq->elts_head = elts_head;
1364 	return i;
1365 }
1366 
1367 /**
1368  * Open an Enhanced MPW session.
1369  *
1370  * @param txq
1371  *   Pointer to TX queue structure.
1372  * @param mpw
1373  *   Pointer to MPW session structure.
1374  * @param length
1375  *   Packet length.
1376  */
1377 static inline void
1378 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1379 {
1380 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1381 
1382 	mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1383 	mpw->pkts_n = 0;
1384 	mpw->total_len = sizeof(struct mlx5_wqe);
1385 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1386 	mpw->wqe->ctrl[0] =
1387 		rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1388 				 (txq->wqe_ci << 8) |
1389 				 MLX5_OPCODE_ENHANCED_MPSW);
1390 	mpw->wqe->ctrl[2] = 0;
1391 	mpw->wqe->ctrl[3] = 0;
1392 	memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1393 	if (unlikely(padding)) {
1394 		uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1395 
1396 		/* Pad the first 2 DWORDs with zero-length inline header. */
1397 		*(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1398 		*(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1399 			rte_cpu_to_be_32(MLX5_INLINE_SEG);
1400 		mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1401 		/* Start from the next WQEBB. */
1402 		mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1403 	} else {
1404 		mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1405 	}
1406 }
1407 
1408 /**
1409  * Close an Enhanced MPW session.
1410  *
1411  * @param txq
1412  *   Pointer to TX queue structure.
1413  * @param mpw
1414  *   Pointer to MPW session structure.
1415  *
1416  * @return
1417  *   Number of consumed WQEs.
1418  */
1419 static inline uint16_t
1420 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1421 {
1422 	uint16_t ret;
1423 
1424 	/* Store size in multiple of 16 bytes. Control and Ethernet segments
1425 	 * count as 2.
1426 	 */
1427 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1428 					     MLX5_WQE_DS(mpw->total_len));
1429 	mpw->state = MLX5_MPW_STATE_CLOSED;
1430 	ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1431 	txq->wqe_ci += ret;
1432 	return ret;
1433 }
1434 
1435 /**
1436  * TX with Enhanced MPW support.
1437  *
1438  * @param txq
1439  *   Pointer to TX queue structure.
1440  * @param[in] pkts
1441  *   Packets to transmit.
1442  * @param pkts_n
1443  *   Number of packets in array.
1444  *
1445  * @return
1446  *   Number of packets successfully transmitted (<= pkts_n).
1447  */
1448 static inline uint16_t
1449 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1450 	       uint16_t pkts_n)
1451 {
1452 	uint16_t elts_head = txq->elts_head;
1453 	const uint16_t elts_n = 1 << txq->elts_n;
1454 	const uint16_t elts_m = elts_n - 1;
1455 	unsigned int i = 0;
1456 	unsigned int j = 0;
1457 	uint16_t max_elts;
1458 	uint16_t max_wqe;
1459 	unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1460 	unsigned int mpw_room = 0;
1461 	unsigned int inl_pad = 0;
1462 	uint32_t inl_hdr;
1463 	uint64_t addr_64;
1464 	struct mlx5_mpw mpw = {
1465 		.state = MLX5_MPW_STATE_CLOSED,
1466 	};
1467 
1468 	if (unlikely(!pkts_n))
1469 		return 0;
1470 	/* Start processing. */
1471 	mlx5_tx_complete(txq);
1472 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1473 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1474 	if (unlikely(!max_wqe))
1475 		return 0;
1476 	do {
1477 		struct rte_mbuf *buf = *(pkts++);
1478 		uintptr_t addr;
1479 		unsigned int do_inline = 0; /* Whether inline is possible. */
1480 		uint32_t length;
1481 		uint8_t cs_flags;
1482 		rte_be32_t metadata;
1483 
1484 		/* Multi-segmented packet is handled in slow-path outside. */
1485 		assert(NB_SEGS(buf) == 1);
1486 		/* Make sure there is enough room to store this packet. */
1487 		if (max_elts - j == 0)
1488 			break;
1489 		cs_flags = txq_ol_cksum_to_cs(buf);
1490 		/* Copy metadata from mbuf if valid */
1491 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1492 							     0;
1493 		/* Retrieve packet information. */
1494 		length = PKT_LEN(buf);
1495 		/* Start new session if:
1496 		 * - multi-segment packet
1497 		 * - no space left even for a dseg
1498 		 * - next packet can be inlined with a new WQE
1499 		 * - cs_flag differs
1500 		 */
1501 		if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1502 			if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1503 			     mpw_room) ||
1504 			    (length <= txq->inline_max_packet_sz &&
1505 			     inl_pad + sizeof(inl_hdr) + length >
1506 			     mpw_room) ||
1507 			     (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1508 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1509 				max_wqe -= mlx5_empw_close(txq, &mpw);
1510 		}
1511 		if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1512 			/* In Enhanced MPW, inline as much as the budget is
1513 			 * allowed. The remaining space is to be filled with
1514 			 * dsegs. If the title WQEBB isn't padded, it will have
1515 			 * 2 dsegs there.
1516 			 */
1517 			mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1518 					   (max_inline ? max_inline :
1519 					    pkts_n * MLX5_WQE_DWORD_SIZE) +
1520 					   MLX5_WQE_SIZE);
1521 			if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1522 				break;
1523 			/* Don't pad the title WQEBB to not waste WQ. */
1524 			mlx5_empw_new(txq, &mpw, 0);
1525 			mpw_room -= mpw.total_len;
1526 			inl_pad = 0;
1527 			do_inline = length <= txq->inline_max_packet_sz &&
1528 				    sizeof(inl_hdr) + length <= mpw_room &&
1529 				    !txq->mpw_hdr_dseg;
1530 			mpw.wqe->eseg.cs_flags = cs_flags;
1531 			mpw.wqe->eseg.flow_table_metadata = metadata;
1532 		} else {
1533 			/* Evaluate whether the next packet can be inlined.
1534 			 * Inlininig is possible when:
1535 			 * - length is less than configured value
1536 			 * - length fits for remaining space
1537 			 * - not required to fill the title WQEBB with dsegs
1538 			 */
1539 			do_inline =
1540 				length <= txq->inline_max_packet_sz &&
1541 				inl_pad + sizeof(inl_hdr) + length <=
1542 				 mpw_room &&
1543 				(!txq->mpw_hdr_dseg ||
1544 				 mpw.total_len >= MLX5_WQE_SIZE);
1545 		}
1546 		if (max_inline && do_inline) {
1547 			/* Inline packet into WQE. */
1548 			unsigned int max;
1549 
1550 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1551 			assert(length == DATA_LEN(buf));
1552 			inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1553 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1554 			mpw.data.raw = (volatile void *)
1555 				((uintptr_t)mpw.data.raw + inl_pad);
1556 			max = tx_mlx5_wq_tailroom(txq,
1557 					(void *)(uintptr_t)mpw.data.raw);
1558 			/* Copy inline header. */
1559 			mpw.data.raw = (volatile void *)
1560 				mlx5_copy_to_wq(
1561 					  (void *)(uintptr_t)mpw.data.raw,
1562 					  &inl_hdr,
1563 					  sizeof(inl_hdr),
1564 					  (void *)(uintptr_t)txq->wqes,
1565 					  max);
1566 			max = tx_mlx5_wq_tailroom(txq,
1567 					(void *)(uintptr_t)mpw.data.raw);
1568 			/* Copy packet data. */
1569 			mpw.data.raw = (volatile void *)
1570 				mlx5_copy_to_wq(
1571 					  (void *)(uintptr_t)mpw.data.raw,
1572 					  (void *)addr,
1573 					  length,
1574 					  (void *)(uintptr_t)txq->wqes,
1575 					  max);
1576 			++mpw.pkts_n;
1577 			mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1578 			/* No need to get completion as the entire packet is
1579 			 * copied to WQ. Free the buf right away.
1580 			 */
1581 			rte_pktmbuf_free_seg(buf);
1582 			mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1583 			/* Add pad in the next packet if any. */
1584 			inl_pad = (((uintptr_t)mpw.data.raw +
1585 					(MLX5_WQE_DWORD_SIZE - 1)) &
1586 					~(MLX5_WQE_DWORD_SIZE - 1)) -
1587 				  (uintptr_t)mpw.data.raw;
1588 		} else {
1589 			/* No inline. Load a dseg of packet pointer. */
1590 			volatile rte_v128u32_t *dseg;
1591 
1592 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1593 			assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1594 			assert(length == DATA_LEN(buf));
1595 			if (!tx_mlx5_wq_tailroom(txq,
1596 					(void *)((uintptr_t)mpw.data.raw
1597 						+ inl_pad)))
1598 				dseg = (volatile void *)txq->wqes;
1599 			else
1600 				dseg = (volatile void *)
1601 					((uintptr_t)mpw.data.raw +
1602 					 inl_pad);
1603 			(*txq->elts)[elts_head++ & elts_m] = buf;
1604 			addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1605 								    uintptr_t));
1606 			*dseg = (rte_v128u32_t) {
1607 				rte_cpu_to_be_32(length),
1608 				mlx5_tx_mb2mr(txq, buf),
1609 				addr_64,
1610 				addr_64 >> 32,
1611 			};
1612 			mpw.data.raw = (volatile void *)(dseg + 1);
1613 			mpw.total_len += (inl_pad + sizeof(*dseg));
1614 			++j;
1615 			++mpw.pkts_n;
1616 			mpw_room -= (inl_pad + sizeof(*dseg));
1617 			inl_pad = 0;
1618 		}
1619 #ifdef MLX5_PMD_SOFT_COUNTERS
1620 		/* Increment sent bytes counter. */
1621 		txq->stats.obytes += length;
1622 #endif
1623 		++i;
1624 	} while (i < pkts_n);
1625 	/* Take a shortcut if nothing must be sent. */
1626 	if (unlikely(i == 0))
1627 		return 0;
1628 	/* Check whether completion threshold has been reached. */
1629 	if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1630 			(uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1631 			 (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1632 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1633 
1634 		/* A CQE slot must always be available. */
1635 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1636 		/* Request completion on last WQE. */
1637 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1638 		/* Save elts_head in unused "immediate" field of WQE. */
1639 		wqe->ctrl[3] = elts_head;
1640 		txq->elts_comp = 0;
1641 		txq->mpw_comp = txq->wqe_ci;
1642 	} else {
1643 		txq->elts_comp += j;
1644 	}
1645 #ifdef MLX5_PMD_SOFT_COUNTERS
1646 	/* Increment sent packets counter. */
1647 	txq->stats.opackets += i;
1648 #endif
1649 	if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1650 		mlx5_empw_close(txq, &mpw);
1651 	/* Ring QP doorbell. */
1652 	mlx5_tx_dbrec(txq, mpw.wqe);
1653 	txq->elts_head = elts_head;
1654 	return i;
1655 }
1656 
1657 /**
1658  * DPDK callback for TX with Enhanced MPW support.
1659  *
1660  * @param dpdk_txq
1661  *   Generic pointer to TX queue structure.
1662  * @param[in] pkts
1663  *   Packets to transmit.
1664  * @param pkts_n
1665  *   Number of packets in array.
1666  *
1667  * @return
1668  *   Number of packets successfully transmitted (<= pkts_n).
1669  */
1670 uint16_t
1671 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1672 {
1673 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1674 	uint16_t nb_tx = 0;
1675 
1676 	while (pkts_n > nb_tx) {
1677 		uint16_t n;
1678 		uint16_t ret;
1679 
1680 		n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1681 		if (n) {
1682 			ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1683 			if (!ret)
1684 				break;
1685 			nb_tx += ret;
1686 		}
1687 		n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1688 		if (n) {
1689 			ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1690 			if (!ret)
1691 				break;
1692 			nb_tx += ret;
1693 		}
1694 	}
1695 	return nb_tx;
1696 }
1697 
1698 /**
1699  * Translate RX completion flags to packet type.
1700  *
1701  * @param[in] rxq
1702  *   Pointer to RX queue structure.
1703  * @param[in] cqe
1704  *   Pointer to CQE.
1705  *
1706  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1707  *
1708  * @return
1709  *   Packet type for struct rte_mbuf.
1710  */
1711 static inline uint32_t
1712 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1713 {
1714 	uint8_t idx;
1715 	uint8_t pinfo = cqe->pkt_info;
1716 	uint16_t ptype = cqe->hdr_type_etc;
1717 
1718 	/*
1719 	 * The index to the array should have:
1720 	 * bit[1:0] = l3_hdr_type
1721 	 * bit[4:2] = l4_hdr_type
1722 	 * bit[5] = ip_frag
1723 	 * bit[6] = tunneled
1724 	 * bit[7] = outer_l3_type
1725 	 */
1726 	idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1727 	return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1728 }
1729 
1730 /**
1731  * Get size of the next packet for a given CQE. For compressed CQEs, the
1732  * consumer index is updated only once all packets of the current one have
1733  * been processed.
1734  *
1735  * @param rxq
1736  *   Pointer to RX queue.
1737  * @param cqe
1738  *   CQE to process.
1739  * @param[out] mcqe
1740  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1741  *   written.
1742  *
1743  * @return
1744  *   Packet size in bytes (0 if there is none), -1 in case of completion
1745  *   with error.
1746  */
1747 static inline int
1748 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1749 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1750 {
1751 	struct rxq_zip *zip = &rxq->zip;
1752 	uint16_t cqe_n = cqe_cnt + 1;
1753 	int len = 0;
1754 	uint16_t idx, end;
1755 
1756 	/* Process compressed data in the CQE and mini arrays. */
1757 	if (zip->ai) {
1758 		volatile struct mlx5_mini_cqe8 (*mc)[8] =
1759 			(volatile struct mlx5_mini_cqe8 (*)[8])
1760 			(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1761 
1762 		len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1763 		*mcqe = &(*mc)[zip->ai & 7];
1764 		if ((++zip->ai & 7) == 0) {
1765 			/* Invalidate consumed CQEs */
1766 			idx = zip->ca;
1767 			end = zip->na;
1768 			while (idx != end) {
1769 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1770 					MLX5_CQE_INVALIDATE;
1771 				++idx;
1772 			}
1773 			/*
1774 			 * Increment consumer index to skip the number of
1775 			 * CQEs consumed. Hardware leaves holes in the CQ
1776 			 * ring for software use.
1777 			 */
1778 			zip->ca = zip->na;
1779 			zip->na += 8;
1780 		}
1781 		if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1782 			/* Invalidate the rest */
1783 			idx = zip->ca;
1784 			end = zip->cq_ci;
1785 
1786 			while (idx != end) {
1787 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1788 					MLX5_CQE_INVALIDATE;
1789 				++idx;
1790 			}
1791 			rxq->cq_ci = zip->cq_ci;
1792 			zip->ai = 0;
1793 		}
1794 	/* No compressed data, get next CQE and verify if it is compressed. */
1795 	} else {
1796 		int ret;
1797 		int8_t op_own;
1798 
1799 		ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1800 		if (unlikely(ret == 1))
1801 			return 0;
1802 		++rxq->cq_ci;
1803 		op_own = cqe->op_own;
1804 		rte_cio_rmb();
1805 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1806 			volatile struct mlx5_mini_cqe8 (*mc)[8] =
1807 				(volatile struct mlx5_mini_cqe8 (*)[8])
1808 				(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1809 							  cqe_cnt].pkt_info);
1810 
1811 			/* Fix endianness. */
1812 			zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1813 			/*
1814 			 * Current mini array position is the one returned by
1815 			 * check_cqe64().
1816 			 *
1817 			 * If completion comprises several mini arrays, as a
1818 			 * special case the second one is located 7 CQEs after
1819 			 * the initial CQE instead of 8 for subsequent ones.
1820 			 */
1821 			zip->ca = rxq->cq_ci;
1822 			zip->na = zip->ca + 7;
1823 			/* Compute the next non compressed CQE. */
1824 			--rxq->cq_ci;
1825 			zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1826 			/* Get packet size to return. */
1827 			len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1828 			*mcqe = &(*mc)[0];
1829 			zip->ai = 1;
1830 			/* Prefetch all the entries to be invalidated */
1831 			idx = zip->ca;
1832 			end = zip->cq_ci;
1833 			while (idx != end) {
1834 				rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1835 				++idx;
1836 			}
1837 		} else {
1838 			len = rte_be_to_cpu_32(cqe->byte_cnt);
1839 		}
1840 		/* Error while receiving packet. */
1841 		if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1842 			return -1;
1843 	}
1844 	return len;
1845 }
1846 
1847 /**
1848  * Translate RX completion flags to offload flags.
1849  *
1850  * @param[in] cqe
1851  *   Pointer to CQE.
1852  *
1853  * @return
1854  *   Offload flags (ol_flags) for struct rte_mbuf.
1855  */
1856 static inline uint32_t
1857 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1858 {
1859 	uint32_t ol_flags = 0;
1860 	uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1861 
1862 	ol_flags =
1863 		TRANSPOSE(flags,
1864 			  MLX5_CQE_RX_L3_HDR_VALID,
1865 			  PKT_RX_IP_CKSUM_GOOD) |
1866 		TRANSPOSE(flags,
1867 			  MLX5_CQE_RX_L4_HDR_VALID,
1868 			  PKT_RX_L4_CKSUM_GOOD);
1869 	return ol_flags;
1870 }
1871 
1872 /**
1873  * Fill in mbuf fields from RX completion flags.
1874  * Note that pkt->ol_flags should be initialized outside of this function.
1875  *
1876  * @param rxq
1877  *   Pointer to RX queue.
1878  * @param pkt
1879  *   mbuf to fill.
1880  * @param cqe
1881  *   CQE to process.
1882  * @param rss_hash_res
1883  *   Packet RSS Hash result.
1884  */
1885 static inline void
1886 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1887 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1888 {
1889 	/* Update packet information. */
1890 	pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1891 	if (rss_hash_res && rxq->rss_hash) {
1892 		pkt->hash.rss = rss_hash_res;
1893 		pkt->ol_flags |= PKT_RX_RSS_HASH;
1894 	}
1895 	if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1896 		pkt->ol_flags |= PKT_RX_FDIR;
1897 		if (cqe->sop_drop_qpn !=
1898 		    rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1899 			uint32_t mark = cqe->sop_drop_qpn;
1900 
1901 			pkt->ol_flags |= PKT_RX_FDIR_ID;
1902 			pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1903 		}
1904 	}
1905 	if (rxq->csum)
1906 		pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1907 	if (rxq->vlan_strip &&
1908 	    (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1909 		pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1910 		pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1911 	}
1912 	if (rxq->hw_timestamp) {
1913 		pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1914 		pkt->ol_flags |= PKT_RX_TIMESTAMP;
1915 	}
1916 }
1917 
1918 /**
1919  * DPDK callback for RX.
1920  *
1921  * @param dpdk_rxq
1922  *   Generic pointer to RX queue structure.
1923  * @param[out] pkts
1924  *   Array to store received packets.
1925  * @param pkts_n
1926  *   Maximum number of packets in array.
1927  *
1928  * @return
1929  *   Number of packets successfully received (<= pkts_n).
1930  */
1931 uint16_t
1932 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1933 {
1934 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1935 	const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1936 	const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1937 	const unsigned int sges_n = rxq->sges_n;
1938 	struct rte_mbuf *pkt = NULL;
1939 	struct rte_mbuf *seg = NULL;
1940 	volatile struct mlx5_cqe *cqe =
1941 		&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1942 	unsigned int i = 0;
1943 	unsigned int rq_ci = rxq->rq_ci << sges_n;
1944 	int len = 0; /* keep its value across iterations. */
1945 
1946 	while (pkts_n) {
1947 		unsigned int idx = rq_ci & wqe_cnt;
1948 		volatile struct mlx5_wqe_data_seg *wqe =
1949 			&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1950 		struct rte_mbuf *rep = (*rxq->elts)[idx];
1951 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1952 		uint32_t rss_hash_res;
1953 
1954 		if (pkt)
1955 			NEXT(seg) = rep;
1956 		seg = rep;
1957 		rte_prefetch0(seg);
1958 		rte_prefetch0(cqe);
1959 		rte_prefetch0(wqe);
1960 		rep = rte_mbuf_raw_alloc(rxq->mp);
1961 		if (unlikely(rep == NULL)) {
1962 			++rxq->stats.rx_nombuf;
1963 			if (!pkt) {
1964 				/*
1965 				 * no buffers before we even started,
1966 				 * bail out silently.
1967 				 */
1968 				break;
1969 			}
1970 			while (pkt != seg) {
1971 				assert(pkt != (*rxq->elts)[idx]);
1972 				rep = NEXT(pkt);
1973 				NEXT(pkt) = NULL;
1974 				NB_SEGS(pkt) = 1;
1975 				rte_mbuf_raw_free(pkt);
1976 				pkt = rep;
1977 			}
1978 			break;
1979 		}
1980 		if (!pkt) {
1981 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1982 			len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
1983 			if (!len) {
1984 				rte_mbuf_raw_free(rep);
1985 				break;
1986 			}
1987 			if (unlikely(len == -1)) {
1988 				/* RX error, packet is likely too large. */
1989 				rte_mbuf_raw_free(rep);
1990 				++rxq->stats.idropped;
1991 				goto skip;
1992 			}
1993 			pkt = seg;
1994 			assert(len >= (rxq->crc_present << 2));
1995 			pkt->ol_flags = 0;
1996 			/* If compressed, take hash result from mini-CQE. */
1997 			rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
1998 							cqe->rx_hash_res :
1999 							mcqe->rx_hash_result);
2000 			rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2001 			if (rxq->crc_present)
2002 				len -= ETHER_CRC_LEN;
2003 			PKT_LEN(pkt) = len;
2004 		}
2005 		DATA_LEN(rep) = DATA_LEN(seg);
2006 		PKT_LEN(rep) = PKT_LEN(seg);
2007 		SET_DATA_OFF(rep, DATA_OFF(seg));
2008 		PORT(rep) = PORT(seg);
2009 		(*rxq->elts)[idx] = rep;
2010 		/*
2011 		 * Fill NIC descriptor with the new buffer.  The lkey and size
2012 		 * of the buffers are already known, only the buffer address
2013 		 * changes.
2014 		 */
2015 		wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
2016 		/* If there's only one MR, no need to replace LKey in WQE. */
2017 		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2018 			wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
2019 		if (len > DATA_LEN(seg)) {
2020 			len -= DATA_LEN(seg);
2021 			++NB_SEGS(pkt);
2022 			++rq_ci;
2023 			continue;
2024 		}
2025 		DATA_LEN(seg) = len;
2026 #ifdef MLX5_PMD_SOFT_COUNTERS
2027 		/* Increment bytes counter. */
2028 		rxq->stats.ibytes += PKT_LEN(pkt);
2029 #endif
2030 		/* Return packet. */
2031 		*(pkts++) = pkt;
2032 		pkt = NULL;
2033 		--pkts_n;
2034 		++i;
2035 skip:
2036 		/* Align consumer index to the next stride. */
2037 		rq_ci >>= sges_n;
2038 		++rq_ci;
2039 		rq_ci <<= sges_n;
2040 	}
2041 	if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2042 		return 0;
2043 	/* Update the consumer index. */
2044 	rxq->rq_ci = rq_ci >> sges_n;
2045 	rte_cio_wmb();
2046 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2047 	rte_cio_wmb();
2048 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2049 #ifdef MLX5_PMD_SOFT_COUNTERS
2050 	/* Increment packets counter. */
2051 	rxq->stats.ipackets += i;
2052 #endif
2053 	return i;
2054 }
2055 
2056 void
2057 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2058 {
2059 	struct mlx5_mprq_buf *buf = opaque;
2060 
2061 	if (rte_atomic16_read(&buf->refcnt) == 1) {
2062 		rte_mempool_put(buf->mp, buf);
2063 	} else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2064 		rte_atomic16_set(&buf->refcnt, 1);
2065 		rte_mempool_put(buf->mp, buf);
2066 	}
2067 }
2068 
2069 void
2070 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2071 {
2072 	mlx5_mprq_buf_free_cb(NULL, buf);
2073 }
2074 
2075 static inline void
2076 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2077 {
2078 	struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2079 	volatile struct mlx5_wqe_data_seg *wqe =
2080 		&((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2081 	void *addr;
2082 
2083 	assert(rep != NULL);
2084 	/* Replace MPRQ buf. */
2085 	(*rxq->mprq_bufs)[rq_idx] = rep;
2086 	/* Replace WQE. */
2087 	addr = mlx5_mprq_buf_addr(rep);
2088 	wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2089 	/* If there's only one MR, no need to replace LKey in WQE. */
2090 	if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2091 		wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2092 	/* Stash a mbuf for next replacement. */
2093 	if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2094 		rxq->mprq_repl = rep;
2095 	else
2096 		rxq->mprq_repl = NULL;
2097 }
2098 
2099 /**
2100  * DPDK callback for RX with Multi-Packet RQ support.
2101  *
2102  * @param dpdk_rxq
2103  *   Generic pointer to RX queue structure.
2104  * @param[out] pkts
2105  *   Array to store received packets.
2106  * @param pkts_n
2107  *   Maximum number of packets in array.
2108  *
2109  * @return
2110  *   Number of packets successfully received (<= pkts_n).
2111  */
2112 uint16_t
2113 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2114 {
2115 	struct mlx5_rxq_data *rxq = dpdk_rxq;
2116 	const unsigned int strd_n = 1 << rxq->strd_num_n;
2117 	const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2118 	const unsigned int strd_shift =
2119 		MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2120 	const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2121 	const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2122 	volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2123 	unsigned int i = 0;
2124 	uint32_t rq_ci = rxq->rq_ci;
2125 	uint16_t consumed_strd = rxq->consumed_strd;
2126 	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2127 
2128 	while (i < pkts_n) {
2129 		struct rte_mbuf *pkt;
2130 		void *addr;
2131 		int ret;
2132 		unsigned int len;
2133 		uint16_t strd_cnt;
2134 		uint16_t strd_idx;
2135 		uint32_t offset;
2136 		uint32_t byte_cnt;
2137 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2138 		uint32_t rss_hash_res = 0;
2139 
2140 		if (consumed_strd == strd_n) {
2141 			/* Replace WQE only if the buffer is still in use. */
2142 			if (rte_atomic16_read(&buf->refcnt) > 1) {
2143 				mprq_buf_replace(rxq, rq_ci & wq_mask);
2144 				/* Release the old buffer. */
2145 				mlx5_mprq_buf_free(buf);
2146 			} else if (unlikely(rxq->mprq_repl == NULL)) {
2147 				struct mlx5_mprq_buf *rep;
2148 
2149 				/*
2150 				 * Currently, the MPRQ mempool is out of buffer
2151 				 * and doing memcpy regardless of the size of Rx
2152 				 * packet. Retry allocation to get back to
2153 				 * normal.
2154 				 */
2155 				if (!rte_mempool_get(rxq->mprq_mp,
2156 						     (void **)&rep))
2157 					rxq->mprq_repl = rep;
2158 			}
2159 			/* Advance to the next WQE. */
2160 			consumed_strd = 0;
2161 			++rq_ci;
2162 			buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2163 		}
2164 		cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2165 		ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
2166 		if (!ret)
2167 			break;
2168 		if (unlikely(ret == -1)) {
2169 			/* RX error, packet is likely too large. */
2170 			++rxq->stats.idropped;
2171 			continue;
2172 		}
2173 		byte_cnt = ret;
2174 		strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2175 			   MLX5_MPRQ_STRIDE_NUM_SHIFT;
2176 		assert(strd_cnt);
2177 		consumed_strd += strd_cnt;
2178 		if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2179 			continue;
2180 		if (mcqe == NULL) {
2181 			rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
2182 			strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
2183 		} else {
2184 			/* mini-CQE for MPRQ doesn't have hash result. */
2185 			strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
2186 		}
2187 		assert(strd_idx < strd_n);
2188 		assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
2189 		/*
2190 		 * Currently configured to receive a packet per a stride. But if
2191 		 * MTU is adjusted through kernel interface, device could
2192 		 * consume multiple strides without raising an error. In this
2193 		 * case, the packet should be dropped because it is bigger than
2194 		 * the max_rx_pkt_len.
2195 		 */
2196 		if (unlikely(strd_cnt > 1)) {
2197 			++rxq->stats.idropped;
2198 			continue;
2199 		}
2200 		pkt = rte_pktmbuf_alloc(rxq->mp);
2201 		if (unlikely(pkt == NULL)) {
2202 			++rxq->stats.rx_nombuf;
2203 			break;
2204 		}
2205 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2206 		assert((int)len >= (rxq->crc_present << 2));
2207 		if (rxq->crc_present)
2208 			len -= ETHER_CRC_LEN;
2209 		offset = strd_idx * strd_sz + strd_shift;
2210 		addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2211 		/* Initialize the offload flag. */
2212 		pkt->ol_flags = 0;
2213 		/*
2214 		 * Memcpy packets to the target mbuf if:
2215 		 * - The size of packet is smaller than mprq_max_memcpy_len.
2216 		 * - Out of buffer in the Mempool for Multi-Packet RQ.
2217 		 */
2218 		if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2219 			/*
2220 			 * When memcpy'ing packet due to out-of-buffer, the
2221 			 * packet must be smaller than the target mbuf.
2222 			 */
2223 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2224 				rte_pktmbuf_free_seg(pkt);
2225 				++rxq->stats.idropped;
2226 				continue;
2227 			}
2228 			rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2229 		} else {
2230 			rte_iova_t buf_iova;
2231 			struct rte_mbuf_ext_shared_info *shinfo;
2232 			uint16_t buf_len = strd_cnt * strd_sz;
2233 
2234 			/* Increment the refcnt of the whole chunk. */
2235 			rte_atomic16_add_return(&buf->refcnt, 1);
2236 			assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2237 			       strd_n + 1);
2238 			addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2239 			/*
2240 			 * MLX5 device doesn't use iova but it is necessary in a
2241 			 * case where the Rx packet is transmitted via a
2242 			 * different PMD.
2243 			 */
2244 			buf_iova = rte_mempool_virt2iova(buf) +
2245 				   RTE_PTR_DIFF(addr, buf);
2246 			shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2247 					&buf_len, mlx5_mprq_buf_free_cb, buf);
2248 			/*
2249 			 * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2250 			 * attaching the stride to mbuf and more offload flags
2251 			 * will be added below by calling rxq_cq_to_mbuf().
2252 			 * Other fields will be overwritten.
2253 			 */
2254 			rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2255 						  shinfo);
2256 			rte_pktmbuf_reset_headroom(pkt);
2257 			assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2258 			/*
2259 			 * Prevent potential overflow due to MTU change through
2260 			 * kernel interface.
2261 			 */
2262 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2263 				rte_pktmbuf_free_seg(pkt);
2264 				++rxq->stats.idropped;
2265 				continue;
2266 			}
2267 		}
2268 		rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2269 		PKT_LEN(pkt) = len;
2270 		DATA_LEN(pkt) = len;
2271 		PORT(pkt) = rxq->port_id;
2272 #ifdef MLX5_PMD_SOFT_COUNTERS
2273 		/* Increment bytes counter. */
2274 		rxq->stats.ibytes += PKT_LEN(pkt);
2275 #endif
2276 		/* Return packet. */
2277 		*(pkts++) = pkt;
2278 		++i;
2279 	}
2280 	/* Update the consumer indexes. */
2281 	rxq->consumed_strd = consumed_strd;
2282 	rte_cio_wmb();
2283 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2284 	if (rq_ci != rxq->rq_ci) {
2285 		rxq->rq_ci = rq_ci;
2286 		rte_cio_wmb();
2287 		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2288 	}
2289 #ifdef MLX5_PMD_SOFT_COUNTERS
2290 	/* Increment packets counter. */
2291 	rxq->stats.ipackets += i;
2292 #endif
2293 	return i;
2294 }
2295 
2296 /**
2297  * Dummy DPDK callback for TX.
2298  *
2299  * This function is used to temporarily replace the real callback during
2300  * unsafe control operations on the queue, or in case of error.
2301  *
2302  * @param dpdk_txq
2303  *   Generic pointer to TX queue structure.
2304  * @param[in] pkts
2305  *   Packets to transmit.
2306  * @param pkts_n
2307  *   Number of packets in array.
2308  *
2309  * @return
2310  *   Number of packets successfully transmitted (<= pkts_n).
2311  */
2312 uint16_t
2313 removed_tx_burst(void *dpdk_txq __rte_unused,
2314 		 struct rte_mbuf **pkts __rte_unused,
2315 		 uint16_t pkts_n __rte_unused)
2316 {
2317 	return 0;
2318 }
2319 
2320 /**
2321  * Dummy DPDK callback for RX.
2322  *
2323  * This function is used to temporarily replace the real callback during
2324  * unsafe control operations on the queue, or in case of error.
2325  *
2326  * @param dpdk_rxq
2327  *   Generic pointer to RX queue structure.
2328  * @param[out] pkts
2329  *   Array to store received packets.
2330  * @param pkts_n
2331  *   Maximum number of packets in array.
2332  *
2333  * @return
2334  *   Number of packets successfully received (<= pkts_n).
2335  */
2336 uint16_t
2337 removed_rx_burst(void *dpdk_txq __rte_unused,
2338 		 struct rte_mbuf **pkts __rte_unused,
2339 		 uint16_t pkts_n __rte_unused)
2340 {
2341 	return 0;
2342 }
2343 
2344 /*
2345  * Vectorized Rx/Tx routines are not compiled in when required vector
2346  * instructions are not supported on a target architecture. The following null
2347  * stubs are needed for linkage when those are not included outside of this file
2348  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2349  */
2350 
2351 __rte_weak uint16_t
2352 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2353 		      struct rte_mbuf **pkts __rte_unused,
2354 		      uint16_t pkts_n __rte_unused)
2355 {
2356 	return 0;
2357 }
2358 
2359 __rte_weak uint16_t
2360 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2361 		  struct rte_mbuf **pkts __rte_unused,
2362 		  uint16_t pkts_n __rte_unused)
2363 {
2364 	return 0;
2365 }
2366 
2367 __rte_weak uint16_t
2368 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2369 		  struct rte_mbuf **pkts __rte_unused,
2370 		  uint16_t pkts_n __rte_unused)
2371 {
2372 	return 0;
2373 }
2374 
2375 __rte_weak int
2376 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2377 {
2378 	return -ENOTSUP;
2379 }
2380 
2381 __rte_weak int
2382 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2383 {
2384 	return -ENOTSUP;
2385 }
2386 
2387 __rte_weak int
2388 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2389 {
2390 	return -ENOTSUP;
2391 }
2392 
2393 __rte_weak int
2394 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2395 {
2396 	return -ENOTSUP;
2397 }
2398